Commit 46d59961 authored by Douglas's avatar Douglas

fixes small typos and order duplication script

parent 41f643b9
......@@ -49,7 +49,7 @@
"for i in range(365):\n",
" quantity = 10 * (1 + cos(i / 60.0))\n",
" start_date += 1\n",
" new_order = context.Base_createCloneDocument(batch_mode=1)\n",
" new_order = context.Base_createCloneDocument(batch_mode=True)\n",
" new_order.edit(start_date=start_date, stop_date=start_date)\n",
" line = new_order['1']\n",
" line.edit(quantity=quantity)\n",
......@@ -289,7 +289,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"All scikit-learn's `fit` methods require a 2D array of size `[n_samples x n_features]`. So we transform our `Pandas.DateTimeIndex` into an array of time deltas describing how many days have passed since the first observation and call the days method to get just the numbers of days instead of a TimeDelta object. Something like this:\n",
"All scikit-learn's `fit` methods require a 2D array of size `[n_samples x n_features]`. So we transform our `Pandas.DateTimeIndex` into an array of time deltas describing how many days have passed since the first observation and call the \"**`days`**\" method to get just the numbers of days instead of a TimeDelta object. Something like this:\n",
"\n",
"```python\n",
"[1 ,2 ,3 , 4, ..., n_samples]\n",
......@@ -301,8 +301,7 @@
"[[1], [2], [3], ..., [n_samples]]\n",
"```\n",
"\n",
"If we had more features, each element of the outter array \n",
"would have more than one element. \n",
"If we had more features, each inner array would have more than one element. \n",
"\n",
"But, not everything are flowers. As you can see this prediction is really, really bad. Consering that you will have almost the same sales in the next year, you won't be able to fulfil the same demands you did before and you will keep a very high stock during the lower demand period. \n",
"\n",
......@@ -367,14 +366,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Statistical analysis (auto correlation and partial auto correlation)\n",
"# Statistical analysis (autocorrelation and partial autocorrelation)\n",
"\n",
"Now you need to idenfity which ARIMA model order fits better your data. So you will need to plot both the auto correlation and partial auto correlation graphs and analyse them. 'statsmodels' provide an easy to use method to plot both these graphs, check the snippet below."
"Now you need to idenfity which ARIMA model order fits better your data. So you will need to plot both the autocorrelation and partial autocorrelation graphs and analyse them. 'statsmodels' provide an easy to use method to plot both these graphs, check the snippet below."
]
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 56,
"metadata": {
"collapsed": false,
"scrolled": false
......@@ -384,7 +383,7 @@
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAHpCAYAAACBevrLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuUZGd53/vv03Xp+8z0zEhzk4QAcbXBYDsyvqqPDZIA\nB3xyhA12giCOwElwsryOYww4aJT4EucsG+JlH0dgIApxkD04AfmAkQT2AIkNQkICg0ZCQhqN5n7p\n7ul7V1/e88fe1V3d0z236u6q7v5+1tqrq3btevdbvVWj3zzz7L0jpYQkSZK00bU0egKSJElSMzAY\nS5IkSRiMJUmSJMBgLEmSJAEGY0mSJAkwGEuSJEmAwViSNpSIeFtEfLmO9382Iv7Jcs5JkpqFwViS\nFoiI/RHRFxHlS3jPTEQ8byXntdoiYm9EfLx2XUrpdSmljy/1HklaywzGklQjIq4FrgdOAm+41Lcv\n93zOu7OI4iLrCqs5B0laTwzGkjTfW4HPAx8Hbq2uzKvIv1jzfLYlISK+lK/+RkQMRcSb8vW3RcQT\nEXEmIj4dEbtq3v89EXF//trxiHhPvr41Ij4YEUfy5QPVynVE9EbE4Yj4tYg4Bnw0Im6PiE9GxMcj\n4ixwa0RsjoiPRMTRfPt/HxGL/nkfEf8pIg5FxNmIeDAifixffzPwHuDn8s/08MLfQ2R+IyIORsSJ\niLgrIjblr12bV9HfGhHPRMSpiHhv/YdHklaOwViS5nsr8GfAnwM3RcQV+fqUL+dIKf1E/vDlKaXu\nlNK+iPhJ4LeBNwG7gGeAuwEiopssfH82f+064Av5GO8jq1h/X75cD/xGze52AD3ANcA7yKrUbwD2\npZQ2A/8d+C9ABXg+8ErgRuCfLfF5H8j305O/d19ElFNKn8vnf3f+mV65yO/h7WR/eegFngd0AX+4\nYPwfBV4I/BTw/oh48RLzkKSGMxhLUi6vlu4B7kkpPQE8CvzCZQ73C8BHUkqPpJQqZNXXH46I5wA/\nDRxNKX0gpVRJKQ2nlB7I3/fzwL9LKZ1OKZ0G7gBqT3abAW5PKU2mlMbzdX+bUronf7wZeC3wKyml\nsZTSKeCDwJsXm2RK6U9TSv0ppZmU0u8DrcCLqr8Szt8e8gvA76WUDqaURvLP+OYF1ek7UkoTKaVv\nAt8gC+GS1JQMxpI051bgvpTSUP58HzXtFJeoWiUGIA+OZ8iC91XAU0u8b3ft+4BD+bqqU3nQrnW4\n5vFzgBJwLCL6I6If+M/AFSwiIn41Ih6NiIF8283A9gt9uNy8z5jPtUhW1a46XvN4FOi8yLEladWd\nc+KGJG1EEdEO/CzQkvfvQlY93RwRLwdGmB/qdl5gyKPAtTXjdwLbyELssyxRwa1534H8+TX5uqqF\n7RwLWzyeBSaAbSmlmfNNMCJ+HPg3wE+mlL6dr+tjrkq8aOvIInOtugaYAk7kjyVpTbFiLEmZnyEL\ndS9hrr/3JcD/Ius7fgT4RxHRHhHXAb+44P0nyHp6qz4BvD0ivi8iWsn6db+SUjoEfAbYFRH/Oj/Z\nrjsirq95329ExPaI2A68n+xEwKXMa3VIKR0D7gN+Px+3JSKeHxE/sch7u/PPfDoiyhHxfmBTzevH\ngWsjYql2ik8Av5KfaNfFXE/y+QL5ql65Q5IuhcFYkjJvBT6aUjqcUjqZLyfITib7eeADZCe0nQA+\nBvw35ldU9wJ35e0Lt6SUvgD8W+AvyCqrzyWvEuetGq8B/iFwDPgO2QlsAL8JPAh8M18ezNdVXahi\nXP0sZbIe6T6ylpCdi2z/uXz5DnAQGCNrh6jal/88ExEPcq6PkoX2L5G1howCv3yeuS61TpKaQqTk\nn1GSJEmSFWNJkiQJg7EkSZIEGIwlSZIkoIku1xYRNjtLkiRpxaWUFr1CTlNVjFNKq77cfvvtDdmv\ni8dkrS0el+ZbPCbNuXhcmm/xmDTn0qjjcj5NFYwlSZKkRjEYS5IkSRiM6e3tbfQUtIDHpDl5XJqP\nx6Q5eVyaj8ekOTXjcanrBh8R8VHg9cDJlNLLltjmD4DXkt0R6W0ppYeX2C7VMxdJkiTpQiKCtEIn\n330MuPk8O34dcF1K6QXAO4A/rnN/kiRJ0oqoKxinlL4M9J9nkzcAd+XbfhXYEhE76tnnctm3715u\nvPG93Hjje9m3795GT0eSJEkNttLXMd4DPFvz/DBwFXBihfd7Xvv23csv/dIx+vp+C4CHHrqLiHu5\n5Zab6hrzwx/+IgC33XYDb3rT5Y8lSZKk1bcaJ98t7OFoeCPxhz/8Rfr6biWbWtDXdysf+tAXL3u8\natC+//7f4v77f4tf+qVjfPKT9VehrWpLkiStnpWuGB8Brq55flW+blF79+6dfdzb29uUZysuJgva\nv0X17wBZ0H5f3RXoZq9qWyWXJEnNbv/+/ezfv/+itl3pYHwP8C7g7oh4FTCQUlqyjaI2GK+k2267\ngYceuiuvGsPWrXfxjnfcsCr7vljLHbaXO2ivheAuSZK0sNh6xx13LLltXa0UEfEJ4G+BF0XEsxHx\nTyPinRHxToCU0meBpyLiSeBO4F/Us7/l8qY33cSdd+7iNa95H/CD3HnnrroC3W233cDWrXeRdYmk\nJg7ay9c+YjuKJElab+qqGKeU3nIR27yrnn2slFtuuYlbbrmJiN+pKxRDFrQj7uVDH3of999/L3fe\n+dt1j7kWqtrLaaO2o0iSpOax4e98t1xuueUm7rvvt4Gv1x2Kofmr2huxSr4SVW0r2pIkNQ+DcRNb\nzrC93EG72YP7SlgLQbs6rmFbkqRLV9ctoZdTo24Jnd8WsGnHW4kxm3W8T37yXj70oS9y//33sm9f\n/e0oc60Uc+0o9QT4G298L/ffP9fuAYnXvOZ9+V9eGj8eLP9nro5p+4gkab1YyVtCS8tmo7WjrIS1\nUNVeiYq2VXJJ0nIwGGtda+Z2FIP28gXttRDeJUnNz2AsXYJmDtrQ/GF7uYP2Soxp0JakjctgLDWQ\n7SPNZy0EbUnSyjAYS+tMM1e1VyJoN3t4X4kquRVoSVoZBmNJ59XMQXslxmz2oO1l/iRp5Xi5tia9\ndNlKjrnRxluJMZt9vJUYs9nHW84xl/PSgc1+2cCVmGN1TC/zJ6kZebk2SboEzV4lX25roa/airak\n1WAwlqQVtpxBu9lbPWBtBO3quIZtSbUMxpK0hniZv+U7gdGqtqSFDMaStMZ4mb/6rYWqtkFbWn0G\nY0lSU/dVG7QN2tJqMRhLkpZdMwdtaP6wvRaCtrQeGYwlSU3P9pH6rESfNliF1vpjMJYkbUjNXNVu\n9qANtntoffIGHxvopgUbdbyVGLPZx1uJMZt9vJUYc6ONtxJjNvt4KzHmRrjRDCz/zWa80YxWizf4\nkCRpjWnmivZKsK9azcBgLEnSBrDcfdrN3u5hX7Uuh8FYkiRdMvuq7atej+wxbtLespUcc6ONtxJj\nNvt4KzFms4+3EmNutPFWYsxmH28lxtxo4y3nmPZV21e9GuwxliRJTc++6ubrq95oFW2DsSRJWpfs\nq26+oN3sDMaSJEkXYaP1VW/EExgNxpIkSRepmds9mj1oQ/NXoQ3GkiRJDbLRgvZKVaGXi8FYkiRp\nnWjmoL0WeLm2DXQZnI063kqM2ezjrcSYzT7eSoy50cZbiTGbfbyVGHOjjbcSYzb7eCsx5noZb2Zm\nhunp6dll4fNPfeqvefe7RxgY+KfA8lyi7lKd73JtxVWbhSRJkhquGlYXhtaFy8zMDFNT01Qq0wB8\n/euPMjU1Q6UyzeTkNFNT0/OeT0/PkOXNAlAgokDWnFCYXTZtegW33vp3fOEL/5Jvfeur3Hlnfder\nXm4GY0mSpCaUUjonvE5NTS0aYqsBdnJyLsh++cuPzK6rXbL+3gIpZaE1C7CFfF32vPoaFCgUSgA8\n88x2WlpaaGkp1CwtdHTMPY5YtBA7z8/8zIv54R9+JW9+8x83VSgGg7EkSdKyyCqsiwfX2lBbDa+1\nPwE+//kH562bmpqZF1rPvxRpaWmlUMhCKsDZs9fOBtjW1sJsgL2Y8LqYnp4r6/wNNT+DsSRJ2pDO\nV42tfTw5Oc3ExNRsYJ2YmALgc597YF4lNqUgojhbda2twmaV2SKLhdhqkJ2cfAmFQoHOzrkKbD26\nurbU9f6NyGAsSZLWjJTSogF24c9KZS7MAnzxiw/n1di5gDszw2xorQ2uWbAtzgu0hUIbLS2FeRVZ\n+N5lqcRWtbd31vV+1c9gLEmSVly1OlsbYM8Ns1Oz1divfvXvqVSm82Vq9uf0dKqpys5VYGtDbEoF\nCoVWWlo6KBSyqDM09DwKhSLFYoFyeXkqsm1tHfX9UtR0DMaSJOm8aoPswmA7NZUF2UcffWK2zaBa\nqa0NtHPV2eIigba6LqvMAhw/vptCoUChUKSlpUBnZ5Hu7ssPs11dm5fjV6F1zmAsSdI6trA6C3Dy\n5MnZdZOTU0xMVNsO5kJt9XmlMp1foSALrnPtBrXP4dvfzqqztWG2UChedqDdvHnbsv4epIthMJYk\nqcmNj4+fU6WtLtUK7fj4VE21du5xdh3ZYr5kvbF//denqYbaattBFmrngm2pVKStrXjRvbNXXLFn\nBX8D0uowGEuStIKql/BabJmcnLyIYAuf/vQj1IbbarU2u7pBmUKhoybYZktXV5HNm4uLhtqdO1+6\nir8Bae0wGEuSdAHVcDs5OXlOsJ2aykLt2NjkbJC9776v5cF2kqwFt7btoEhKRSJK+brFg213d4nN\nm7MK744dr2rQJ5c2FoOxJGlDqF7mqzbQTk5OAvDMM88wPj45W7WtfXxuuM0CbVa1zR4XCm0UCt2z\nV0CYnn4pbW0lOjuLdV/5QNLqMRhLktaUasCtDbe1P0dHs8pttYI7Pj4526qQ9diWFoRb+Lu/m8nD\nbW3VtkRra5GOjqzv9lJ4PVppbTIYS5IaJrur2OS8cFtdqu0JY2OTs+EW4M/+7EvUVm6htKB625Ff\nr7Y0+/N8/bYAO3c+d5U+saRmZjCWJC2LhcG22qbw5JNP5eE2q97WBt3p6WB+BbdEFnBLs+0JxWJp\nNuQC7Nx5Q6M+oqR1zmAsSTpHbSW3dqlUJhkdnQu3tRXd7EYN1ZBbykMuPPRQ1oM7F3BLtLUV6eoq\n2X8rqanUHYwj4mbgg2SNW3+SUvrdBa/3Ap8GnspX/UVK6Tfr3a8k6eLU9uRWKpV5QXd0tDIv6ALs\n2/elBZXc0rxKbrHYNS/kdnSU2LSptGSbwo4d16zWR5WkutQVjCOiAPwh8GrgCPC1iLgnpXRgwaZf\nTCm9oZ59SZIyKaXZNoX+/v4F1dws6M5VcyuMjU1R7cWNKJFSmbl2hXaKxc2zQRdg27Yfs5IraUOq\nt2J8PfBkSukgQETcDbwRWBiML3zLHEnawBZWdKs/R0YqjI1lgbf6M7u6QhZi77vvmQVBt5NSqXzR\n1dzFGIolbVT1BuM9wLM1zw8DP7RgmwT8SER8g6yq/KsppUfr3K8kNbVqVbdSqcyGXMhORBsZqdS0\nMGSBd2amhZRKRJTztoUs7BYKHRSLJUqlMoVCia6u8ryrK+zY8YrGfUhJWmfqDcbpIrb5OnB1Smk0\nIl4LfAp44WIb7t27d/Zxb28vvb29dU5PkpZPNezWBt5KpcL4eCUPu1lFt1rlzdoWqmG3DGQnopVK\nHRSLWVW3XC7T0eFJaJK0Uvbv38/+/fsvatt6g/ER4Oqa51eTVY1npZSGah7/VUT8vxGxNaXUt3Cw\n2mAsSatlampqXtCthl2Av/3bb84Lu9kfm+WasFumpaVMsdhJsVimVCrT0VFesn3BE9EkaXUtLLbe\ncccdS25bbzB+EHhBRFwLHAV+DnhL7QYRsQM4mVJKEXE9EIuFYklaTgtbGSqVChMTE4yMVGpaGbLH\n2e1+W+eF3Yiswnv69FUXDLuSpPWhrmCcUpqKiHcB95Jdru0jKaUDEfHO/PU7gVuAfx4RU8Ao8OY6\n5yxpA6sG3omJidmwOzFRYXh4AoAvfOEhRkYmGBubnG1jgLnAWyh0UCptma3u9vSUz3u7302btq7O\nB5MkNVzd1zFOKf0V8FcL1t1Z8/iPgD+qdz+S1r9qhbc29A4PZ1XeoaGJ2RPWUioS0UoWeFuJaKVY\n3ATAxMQLaWsr091dtrorSbok3vlO0oqbmZmpqe5mC8DXvvZtRkezau/oaIXp6QJZG0MrkAXfQqGL\nUqlMqdRKa2uZrq7zB96Oju5V+UySpPXHYCypLtPT0/MCb7XKOzw8wdDQBCMjE4yPT5NSFnhTqoZe\nOHLkSorFMuVyK9u2lb0ygySpoQzGkpY0PT3N+Pj4bIX34MGDDA1lgbcafiuVVFPhzZasyruVUqmV\njo5WNm8uLzr+li1XrNpnkSTpQgzG0gaVUsovS5YF3/Hx8bzKO56H33EmJhLZ1RqyCu9XvgKl0iZK\npVZKpVY2b26lUPCPEUnS+uD/0aR1bHh4eDb0jo1NMDg4F3pHRqpXbWibbW8oFDool3sol9vo7m6l\np6c0b7ydO69tyOeQJGk1GIylNWpycpLx8fHZZWhonMHB8Tz8jgPwmc88BrTmV25oo1TaRrncRrnc\nSmdnq1dtkCSphsFYalLnC76Dg+NMTbXk1d42ItpoaemgXN5KudzGli1Z68OOHT/Y4E8hSdLaYTCW\nGmR6epqxsTHGx7Pq7oEDT8wLvpOTMRt8oS1vc8iCb0+Pvb2SJC03/88qraBKpTIbfkdHxzh7doyB\ngTHOnh3PL2HWBrQD8K1vtc/2927Z0mbwlSRplfl/XqkOKaX8xLYxxsbGGBkZz4NvFn6npgp51bcd\nqAbf3XR0tJ9zCbMrrriqMR9CkiQBBmPpglJKs8F3dHSUs2fHAPjMZ77C8HAlP7GtnZTaaGlpp7V1\nc97u0E6hUGjw7CVJ0sUyGEu5iYkJRkdHGRsbY2holP7+Mfr7RxkcnMjDbwcptVMsdgFQKr2CK6/0\nyg6SJK0XBmNtKJOTk7OV39HRMfr6RhkYyPp+p6aKeeW3I6/89tDa2s6VV7YvGn7L5bYGfAJJkrRS\nDMZad6p9v6Ojo4yMjDAwMArApz71vxkfT7OV34gOyuUraGvrsO1BkiQZjLV2VQPwyMgIIyMj9PeP\ncvr0SF79LQEdQCel0mYAurquZ8uW0nnHlCRJG5fBWE2vevJbFoBH6esboa9vlP7+Uaans97fLAD3\n0NZ2FT09HYtWf4tFQ7EkSVqawVhNoxqAAZ5++iBnzozM9gDPzLQBHUR0Uipto739GrZt66ClpaWx\nk5YkSeuGwVgNMT09zcjICMPDw/T3D3Pq1DCnT48wNZVd2/eBB8j7fzvZvr3dACxJklacwVgrbmJi\nguHhYYaHswB86tQwg4MVUuogpS6KxS7a23fQ09M12wKxY8e1jZ20JEnacAzGWjYpJUZHRxkeHubs\n2WFOnhzmzJlhxsaCiC6gi3L5Ctrbn7vkJdAkSZIaxWCsy5JSYnh4mMHBQQA+//kH6e8fY3q6Feii\npaWLtrar6ejoOufWx5IkSc3IYKyLMjExweDgIP39gxw/PsjJk8NMTbWR0iYAKpUXsW1bp73AkiRp\nzTIY6xzT09MMDQ0xNDTE8eNZEB4ZScAmWlo20dHxXHp6uuddEq2jo7txE5YkSVoGBmMxOjrK4OAg\nZ84McuzYIGfOjJFSJ7CJ1tYr6Ox8Pt3d3v5YkiStbwbjDWZqagrIrhNcrQZPTJSAbgqFTXR07OSK\nK7psiZAkSRuOwXidSylx9uxZzpzp59ln+zlxYgSABx5ItLXtoavrxfT0eHKcJEmSwXgdGhkZob+/\nnyNH+jl8+CyTk+1EbKWz83lccUV2styOHc9t8CwlSZKai8F4HahUKvT393PiRD+HDvUzPBzAVtra\ndrJ584spFkuNnqIkSVLTMxivQTMzMwwMDHD6dBaET58eB7ZQLG6lu/s57NzZ3ugpSpIkrTkG4zVi\naGiIvr5+Dh/u5+jRQaanu2hp2Upn5wvZsaPbu8hJkiTVyWDcxPr7+zl06DgAn/nMAVLqoaPjKrZu\n3TLvGsKSJEmqn8G4yVQqFY4dO86BA8fo7y9QKu0CYOfO6xs8M0mSpPXNYNwEUkr09fXx9NPH+O53\nB0jpSjZteim7dnk3OUmSpNViMG6g8fFxjh7NqsODg62Uy7vYvv0ltklIkiQ1gMF4laWUOHPmDN/9\n7lEOHhwipSvZvPnl7NrV2eipSZIkbWgG41UyNjbG4cPHOHDgOCMjHbS27uKKK77XWy9LkiQ1CYPx\nCpqZmeH06dM8+eQxDh0aIWIHmze/gk2bOho9NUmSJC1gMF4Bo6OjHDp0lMcfP8HISBcdHbu58spt\nVoclSZKamMF4GfX19QHw6U9/g5aWnfT0/ACbN7c1eFaSJEm6GAbjZTA8PMy3vvVdnnpqAoCdO1/l\nnegkSZLWGINxHSYmJnj88ad59NE+isXnsGvXbgBDsSRJ0hpkML4M09PTPP30IR555CjT07u54orr\nKRT8VUqSJK1lprlLkFLi6NFjPPTQQUZGtrJt2w9SLrc2elqSJElaBgbji3T69GkefvgpTp5sZevW\nl7NrV1ejpyRJkqRlZDC+gKGhIf7+77/L009P0t19HXv2bG30lCRJkrQCDMZLGB8fz0+sG6C19Vp2\n797pSXWSJEnrWN3BOCJuBj4IFIA/SSn97iLb/AHwWmAUeFtK6eF697tSpqameOqpZ/jGN46T0h6u\nvPKFFAqFRk9LkiRJK6yuYBwRBeAPgVcDR4CvRcQ9KaUDNdu8DrgupfSCiPgh4I+BV9Wz35WQUuLw\n4SN8/euHGBvbzrZt/4BSqdzoaUmSJGmV1Fsxvh54MqV0ECAi7gbeCByo2eYNwF0AKaWvRsSWiNiR\nUjpR576XzalTp/j615/izJkOenq+j82bOxs9JUmSJK2yljrfvwd4tub54Xzdhba5qs79LouxsTEA\n7rvvGSqVF7J798tobzcUS5IkbUSRUrr8N0f8X8DNKaXb8uf/GPihlNIv12zzl8B/SCn97/z554Ff\nSyl9fcFYCW6vWdObL5IkSdLl2p8vVXeQUlr0igr1tlIcAa6ueX41WUX4fNtcla87R0p765zOpZuZ\nmeHIkaM1vcXX2lssSZK0gk6ceISbbrqWLVu2rMLeeqkttkbcseSW9bZSPAi8ICKujYgy8HPAPQu2\nuQd4azaReBUw0Ez9xS0tLVx99VW8/vXX8/3fX2Bg4GucPHmQ6enpRk9NkiRJq6iuinFKaSoi3gXc\nS3a5to+klA5ExDvz1+9MKX02Il4XEU8CI8Db6571CigWi7zwhc/nmmv28NhjT3HgwAO0tl5LT4/X\nL5YkSdoI6uoxXk4RkZplLrDwjnfPZ9Mm73gnSZK0HFa3lWK+iFiyx7jeVop1q7u7mx/5kVdw003P\npb39SY4c+QZjY8ONnpYkSZJWiMH4ArZv386rX/0P6O29gsnJb3Ls2GNUKhONnpYkSZKWWd23hN4I\nIoI9e3azc+cOnn76EI888iDT07vZvv0abxctSZK0ThiML0GhUOC6657L1Vfv5vHHn+bRR79Ksfgc\ntm3b7Ql6kiRJa5zB+DK0trby8pe/mOc9b5hvfeu7PPXUETo7n8fmzdsbPTVJkiRdJnuM69DV1cWr\nXvV93HzzdXR1Pc3Ro48wMjLY6GlJkiTpMlgxXgZbt27lJ3+yh+PHj/PII49y9GiR1tbdbNlyJYWC\nv2JJkqS1wNS2TCKCXbt2sWvXLvr7+zl48BhPPPEU09Pb6e7eRVfX5kZPUZIkSedhMF4BPT099PT0\n8L3fO8mxY8d57LHHOXYsKBZ30dOzg2Kx1OgpSpIkaQGD8QoqlUpcc83VXHPN1QwMDPDMM8d44omD\nTE1to6trF11dq3+3F0mSJC3OYLxKtmzZwpYtW/ie75nixIkTHDjwBMeOzVAo7KKnZyelUrnRU5Qk\nSdrQDMarrFgssmfPHvbs2cPg4CDPPHOM73znASqVHjo7d9Hd3eM1kSVJkhrAYNxAmzZt4mUv28RL\nX3odJ06c4DvfeZpjx75DobCLLVt2Ui63NnqKkiRJG4bBuAkUCgV2797N7t27GR4e5tChYzz++IOc\nObOJjo5ddHdvpaXFS05LkiStJINxk+nq6uKlL30BL3rR8zh16hRPPnmYI0cOkNImWlp66O7eSnt7\nV6OnKUmStO4YjJtUoVBg586d7Ny5k+npaQYGBjh5so9Dhx7l+PEpYAvl8la6unpsuZAkSVoGBuM1\noFAosG3bNrZt28ZLXgITExP09fVx/Hgfhw59l76+EtBDe/tWurq2UCgUGj1lSZKkNcdgvAa1trbO\n3mXvla+E4eFhzpzp4/Dhwxw9+ijT011E9NDVtZWOjm6vciFJknQRDMbrQFdXF11dXTznOdcwMzPD\nwMAAp0/3c+jQdzhxYhzYQrG4le7uHlpb2xs9XUmSpKZkMF5nWlpa2Lp1K1u3buWFL4RKpUJ/fz8n\nTvRz6NAz9PcHWVDeRGfnJtraOq0oS5IkYTBe98rlMjt27GDHjh28/OUwMjLC4OAgp08Pcvz4EU6e\nHAe6SambtrZNdHRs8mQ+SZK0IRmMN5jOzk46OzvZtWsXL3sZTE1NMTQ0xNmzg5w4cZzjx7/DmTMt\nRGyiUNhEe/smOjq6vY6yJEla9wzGG1yxWKSnp4eenh6uvTZbNzY2xuDgIP39Qxw//l1OnRphZqaD\nlDZRLmctGPYqS5Kk9cZgrHO0t7fT3t7Ojh07ePGLYWZmhuHhYQYHBzl58gzHjz/N8ePTQDcRWVW5\nvb2LUqnc6KlLkiRdNoOxLqilpYVNmzaxadMmrroqW1epVBgcHGRgYJATJ57l9OlhxsYC6AS6KJe7\naG/voq2tw5P7JEnSmmAw1mUpl8ts376d7du3c9112bpKpcLw8DDDw8OcPn2GU6ee4eTJCaCDlLoo\nFLKw3N7eSaHgf3qSJKm5mE60bMrl8uyl4q65Jls3PT3NyMgIw8PD9PcPc+rUCU6fHmFqqky1upyF\n5S7K5bZGTl+SJG1wBmOtqEKhMNuGsXt3ti6lxPj4eN63PMypU8c4fXqYvr5pIrpIqYtSqZPW1g6r\ny5IkadXgT2YoAAAgAElEQVSYOLTqImL2BL8rrriC5z8/Wz85OTnbijEwMMiZM8fo6xulUmkhopOU\nOigWO2lr66CtrZNisdTYDyJJktYVg7GaRqlUmr103NVXz62fmJhgdHSUkZERBgaG6es7QV/fKOPj\nzAbmQmEuMHt1DEmSdDkMxmp6ra2ttLa20tPTM3tVDMhO9qsG5rNnRzlz5hR9faOMjs7Q0tJJSp0U\nCllYbm1tt4dZkiSdl8FYa1a5XKZcLrNlyxb27JlbPzk5ORuYBwdHOX36DAMDo/T3T5FSG9ABtFMu\nd1Aut9PW1mFbhiRJMhhr/SmVSmzevJnNmzfPnvAH2RUyxsbGGBsbY3R0lIGBAfr7jzIwMMb4eCKi\ng5TaiZgLzOVyO4VCoXEfRpIkrRqDsTaMQqFAV1cXXV1dADznOXOvTU5OzgbmkZEx+vtPMTAwRn//\nGFNTRSLaSamDlpZ2Wls7ZlszWlpaGvRpJEnScjMYS2RV5lKpxKZNm855rXry39jYGENDo/T3DzAw\nMMaZM+NMT5eIaAfagTbK5fbZ0Gx7hiRJa4vBWLqA2pP/aqWUmJiYYHx8nLGxMUZGxjh79jRnz45x\n9uwYExPkleY2oJ1SKQvMra3tlEqt3ipbkqQmYzCWLlNE0NbWRltbG1u2bDnn9ampqdme5vHxcc6e\nHWRg4ASDg+P091dIqTUPzu20tLRRLs8tVpslSVp9BmNphRSLRbq7u+nu7j7ntZmZGcbHx2erzcPD\nYwwODnL27BhDQ+NMTCSgjYg2UmozOEuStAoMxlIDtLS00NHRQUdHx6KvT01NzQbn8fFxRkbGOXv2\nLIOD4wZnSZJWiMFYakLFYnHeFTQWWhich4fHGRzMgvPgYBacI9qAVrIA3Uqp1Ea53Eq53GaPsyRJ\nizAYS2vQxQTn6omB2VU1xhka6mNoaJyhoQkGBirMzJSIaCWlLDwXCnOh2aqzJGkjMhhL61CxWKRY\nLNLZ2bno6yklKpXKvPA8PDzG0NAAg4PjDA9PMD4+TbXaDG2k1EqpNLeUy60UCv4RIklaP/y/mrQB\nRcTsZegWu3YzZHcKnJiYmA3P4+MTDA8PMjQ0wfDwBGfPTlCpJKA1rzyXgda88lwbosur+tkkSbpc\nBmNJiyoUCuc9QRDmh+fqMjw8wvBwH0NDE4yMVBgfnyKlck3bRhaeS6VWisUy5XL207sISpIazWAs\n6bJdTHiemZmZbduoLiMj4wwNnWV4eILR0Ure81zI2zbKeYAuUyxmFedqiC6Vyp40KElaMQZjSSuq\npaVl9kYo5zM5OcnExMRsiK5UKgwNDTMyMsHwcIXh4Qn6+iaBMhFz4TmiGpqzEF0slikWSwZoSdIl\nu+xgHBFbgT8DngMcBH42pTSwyHYHgUFgGphMKV1/ufuUtH6VSiVKpfNfCaN60mBteB4fn2BkJOt9\nHh2tMDJSYWxsEijVVKDLQJlCoTxbga6GaFs4JElV9VSMfx24P6X0HyPi3fnzX19kuwT0ppT66tiX\nJM07aXCxOwpW1Qbo2mV4eISRkX5GRiqMjlY4e7bC9HQL1cpzNUC3tJRnWzfmfnr5Okla7+oJxm8A\nbsgf3wXsZ/FgDOC/aUpaNbUB+kKq13yuDdBjYxWGh4cYHZ1kdLTC8HB2EmFWhc7Cc20VulAoGaIl\naR2oJxjvSCmdyB+fAHYssV0CPh8R08CdKaUP17FPSVpWF7rmc1VtFXpycnL28ejoOKOjg/NC9MTE\nNCmViCixdIgu2Q8tSU3mvME4Iu4Hdi7y0vtqn6SUUkSkJYb50ZTSsYi4Arg/Ih5LKX15sQ337t07\n+7i3t5fe3t7zTU+SVs2lVKHPF6LHxobyy9hNzv5Mqcj8anT2uBqia8O0N1WRpEuzf/9+9u/ff1Hb\nRkpL5dkLvDHiMbLe4eMRsQv4m5TSiy/wntuB4ZTS7y3yWrrcuUjSWjY5OTkvQGdX6KjMVqHHxuZ+\nViozzIXo0myIhlJehZ6rRBukJTWrEyce4aabrmXLli2rvu+IIKW06D/V1fMn5j3ArcDv5j8/tciO\nO4BCSmkoIjqBG4E76tinJK071StynO960FUzMzOzIbr258TEJGNjY7MBemxskrNnJ5mczIJ0dakN\n0oXCuUHa/mhJG1k9wfg/AH8eEb9Ifrk2gIjYDXw4pfR6sjaM/5H3zxWBP00p3VfXjCVpA2tpabno\nlg6YC9K1Vens5ySjo8OMjmbtHKOjkwwPT+YnGVZbO7IgXQ3VLS3VKnRpXpC2Ki1pvbjsVorlZiuF\nJDVeSompqal5Ybq6jI9Pzlajx8bmnk9OztT0Sc8P04VCdSkapiXNWo+tFJKkdSYiLupmK7VSSosG\n6cnJScbGxhkfH8qD9BTj45MMDk4yMTFNbWUairOBOmJ+kK4N1t6QRdJKMhhLkuoSEZTLZcrl8kW/\nZ7HKdPV5tV+6GqSrlemJiSmmpwMozgvTWZW6SEvLXIAuFIoGakmXzGAsSVp1l1OZBpienp4Xomt/\nTkxUGB8fnQ3R1Z9nz04yPQ1Ze0c1VGdhuhqwsyBdG6qrgbrgdaalDcRgLElaMwqFAoVC4ZLfVz0J\ncWGgzk5EnGJ8fJyJiWqFeopKZaqm5aMwG6Cr7R9ZT/VclXqxYG0ftbT2+K2VJK17l3o1j6qU0rwq\ndW2wrq1SV9s+JiammJiYYnh4ikrl3FBdDdTVZbEwXV1s/5BWn8FYkqQlRMTsbcMvVbWPeqllcnKK\nsbGRvFI9NRuqR0ezinXW/lFt9yiwMFhHnBumDdZSfQzGkiStgMvto66qbf+Ymppienp6XrCubQGp\nXc4N1nNhOqUCCyvWWXtKbaCee25/tTYag7EkSU3octs/qmZmZhYN1LUV64mJUSqV6XnBenJymrGx\n7DG0zIbpasA+N1wXFg3V1cdWrrWWGIwlSVqHWlpaLukSeouphuqF4br6PAvXldlwPfdzivHx6bxy\nnZgL1tVQXcivCpIF7Yj5oboatltaCgZsrSqDsSRJWtTlXgWk1szMzDkBuzZoT09nAbpSmZgN1dWA\nPTk5fU7Azk5orIbsQt53PRe451erCzWBe+6xLSJaisFYkiStmJaWFlpaWi6717qqejJjbbheLHBP\nTIxTqUzPC9fVn5OTWciemQmqwbo2ZM+1imRLS8vi4bo2eNf7Fwc1F4OxJElqevWezFhrYRV7Yciu\nPq5UsjaRaqCuBu5KZYrR0Wz91NQM0MJiQbs2ZJ8btOdC9sLgbUW7cQzGkiRpQ1muKnbVUuF64VKp\nVJiYmK6pXs+F7snJGUZHs8cpzVW0z7ektDBcz3+efc6Cle1LYDCWJEmqw3L0Yteq3ljmYpbs7o3j\n84J27TI+fm5lO6IarrPnCyvb2TYtFxW2s+3Wz4mRBmNJkqQmUs+NZc6nGqarrSRLLdk1tLMTImsD\n99TUNJOTM3nfdvZ8amomPzEyC9wptcwL3tXQXX2t+rhSmVjWz7ZcDMaSJEkbwHJXtqtqK9wLQ3ft\n8+rjyckppqe30dHRsexzqVeklBo9BwAiIjXLXCRJkrQ+RQQpa+Q+x/ppCpEkSZLqYDCWJEmSMBhL\nkiRJgMGY/fv3N3oKWsBj0pw8Ls3HY9KcPC7Nx2PSnJrxuBiMm/CgbHQek+bkcWk+HpPm5HFpPh6T\n5tSMx2XDB2NJkiQJDMaSJEkS0GTXMW70HCRJkrT+LXUd46YJxpIkSVIj2UohSZIkYTCWJEmSAIOx\nJEmSBGzwYBwRN0fEYxHxRES8u9HzEUTEwYj4ZkQ8HBEPNHo+G1FEfDQiTkTE39es2xoR90fEdyLi\nvojY0sg5bkRLHJe9EXE4/748HBE3N3KOG01EXB0RfxMR346Ib0XEv8rX+31poPMcF78vDRIRbRHx\n1Yh4JCIejYjfydc33Xdlw558FxEF4HHg1cAR4GvAW1JKBxo6sQ0uIp4GfiCl1NfouWxUEfHjwDDw\nX1NKL8vX/UfgdErpP+Z/iexJKf16I+e50SxxXG4HhlJKv9/QyW1QEbET2JlSeiQiuoCHgJ8B3o7f\nl4Y5z3H5Wfy+NExEdKSURiOiCPwv4FeBN9Bk35WNXDG+HngypXQwpTQJ3A28scFzUmbRS6hodaSU\nvgz0L1j9BuCu/PFdZP+T0Spa4riA35eGSSkdTyk9kj8eBg4Ae/D70lDnOS7g96VhUkqj+cMyUCD7\n86zpvisbORjvAZ6teX6YuS+OGicBn4+IByPitkZPRrN2pJRO5I9PADsaORnN88sR8Y2I+Egz/DPk\nRhUR1wKvBL6K35emUXNcvpKv8vvSIBHREhGPkH0n/ial9G2a8LuykYPxxuwhaX4/mlJ6JfBa4F/m\n/3ysJpKy/iu/P83hj4HnAq8AjgG/19jpbEz5P9f/BfCvU0pDta/5fWmc/Lh8kuy4DOP3paFSSjMp\npVcAVwE/ERH/x4LXm+K7spGD8RHg6prnV5NVjdVAKaVj+c9TwP8ka3lR453I+/aIiF3AyQbPR0BK\n6WTKAX+C35dVFxElslD88ZTSp/LVfl8arOa4/LfqcfH70hxSSmeBzwA/QBN+VzZyMH4QeEFEXBsR\nZeDngHsaPKcNLSI6IqI7f9wJ3Aj8/fnfpVVyD3Br/vhW4FPn2VarJP8fSdX/id+XVRURAXwEeDSl\n9MGal/y+NNBSx8XvS+NExPZq60pEtAOvAR6mCb8rG/aqFAAR8Vrgg2RN4B9JKf1Og6e0oUXEc8mq\nxABF4E89JqsvIj4B3ABsJ+v5ej/waeDPgWuAg8DPppQGGjXHjWiR43I70Ev2z8IJeBp4Z02/nlZY\nRPwY8CXgm8z9E/B7gAfw+9IwSxyX9wJvwe9LQ0TEy8hOrmvJl4+nlP6fiNhKk31XNnQwliRJkqo2\nciuFJEmSNMtgLEmSJGEwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJ\nAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJi4qIoYi49iK2uzYiZiJiQ/95GhFvi4gv1/H+\nz0bEP1nOOUnSpdrQf5BLWrsi4mBEjOYB9nhEfCwiOi9zrP0R8Yu161JK3Smlg8sy2bl99EVE+RLf\nNxMRz1uueTSDiNgbER+vXZdSel1K6eNLvUeSVoPBWNJalYCfTil1A98P/CDwG5cyQGRa8rFWTF55\nvh44CbzhcoZYzvlccGcRxUXWFVZzDpLUCAZjSWteSuko8DngeyNiS0T8fxFxMq/Q/mVE7Klum1du\nfzMi/hcwAvxX4MeBP8yrz3+QbzdbqY2I10fEwxFxNiIORcTtlzjFtwKfBz4O3Fr7wsJqdW1LQkR8\nKV/9jXxub8rX3xYRT0TEmYj4dETsqnn/90TE/flrxyPiPfn61oj4YEQcyZcPVKvXEdEbEYcj4tci\n4hjw0Yi4PSI+GREfj4izwK0RsTkiPhIRR/Pt//1SLSQR8Z/y39XZiHgwIn4sX38z8B7g5/LP9PDC\n30P+F5bfyP9V4ERE3BURm/LXqq0rb42IZyLiVES89xKPhyQtymAsaS0LgIi4Gngt8HWyP9c+AlyT\nL2PAHy543z8GbgO6gLcBXwb+Zd4+8a8W2c8w8I9TSpuB1wP/PCLeeAnzfCvwZ8CfAzdFxJU1ryWW\nqFinlH4if/jyfG77IuIngd8G3gTsAp4B7gaIiG6yAP7Z/LXrgC/kY7yPrGr9fflyPfMr7DuAHrLf\n2TvIfrdvAPbln/u/A/8FqADPB14J3Aj8syU+8wP5fnry9+6LiHJK6XP5/O/OP9MrF/k9vJ3sLxC9\nwPPIjtPCY/ijwAuBnwLeHxEvXmIeknTRDMaS1qoAPhUR/WTBdj/w2ymlvpTS/0wpjaeUhslC2A01\n70vAf0kpHUgpzaSUpmrGW1RK6YsppW/nj/+eLIjesNT28yaZVUr3APeklJ4AHgV+/lI+6AK/AHwk\npfRISqlCVn394Yh4DvDTwNGU0gdSSpWU0nBK6YH8fT8P/LuU0umU0mngDqD2ZLcZ4PaU0mRKaTxf\n97cppXvyx5vJ/vLxKymlsZTSKeCDwJsXm2RK6U9TSv357/j3gVbgRdVfC+dvD/kF4PdSSgdTSiP5\nZ3zzgur0HSmliZTSN4FvkIVwSarLOX1kkrRGJOCNKaW/rl0ZER3AB4CbyKqVAF0RESmlakXy2SXG\nW1RE/BDwH4DvAcpkIe/PL3KetwL3pZSG8uf78nUfvMj3L7QLeLD6JKU0EhFnyML3VcBTS7xvN1l1\nuepQvq7qVB60ax2uefwcoAQci5jNtC35OOeIiF8F/mm+jwRsArYv+anmq1bCa+daJKtqVx2veTwK\nXNaJl5JUy2Asab35v8n+if36lNLJiHgFWYtFMBd+F4bgC51899+BPwBuSilVIuIDXETIi4h24GeB\nlrx3F7JQvSUiXp5XO0eYH+p2XmDYo8C1NfvoBLaRhdhnWaKCW/O+A/nza/J1VYv9TmrXPQtMANtS\nSjPnm2BE/Djwb4CfrFbaI6KPuSrxhX7f8z5jPtcp4ET+WJJWhK0UktabLrK+4rMRsRVY7ES5hf+M\nf4Ksb/Z8Y/bnofh6sraEi7mSxc+QBbqXMNfb+xKy1o+35ts8AvyjiGiPiOuAX1wwxsK5fQJ4e0R8\nX0S0krWKfCWldAj4DLArIv51frJddz7f6vt+IyK2R8R24P1kJwMuZd7vKKV0DLgP+P183JaIeH5E\n/MQi7+3OP/fpiChHxPvJKsZVx4Fro6b0vMAngF/JT7TrYq4n+XyBfFWv3CFpfTIYS1pvPgi0A6eB\nvwX+igtXiP8TcEt+FYvFWhz+BfDvImIQ+LdkJ9Kdb7yqtwIfTSkdTimdzJcTZCeS/XzeM/sBshPa\nTgAfA/7bgvH2AndFRH9E3JJS+kI+h78gq6w+l7xKnLdrvAb4h8Ax4DtkJ7AB/CZZC8Y38+XBfN1S\nn2GxkwLfStZK8ijQR9YWsnOR7T+XL98BDpL9RaW25WJf/vNMRDzIuT5KFtq/RNYaMgr88nnmutQ6\nSbokMddyJ0mSJG1cVowlSZIkDMaSJEkSYDCWJEmSgCa6XFtE2OwsSZKkFZdSWvRKNk1VMU4prfpy\n++23N2S/Lh6TtbZ4XJpv8Zg05+Jxab7FY9KcS6OOy/k0VTCWJEmSGsVgLEmSJGEwpre3t9FT0AIe\nk+bkcWk+HpPm5HFpPh6T5tSMx6WuG3xExEeB1wMnU0ovW2KbPwBeS3bnorellB5eYrtUz1wkSZKk\nC4kI0gqdfPcx4Obz7Ph1wHUppRcA7wD+uM79LZt9++7lxhvfy403vpd9++5t9HQkSZLUYHVdri2l\n9OWIuPY8m7wBuCvf9qsRsSUidqSUTtSz33rt23cvv/RLx+jr+y0AHnroLiLu5ZZbbmrktCRJktRA\nK91jvAd4tub5YeCqFd7nBX34w1+kr+9WIICgr+9WPvShLzZ6WpIkSWqg1bjBx8IejiUbiffu3Tv7\nuLe3tymbspeyb9+9fPjDWbi+7bYbeNObrD5LkiQ12v79+9m/f/9FbVvXyXcAeSvFXy528l1E/Gdg\nf0rp7vz5Y8ANi7VSrObJd3OtFLcCsHXrXdx5567LbqVY7vEkSZK0Mlby5LsLuQd4az6JVwEDje4v\nBnjTm27izjt38ZrXvA/4wbpDrK0ZkiRJa19drRQR8QngBmB7RDwL3A6UAFJKd6aUPhsRr4uIJ4ER\n4O31Tni53HLLTdxyy01E/I6VXUmSJNV9VYq3XMQ276pnH2vBbbfdwEMP3TWvleId77ihwbOSJEnS\npdjwd75bDsvdmiFJkqTVV/fJd8ulUXe+yxuwm3Y8SZIkLZ9GnnwnSZIkrQkGY0mSJAmDsSRJkgQY\njCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTA\nYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQB\nBmNJkiQJWIZgHBE3R8RjEfFERLx7kde3R8TnIuKRiPhWRLyt3n1KkiRJyy1SSpf/5ogC8DjwauAI\n8DXgLSmlAzXb7AVaU0rviYjt+fY7UkpTC8ZK9czlckUEy7nf5R5PkiRJyyfParHYa/VWjK8Hnkwp\nHUwpTQJ3A29csM0xYFP+eBNwZmEoliRJkhqtWOf79wDP1jw/DPzQgm0+DPx1RBwFuoGfrXOfkiRJ\n0rKrt2J8MT0D7wUeSSntBl4B/FFEdNe5X0mSJGlZ1VsxPgJcXfP8arKqca0fAX4LIKX03Yh4GngR\n8ODCwfbu3Tv7uLe3l97e3jqnJ0mSpI1s//797N+//6K2rffkuyLZyXQ/BRwFHuDck+9+HzibUroj\nInYADwEvTyn1LRjLk+8kSZK0os538l1dFeOU0lREvAu4FygAH0kpHYiId+av3wn8NvCxiPgGWevG\nry0MxZIkSVKj1VUxXk5WjCVJkrTSVvJybZIkSdK6YDCWJEmSMBhLkiRJgMFYkiRJAgzGkiRJEmAw\nliRJkgCDsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCD\nsSRJkgQYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgQY\njCVJkiTAYCxJkiQByxCMI+LmiHgsIp6IiHcvsU1vRDwcEd+KiP317lOSJElabpFSuvw3RxSAx4FX\nA0eArwFvSSkdqNlmC/C/gZtSSocjYntK6fQiY6V65nK5IoLl3O9yjydJkqTlk2e1WOy1eivG1wNP\nppQOppQmgbuBNy7Y5ueBv0gpHQZYLBRLkiRJjVZvMN4DPFvz/HC+rtYLgK0R8TcR8WBE/JM69ylJ\nkiQtu2Kd77+YnoES8P3ATwEdwN9FxFdSSk8s3HDv3r2zj3t7e+nt7a1zepIkSdrI9u/fz/79+y9q\n23p7jF8F7E0p3Zw/fw8wk1L63Zpt3g20p5T25s//BPhcSumTC8ayx1iSJEkraiV7jB8EXhAR10ZE\nGfg54J4F23wa+LGIKEREB/BDwKN17leSJElaVnW1UqSUpiLiXcC9QAH4SErpQES8M3/9zpTSYxHx\nOeCbwAzw4ZSSwViSJElNpa5WiuVkK4UkSZJW2kq2UkiSJEnrgsFYkiRJwmAsSZIkAQZjSZIkCTAY\nS5IkSYDBWJIkSQIMxpIkSRJgMJYkSZIAg7EkSZIEGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDB\nWJIkSQIMxpIkSRJgMJYkSZIAg7EkSZIEGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDBWJIkSQIM\nxpIkSRJgMJYkSZKAZQjGEXFzRDwWEU9ExLvPs90/iIipiPhH9e5TkiRJWm51BeOIKAB/CNwMvBR4\nS0S8ZIntfhf4HBD17FOSJElaCfVWjK8HnkwpHUwpTQJ3A29cZLtfBj4JnKpzf5IkSdKKqDcY7wGe\nrXl+OF83KyL2kIXlP85XpTr3KUmSJC27eoPxxYTcDwK/nlJKZG0UtlJIkiSp6RTrfP8R4Oqa51eT\nVY1r/QBwd0QAbAdeGxGTKaV7Fg62d+/e2ce9vb309vbWOT1JkiRtZPv372f//v0XtW1khdzLExFF\n4HHgp4CjwAPAW1JKB5bY/mPAX6aU/scir6V65nK5IuL/b+/uY+uq7zuOv7+xE0oSExKSBgfSmg7a\ntUCANAIk1sYIiNNFKptGW1Wr5j0IqDa6SdG6riAVpxNlbbQITZVYaKnkddPY2EPHFCazanV4KE8B\nEp5CAJEwQhxD4sEciEgcvvvDN9R1bdfkXvucm/t+SVHuuff4e75HP/3szz33d++llsetdT1JkiTV\nTiWrjbmCoaorxpk5FBHXAT1AE3B7Zm6PiGsrj2+spr4kSZI0Xaq6YlxLXjGWJEnSVJvoirHffCdJ\nkiRhMJYkSZIAg7EkSZIEGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDBWJIkSQIMxpIkSRJgMJYk\nSZIAg7EkSZIEGIxL7c47e1i16npWrbqeO+/sKbodSZKk41pz0Q1obHfe2cOXv9zHwMBNADz2WDcR\nPVx1VUfBnUmSJB2fvGJcUt/73mYGBjqBAIKBgU5uu21z0W1JkiQdtwzGkiRJEgbj0rr66pUsWNAN\nJJAsWNDNNdesLLotSZKk45bBuKQ+97kONm5s5YorbgBWsHFjq+uLJUmSplBkZtE9ABARWUQvEUEt\nj1vrelNVU5IkqRFVclWM9ZhXjCVJkiQMxpIkSRJgMJYkSZIAg7EkSZIEGIwlSZIkwGAsSZIkAQZj\nSZIkCahBMI6I1RHxXES8EBFfG+Px346IbRHxZEQ8EBHLqj2mJEmSVGtVBeOIaAK+C6wGPgF8MSI+\nPmq3l4BPZ+Yy4C+A26o5piRJkjQVqr1ifCHwYmbuyszDwB3AlSN3yMwHM/PNyubDwOlVHlOSJEmq\nuWqD8WnAKyO2d1fuG88fAHdXeUxJkiSp5pqr/Pmc7I4RcSnw+8Al4+3T1dX13u329nba29uraE2S\nJEmNrre3l97e3kntG5mTzra/+MMRFwNdmbm6sv114N3M/Pao/ZYB/wqszswXx6mV1fRyrCKCWh63\n1vWmqqYkSVIjquSqGOuxapdSbAHOioi2iJgFfAG4a9TBP8RwKP7SeKFYkiRJKlpVSykycygirgN6\ngCbg9szcHhHXVh7fCHwDmA/cGhEAhzPzwuraliRJkmqrqqUUteRSiumtKUmS1IimcimFJEmSdFww\nGEuSJEkYjCVJkiTAYCxJkiQBBmNJkiQJMBhLkiRJgMFYkiRJAgzGkiRJEmAwliRJkgCDsSRJkgRA\nc9ENHI8GBwfroqYkSVIRIoI5c+YQMeY3MxfGYFwj7777Ltu2bQfg7rufr3n9qagpSZJUjLdZvXoZ\n8+hEMToAAAshSURBVObNK7qRn2MwroFDhw7x0ENPsXv3bAAWL/5kzY9Ri5q9vT1s2rQZgDVrVtLe\n3lF1TUmSpPerv38rmVl0G7/AYFylAwcOcN99T3PgQCtLlny46HbG1dvbw4YNfQwO3gTAjh3dQI/h\nWJIkqcI331Vh//799PRs49ChX2HRovKGYoBNmzYzONgJBBAMDna+d/VYkiRJXjE+Zi+//Ao//elu\n5s1bxuzZLUW3I0mSpCp5xfh9ykyefnoH99/fzymnLK+bULxmzUpaWrqBBJKWlm7WrFlZdFuSJEml\nYTB+H4aGhnj44Sd58snDnHrqBcyadULRLU1ae3sHa9e2smLFDcAK1q5tdX2xJEnSCC6lmKSDBw/y\nwANPsX//KbS2fqR0n7s3Ge3tHbS3d3DppTcbiiVJkkYxGE/CG2+8webNz3LkyBksXtxadDuSJEma\nAgbjX6Kvby/33vsSc+Z8gnnzTi66HUmSJE0Rg/EEXnjhJR555HVOOeV8PvCB2UW3I0mSpClkMB7D\nkSNH2Lp1O889N8Tixctpbp5ZdEuSJEmaYgbjUd555x0eeuhp9uyZy5IlZ9flm+wkSZL0/lUdjCNi\nNXAL0AR8PzO/PcY+fw18Bngb+N3MfKLa406FwcFB7r33aQ4ePJ3W1qVFt1N6vb0973173po1K/2k\nC0mSVNeqCsYR0QR8F7gceBV4NCLuysztI/b5deDMzDwrIi4CbgUurua4U2Hfvn309u5g5syPsXDh\nwqLbKb3e3h42bOhjcPAmAHbs6AZ6DMeSJKluVfsFHxcCL2bmrsw8DNwBXDlqn88C3QCZ+TBwckQs\nrvK4NbVr1/9wzz0vMGfOecybZyiejE2bNjM42AkEEAwOdr539ViSJKkeVbuU4jTglRHbu4GLJrHP\n6UB/lceuWmYC8MADr7No0fK6+ia745FLMyRJUpHiaDg8ph+O+C1gdWZeXdn+EnBRZn5lxD7/Afxl\nZj5Q2f4x8GeZ+fioWgk3jrinvfJP5dQD9AGdle1uoBU41jBb63qSNN16gKOvnK2k+t9fZa83FTXL\nXm8qajZavamqOZHeyr+j1pGZY366QrXB+GKgKzNXV7a/Drw78g14EfE3QG9m3lHZfg5YmZn9o2pl\nNb0cq507X+bBB/uYP/8cTjxx7rQfv57V8grvV796PVu23MTw0gyAZMWKG1i//ls16XHLlh5uvPFb\nVV+FLnu9eujRcy5fvXrosezn/LP3XQw/uW9p6Wbt2tZjrln2evXQo+dcvnpj1VywoJuNG1u56qrp\nuxAWEeMG42rXGG8BzoqItoiYBXwBuGvUPncBv1Np5GLgjdGhuEhnnPFhLr/8Ixw4sI0339xfdDt1\npb29g/Xrv8X69bX5I1VrRyffcODewoYNffT29hy39eqhR8+5fPXqocd6OOdav++i7PXqoUfPuXz1\nxqo5MNDJbbeV5z1KVQXjzBwCrmP4mvizwD9m5vaIuDYirq3sczfwUkS8CGwE/rDKnmvugx/8IB0d\n59Lc/Dz79u0uup2GtGbNSlpauoEEkpaWbtasWVlVzbL/gvCXtudchnr10GM9nLOk40O1V4zJzP/M\nzI9l5pmZeXPlvo2ZuXHEPtdVHj9v9NrisjjppJO47LILWLhwL319z1PEso5G1t7ewdq1raxYcQMr\nVtxQ9Us1kjSdav3kvuz16qFHz7l89caquWBBN9dcU13NWmrq6uoqugcA1q1b11V0L83NzSxduph3\n3tnLzp17mTNnITNmVP3cQZPU1nYmq1ZdxqpVl9HWdmbV9WbNGuLxx+/n0KHzgOG1UZ2d5xxz7bLX\nq4cePefy1auHHuvhnNvazqS1tZ+33voBS5b8N52d51T15L7s9eqhR8+5fPVG1hwYuIWzz+7lm988\nb1rXFwOsW7eOrq6udWM9VtWb72qpqDffjSUzef75l3j00f0sWnQuJ5xwYtEt6RjV+iPgyl6vHnr0\nnMtXrx56rIdzljR5/f1b6eho4+STT572Y0/05juD8QRefXUP9923i7lzz2bu3HlFtyNJknRcKGsw\ndp3ABE47bQkdHR9naOgZBgb2Ft2OJEmSppDB+JeYP38+q1adz9y5L/Paay8V3Y4kSZKmiMF4EmbP\nns2lly5n6dL/Y8+eZzhy5EjRLUmSJKnGDMaTNHPmTC66aBnnnNPE3r1bOXz4UNEtSZIkqYYMxu/D\njBkzWLbsV7nkkkW8/vpjHDx4oOiWJEmSVCMG42PQ1vYhrrjiTN56axtvvrmv6HYkSZJUAwbjY7Ro\n0SI6OpbR3PwC+/a9UnQ7kiRJqpLBuAotLS1cfvlyFi7sp69vh18jLUmSVMcMxlU64YQT+NSnLuCj\nHz3Mnj3bOHJkqOiWJEmSdAyai27geNDU1MTy5Wdz0kk7efzxB8n0+YYkSdJ4mpqGmDGjfHnJr4Su\nsaGhIZdUSJIkTSAiaG4u5vrsRF8J7RXjGitqkCVJklSd8l3DliRJkgpgMJYkSZIwGEuSJEmAwZje\n3t6iW9Aojkk5OS7l45iUk+NSPo5JOZVxXAzGJRyURueYlJPjUj6OSTk5LuXjmJRTGcel4YOxJEmS\nBAZjSZIkCSjZF3wU3YMkSZKOf+N9wUdpgrEkSZJUJJdSSJIkSRiMJUmSJMBgLEmSJAENHowjYnVE\nPBcRL0TE14ruRxARuyLiyYh4IiIeKbqfRhQRP4iI/oh4asR9CyLivyLi+Yi4JyJOLrLHRjTOuHRF\nxO7KfHkiIlYX2WOjiYilEfGTiHgmIp6OiD+u3O98KdAE4+J8KUhEfCAiHo6IrRHxbETcXLm/dHOl\nYd98FxFNwA7gcuBV4FHgi5m5vdDGGlxE7AQ+mZkDRffSqCLiU8AB4G8z89zKfd8B9mXmdypPIudn\n5p8X2WejGWdcbgQGM3NDoc01qIg4FTg1M7dGxFzgMeA3gN/D+VKYCcbl8zhfChMRszPz7YhoBu4H\n/hT4LCWbK418xfhC4MXM3JWZh4E7gCsL7knDxvwIFU2PzLwP+N9Rd38W6K7c7mb4j4ym0TjjAs6X\nwmTm3szcWrl9ANgOnIbzpVATjAs4XwqTmW9Xbs4Cmhj+fVa6udLIwfg04JUR27v52cRRcRL4cURs\niYiri25G71mcmf2V2/3A4iKb0c/5SkRsi4jby/AyZKOKiDbgAuBhnC+lMWJcHqrc5XwpSETMiIit\nDM+Jn2TmM5RwrjRyMG7MNSTld0lmXgB8BvijysvHKpEcXn/l/CmHW4EzgPOBPuCvim2nMVVerv8X\n4E8yc3DkY86X4lTG5Z8ZHpcDOF8KlZnvZub5wOnApyPi0lGPl2KuNHIwfhVYOmJ7KcNXjVWgzOyr\n/P868G8ML3lR8for6/aIiFbgtYL7EZCZr2UF8H2cL9MuImYyHIp/mJk/qtztfCnYiHH5u6Pj4nwp\nh8x8E9gEfJISzpVGDsZbgLMioi0iZgFfAO4quKeGFhGzI6KlcnsOsAp4auKf0jS5C+is3O4EfjTB\nvpomlT8kR/0mzpdpFREB3A48m5m3jHjI+VKg8cbF+VKciFh4dOlKRJwIXAE8QQnnSsN+KgVARHwG\nuIXhReC3Z+bNBbfU0CLiDIavEgM0A3/vmEy/iPgHYCWwkOE1X98A/h34J+BDwC7g85n5RlE9NqIx\nxuVGoJ3hl4UT2AlcO2K9nqZYRPwacC/wJD97CfjrwCM4XwozzrhcD3wR50shIuJcht9cN6Py74eZ\nuT4iFlCyudLQwViSJEk6qpGXUkiSJEnvMRhLkiRJGIwlSZIkwGAsSZIkAQZjSZIkCTAYS5IkSYDB\nWJIkSQLg/wErrdIPP07yMwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f09d536d410>"
"<matplotlib.figure.Figure at 0x7f09d4d443d0>"
]
},
"metadata": {},
......@@ -404,7 +403,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Looks like partial auto correlation goes to 0 after lag 3. So **ARMA(3,0)** looks like an adequated model for our data. Auto correlation graph shows information about another model that might be good but require a different analysis, which isn't the real focus of this tutorial.\n",
"Looks like partial autocorrelation goes to 0 after lag 3. So **ARMA(3,0)** looks like an adequated model for our data. Autocorrelation graph shows information about another model that might be good but require a different analysis, which isn't the real focus of this tutorial.\n",
"\n",
"An important thing to note is that there are mathematical methods to give suggestions of model orders for your data. You will get to know them in the next section."
]
......@@ -565,7 +564,7 @@
},
{
"cell_type": "code",
"execution_count": 51,
"execution_count": 59,
"metadata": {
"collapsed": false,
"scrolled": false
......@@ -575,7 +574,7 @@
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAEbCAYAAAD+uL7AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFX6x/HPExKqVEERRGnSuwIKCEGKKC0B6Qqyoq4F\nscvq/hR3XcW6thULLrAIUhMQRETAiCCiKBA6IiJFCEU6hJbz++NONMbUycyce2ee9+uVF8mUe78J\nN0/OPHPvOWKMQSmllPtF2Q6glFIqb7RgK6WUR2jBVkopj9CCrZRSHqEFWymlPEILtlJKeUSOBVtE\nqojI5yKyXkTWich9vttHicguEVnl++gSmrhKKRW5JKfzsEWkIlDRGLNaRC4AvgPigL7AMWPMK6GJ\nqZRSKjqnO40xe4G9vs+Pi8hGoLLvbglyNqWUUhnkuYctIlWBpsDXvpuGi8gaEXlfRMoEIZtSSqkM\n8lSwfe2QGcAIY8xxYAxQDWgC7AFeDlpCpZRSQC49bAARiQHmAp8YY17N4v6qwBxjTMNMt+skJUop\n5QdjTJYt59zOEhHgfWBDxmItIpdkeFg8sDabneb7o127dn49zxjDU089FdLnRULWcM/ppax6nAZ+\nn278v89Jjm86Aq2Bm4FkEVnlu+1xYICINAEM8BNwZy7bybOqVav6/dzY2NiQPi8SsoZ7zoI8N9x/\npgXZp1eyeuX/Pl1uZ4ksJetR+CcF2msO9OAKzvPCvbhowc5eJByn/u7TK//36Vx3pWNBv6FQ0qyB\n55Wc4J2sXskJ3slqK2eubzr6vWERE6xtK6VUuBIRjD9vOiqllHIPLdhKKeURWrCVUsojtGArpZRH\naMFWSimP0IKtlFIeoQVbKaU8Qgu2Ukp5hBZspZTyCC3YSinlEVqwlVLKI7RgK6WUR2jBVkopj9CC\nrZRSHqEFWymlPEILtlJKeYQWbKWU8ggt2Eop5RFasJVSyiO0YCullEdowVZKKY/Qgq2UUh6hBVsp\npTxCC7ZSSnmEFmyllPIILdhKKeURWrCVUsojtGArpZRHaMFWSimP0IKtlFIeoQVbKaU8Qgu2Ukp5\nhBZspZTyCC3YSinlETkWbBGpIiKfi8h6EVknIvf5bi8nIp+JyBYRWSAiZUITVymlIpcYY7K/U6Qi\nUNEYs1pELgC+A+KAocABY8wLIvIYUNYYMzLTc01O21ZKKfVnIoIxRrK6L8cRtjFmrzFmte/z48BG\noDLQA5jge9gEnCKulFIqiPLcwxaRqkBTYAVwsTEmxXdXCnBxwJMppZT6g+i8PMjXDpkJjDDGHBP5\nfbRujDEikmXvo1EjqFIFWreGvn2hZs2AZFYq4HYd3cX09dNZunMpW3/dypnzZ6h4QUWaXNyE7rW7\nE1s1lijR9+iVXbkWbBGJwSnWE40xs3w3p4hIRWPMXhG5BNiX1XNLlhzFBRfA7Nnw4ouxtGkTy+jR\nUL9+4L4BpQri58M/82TSk8zdMpe42nHcVPcmapevTZFCRdhzfA8rdq3ggU8f4Oz5szxz3TPE14kn\n44BFqYJKSkoiKSkpT4/N7U1HwelRHzTGPJDh9hd8tz0vIiOBMlm96fjWW4a77nK+Pn0axoyBZ5+F\nESNg5EgoVCif35lSAWIM3Pzq2yQc/juPxt7Dg9c8SOmipbN5rGHhtoXc/+n9VC9bnXE9x1G+ePkQ\nJ1aRwu83HYHWwM1AexFZ5fvoAowGOonIFuA639dZ7Pj3z4sUgfvvh++/h88+g/h4OHnSj+9GqQI6\ndw7uugsWLz3BjK5LeLr909kWa3B+gTrV6MSqO1dRt3xdrnz3StbtWxfCxEo5chxhF2jDImbMGMNf\n//rn+86ehWHDYMsW+PhjKFcuKBGU+pPUVOjf3xkszJwJJUvmfxuT107mwU8fZM6AOTSv3DzwIVVE\nK8gIu4A7zvr2mBgYPx6uvhq6ddORtgqN8+dh0CCIjoa5c/0r1gADGw7k3e7v0nVyV1bvXR3YkErl\nwErBTr/v5ZfhiiugTx/nZapSwWIM3HsvHDkCkyZB4cIF216P2j34z43/ofuH3dl5ZGdgQiqVC2sF\nGyAqCsaOdVokTzwRzCQq0r3zDixbBomJzvspgdCnfh9GtBxBtw+7cfKsvkxUwWf9xNKYGJg8GaZM\ngVmzcn+8Uvn1zTfw5JP+96xz8tA1D9HgogaM+GREYDesVBasjrDTlS8P06bBHXfATn11qQLo6FHo\n1w/efttpvwWaiPB217f54ucvmLx2cuB3oFQGrijYAC1bwn33OWeP6JxRKlAeeQQ6dIBevYK3j5JF\nSjL1pqmMmD+CX479ErwdqYhnvSWS0ciRcPAgvPee7SQqHCxYAPPnwyuvBH9fTS9pyl1X3cVdH9+F\nzlKpgsU1I2xwTreaMAEefxz27g1OJhUZTp2CO+90/viXKhWafT5x7RNs/XUr09ZPC80OVcRxVcEG\nZ56R226DRx8NfB4VOV54Aa66Cjp3Dt0+i0QX4d1u7/LQgoc4fuZ46HasIoarWiLp/u//4PPP4csv\nbSdRXrR9O7z+unOef6i1vqw1bS9vy/NLnw/9zpXnnU87n+P9rhthA1xwAbz0kjNJVFpaYDOp8PfQ\nQ868NZddZmf/z3d8nrdWvsXPh3+2E0B51vjV43O835UFG5z5s6OjndP9lMqrZctg5Up4+GF7GaqU\nrsJ9Le7j0YXa11N5d+rsKZ5MejLHx7i2YIvA6NHw9787V0IqlRtjnDesR42CYsXsZnmk9SMs3bGU\n7375zm4Q5Rn/+fY/XH3p1Tk+xpU97HTXXQfVqzuXryuVm88+g5QUuOUW20mgeExx/tbmbzyV9JTt\nKMoDjp4+ygvLXuAfsf/I8XGuHWGnGz0a/vlPndFP5Sx9dP3PfzqtNDe4vdntJKck8/Wur21HUS73\n7+X/pkvNLtS/KOfluFxfsJs1c66CfP/9gm9Lha/Zs503qHv3tp3kd0Wii/D3tn/nyc9z7kuqyHbo\n1CHe+OYNRsWOyvWxrm6JpHviCXjxRThzxnYS5UbGOEvP/d//OTNAusnQJkPZ+utWlu1YZjuKcqk3\nv3mTHrV7UL1s9Vwf6/oRNjgXQNStCxMnBmZ7KrwsXgzHjkHPnraT/FlMoRgebf0ozy/T87LVn504\nc4I3v32TR1vn7YwiTxRscEbZo0frQgfqz0aPhscec9/oOt2QxkP4Zvc3bNi/wXYU5TLvr3qfNpe1\noU75Onl6vGcKdtu2ULGiM6exUulWroTNm2HgQNtJslcsphjDWwznxa9etB1FuciZ82d46auXGNl6\nZJ6f49IxSdYeeghefdV2CuUmzz/vHBcFXfIr2O5qfhezN81m19FdtqMol5iybgq1LqyVr4WcPTPC\nBuje3TnPdsWKwG5XedOOHU7/+i9/sZ0kd+WKlWNI4yG89vVrtqMoFzDG8PqK13nwmgfz9TxPFexC\nhWD4cHhNj3kFjBkDgwcHftmvYBnecjjjVo/T9R8Vy3ct58jpI3Sp2SVfz/NUSwSc0dT8+bB7t+0k\nyqZTp5wrYO+5x3aSvKtetjqtqrTSpcQUr694nXub30uU5K8Ee2qEDVC6NNx8M7z1VuC3rbxj8mTn\ngqqaNW0nyZ97W9zLm9+8qavSRLDdR3ez4McF3Nrk1nw/13MFG5y2yHvvOaMsFXmMgTfecNYA9ZqO\n1Tty6twplu3UC2ki1dsr32ZQw0GULlo638/1XEsEnNWvr7oKpk+3nUTZ8OWXkJoKHTvaTpJ/URLF\nPc3v4c1v3rQdRVmQei6Vd79/l3tb3OvX8z05wga44w54993gbV+515gxcPfd7r1QJjdDGg9hwY8L\ndIX1CJS4MZFGFzeidvnafj3fswW7Wzf46SdYvz54+1Duc/AgfPKJO6ZQ9VfpoqXpV78fY7/XeYMj\nzXvfv8ftzW73+/meLdjR0c4ZI++9F7x9KPf54APnj3XZsraTFMztV97OuNXjSDO6Bl6k2PrrVtbt\nW0fP2v5PeuPRF5WO225zfoH1zcfIYIxzKt+wYbaTFFyzS5pRpmgZFv+02HYUFSL/XfVfbml0C0Wi\ni/i9Dc+OsAGqVoXmzWHGjODuR7nDihXOm43t2tlOEhjDmg7TtkiEOHv+LONXj2dYs4KNNjxdsMF5\n8/Gdd4K/H2Vf+ug6FMdVKAxsOJD5W+dz8ORB21FUkM37YR7Vy1anboW6BdqOp1si4PQzf/jB+VDh\n69gxZ6bGIUNsJwmcssXK0q1WNz5I/sB2FBVkY1eNLfDoGsJghB0T40yt+b//BX9fyp6pUyE21pli\nN5wMazaMsavG6pWPYWzX0V0s27GMPvX6FHhbuRZsEfmviKSIyNoMt40SkV0issr3keUMJqF66Tpk\niLMaTZq+4R623n/feZM53LS7vB2nzp5i5S8rbUdRQfK/Nf+jT70+lChcosDbyssIexyQuSAb4BVj\nTFPfx/wCJymAxo2hVClYssRmChUsW7fCtm1w/fW2kwSeiHBLo1uYmKzr34UjYwwTkycyuPHggGwv\n14JtjPkSOJTFXbmOn0M1whZxRtkTJoRmfyq0Jk2C/v2d9lc4GtRoEFPWTeHs+bO2o6gAW7V3FafP\nnaZVlVYB2V5BetjDRWSNiLwvImWyekAo380fNAhmzYITJ0K3TxV8xjjtrptvtp0keGqWq0nNcjVZ\n8OMC21FUgE1cM5GbG92MBKgY+luwxwDVgCbAHuDlrB4UyoJdsSJccw0kJoZunyr4VqxwFq646irb\nSYJL2yLh51zaOT5c9yE3NwrcaCPanycZY/alfy4iY4E5WT1u0qRRfPut83lsbCyxsbH+7C7Phgxx\n3pwK59FYpPngA+f/M1zOvc5O3/p9GbloJEdSj/g17aZyn0XbFnF5mcupdWGtHB+XlJREUlJSnrYp\neTmdSESqAnOMMQ19X19ijNnj+/wBoLkxZmCm55iPPzbceGOecgREaipUrgxr1sCll4Zuvyo4zp6F\nSpWcUXb16rbTBF/clDh61u7J0KZDbUdRAXBL4i20qNSC4S2H5+t5IoIxJsshSl5O6/sQ+AqoLSI7\nReQvwPMikiwia4B2wANZPzdfOQusaFGIi4Np00K7XxUc8+dD7dqRUaxB2yLh5PiZ48zZPId+DfoF\ndLt5OUtkgDGmkjGmsDGmijHmv8aYwcaYRsaYxsaYOGNMSkBTFUD//jBliu0UKhDS2yGRomutrqxJ\nWcPOIzttR1EFNGvTLFpf1pqLSlwU0O16/krHzNq3h59/ds7dVd515Igzwu7b13aS0CkaXZTedXvz\n4boPbUdRBfRB8gfc0ijwk7aHXcGOjoY+fZxLmZV3JSQ4f3zLlbOdJLT6N+jP1PV68HrZ3uN7WbF7\nBT1q9wj4tj0/+VNWBgzQtojXTZ3qzBETadpd3o7dR3ez9Vd9iehVMzfMpFutbhSPKR7wbYfdCBuc\n87GPHIF16+zsXxXMwYOwfDl07Wo7SegViirETfVuYuo6HWV71bQN0+hbLzi9vLAs2FFR+uajlyUm\nOvOGlCj4XDme1K9+P22LeNQvx35hbcpaOtfoHJTth2XBBqdgf/ihc2mz8papUyPrzcbMWl/Wml9P\n/crG/RttR1H5NGPDDLrX7l6gZcByEpY9bICmTZ1LmlfqrJWesn8/fPstIb3gym2iJIo+9froKNuD\npq2fRr/6gT33OqOwHWGL6JuPXpSQADfcAMUD/36Np/Rr0I8p66bowgYesuvoLjYe2EjH6h2Dto+w\nLdjgtEWmTtWFDbxk2rTIboeka1m5JannUklOSbYdReXRjA0z6Fm7J4ULFQ7aPsK2JQJQty6UKePM\nRaHcLyUFvvsOumS5flFkERH61u+rbREPmbZ+Gn3rB3e0EdYjbIDevZ3FW5X7zZzpnMpXrJjtJO6Q\nfhGNtkXcb8eRHWw5uIUO1ToEdT9hX7BvuglmzNCzRbxg2jToF7z3azynacWmREkU3+/53nYUlYvp\n66cTXyeemELBXRYprFsiAA0aQOHC8L0e8662Z48zLW7n4Jy+6kkiQu+6vUnYmGA7isrFtA3Bb4dA\nBIywRX4fZSv3mjkTund3pshVv+tVtxczN87UtoiLbT+8nZ8O/UT7au2Dvq+wL9igbREvmDHD+X9S\nf9S8UnNOnj3Jhv0bbEdR2Zi5YSZxdeKIjvJrAa98iYiC3bQpnDsHa9faTqKysn8/rF6t7ZCsiMhv\no2zlTombEomvEx+SfYV9Dxu0LeJ2c+ZAp07aDsmO9rHdK+V4Cuv3r+e6ateFZH8RMcIGPb3PzRIT\nIT40AxRPalWlFXuP7+XHX3+0HUVlMnvzbLrU7BK0uUMyi5iC3aIFHD0KG3U+HVc5dgy++CIyp1LN\nq0JRhYirE6dtERcKZTsEIqQlAs6Uq7166SjbbebPh1atoHRp20ncrXfd3lqwXeZI6hGW7VjGDTVv\nCNk+I2aEDdrHdiNth+RNbNVYtv66VRfodZF5P8yj7eVtKVmkZMj2GVEFu1UrZ74KXaDXHc6cgU8+\ngZ49bSdxv5hCMXSv1Z3ETYm2oyifULdDIIJaIuDMjx0fr20Rt1i8GOrVg4oVbSfxBm2LuEfquVQW\n/LggKAvt5iSiRtjg9LETdZDiCtoOyZ9ONTqxZu8aUo6n2I4S8RZuW0jjio2pUKJCSPcbcQW7XTvY\nsgV++cV2ksh2/jzMnq0FOz+KRhelS80uzN4823aUiJewMSHk7RCIwIIdE+MsPzVbj3mrli+Hiy6C\nGjVsJ/EWbYvYdy7tHHO2zCGuTlzI9x1RPex08fEwa5btFJFN2yH+ueGKG1i+czmHTh2yHSViLd2x\nlCqlqlC1TNWQ7zviRtgA11/vjPAOH7adJDIZowXbXxcUvoD21drz8Q8f244SsRI3hv7skHQRWbAv\nuABiY2HePNtJIlNyslO0Gze2ncSbetXppXOLWGKMYdbmWcTXDcOC7WZxcdoWsSV9dO3WP+hu1712\ndxb9tIiTZ0/ajhJxvt/zPYULFaZ+hfpW9h+RI2xwJstfsABSU20niTzaDimYcsXK0bxScz7d+qnt\nKBEn/WIZsVTcIrZgV6jgvCRftMh2ksiybRvs3etcdar8F18nnoRN2hYJNRtXN2YUsQUbnLaIXkQT\nWomJ0KOHc9Wp8l9cnTg+3vIxZ86fsR0lYmw5uIVDpw7R8tKW1jJEbA8bnIL90UfORRwqNLQdEhiV\nS1WmdvnaJG1Psh0lYiRuTKRn7Z5Eib2yGdEj7GrVoFIl5xQ/FXwpKbBuHXToYDtJeIivE0/iRn2J\nGCqJmxKtnR2SLqILNmhbJJRmz4YuXaBIaBbnCHvxdeKZtXkW59P0JWKw7T66my0HtxBbNdZqjlwL\ntoj8V0RSRGRthtvKichnIrJFRBaISJngxgye9KsedUX14NN2SGBdceEVlC9enq93fW07StibvXk2\nN15xI4ULFbaaIy8j7HFAl0y3jQQ+M8bUAhb5vv4TL4ywGzWCtDRdUT3YjhyBZcvghtAtzhERetXp\npXNkh0DipkR61e1lO0buBdsY8yWQeeKCHsAE3+cTgCxnQfFCwRbRuUVCYd48uPZaKFXKdpLw0quu\nc9Wj0ZeIQXPo1CG+2f0N19e43nYUv3vYFxtj0iflTQEuDlAeK7SPHXyJic5c5CqwGl3cCIDklGTL\nScLX3C1zaV+1PSUKl7AdpeBvOhrnT3uWf969MMIGaN0adu+G7dttJwlPqanOVaU9Qrs4R0QQkd9G\n2So4bF8sk1G0n89LEZGKxpi9InIJsC+rB7311iguusj5PDY2ltjYWD93F1yFCjmXqs+eDSNG2E4T\nfhYudK4qrRDaxTkiRnydeO76+C6ebv+07Shh5+TZkyz6aRFje4wN2j6SkpJISkrK02MlL70vEakK\nzDHGNPR9/QJw0BjzvIiMBMoYY0Zmeo5Zv95Qr17+wtsyZw68/DLk8eem8uG226BhQ7j/fttJwlOa\nSaPyK5VZcusSrrjwCttxwsqsTbN445s3WDQ4dHNYiAjGmCz7E3k5re9D4CugtojsFJGhwGigk4hs\nAa7zfe1pHTvCqlVw4IDtJOHl3Dnnj2Fc6BfniBhREkVc7Tg9WyQI3NQOgbydJTLAGFPJGFPYGFPF\nGDPOGPOrMaajMaaWMaazMSbLpQC80sMGKFYMOnVyiosKnGXL4NJLoWpV20nCW3zdeC3YAXb2/Fnm\nbplrZSmw7ET8lY4Z6RzZgacXy4RGbNVYNh/YzO6ju21HCRtLfl5CjbI1uLTUpbaj/CaiJ3/KrGtX\n+PxzOHHCdpLwoEuBhU7hQoXpVqubrqgeQG5rh4COsP+gbFlo2RLmz7edJDysWgWFC0N9O4tzRJz4\nOvF6el+ApJk0Zm2ytxRYdrRgZ6JXPQaOLgUWWtfXvJ5vf/mWgycP2o7ieSt/WUnJIiWpU76O7Sh/\noC2RTOLi4OOP4YzOC19gCQnaDgml4jHF6VCtA3O3zLUdxfMSNia4rh0COsL+k0qVoE4dp5et/Ldl\nCxw65LSYVOj0qttLlw4rIGMMCRsTXDHZU2ZasLMQH69zixRUYqLzaiVKX8OFVLda3UjansTxM8dt\nR/GsDfs3kHoulSsvudJ2lD/Rgp2F9D62Lh3mv4QEnezJhjJFy3D1pVczf6u+c+4v2yuj50THP1mo\nWRMuvliXDvPXrl2wdSu0a2c7SWTSObILxg1LgWVHR9jZ6NXLGSWq/Js1yzmnPSbGdpLI1LNOT+b9\nMI/T507bjuI52w9vZ8eRHbS5rI3tKFnSgp2N9D62zguffzr3tV0VL6hI/Qr1WfzTYttRPGfWpln0\nqNWD6Ch/JzINLm2JZKNhQ2fa1dWrbSfxloMHYeVK6NzZdpLI1quutkX8kbAxwbXtENARdrZEtC3i\njzlzoEMHKF7cdpLIFl8nntmbZ+uK6vmQcjyF5JRkOlbvaDtKtrRg50ALdv5pO8QdqpWtRqWSlfhq\n51e2o3jGR5s/4vqa11M0uqjtKNnSlkgOWrRwLv7YvNl2Em84fty54KhrV9tJFOjcIvnlxsmeMtMR\ndg6iovQimvyYPx+uucaZREvZl37Vo66onrsjqUdYumMpN15xo+0oOdKCnQtti+Sdzh3iLvUr1KdI\noSKs2rvKdhTXm/fDPK69/FpKFSllO0qOtGDnom1b2LYNdu60ncTdTp+GTz6Bnj1tJ1HpRETbInmU\nuCmRXnXc/+aL9rBzERMD3brplKu5WbwY6tWDSy6xnURlpKf35e7U2VN8+uOn9Kjdw3aUXOkIOw+0\nLZI7XVnGnZpXbs7h1MNsPqDvnGdn4baFNKnYhAolKtiOkist2HnQqRN8/z3s3287iTudOwezZ2vB\ndqMoiSK+ji7Qm5OETe6c+zor2hLJg2LF4PrrdUX17CxZApUrQ40atpOorPSq20v72Nk4c/4MH23+\niJvq3WQ7Sp7oCDuP4uO1LZKd6dOhb1/bKVR22l7elm2HtrHziL5zntnCbQupU76Oq1ZGz4kW7Dzq\n2tUZSR45YjuJu5w75/wh69PHdhKVneioaLrX7s6sTfrOeWbTN0ynTz3vHLzaEsmjUqWgfXunV6t+\np+0Qb4ivE69Lh2XitXYI6Ag7X/r1g2nTbKdwF22HeEOn6p1YtWcVB04esB3FNbzWDgEt2PnSvTt8\n+aUzv4jSdoiXFIspRucanflo80e2o7iG19ohoAU7X0qWhI4ddW6RdEuWwKWXajvEK/T0vt95sR0C\n2sPOt759tS2Sbvp0HV17SddaXfli+xccO33MdhTrvNgOAR1h51u3bs7ivAcivBV47hzMnKkF20tK\nFSlFm8vaMO+HebajWOfFdghowc63EiWci2givS2yZAlUqaLtEK/pXbc3MzbOsB3DKq+2Q0BbIn7p\n1w+mTrWdwi5th3hTr7q9WPDjAo6ePmo7ijVebYeAjrD9csMNzkKz+/bZTmKHnh3iXWWLlSW2amxE\nX0Tj1XYIaMH2S/HicOONTg83En3+ubZDvGxAgwF8uO5D2zGsSD2XyuxNs7VgR5pIPltk0iQYNMh2\nCuWv7rW6s3zncvafiLzpJ+f9MI8mFZtQuVRl21H8oiNsP3XpAqtXw549tpOE1qlTzuX5/fvbTqL8\nVaJwCbrW6sr0DdNtRwm5SWsnMaihd0cbBSrYIrJdRJJFZJWIfPPn+wuydXcrWhTi4mDKFNtJQmvu\nXLjySl1ZxusGNBjA5LWTbccIqcOph1m4bSG96/W2HcVvBR1hGyDWGNPUGNMi853hXLABbr4ZPvjA\ndorQmjxZ2yHhoHONzmw6sImfD/9sO0rIJGxMoEO1DpQpWsZ2FL8FoiUS5mU5e7GxkJICGzbYThIa\nhw45azf2cv9apSoXhQsVpnfd3kxZFzkvEb3eDoHAjLAXishKEbk9853hPsIuVAgGDoycUfaMGc5y\naaVL206iAmFgw4ERc7bIL8d+YdWeVXSt1dV2lAIpaMFubYxpCtwA3CMi12a8M9wLNjhtkUmTIC3N\ndpLg03ZIeLn28ms5cPIA6/ettx0l6Kasm0JcnTiKRhe1HaVAogvyZGPMHt+/+0UkEWgBfJl+/7PP\njqJwYefz2NhYYmNjC7I7V2rUyBlxLl0KbdvaThM8u3ZBcrJz/rkKD1ESxcCGA5mYPJHRHUfbjhNU\nk9ZO4oWOL9iOkaWkpCSSkpLy9Fgxxvi1ExEpDhQyxhwTkRLAAuBpY8wC3/3m+HFDiRJ+bd5TXnwR\ntmyB996znSR4nn8etm4N7+8xEq3ft57OH3Rmx/07KBRVyHacoNiwfwOdJnbyzPcoIhhjsuxPFKQl\ncjHwpYisBlYAc9OL9e87LsDWPWTAAOeqx9RU20mCwxgYNw6GDrWdRAVa/YvqU7lkZT7b9pntKEEz\nbtU4Bjca7IlinRu/C7Yx5idjTBPfRwNjzHOZHxMpBfvSS6FpU+cc5XC0fLnz7zXX2M2hguPWJrcy\nfvV42zGC4uz5s0xMnsjQpuEx2tBL0wNk6FD4739tpwiOcePg1lsj5w9wpOnfoD/zt87n0KnwW/vu\nk62fULNcTWpdWMt2lIDQS9MDpHdvWLECdu60nSSwTpxwTucbPNh2EhUs5YqV4/qa14flOdnjVo9j\naJPwGF1XcKqVAAAQsklEQVSDFuyAKVbMmV9j/HjbSQIrIQFatYJKlWwnUcF0a+NbGb9mvO0YAbXv\nxD6StifRt35f21ECRlsiAXTbbfD+++F1Tra+2RgZOtXoxM4jO9mwP3wu2/0g+QN61O5BySIlbUcJ\nGB1hB1CzZlCuHCxaZDtJYGzbBmvXQvfutpOoYIuOiuaWRrcwbtU421ECwhgTdu0Q0IIdcOmj7HAw\nYYJzymKRIraTqFAY1mwYE9ZM4PS507ajFNh3e77jxJkTtL08vK5m05ZIgA0cCPPnw8GDtpMUzNmz\nMHYs3P6nGWJUuLriwitoXLExMzd6fymlt1e+ze3NbidKwqvE6Qg7wMqWhW7dYOJE20kK5qOPnCXA\nGja0nUSF0l+v/Ctvr3zbdowCOXTqEDM3zuS2ZrfZjhJwWrCD4I474J13nCsEveqtt+Duu22nUKHW\no3YPtv66lXX71tmO4rcJayZw4xU3clGJi2xHCTgt2EFw7bUQEwMLF9pO4p9Nm2D9ep33OhLFFIph\nWLNhvLPyHdtR/JJm0njr27e4+6rwHG2EV4PHJURg+HB44w3bSfzz9tvOm6fpMy2qyDKs2TAmrZ3E\niTMnbEfJt8U/LaZodFFaVWllO0pQ6Ag7SAYNgq++ck6N85ITJ5z++x132E6ibLms9GVce/m1fJDs\nvZU5xqwcw93N70bCtPhowQ6S4sWdC07eest2kvyZNAlat4bLL7edRNl0f8v7eXXFq6QZ71wFtuPI\nDj7/6XPPLwOWE22JBNHddztXCp7wyCvLtDR45RV44AHbSZRtsVVjKRpdlPlb59uOkmevr3idW5vc\nGlZXNmamBTuIqlWDNm28c4rfvHnOK4MwXBhI5ZOI8ODVD/Ly8pdtR8mTI6lHGLd6HCNajrAdJai0\nYAfZww/Dyy/D+fO2k+Tu5ZedvJHcylK/69egH5sObGL13tW2o+Rq7Pdj6VyjM5eXCe9enhbsIGvT\nBipUcGa9c7PvvoMff4Q+fWwnUW5RuFBhhrcYzr+//rftKDk6e/4sr614jYeuech2lKDTgh1kIjBy\nJIwe7e4LaV56Ce67zzl/XKl0d155J3M2z2HX0V22o2Rr+obpVCtbjasqXWU7StBpwQ6Bbt2c9R7d\nOovf5s1OtjvvtJ1EuU3ZYmUZ2mQoLyxz54rj59PO88ySZ3i8zeO2o4SEFuwQiIqCRx+FZ5+1nSRr\nzzwDI0ZAyfB9c10VwCOtH+GD5A/45dgvtqP8ycyNMylVpBSda3S2HSUkxATpdbqImGBt24vOnoW6\ndeG996B9e9tpfrdli3Pe9datULq07TTKrR6Y/wAGw6tdXrUd5TdpJo1GYxrxYqcXueGKG2zHCRgR\nwRiT5Vv/OsIOkZgYGDUK/v53d/Wyn33WuYxei7XKyaOtH+V/a/7HnmN7bEf5TcLGBIrFFKNLzS62\no4SMFuwQGjAADh1y5st2g02b4OOPnTcblcrJJSUvYXDjwTy39DnbUQA4l3aOUUmjeKrdU2F7GXpW\ntGCHUKFC8I9/OKNsN6z7+NhjzkeZMraTKC944tonmLx2Mj8c/MF2FMavHs+FxS+k6xVdbUcJKS3Y\nIdarl/Mm5OTJdnN88QUkJ8O999rNobyjQokKPNzqYUYuGmk1x/Ezx3ny8yd5qdNLETW6Bi3YIRcV\nBa+95pybffy4nQxpac4Vjc89B0WL2smgvGlEyxF8u/tblu5Yai3DS1+9RGzVWJpXbm4tgy1asC1o\n1cqZr+M5S+3ASZOcPxz9+tnZv/KuYjHF+Nd1/+KBTx/gfFro51vYeWQnb3zzBs92cOk5skGmp/VZ\nsns3NG4MK1Y4ayeGysGDUL8+zJkDzSNvgKICIM2kETs+lj71+jC85fCQ7jt+ajxNLm7CU7FPhXS/\noZTTaX1asC164QX47DNYsCB0Ey4NGwbFinl3NRzlDhv3b+Tacdey6s5VVCldJST7nLVpFo8tfIzk\nvyZTJLpISPZpg56H7VIPPgiHD8PYsaHZ3+LFzimFzzwTmv2p8FW3Ql2GtxjOPfPuIRQDs0OnDjH8\nk+GM6TomrIt1bnSEbdm6dc6VjytXBneVl0OHnBbMu+9Cl8i5zkAF0elzp2n2bjMebfUoQ5oMCdp+\njDEMTBjIhcUu5M0b3wzaftxCR9gu1qABPPII9O8PZ84EZx/GwF13QVycFmsVOEWiizCl9xQe/uxh\nthzcErT9TF47mTV71/BipxeDtg+v0ILtAg8/DOXLw9/+Fpzt/+c/sGEDPP98cLavIlfDixvyj9h/\n0G9GP06ePRnw7a9NWcv9n97P5N6TKRZTLODb9xptibjEr7/CVVc5840MHhy47S5a5Kzgvny5s2SZ\nUoFmjGHwrMGcOnuKaX2mESWBGQceOHmAFu+14JnrnmFgw4EB2aYXaEvEA8qVc+b1ePRR56yRQFi9\nGgYOhA8/1GKtgkdEGNt9LPtO7GPkwpEBeRPy+Jnj9JzSk771+0ZUsc6N3wVbRLqIyCYR+UFEHgtk\nqEhVty7MnOmMiAu62MG6dXDDDfDWW+6azlWFpyLRRUjsl8j8rfN5fNHjBSraJ86coOvkrtQrXy9i\nL5DJjl8FW0QKAW8CXYB6wAARqRuIQElJSYHYTEgEI2vr1k7RHjAAZszwbxtffgkdO8Irr0Dv3s5t\nXvm5eiUneCdrqHJeWPxCFg9ZzKc/fsq98+7l7Pmz+d5GwicJdJzYkeplq/NO93cC1l4JNFv/9/7+\nNFoAW40x240xZ4EpQM9ABPLKLwEEL2vbtk5b5IEHnDNITp/O2/POn3dWPr/pJpg40Sn6wc4aaF7J\nCd7JGsqc5YuXZ/GQxfx85GdiJ8Sy88jOPD83aXsSQ18bSufqnXm/x/uuLdbgvYJdGcj4P7HLd1uB\nbd++3e/n+vtD9Pd5wczapAmsWuWsBNOggTPqPn8+6+cZ47RQWrWCWbOcNxg7dQpMVq/8TAvyC+SV\nrG48TrNSpmgZHrzkQbrX6k7Td5ryryX/4nDq4Wwfv+3QNm6ddSuDEgbRvFhznm7/tF/F2p+sXvm/\nT+dvwQ7a6R9asH9XvjwkJsLrrzurmlerBg8/nMS77zoFfNw452rJ2rWdaVLvv9+ZNrV69cBl9crP\nVAt29mz8Ti35Ygkj24xkxbAVbDywkWqvVaPP9D68+vWrTF8/nUnJk3g66Wlix8fS4r0WXFb6Mjbe\ns5Fzh86FNKtX/u/T+XVan4hcDYwyxnTxff03IM0Y83yGx+g5fUop5YeATv4kItHAZqAD8AvwDTDA\nGLOxICGVUkplL9qfJxljzonIvcCnQCHgfS3WSikVXEG70lEppVRgueK8GRHJcbEsEUkSkStDlSfT\nvi8VkdkiskVEtorIqyISk8Pj7xcRa5Me5PazdAsRiRORNBGpbTtLXulxGlhuP1bdeIy6omCT+1kn\nJg+PCThxVvhMABKMMbWAWsAFwL9yeNoIoHgI4mXHKy+ZBgBzff/mmYjVk3P1OA0stx+rrjtG3VKw\nEZF2IjInw9dvikjwJtnNm+uAU8aYCQDGmDTgAeAvIlJcRF4SkbUiskZE7hWR4UAl4HMRKeDF5f4T\nkRIislBEvhORZBHp4bu9qohsFJF3RWSdiHwqIiFfhldELgBaAvcC/Xy3xYrIEhGZ65vyYIyvECEi\nx30/69XA1aHOm5Eep4Hl1mPVrceoawp2FqyMVjKpD3yX8QZjzDFgBzAMuBxobIxpDEwyxryBc9ZM\nrDGmQ6jDZnAKiDfGXInzy/xyhvtqAm8aYxoAh4HeFvL1BOYbY3YA+0Wkme/25ji/IPWAGkAv3+3F\nga+NMU2MMV+FPG3O9DgtGLceq648Rt1csN0gu19EAWKBt32jGYwxh0IVKg+igOdEZA3wGVBJRC7y\n3feTMSbZ9/l3QFUL+QYA032fT/d9bYBvfNMdpAEfAm18jzkPzAx5Su/w6nEK7j1WXXmM+nVaX5Cc\n449/QNwwW/kG4KaMN4hIKaAKsA3nF8KNBgHlgWbGmPMi8hOQ/nIy48wk5wnxz1lEygHtgQa+i6sK\n4fwifMwfC48Aab7PU100uboep4HlumPVzceom0bYPwP1RKSwiJTBeXlklTFmEVBcRG6B32YpfBkY\nBywA7vTdhoiU9T3tGFDKQtyMSgP7fL8A7XFeErvFTcD/jDFVjTHVjDGXAT8BbYEWvt5lFE7fcKnN\noNnQ4zSw3HisuvYYtV6wxblq8rQxZhcwDVgHTAW+txrsd/FAHxHZgnN150ngcWAsTo8w2fdGQ/o7\nye8C8228mZP+swQmAVeJSDJwC5DxoqbMo4BQj1z7A4mZbpvpu/1bnGl7NwA/GmPSH2d9dK3HaWC5\n/Fh17TFq/cIZEWkMvGOMsfrufzjw8s9SRNoBDxtjutvOkhUv/2zdyIs/Tzcco1ZH2CLyV2Ay8Heb\nOcJBmPwsrY+ksxImP1vX8PjP0+oxan2ErZRSKm+s97CVUkrljRZsjxKRKiLyuYis910Jdp/v9nIi\n8pk4c0os8J3JkH775yJyTETeyLStwr4ryjb7ri7rldU+lcqvQB2nIlJSRFZl+NgvIv+29X3Zoi0R\njxKRikBFY8xq32W03wFxwFDggDHmBXFWsy9rjBkpIsWBpkADoIExZniGbT2Ncyw86fv6QmPMwVB/\nTyr8BPI4zbTdlcD9xhg3nvoZNDrC9ihjzF5jzGrf58dxToeqDPQAJvgeNgHnlwNjzEljzDL+eDFC\nuqHAcxm2rcVaBUSAj1MARKQWcFGkFWvQgh0WRKQqzqhkBXCxMSbFd1cKcHGmh//hJVX6S1HgGd8E\nPNMyXBqsVMAU5DjNpD8wJdD5vEALtsf5XmbOBEb4Jvz5je9S2dx6XtHApcAy3wQ8y4GXgpFVRa4A\nHKcZ9cOZxyPiaMH2MHEmqJ8JTDTGzPLdnOLrGyIilwD7ctnMQeCkMSbB9/UMoFkOj1cqXwJ0nKZv\nqzEQbYxZFZSwLqcF26N88/C+D2wwxrya4a6PgPT5mYcAszI/NeMXvtHNHN88DuAsrLw+8IlVJArU\ncZrBAJyLbiKSniXiUSLSBlgCJPP7y8m/4axgPw24DNgO9DXGHPY9ZztQEigMHAI6G2M2ichlwESg\nDM5IZ6hvzgylCiSQx6nvvh+BG4wxW0L3XbiHFmyllPIIbYkopZRHaMFWSimP0IKtlFIeoQVbKaU8\nQgu2Ukp5hBZspZTyCC3YKmyJyCgReSiH+3uKSN1QZlKqILRgq3CW20UG8UC9UARRKhD0whkVVkTk\nCWAwzhWbO3HmXz4C3IFz5dxWnNW5mwJzfPcdAXrhDGDeBCrgrDp+uzFmc4i/BaWypQVbhQ0RuRIY\nB7QAYoDvgTHAeGPMr77H/BNIMca8KSLjgDnpE1+JyCLgTmPMVhFpCTxrjOlg43tRKivRtgMoFUDX\nAgnGmFQgVUQ+wplEqKGIPAOUBi4A5md4jsBv039eA0x35isCnBG5Uq6hBVuFE0PWs7yNA3oaY9aK\nyBAgNtNzwGmHHDbGNA1uRKX8p286qnCyBIgTkaIiUhLo7ru9JLDXNy/zzfxepI8BpQCMMUeBn0Tk\nJnCmBRWRRiFNr1QutIetwoqIPI4zv/I+4GecPvZJ4FFgP87yVBcYY/4iIq2A94BU4CacQj4GuASn\nB/6hMeaZkH8TSmVDC7ZSSnmEtkSUUsojtGArpZRHaMFWSimP0IKtlFIeoQVbKaU8Qgu2Ukp5hBZs\npZTyCC3YSinlEf8P3exXdLumpA0AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f09d51c89d0>"
"<matplotlib.figure.Figure at 0x7f09d47957d0>"
]
},
"metadata": {},
......@@ -661,11 +660,6 @@
"\n",
"print predict"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment