Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
P
Pyston
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Boxiang Sun
Pyston
Commits
fb499bc7
Commit
fb499bc7
authored
May 21, 2015
by
Kevin Modzelewski
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #543 from tjhance/floathex
implement float.hex and float.fromhex
parents
56f2d23f
d7ee74e9
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
2789 additions
and
6 deletions
+2789
-6
Makefile
Makefile
+1
-0
from_cpython/CMakeLists.txt
from_cpython/CMakeLists.txt
+1
-0
from_cpython/Include/floatobject.h
from_cpython/Include/floatobject.h
+0
-6
from_cpython/Include/pyport.h
from_cpython/Include/pyport.h
+34
-0
from_cpython/Objects/floatobject.c
from_cpython/Objects/floatobject.c
+2729
-0
src/runtime/float.cpp
src/runtime/float.cpp
+16
-0
src/runtime/types.h
src/runtime/types.h
+2
-0
test/tests/float.py
test/tests/float.py
+6
-0
No files found.
Makefile
View file @
fb499bc7
...
...
@@ -377,6 +377,7 @@ STDOBJECT_SRCS := \
capsule.c
\
stringobject.c
\
exceptions.c
\
floatobject.c
\
unicodeobject.c
\
unicodectype.c
\
bytearrayobject.c
\
...
...
from_cpython/CMakeLists.txt
View file @
fb499bc7
...
...
@@ -79,6 +79,7 @@ file(GLOB_RECURSE STDOBJECT_SRCS Objects
capsule.c
cobject.c
exceptions.c
floatobject.c
iterobject.c
memoryobject.c
stringobject.c
...
...
from_cpython/Include/floatobject.h
View file @
fb499bc7
...
...
@@ -12,16 +12,10 @@ PyFloatObject represents a (double precision) floating point number.
extern
"C"
{
#endif
// Pyston change: this is not the format we're using
// - actually I think it is but there's no reason to have multiple definitions.
#if 0
typedef
struct
{
PyObject_HEAD
double
ob_fval
;
}
PyFloatObject
;
#endif
struct
_PyFloatObject
;
typedef
struct
_PyFloatObject
PyFloatObject
;
// Pyston change: this is no longer a static object
PyAPI_DATA
(
PyTypeObject
*
)
float_cls
;
...
...
from_cpython/Include/pyport.h
View file @
fb499bc7
...
...
@@ -424,3 +424,37 @@ typedef PY_LONG_LONG Py_intptr_t;
#endif
/* Py_PYPORT_H */
/* Py_ADJUST_ERANGE1(x)
* Py_ADJUST_ERANGE2(x, y)
* Set errno to 0 before calling a libm function, and invoke one of these
* macros after, passing the function result(s) (Py_ADJUST_ERANGE2 is useful
* for functions returning complex results). This makes two kinds of
* adjustments to errno: (A) If it looks like the platform libm set
* errno=ERANGE due to underflow, clear errno. (B) If it looks like the
* platform libm overflowed but didn't set errno, force errno to ERANGE. In
* effect, we're trying to force a useful implementation of C89 errno
* behavior.
* Caution:
* This isn't reliable. See Py_OVERFLOWED comments.
* X and Y may be evaluated more than once.
*/
#define Py_ADJUST_ERANGE1(X) \
do { \
if (errno == 0) { \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL) \
errno = ERANGE; \
} \
else if (errno == ERANGE && (X) == 0.0) \
errno = 0; \
} while(0)
#define Py_ADJUST_ERANGE2(X, Y) \
do { \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL || \
(Y) == Py_HUGE_VAL || (Y) == -Py_HUGE_VAL) { \
if (errno == 0) \
errno = ERANGE; \
} \
else if (errno == ERANGE) \
errno = 0; \
} while(0)
from_cpython/Objects/floatobject.c
0 → 100644
View file @
fb499bc7
/* Float object implementation */
/* XXX There should be overflow checks here, but it's hard to check
for any kind of float exception without losing portability. */
#include "Python.h"
#include "structseq.h"
#include <ctype.h>
#include <float.h>
#undef MAX
#undef MIN
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#ifdef _OSF_SOURCE
/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
extern
int
finite
(
double
);
#endif
/* Special free list -- see comments for same code in intobject.c. */
#define BLOCK_SIZE 1000
/* 1K less typical malloc overhead */
#define BHEAD_SIZE 8
/* Enough for a 64-bit pointer */
#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
struct
_floatblock
{
struct
_floatblock
*
next
;
PyFloatObject
objects
[
N_FLOATOBJECTS
];
};
typedef
struct
_floatblock
PyFloatBlock
;
static
PyFloatBlock
*
block_list
=
NULL
;
static
PyFloatObject
*
free_list
=
NULL
;
static
PyFloatObject
*
fill_free_list
(
void
)
{
PyFloatObject
*
p
,
*
q
;
/* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
p
=
(
PyFloatObject
*
)
PyMem_MALLOC
(
sizeof
(
PyFloatBlock
));
if
(
p
==
NULL
)
return
(
PyFloatObject
*
)
PyErr_NoMemory
();
((
PyFloatBlock
*
)
p
)
->
next
=
block_list
;
block_list
=
(
PyFloatBlock
*
)
p
;
p
=
&
((
PyFloatBlock
*
)
p
)
->
objects
[
0
];
q
=
p
+
N_FLOATOBJECTS
;
while
(
--
q
>
p
)
Py_TYPE
(
q
)
=
(
struct
_typeobject
*
)(
q
-
1
);
Py_TYPE
(
q
)
=
NULL
;
return
p
+
N_FLOATOBJECTS
-
1
;
}
double
PyFloat_GetMax
(
void
)
{
return
DBL_MAX
;
}
double
PyFloat_GetMin
(
void
)
{
return
DBL_MIN
;
}
static
PyTypeObject
FloatInfoType
=
{
0
,
0
,
0
,
0
,
0
,
0
};
PyDoc_STRVAR
(
floatinfo__doc__
,
"sys.float_info
\n
\
\n
\
A structseq holding information about the float type. It contains low level
\n
\
information about the precision and internal representation. Please study
\n
\
your system's :file:`float.h` for more information."
);
static
PyStructSequence_Field
floatinfo_fields
[]
=
{
{
"max"
,
"DBL_MAX -- maximum representable finite float"
},
{
"max_exp"
,
"DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
"is representable"
},
{
"max_10_exp"
,
"DBL_MAX_10_EXP -- maximum int e such that 10**e "
"is representable"
},
{
"min"
,
"DBL_MIN -- Minimum positive normalizer float"
},
{
"min_exp"
,
"DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
"is a normalized float"
},
{
"min_10_exp"
,
"DBL_MIN_10_EXP -- minimum int e such that 10**e is "
"a normalized"
},
{
"dig"
,
"DBL_DIG -- digits"
},
{
"mant_dig"
,
"DBL_MANT_DIG -- mantissa digits"
},
{
"epsilon"
,
"DBL_EPSILON -- Difference between 1 and the next "
"representable float"
},
{
"radix"
,
"FLT_RADIX -- radix of exponent"
},
{
"rounds"
,
"FLT_ROUNDS -- addition rounds"
},
{
0
}
};
static
PyStructSequence_Desc
floatinfo_desc
=
{
"sys.float_info"
,
/* name */
floatinfo__doc__
,
/* doc */
floatinfo_fields
,
/* fields */
11
};
PyObject
*
PyFloat_GetInfo
(
void
)
{
PyObject
*
floatinfo
;
int
pos
=
0
;
floatinfo
=
PyStructSequence_New
(
&
FloatInfoType
);
if
(
floatinfo
==
NULL
)
{
return
NULL
;
}
#define SetIntFlag(flag) \
PyStructSequence_SET_ITEM(floatinfo, pos++, PyInt_FromLong(flag))
#define SetDblFlag(flag) \
PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
SetDblFlag
(
DBL_MAX
);
SetIntFlag
(
DBL_MAX_EXP
);
SetIntFlag
(
DBL_MAX_10_EXP
);
SetDblFlag
(
DBL_MIN
);
SetIntFlag
(
DBL_MIN_EXP
);
SetIntFlag
(
DBL_MIN_10_EXP
);
SetIntFlag
(
DBL_DIG
);
SetIntFlag
(
DBL_MANT_DIG
);
SetDblFlag
(
DBL_EPSILON
);
SetIntFlag
(
FLT_RADIX
);
SetIntFlag
(
FLT_ROUNDS
);
#undef SetIntFlag
#undef SetDblFlag
if
(
PyErr_Occurred
())
{
Py_CLEAR
(
floatinfo
);
return
NULL
;
}
return
floatinfo
;
}
// pyston change: comment this out
#if 0
PyObject *
PyFloat_FromDouble(double fval)
{
register PyFloatObject *op;
if (free_list == NULL) {
if ((free_list = fill_free_list()) == NULL)
return NULL;
}
/* Inline PyObject_New */
op = free_list;
free_list = (PyFloatObject *)Py_TYPE(op);
PyObject_INIT(op, &PyFloat_Type);
op->ob_fval = fval;
return (PyObject *) op;
}
#endif
/**************************************************************************
RED_FLAG 22-Sep-2000 tim
PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
1. If v was a regular string, *pend was set to point to its terminating
null byte. That's useless (the caller can find that without any
help from this function!).
2. If v was a Unicode string, or an object convertible to a character
buffer, *pend was set to point into stack trash (the auto temp
vector holding the character buffer). That was downright dangerous.
Since we can't change the interface of a public API function, pend is
still supported but now *officially* useless: if pend is not NULL,
*pend is set to NULL.
**************************************************************************/
// pyston change: comment this out
#if 0
PyObject *
PyFloat_FromString(PyObject *v, char **pend)
{
const char *s, *last, *end;
double x;
char buffer[256]; /* for errors */
#ifdef Py_USING_UNICODE
char *s_buffer = NULL;
#endif
Py_ssize_t len;
PyObject *result = NULL;
if (pend)
*pend = NULL;
if (PyString_Check(v)) {
s = PyString_AS_STRING(v);
len = PyString_GET_SIZE(v);
}
#ifdef Py_USING_UNICODE
else if (PyUnicode_Check(v)) {
s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
if (s_buffer == NULL)
return PyErr_NoMemory();
if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
PyUnicode_GET_SIZE(v),
s_buffer,
NULL))
goto error;
s = s_buffer;
len = strlen(s);
}
#endif
else if (PyObject_AsCharBuffer(v, &s, &len)) {
PyErr_SetString(PyExc_TypeError,
"float() argument must be a string or a number");
return NULL;
}
last = s + len;
while (Py_ISSPACE(*s))
s++;
/* We don't care about overflow or underflow. If the platform
* supports them, infinities and signed zeroes (on underflow) are
* fine. */
x = PyOS_string_to_double(s, (char **)&end, NULL);
if (x == -1.0 && PyErr_Occurred())
goto error;
while (Py_ISSPACE(*end))
end++;
if (end == last)
result = PyFloat_FromDouble(x);
else {
PyOS_snprintf(buffer, sizeof(buffer),
"invalid literal for float(): %.200s", s);
PyErr_SetString(PyExc_ValueError, buffer);
result = NULL;
}
error:
#ifdef Py_USING_UNICODE
if (s_buffer)
PyMem_FREE(s_buffer);
#endif
return result;
}
#endif
static
void
float_dealloc
(
PyFloatObject
*
op
)
{
if
(
PyFloat_CheckExact
(
op
))
{
Py_TYPE
(
op
)
=
(
struct
_typeobject
*
)
free_list
;
free_list
=
op
;
}
else
Py_TYPE
(
op
)
->
tp_free
((
PyObject
*
)
op
);
}
// pyston change: comment this out
#if 0
double
PyFloat_AsDouble(PyObject *op)
{
PyNumberMethods *nb;
PyFloatObject *fo;
double val;
if (op && PyFloat_Check(op))
return PyFloat_AS_DOUBLE((PyFloatObject*) op);
if (op == NULL) {
PyErr_BadArgument();
return -1;
}
if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
PyErr_SetString(PyExc_TypeError, "a float is required");
return -1;
}
fo = (PyFloatObject*) (*nb->nb_float) (op);
if (fo == NULL)
return -1;
if (!PyFloat_Check(fo)) {
PyErr_SetString(PyExc_TypeError,
"nb_float should return float object");
return -1;
}
val = PyFloat_AS_DOUBLE(fo);
Py_DECREF(fo);
return val;
}
#endif
/* Methods */
/* Macro and helper that convert PyObject obj to a C double and store
the value in dbl; this replaces the functionality of the coercion
slot function. If conversion to double raises an exception, obj is
set to NULL, and the function invoking this macro returns NULL. If
obj is not of float, int or long type, Py_NotImplemented is incref'ed,
stored in obj, and returned from the function invoking this macro.
*/
#define CONVERT_TO_DOUBLE(obj, dbl) \
if (PyFloat_Check(obj)) \
dbl = PyFloat_AS_DOUBLE(obj); \
else if (convert_to_double(&(obj), &(dbl)) < 0) \
return obj;
static
int
convert_to_double
(
PyObject
**
v
,
double
*
dbl
)
{
register
PyObject
*
obj
=
*
v
;
if
(
PyInt_Check
(
obj
))
{
*
dbl
=
(
double
)
PyInt_AS_LONG
(
obj
);
}
else
if
(
PyLong_Check
(
obj
))
{
*
dbl
=
PyLong_AsDouble
(
obj
);
if
(
*
dbl
==
-
1
.
0
&&
PyErr_Occurred
())
{
*
v
=
NULL
;
return
-
1
;
}
}
else
{
Py_INCREF
(
Py_NotImplemented
);
*
v
=
Py_NotImplemented
;
return
-
1
;
}
return
0
;
}
/* XXX PyFloat_AsString and PyFloat_AsReprString are deprecated:
XXX they pass a char buffer without passing a length.
*/
void
PyFloat_AsString
(
char
*
buf
,
PyFloatObject
*
v
)
{
char
*
tmp
=
PyOS_double_to_string
(
v
->
ob_fval
,
'g'
,
PyFloat_STR_PRECISION
,
Py_DTSF_ADD_DOT_0
,
NULL
);
strcpy
(
buf
,
tmp
);
PyMem_Free
(
tmp
);
}
void
PyFloat_AsReprString
(
char
*
buf
,
PyFloatObject
*
v
)
{
char
*
tmp
=
PyOS_double_to_string
(
v
->
ob_fval
,
'r'
,
0
,
Py_DTSF_ADD_DOT_0
,
NULL
);
strcpy
(
buf
,
tmp
);
PyMem_Free
(
tmp
);
}
/* ARGSUSED */
static
int
float_print
(
PyFloatObject
*
v
,
FILE
*
fp
,
int
flags
)
{
char
*
buf
;
if
(
flags
&
Py_PRINT_RAW
)
buf
=
PyOS_double_to_string
(
v
->
ob_fval
,
'g'
,
PyFloat_STR_PRECISION
,
Py_DTSF_ADD_DOT_0
,
NULL
);
else
buf
=
PyOS_double_to_string
(
v
->
ob_fval
,
'r'
,
0
,
Py_DTSF_ADD_DOT_0
,
NULL
);
Py_BEGIN_ALLOW_THREADS
fputs
(
buf
,
fp
);
Py_END_ALLOW_THREADS
PyMem_Free
(
buf
);
return
0
;
}
static
PyObject
*
float_str_or_repr
(
PyFloatObject
*
v
,
int
precision
,
char
format_code
)
{
PyObject
*
result
;
char
*
buf
=
PyOS_double_to_string
(
PyFloat_AS_DOUBLE
(
v
),
format_code
,
precision
,
Py_DTSF_ADD_DOT_0
,
NULL
);
if
(
!
buf
)
return
PyErr_NoMemory
();
result
=
PyString_FromString
(
buf
);
PyMem_Free
(
buf
);
return
result
;
}
static
PyObject
*
float_repr
(
PyFloatObject
*
v
)
{
return
float_str_or_repr
(
v
,
0
,
'r'
);
}
static
PyObject
*
float_str
(
PyFloatObject
*
v
)
{
return
float_str_or_repr
(
v
,
PyFloat_STR_PRECISION
,
'g'
);
}
/* Comparison is pretty much a nightmare. When comparing float to float,
* we do it as straightforwardly (and long-windedly) as conceivable, so
* that, e.g., Python x == y delivers the same result as the platform
* C x == y when x and/or y is a NaN.
* When mixing float with an integer type, there's no good *uniform* approach.
* Converting the double to an integer obviously doesn't work, since we
* may lose info from fractional bits. Converting the integer to a double
* also has two failure modes: (1) a long int may trigger overflow (too
* large to fit in the dynamic range of a C double); (2) even a C long may have
* more bits than fit in a C double (e.g., on a a 64-bit box long may have
* 63 bits of precision, but a C double probably has only 53), and then
* we can falsely claim equality when low-order integer bits are lost by
* coercion to double. So this part is painful too.
*/
static
PyObject
*
float_richcompare
(
PyObject
*
v
,
PyObject
*
w
,
int
op
)
{
double
i
,
j
;
int
r
=
0
;
assert
(
PyFloat_Check
(
v
));
i
=
PyFloat_AS_DOUBLE
(
v
);
/* Switch on the type of w. Set i and j to doubles to be compared,
* and op to the richcomp to use.
*/
if
(
PyFloat_Check
(
w
))
j
=
PyFloat_AS_DOUBLE
(
w
);
else
if
(
!
Py_IS_FINITE
(
i
))
{
if
(
PyInt_Check
(
w
)
||
PyLong_Check
(
w
))
/* If i is an infinity, its magnitude exceeds any
* finite integer, so it doesn't matter which int we
* compare i with. If i is a NaN, similarly.
*/
j
=
0
.
0
;
else
goto
Unimplemented
;
}
else
if
(
PyInt_Check
(
w
))
{
long
jj
=
PyInt_AS_LONG
(
w
);
/* In the worst realistic case I can imagine, C double is a
* Cray single with 48 bits of precision, and long has 64
* bits.
*/
#if SIZEOF_LONG > 6
unsigned
long
abs
=
(
unsigned
long
)(
jj
<
0
?
-
jj
:
jj
);
if
(
abs
>>
48
)
{
/* Needs more than 48 bits. Make it take the
* PyLong path.
*/
PyObject
*
result
;
PyObject
*
ww
=
PyLong_FromLong
(
jj
);
if
(
ww
==
NULL
)
return
NULL
;
result
=
float_richcompare
(
v
,
ww
,
op
);
Py_DECREF
(
ww
);
return
result
;
}
#endif
j
=
(
double
)
jj
;
assert
((
long
)
j
==
jj
);
}
else
if
(
PyLong_Check
(
w
))
{
int
vsign
=
i
==
0
.
0
?
0
:
i
<
0
.
0
?
-
1
:
1
;
int
wsign
=
_PyLong_Sign
(
w
);
size_t
nbits
;
int
exponent
;
if
(
vsign
!=
wsign
)
{
/* Magnitudes are irrelevant -- the signs alone
* determine the outcome.
*/
i
=
(
double
)
vsign
;
j
=
(
double
)
wsign
;
goto
Compare
;
}
/* The signs are the same. */
/* Convert w to a double if it fits. In particular, 0 fits. */
nbits
=
_PyLong_NumBits
(
w
);
if
(
nbits
==
(
size_t
)
-
1
&&
PyErr_Occurred
())
{
/* This long is so large that size_t isn't big enough
* to hold the # of bits. Replace with little doubles
* that give the same outcome -- w is so large that
* its magnitude must exceed the magnitude of any
* finite float.
*/
PyErr_Clear
();
i
=
(
double
)
vsign
;
assert
(
wsign
!=
0
);
j
=
wsign
*
2
.
0
;
goto
Compare
;
}
if
(
nbits
<=
48
)
{
j
=
PyLong_AsDouble
(
w
);
/* It's impossible that <= 48 bits overflowed. */
assert
(
j
!=
-
1
.
0
||
!
PyErr_Occurred
());
goto
Compare
;
}
assert
(
wsign
!=
0
);
/* else nbits was 0 */
assert
(
vsign
!=
0
);
/* if vsign were 0, then since wsign is
* not 0, we would have taken the
* vsign != wsign branch at the start */
/* We want to work with non-negative numbers. */
if
(
vsign
<
0
)
{
/* "Multiply both sides" by -1; this also swaps the
* comparator.
*/
i
=
-
i
;
op
=
_Py_SwappedOp
[
op
];
}
assert
(
i
>
0
.
0
);
(
void
)
frexp
(
i
,
&
exponent
);
/* exponent is the # of bits in v before the radix point;
* we know that nbits (the # of bits in w) > 48 at this point
*/
if
(
exponent
<
0
||
(
size_t
)
exponent
<
nbits
)
{
i
=
1
.
0
;
j
=
2
.
0
;
goto
Compare
;
}
if
((
size_t
)
exponent
>
nbits
)
{
i
=
2
.
0
;
j
=
1
.
0
;
goto
Compare
;
}
/* v and w have the same number of bits before the radix
* point. Construct two longs that have the same comparison
* outcome.
*/
{
double
fracpart
;
double
intpart
;
PyObject
*
result
=
NULL
;
PyObject
*
one
=
NULL
;
PyObject
*
vv
=
NULL
;
PyObject
*
ww
=
w
;
if
(
wsign
<
0
)
{
ww
=
PyNumber_Negative
(
w
);
if
(
ww
==
NULL
)
goto
Error
;
}
else
Py_INCREF
(
ww
);
fracpart
=
modf
(
i
,
&
intpart
);
vv
=
PyLong_FromDouble
(
intpart
);
if
(
vv
==
NULL
)
goto
Error
;
if
(
fracpart
!=
0
.
0
)
{
/* Shift left, and or a 1 bit into vv
* to represent the lost fraction.
*/
PyObject
*
temp
;
one
=
PyInt_FromLong
(
1
);
if
(
one
==
NULL
)
goto
Error
;
temp
=
PyNumber_Lshift
(
ww
,
one
);
if
(
temp
==
NULL
)
goto
Error
;
Py_DECREF
(
ww
);
ww
=
temp
;
temp
=
PyNumber_Lshift
(
vv
,
one
);
if
(
temp
==
NULL
)
goto
Error
;
Py_DECREF
(
vv
);
vv
=
temp
;
temp
=
PyNumber_Or
(
vv
,
one
);
if
(
temp
==
NULL
)
goto
Error
;
Py_DECREF
(
vv
);
vv
=
temp
;
}
r
=
PyObject_RichCompareBool
(
vv
,
ww
,
op
);
if
(
r
<
0
)
goto
Error
;
result
=
PyBool_FromLong
(
r
);
Error:
Py_XDECREF
(
vv
);
Py_XDECREF
(
ww
);
Py_XDECREF
(
one
);
return
result
;
}
}
/* else if (PyLong_Check(w)) */
else
/* w isn't float, int, or long */
goto
Unimplemented
;
Compare:
PyFPE_START_PROTECT
(
"richcompare"
,
return
NULL
)
switch
(
op
)
{
case
Py_EQ
:
r
=
i
==
j
;
break
;
case
Py_NE
:
r
=
i
!=
j
;
break
;
case
Py_LE
:
r
=
i
<=
j
;
break
;
case
Py_GE
:
r
=
i
>=
j
;
break
;
case
Py_LT
:
r
=
i
<
j
;
break
;
case
Py_GT
:
r
=
i
>
j
;
break
;
}
PyFPE_END_PROTECT
(
r
)
return
PyBool_FromLong
(
r
);
Unimplemented:
Py_INCREF
(
Py_NotImplemented
);
return
Py_NotImplemented
;
}
static
long
float_hash
(
PyFloatObject
*
v
)
{
return
_Py_HashDouble
(
v
->
ob_fval
);
}
static
PyObject
*
float_add
(
PyObject
*
v
,
PyObject
*
w
)
{
double
a
,
b
;
CONVERT_TO_DOUBLE
(
v
,
a
);
CONVERT_TO_DOUBLE
(
w
,
b
);
PyFPE_START_PROTECT
(
"add"
,
return
0
)
a
=
a
+
b
;
PyFPE_END_PROTECT
(
a
)
return
PyFloat_FromDouble
(
a
);
}
static
PyObject
*
float_sub
(
PyObject
*
v
,
PyObject
*
w
)
{
double
a
,
b
;
CONVERT_TO_DOUBLE
(
v
,
a
);
CONVERT_TO_DOUBLE
(
w
,
b
);
PyFPE_START_PROTECT
(
"subtract"
,
return
0
)
a
=
a
-
b
;
PyFPE_END_PROTECT
(
a
)
return
PyFloat_FromDouble
(
a
);
}
static
PyObject
*
float_mul
(
PyObject
*
v
,
PyObject
*
w
)
{
double
a
,
b
;
CONVERT_TO_DOUBLE
(
v
,
a
);
CONVERT_TO_DOUBLE
(
w
,
b
);
PyFPE_START_PROTECT
(
"multiply"
,
return
0
)
a
=
a
*
b
;
PyFPE_END_PROTECT
(
a
)
return
PyFloat_FromDouble
(
a
);
}
static
PyObject
*
float_div
(
PyObject
*
v
,
PyObject
*
w
)
{
double
a
,
b
;
CONVERT_TO_DOUBLE
(
v
,
a
);
CONVERT_TO_DOUBLE
(
w
,
b
);
#ifdef Py_NAN
if
(
b
==
0
.
0
)
{
PyErr_SetString
(
PyExc_ZeroDivisionError
,
"float division by zero"
);
return
NULL
;
}
#endif
PyFPE_START_PROTECT
(
"divide"
,
return
0
)
a
=
a
/
b
;
PyFPE_END_PROTECT
(
a
)
return
PyFloat_FromDouble
(
a
);
}
static
PyObject
*
float_classic_div
(
PyObject
*
v
,
PyObject
*
w
)
{
double
a
,
b
;
CONVERT_TO_DOUBLE
(
v
,
a
);
CONVERT_TO_DOUBLE
(
w
,
b
);
if
(
Py_DivisionWarningFlag
>=
2
&&
PyErr_Warn
(
PyExc_DeprecationWarning
,
"classic float division"
)
<
0
)
return
NULL
;
#ifdef Py_NAN
if
(
b
==
0
.
0
)
{
PyErr_SetString
(
PyExc_ZeroDivisionError
,
"float division by zero"
);
return
NULL
;
}
#endif
PyFPE_START_PROTECT
(
"divide"
,
return
0
)
a
=
a
/
b
;
PyFPE_END_PROTECT
(
a
)
return
PyFloat_FromDouble
(
a
);
}
static
PyObject
*
float_rem
(
PyObject
*
v
,
PyObject
*
w
)
{
double
vx
,
wx
;
double
mod
;
CONVERT_TO_DOUBLE
(
v
,
vx
);
CONVERT_TO_DOUBLE
(
w
,
wx
);
#ifdef Py_NAN
if
(
wx
==
0
.
0
)
{
PyErr_SetString
(
PyExc_ZeroDivisionError
,
"float modulo"
);
return
NULL
;
}
#endif
PyFPE_START_PROTECT
(
"modulo"
,
return
0
)
mod
=
fmod
(
vx
,
wx
);
if
(
mod
)
{
/* ensure the remainder has the same sign as the denominator */
if
((
wx
<
0
)
!=
(
mod
<
0
))
{
mod
+=
wx
;
}
}
else
{
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
it has the same sign as the denominator; we'd like to do
"mod = wx * 0.0", but that may get optimized away */
mod
*=
mod
;
/* hide "mod = +0" from optimizer */
if
(
wx
<
0
.
0
)
mod
=
-
mod
;
}
PyFPE_END_PROTECT
(
mod
)
return
PyFloat_FromDouble
(
mod
);
}
static
PyObject
*
float_divmod
(
PyObject
*
v
,
PyObject
*
w
)
{
double
vx
,
wx
;
double
div
,
mod
,
floordiv
;
CONVERT_TO_DOUBLE
(
v
,
vx
);
CONVERT_TO_DOUBLE
(
w
,
wx
);
if
(
wx
==
0
.
0
)
{
PyErr_SetString
(
PyExc_ZeroDivisionError
,
"float divmod()"
);
return
NULL
;
}
PyFPE_START_PROTECT
(
"divmod"
,
return
0
)
mod
=
fmod
(
vx
,
wx
);
/* fmod is typically exact, so vx-mod is *mathematically* an
exact multiple of wx. But this is fp arithmetic, and fp
vx - mod is an approximation; the result is that div may
not be an exact integral value after the division, although
it will always be very close to one.
*/
div
=
(
vx
-
mod
)
/
wx
;
if
(
mod
)
{
/* ensure the remainder has the same sign as the denominator */
if
((
wx
<
0
)
!=
(
mod
<
0
))
{
mod
+=
wx
;
div
-=
1
.
0
;
}
}
else
{
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
it has the same sign as the denominator; we'd like to do
"mod = wx * 0.0", but that may get optimized away */
mod
*=
mod
;
/* hide "mod = +0" from optimizer */
if
(
wx
<
0
.
0
)
mod
=
-
mod
;
}
/* snap quotient to nearest integral value */
if
(
div
)
{
floordiv
=
floor
(
div
);
if
(
div
-
floordiv
>
0
.
5
)
floordiv
+=
1
.
0
;
}
else
{
/* div is zero - get the same sign as the true quotient */
div
*=
div
;
/* hide "div = +0" from optimizers */
floordiv
=
div
*
vx
/
wx
;
/* zero w/ sign of vx/wx */
}
PyFPE_END_PROTECT
(
floordiv
)
return
Py_BuildValue
(
"(dd)"
,
floordiv
,
mod
);
}
static
PyObject
*
float_floor_div
(
PyObject
*
v
,
PyObject
*
w
)
{
PyObject
*
t
,
*
r
;
t
=
float_divmod
(
v
,
w
);
if
(
t
==
NULL
||
t
==
Py_NotImplemented
)
return
t
;
assert
(
PyTuple_CheckExact
(
t
));
r
=
PyTuple_GET_ITEM
(
t
,
0
);
Py_INCREF
(
r
);
Py_DECREF
(
t
);
return
r
;
}
/* determine whether x is an odd integer or not; assumes that
x is not an infinity or nan. */
#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
static
PyObject
*
float_pow
(
PyObject
*
v
,
PyObject
*
w
,
PyObject
*
z
)
{
double
iv
,
iw
,
ix
;
int
negate_result
=
0
;
if
((
PyObject
*
)
z
!=
Py_None
)
{
PyErr_SetString
(
PyExc_TypeError
,
"pow() 3rd argument not "
"allowed unless all arguments are integers"
);
return
NULL
;
}
CONVERT_TO_DOUBLE
(
v
,
iv
);
CONVERT_TO_DOUBLE
(
w
,
iw
);
/* Sort out special cases here instead of relying on pow() */
if
(
iw
==
0
)
{
/* v**0 is 1, even 0**0 */
return
PyFloat_FromDouble
(
1
.
0
);
}
if
(
Py_IS_NAN
(
iv
))
{
/* nan**w = nan, unless w == 0 */
return
PyFloat_FromDouble
(
iv
);
}
if
(
Py_IS_NAN
(
iw
))
{
/* v**nan = nan, unless v == 1; 1**nan = 1 */
return
PyFloat_FromDouble
(
iv
==
1
.
0
?
1
.
0
:
iw
);
}
if
(
Py_IS_INFINITY
(
iw
))
{
/* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
* abs(v) > 1 (including case where v infinite)
*
* v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
* abs(v) > 1 (including case where v infinite)
*/
iv
=
fabs
(
iv
);
if
(
iv
==
1
.
0
)
return
PyFloat_FromDouble
(
1
.
0
);
else
if
((
iw
>
0
.
0
)
==
(
iv
>
1
.
0
))
return
PyFloat_FromDouble
(
fabs
(
iw
));
/* return inf */
else
return
PyFloat_FromDouble
(
0
.
0
);
}
if
(
Py_IS_INFINITY
(
iv
))
{
/* (+-inf)**w is: inf for w positive, 0 for w negative; in
* both cases, we need to add the appropriate sign if w is
* an odd integer.
*/
int
iw_is_odd
=
DOUBLE_IS_ODD_INTEGER
(
iw
);
if
(
iw
>
0
.
0
)
return
PyFloat_FromDouble
(
iw_is_odd
?
iv
:
fabs
(
iv
));
else
return
PyFloat_FromDouble
(
iw_is_odd
?
copysign
(
0
.
0
,
iv
)
:
0
.
0
);
}
if
(
iv
==
0
.
0
)
{
/* 0**w is: 0 for w positive, 1 for w zero
(already dealt with above), and an error
if w is negative. */
int
iw_is_odd
=
DOUBLE_IS_ODD_INTEGER
(
iw
);
if
(
iw
<
0
.
0
)
{
PyErr_SetString
(
PyExc_ZeroDivisionError
,
"0.0 cannot be raised to a "
"negative power"
);
return
NULL
;
}
/* use correct sign if iw is odd */
return
PyFloat_FromDouble
(
iw_is_odd
?
iv
:
0
.
0
);
}
if
(
iv
<
0
.
0
)
{
/* Whether this is an error is a mess, and bumps into libm
* bugs so we have to figure it out ourselves.
*/
if
(
iw
!=
floor
(
iw
))
{
PyErr_SetString
(
PyExc_ValueError
,
"negative number "
"cannot be raised to a fractional power"
);
return
NULL
;
}
/* iw is an exact integer, albeit perhaps a very large
* one. Replace iv by its absolute value and remember
* to negate the pow result if iw is odd.
*/
iv
=
-
iv
;
negate_result
=
DOUBLE_IS_ODD_INTEGER
(
iw
);
}
if
(
iv
==
1
.
0
)
{
/* 1**w is 1, even 1**inf and 1**nan */
/* (-1) ** large_integer also ends up here. Here's an
* extract from the comments for the previous
* implementation explaining why this special case is
* necessary:
*
* -1 raised to an exact integer should never be exceptional.
* Alas, some libms (chiefly glibc as of early 2003) return
* NaN and set EDOM on pow(-1, large_int) if the int doesn't
* happen to be representable in a *C* integer. That's a
* bug.
*/
return
PyFloat_FromDouble
(
negate_result
?
-
1
.
0
:
1
.
0
);
}
/* Now iv and iw are finite, iw is nonzero, and iv is
* positive and not equal to 1.0. We finally allow
* the platform pow to step in and do the rest.
*/
errno
=
0
;
PyFPE_START_PROTECT
(
"pow"
,
return
NULL
)
ix
=
pow
(
iv
,
iw
);
PyFPE_END_PROTECT
(
ix
)
Py_ADJUST_ERANGE1
(
ix
);
if
(
negate_result
)
ix
=
-
ix
;
if
(
errno
!=
0
)
{
/* We don't expect any errno value other than ERANGE, but
* the range of libm bugs appears unbounded.
*/
PyErr_SetFromErrno
(
errno
==
ERANGE
?
PyExc_OverflowError
:
PyExc_ValueError
);
return
NULL
;
}
return
PyFloat_FromDouble
(
ix
);
}
#undef DOUBLE_IS_ODD_INTEGER
static
PyObject
*
float_neg
(
PyFloatObject
*
v
)
{
return
PyFloat_FromDouble
(
-
v
->
ob_fval
);
}
static
PyObject
*
float_abs
(
PyFloatObject
*
v
)
{
return
PyFloat_FromDouble
(
fabs
(
v
->
ob_fval
));
}
static
int
float_nonzero
(
PyFloatObject
*
v
)
{
return
v
->
ob_fval
!=
0
.
0
;
}
static
int
float_coerce
(
PyObject
**
pv
,
PyObject
**
pw
)
{
if
(
PyInt_Check
(
*
pw
))
{
long
x
=
PyInt_AsLong
(
*
pw
);
*
pw
=
PyFloat_FromDouble
((
double
)
x
);
Py_INCREF
(
*
pv
);
return
0
;
}
else
if
(
PyLong_Check
(
*
pw
))
{
double
x
=
PyLong_AsDouble
(
*
pw
);
if
(
x
==
-
1
.
0
&&
PyErr_Occurred
())
return
-
1
;
*
pw
=
PyFloat_FromDouble
(
x
);
Py_INCREF
(
*
pv
);
return
0
;
}
else
if
(
PyFloat_Check
(
*
pw
))
{
Py_INCREF
(
*
pv
);
Py_INCREF
(
*
pw
);
return
0
;
}
return
1
;
/* Can't do it */
}
// pyston change: make not static
PyObject
*
float_is_integer
(
PyObject
*
v
)
{
double
x
=
PyFloat_AsDouble
(
v
);
PyObject
*
o
;
if
(
x
==
-
1
.
0
&&
PyErr_Occurred
())
return
NULL
;
if
(
!
Py_IS_FINITE
(
x
))
Py_RETURN_FALSE
;
errno
=
0
;
PyFPE_START_PROTECT
(
"is_integer"
,
return
NULL
)
o
=
(
floor
(
x
)
==
x
)
?
Py_True
:
Py_False
;
PyFPE_END_PROTECT
(
x
)
if
(
errno
!=
0
)
{
PyErr_SetFromErrno
(
errno
==
ERANGE
?
PyExc_OverflowError
:
PyExc_ValueError
);
return
NULL
;
}
Py_INCREF
(
o
);
return
o
;
}
#if 0
static PyObject *
float_is_inf(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_INFINITY(x));
}
static PyObject *
float_is_nan(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_NAN(x));
}
static PyObject *
float_is_finite(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_FINITE(x));
}
#endif
static
PyObject
*
float_trunc
(
PyObject
*
v
)
{
double
x
=
PyFloat_AsDouble
(
v
);
double
wholepart
;
/* integral portion of x, rounded toward 0 */
(
void
)
modf
(
x
,
&
wholepart
);
/* Try to get out cheap if this fits in a Python int. The attempt
* to cast to long must be protected, as C doesn't define what
* happens if the double is too big to fit in a long. Some rare
* systems raise an exception then (RISCOS was mentioned as one,
* and someone using a non-default option on Sun also bumped into
* that). Note that checking for <= LONG_MAX is unsafe: if a long
* has more bits of precision than a double, casting LONG_MAX to
* double may yield an approximation, and if that's rounded up,
* then, e.g., wholepart=LONG_MAX+1 would yield true from the C
* expression wholepart<=LONG_MAX, despite that wholepart is
* actually greater than LONG_MAX. However, assuming a two's complement
* machine with no trap representation, LONG_MIN will be a power of 2 (and
* hence exactly representable as a double), and LONG_MAX = -1-LONG_MIN, so
* the comparisons with (double)LONG_MIN below should be safe.
*/
if
((
double
)
LONG_MIN
<=
wholepart
&&
wholepart
<
-
(
double
)
LONG_MIN
)
{
const
long
aslong
=
(
long
)
wholepart
;
return
PyInt_FromLong
(
aslong
);
}
return
PyLong_FromDouble
(
wholepart
);
}
static
PyObject
*
float_long
(
PyObject
*
v
)
{
double
x
=
PyFloat_AsDouble
(
v
);
return
PyLong_FromDouble
(
x
);
}
/* _Py_double_round: rounds a finite nonzero double to the closest multiple of
10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
ndigits <= 323). Returns a Python float, or sets a Python error and
returns NULL on failure (OverflowError and memory errors are possible). */
#ifndef PY_NO_SHORT_FLOAT_REPR
/* version of _Py_double_round that uses the correctly-rounded string<->double
conversions from Python/dtoa.c */
/* FIVE_POW_LIMIT is the largest k such that 5**k is exactly representable as
a double. Since we're using the code in Python/dtoa.c, it should be safe
to assume that C doubles are IEEE 754 binary64 format. To be on the safe
side, we check this. */
#if DBL_MANT_DIG == 53
#define FIVE_POW_LIMIT 22
#else
#error "C doubles do not appear to be IEEE 754 binary64 format"
#endif
// pyston change: comment this out
#if 0
PyObject *
_Py_double_round(double x, int ndigits) {
double rounded, m;
Py_ssize_t buflen, mybuflen=100;
char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
int decpt, sign, val, halfway_case;
PyObject *result = NULL;
_Py_SET_53BIT_PRECISION_HEADER;
/* Easy path for the common case ndigits == 0. */
if (ndigits == 0) {
rounded = round(x);
if (fabs(rounded - x) == 0.5)
/* halfway between two integers; use round-away-from-zero */
rounded = x + (x > 0.0 ? 0.5 : -0.5);
return PyFloat_FromDouble(rounded);
}
/* The basic idea is very simple: convert and round the double to a
decimal string using _Py_dg_dtoa, then convert that decimal string
back to a double with _Py_dg_strtod. There's one minor difficulty:
Python 2.x expects round to do round-half-away-from-zero, while
_Py_dg_dtoa does round-half-to-even. So we need some way to detect
and correct the halfway cases.
Detection: a halfway value has the form k * 0.5 * 10**-ndigits for
some odd integer k. Or in other words, a rational number x is
exactly halfway between two multiples of 10**-ndigits if its
2-valuation is exactly -ndigits-1 and its 5-valuation is at least
-ndigits. For ndigits >= 0 the latter condition is automatically
satisfied for a binary float x, since any such float has
nonnegative 5-valuation. For 0 > ndigits >= -22, x needs to be an
integral multiple of 5**-ndigits; we can check this using fmod.
For -22 > ndigits, there are no halfway cases: 5**23 takes 54 bits
to represent exactly, so any odd multiple of 0.5 * 10**n for n >=
23 takes at least 54 bits of precision to represent exactly.
Correction: a simple strategy for dealing with halfway cases is to
(for the halfway cases only) call _Py_dg_dtoa with an argument of
ndigits+1 instead of ndigits (thus doing an exact conversion to
decimal), round the resulting string manually, and then convert
back using _Py_dg_strtod.
*/
/* nans, infinities and zeros should have already been dealt
with by the caller (in this case, builtin_round) */
assert(Py_IS_FINITE(x) && x != 0.0);
/* find 2-valuation val of x */
m = frexp(x, &val);
while (m != floor(m)) {
m *= 2.0;
val--;
}
/* determine whether this is a halfway case */
if (val == -ndigits-1) {
if (ndigits >= 0)
halfway_case = 1;
else if (ndigits >= -FIVE_POW_LIMIT) {
double five_pow = 1.0;
int i;
for (i=0; i < -ndigits; i++)
five_pow *= 5.0;
halfway_case = fmod(x, five_pow) == 0.0;
}
else
halfway_case = 0;
}
else
halfway_case = 0;
/* round to a decimal string; use an extra place for halfway case */
_Py_SET_53BIT_PRECISION_START;
buf = _Py_dg_dtoa(x, 3, ndigits+halfway_case, &decpt, &sign, &buf_end);
_Py_SET_53BIT_PRECISION_END;
if (buf == NULL) {
PyErr_NoMemory();
return NULL;
}
buflen = buf_end - buf;
/* in halfway case, do the round-half-away-from-zero manually */
if (halfway_case) {
int i, carry;
/* sanity check: _Py_dg_dtoa should not have stripped
any zeros from the result: there should be exactly
ndigits+1 places following the decimal point, and
the last digit in the buffer should be a '5'.*/
assert(buflen - decpt == ndigits+1);
assert(buf[buflen-1] == '5');
/* increment and shift right at the same time. */
decpt += 1;
carry = 1;
for (i=buflen-1; i-- > 0;) {
carry += buf[i] - '0';
buf[i+1] = carry % 10 + '0';
carry /= 10;
}
buf[0] = carry + '0';
}
/* Get new buffer if shortbuf is too small. Space needed <= buf_end -
buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
if (buflen + 8 > mybuflen) {
mybuflen = buflen+8;
mybuf = (char *)PyMem_Malloc(mybuflen);
if (mybuf == NULL) {
PyErr_NoMemory();
goto exit;
}
}
/* copy buf to mybuf, adding exponent, sign and leading 0 */
PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
buf, decpt - (int)buflen);
/* and convert the resulting string back to a double */
errno = 0;
_Py_SET_53BIT_PRECISION_START;
rounded = _Py_dg_strtod(mybuf, NULL);
_Py_SET_53BIT_PRECISION_END;
if (errno == ERANGE && fabs(rounded) >= 1.)
PyErr_SetString(PyExc_OverflowError,
"rounded value too large to represent");
else
result = PyFloat_FromDouble(rounded);
/* done computing value; now clean up */
if (mybuf != shortbuf)
PyMem_Free(mybuf);
exit:
_Py_dg_freedtoa(buf);
return result;
}
#endif
#undef FIVE_POW_LIMIT
#else
/* PY_NO_SHORT_FLOAT_REPR */
/* fallback version, to be used when correctly rounded binary<->decimal
conversions aren't available */
PyObject
*
_Py_double_round
(
double
x
,
int
ndigits
)
{
double
pow1
,
pow2
,
y
,
z
;
if
(
ndigits
>=
0
)
{
if
(
ndigits
>
22
)
{
/* pow1 and pow2 are each safe from overflow, but
pow1*pow2 ~= pow(10.0, ndigits) might overflow */
pow1
=
pow
(
10
.
0
,
(
double
)(
ndigits
-
22
));
pow2
=
1e22
;
}
else
{
pow1
=
pow
(
10
.
0
,
(
double
)
ndigits
);
pow2
=
1
.
0
;
}
y
=
(
x
*
pow1
)
*
pow2
;
/* if y overflows, then rounded value is exactly x */
if
(
!
Py_IS_FINITE
(
y
))
return
PyFloat_FromDouble
(
x
);
}
else
{
pow1
=
pow
(
10
.
0
,
(
double
)
-
ndigits
);
pow2
=
1
.
0
;
/* unused; silences a gcc compiler warning */
y
=
x
/
pow1
;
}
z
=
round
(
y
);
if
(
fabs
(
y
-
z
)
==
0
.
5
)
/* halfway between two integers; use round-away-from-zero */
z
=
y
+
copysign
(
0
.
5
,
y
);
if
(
ndigits
>=
0
)
z
=
(
z
/
pow2
)
/
pow1
;
else
z
*=
pow1
;
/* if computation resulted in overflow, raise OverflowError */
if
(
!
Py_IS_FINITE
(
z
))
{
PyErr_SetString
(
PyExc_OverflowError
,
"overflow occurred during round"
);
return
NULL
;
}
return
PyFloat_FromDouble
(
z
);
}
#endif
/* PY_NO_SHORT_FLOAT_REPR */
static
PyObject
*
float_float
(
PyObject
*
v
)
{
if
(
PyFloat_CheckExact
(
v
))
Py_INCREF
(
v
);
else
v
=
PyFloat_FromDouble
(((
PyFloatObject
*
)
v
)
->
ob_fval
);
return
v
;
}
/* turn ASCII hex characters into integer values and vice versa */
static
char
char_from_hex
(
int
x
)
{
assert
(
0
<=
x
&&
x
<
16
);
return
"0123456789abcdef"
[
x
];
}
static
int
hex_from_char
(
char
c
)
{
int
x
;
switch
(
c
)
{
case
'0'
:
x
=
0
;
break
;
case
'1'
:
x
=
1
;
break
;
case
'2'
:
x
=
2
;
break
;
case
'3'
:
x
=
3
;
break
;
case
'4'
:
x
=
4
;
break
;
case
'5'
:
x
=
5
;
break
;
case
'6'
:
x
=
6
;
break
;
case
'7'
:
x
=
7
;
break
;
case
'8'
:
x
=
8
;
break
;
case
'9'
:
x
=
9
;
break
;
case
'a'
:
case
'A'
:
x
=
10
;
break
;
case
'b'
:
case
'B'
:
x
=
11
;
break
;
case
'c'
:
case
'C'
:
x
=
12
;
break
;
case
'd'
:
case
'D'
:
x
=
13
;
break
;
case
'e'
:
case
'E'
:
x
=
14
;
break
;
case
'f'
:
case
'F'
:
x
=
15
;
break
;
default:
x
=
-
1
;
break
;
}
return
x
;
}
/* convert a float to a hexadecimal string */
/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
of the form 4k+1. */
#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
// pyston change: make this not static
PyObject
*
float_hex
(
PyObject
*
v
)
{
double
x
,
m
;
int
e
,
shift
,
i
,
si
,
esign
;
/* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
trailing NUL byte. */
char
s
[(
TOHEX_NBITS
-
1
)
/
4
+
3
];
CONVERT_TO_DOUBLE
(
v
,
x
);
if
(
Py_IS_NAN
(
x
)
||
Py_IS_INFINITY
(
x
))
return
float_str
((
PyFloatObject
*
)
v
);
if
(
x
==
0
.
0
)
{
if
(
copysign
(
1
.
0
,
x
)
==
-
1
.
0
)
return
PyString_FromString
(
"-0x0.0p+0"
);
else
return
PyString_FromString
(
"0x0.0p+0"
);
}
m
=
frexp
(
fabs
(
x
),
&
e
);
shift
=
1
-
MAX
(
DBL_MIN_EXP
-
e
,
0
);
m
=
ldexp
(
m
,
shift
);
e
-=
shift
;
si
=
0
;
s
[
si
]
=
char_from_hex
((
int
)
m
);
si
++
;
m
-=
(
int
)
m
;
s
[
si
]
=
'.'
;
si
++
;
for
(
i
=
0
;
i
<
(
TOHEX_NBITS
-
1
)
/
4
;
i
++
)
{
m
*=
16
.
0
;
s
[
si
]
=
char_from_hex
((
int
)
m
);
si
++
;
m
-=
(
int
)
m
;
}
s
[
si
]
=
'\0'
;
if
(
e
<
0
)
{
esign
=
(
int
)
'-'
;
e
=
-
e
;
}
else
esign
=
(
int
)
'+'
;
if
(
x
<
0
.
0
)
return
PyString_FromFormat
(
"-0x%sp%c%d"
,
s
,
esign
,
e
);
else
return
PyString_FromFormat
(
"0x%sp%c%d"
,
s
,
esign
,
e
);
}
PyDoc_STRVAR
(
float_hex_doc
,
"float.hex() -> string
\n
\
\n
\
Return a hexadecimal representation of a floating-point number.
\n
\
>>> (-0.1).hex()
\n
\
'-0x1.999999999999ap-4'
\n
\
>>> 3.14159.hex()
\n
\
'0x1.921f9f01b866ep+1'"
);
/* Case-insensitive locale-independent string match used for nan and inf
detection. t should be lower-case and null-terminated. Return a nonzero
result if the first strlen(t) characters of s match t and 0 otherwise. */
static
int
case_insensitive_match
(
const
char
*
s
,
const
char
*
t
)
{
while
(
*
t
&&
Py_TOLOWER
(
*
s
)
==
*
t
)
{
s
++
;
t
++
;
}
return
*
t
?
0
:
1
;
}
/* Convert a hexadecimal string to a float. */
// pyston change: make this not static
PyObject
*
float_fromhex
(
PyObject
*
cls
,
PyObject
*
arg
)
{
PyObject
*
result_as_float
,
*
result
;
double
x
;
long
exp
,
top_exp
,
lsb
,
key_digit
;
char
*
s
,
*
coeff_start
,
*
s_store
,
*
coeff_end
,
*
exp_start
,
*
s_end
;
int
half_eps
,
digit
,
round_up
,
sign
=
1
;
Py_ssize_t
length
,
ndigits
,
fdigits
,
i
;
/*
* For the sake of simplicity and correctness, we impose an artificial
* limit on ndigits, the total number of hex digits in the coefficient
* The limit is chosen to ensure that, writing exp for the exponent,
*
* (1) if exp > LONG_MAX/2 then the value of the hex string is
* guaranteed to overflow (provided it's nonzero)
*
* (2) if exp < LONG_MIN/2 then the value of the hex string is
* guaranteed to underflow to 0.
*
* (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
* overflow in the calculation of exp and top_exp below.
*
* More specifically, ndigits is assumed to satisfy the following
* inequalities:
*
* 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
* 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
*
* If either of these inequalities is not satisfied, a ValueError is
* raised. Otherwise, write x for the value of the hex string, and
* assume x is nonzero. Then
*
* 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
*
* Now if exp > LONG_MAX/2 then:
*
* exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
* = DBL_MAX_EXP
*
* so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
* double, so overflows. If exp < LONG_MIN/2, then
*
* exp + 4*ndigits <= LONG_MIN/2 - 1 + (
* DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
* = DBL_MIN_EXP - DBL_MANT_DIG - 1
*
* and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
* when converted to a C double.
*
* It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
* exp+4*ndigits and exp-4*ndigits are within the range of a long.
*/
if
(
PyString_AsStringAndSize
(
arg
,
&
s
,
&
length
))
return
NULL
;
s_end
=
s
+
length
;
/********************
* Parse the string *
********************/
/* leading whitespace and optional sign */
while
(
Py_ISSPACE
(
*
s
))
s
++
;
if
(
*
s
==
'-'
)
{
s
++
;
sign
=
-
1
;
}
else
if
(
*
s
==
'+'
)
s
++
;
/* infinities and nans */
if
(
*
s
==
'i'
||
*
s
==
'I'
)
{
if
(
!
case_insensitive_match
(
s
+
1
,
"nf"
))
goto
parse_error
;
s
+=
3
;
x
=
Py_HUGE_VAL
;
if
(
case_insensitive_match
(
s
,
"inity"
))
s
+=
5
;
goto
finished
;
}
if
(
*
s
==
'n'
||
*
s
==
'N'
)
{
if
(
!
case_insensitive_match
(
s
+
1
,
"an"
))
goto
parse_error
;
s
+=
3
;
x
=
Py_NAN
;
goto
finished
;
}
/* [0x] */
s_store
=
s
;
if
(
*
s
==
'0'
)
{
s
++
;
if
(
*
s
==
'x'
||
*
s
==
'X'
)
s
++
;
else
s
=
s_store
;
}
/* coefficient: <integer> [. <fraction>] */
coeff_start
=
s
;
while
(
hex_from_char
(
*
s
)
>=
0
)
s
++
;
s_store
=
s
;
if
(
*
s
==
'.'
)
{
s
++
;
while
(
hex_from_char
(
*
s
)
>=
0
)
s
++
;
coeff_end
=
s
-
1
;
}
else
coeff_end
=
s
;
/* ndigits = total # of hex digits; fdigits = # after point */
ndigits
=
coeff_end
-
coeff_start
;
fdigits
=
coeff_end
-
s_store
;
if
(
ndigits
==
0
)
goto
parse_error
;
if
(
ndigits
>
MIN
(
DBL_MIN_EXP
-
DBL_MANT_DIG
-
LONG_MIN
/
2
,
LONG_MAX
/
2
+
1
-
DBL_MAX_EXP
)
/
4
)
goto
insane_length_error
;
/* [p <exponent>] */
if
(
*
s
==
'p'
||
*
s
==
'P'
)
{
s
++
;
exp_start
=
s
;
if
(
*
s
==
'-'
||
*
s
==
'+'
)
s
++
;
if
(
!
(
'0'
<=
*
s
&&
*
s
<=
'9'
))
goto
parse_error
;
s
++
;
while
(
'0'
<=
*
s
&&
*
s
<=
'9'
)
s
++
;
exp
=
strtol
(
exp_start
,
NULL
,
10
);
}
else
exp
=
0
;
/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
coeff_end-(j) : \
coeff_end-1-(j)))
/*******************************************
* Compute rounded value of the hex string *
*******************************************/
/* Discard leading zeros, and catch extreme overflow and underflow */
while
(
ndigits
>
0
&&
HEX_DIGIT
(
ndigits
-
1
)
==
0
)
ndigits
--
;
if
(
ndigits
==
0
||
exp
<
LONG_MIN
/
2
)
{
x
=
0
.
0
;
goto
finished
;
}
if
(
exp
>
LONG_MAX
/
2
)
goto
overflow_error
;
/* Adjust exponent for fractional part. */
exp
=
exp
-
4
*
((
long
)
fdigits
);
/* top_exp = 1 more than exponent of most sig. bit of coefficient */
top_exp
=
exp
+
4
*
((
long
)
ndigits
-
1
);
for
(
digit
=
HEX_DIGIT
(
ndigits
-
1
);
digit
!=
0
;
digit
/=
2
)
top_exp
++
;
/* catch almost all nonextreme cases of overflow and underflow here */
if
(
top_exp
<
DBL_MIN_EXP
-
DBL_MANT_DIG
)
{
x
=
0
.
0
;
goto
finished
;
}
if
(
top_exp
>
DBL_MAX_EXP
)
goto
overflow_error
;
/* lsb = exponent of least significant bit of the *rounded* value.
This is top_exp - DBL_MANT_DIG unless result is subnormal. */
lsb
=
MAX
(
top_exp
,
(
long
)
DBL_MIN_EXP
)
-
DBL_MANT_DIG
;
x
=
0
.
0
;
if
(
exp
>=
lsb
)
{
/* no rounding required */
for
(
i
=
ndigits
-
1
;
i
>=
0
;
i
--
)
x
=
16
.
0
*
x
+
HEX_DIGIT
(
i
);
x
=
ldexp
(
x
,
(
int
)(
exp
));
goto
finished
;
}
/* rounding required. key_digit is the index of the hex digit
containing the first bit to be rounded away. */
half_eps
=
1
<<
(
int
)((
lsb
-
exp
-
1
)
%
4
);
key_digit
=
(
lsb
-
exp
-
1
)
/
4
;
for
(
i
=
ndigits
-
1
;
i
>
key_digit
;
i
--
)
x
=
16
.
0
*
x
+
HEX_DIGIT
(
i
);
digit
=
HEX_DIGIT
(
key_digit
);
x
=
16
.
0
*
x
+
(
double
)(
digit
&
(
16
-
2
*
half_eps
));
/* round-half-even: round up if bit lsb-1 is 1 and at least one of
bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
if
((
digit
&
half_eps
)
!=
0
)
{
round_up
=
0
;
if
((
digit
&
(
3
*
half_eps
-
1
))
!=
0
||
(
half_eps
==
8
&&
(
HEX_DIGIT
(
key_digit
+
1
)
&
1
)
!=
0
))
round_up
=
1
;
else
for
(
i
=
key_digit
-
1
;
i
>=
0
;
i
--
)
if
(
HEX_DIGIT
(
i
)
!=
0
)
{
round_up
=
1
;
break
;
}
if
(
round_up
==
1
)
{
x
+=
2
*
half_eps
;
if
(
top_exp
==
DBL_MAX_EXP
&&
x
==
ldexp
((
double
)(
2
*
half_eps
),
DBL_MANT_DIG
))
/* overflow corner case: pre-rounded value <
2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
goto
overflow_error
;
}
}
x
=
ldexp
(
x
,
(
int
)(
exp
+
4
*
key_digit
));
finished:
/* optional trailing whitespace leading to the end of the string */
while
(
Py_ISSPACE
(
*
s
))
s
++
;
if
(
s
!=
s_end
)
goto
parse_error
;
result_as_float
=
Py_BuildValue
(
"(d)"
,
sign
*
x
);
if
(
result_as_float
==
NULL
)
return
NULL
;
result
=
PyObject_CallObject
(
cls
,
result_as_float
);
Py_DECREF
(
result_as_float
);
return
result
;
overflow_error:
PyErr_SetString
(
PyExc_OverflowError
,
"hexadecimal value too large to represent as a float"
);
return
NULL
;
parse_error:
PyErr_SetString
(
PyExc_ValueError
,
"invalid hexadecimal floating-point string"
);
return
NULL
;
insane_length_error:
PyErr_SetString
(
PyExc_ValueError
,
"hexadecimal string too long to convert"
);
return
NULL
;
}
PyDoc_STRVAR
(
float_fromhex_doc
,
"float.fromhex(string) -> float
\n
\
\n
\
Create a floating-point number from a hexadecimal string.
\n
\
>>> float.fromhex('0x1.ffffp10')
\n
\
2047.984375
\n
\
>>> float.fromhex('-0x1p-1074')
\n
\
-4.9406564584124654e-324"
);
// pyston change: make not static
PyObject
*
float_as_integer_ratio
(
PyObject
*
v
,
PyObject
*
unused
)
{
double
self
;
double
float_part
;
int
exponent
;
int
i
;
PyObject
*
prev
;
PyObject
*
py_exponent
=
NULL
;
PyObject
*
numerator
=
NULL
;
PyObject
*
denominator
=
NULL
;
PyObject
*
result_pair
=
NULL
;
PyNumberMethods
*
long_methods
=
PyLong_Type
.
tp_as_number
;
#define INPLACE_UPDATE(obj, call) \
prev = obj; \
obj = call; \
Py_DECREF(prev); \
CONVERT_TO_DOUBLE
(
v
,
self
);
if
(
Py_IS_INFINITY
(
self
))
{
PyErr_SetString
(
PyExc_OverflowError
,
"Cannot pass infinity to float.as_integer_ratio."
);
return
NULL
;
}
#ifdef Py_NAN
if
(
Py_IS_NAN
(
self
))
{
PyErr_SetString
(
PyExc_ValueError
,
"Cannot pass NaN to float.as_integer_ratio."
);
return
NULL
;
}
#endif
PyFPE_START_PROTECT
(
"as_integer_ratio"
,
goto
error
);
float_part
=
frexp
(
self
,
&
exponent
);
/* self == float_part * 2**exponent exactly */
PyFPE_END_PROTECT
(
float_part
);
for
(
i
=
0
;
i
<
300
&&
float_part
!=
floor
(
float_part
)
;
i
++
)
{
float_part
*=
2
.
0
;
exponent
--
;
}
/* self == float_part * 2**exponent exactly and float_part is integral.
If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
to be truncated by PyLong_FromDouble(). */
numerator
=
PyLong_FromDouble
(
float_part
);
if
(
numerator
==
NULL
)
goto
error
;
/* fold in 2**exponent */
denominator
=
PyLong_FromLong
(
1
);
py_exponent
=
PyLong_FromLong
(
labs
((
long
)
exponent
));
if
(
py_exponent
==
NULL
)
goto
error
;
INPLACE_UPDATE
(
py_exponent
,
long_methods
->
nb_lshift
(
denominator
,
py_exponent
));
if
(
py_exponent
==
NULL
)
goto
error
;
if
(
exponent
>
0
)
{
INPLACE_UPDATE
(
numerator
,
long_methods
->
nb_multiply
(
numerator
,
py_exponent
));
if
(
numerator
==
NULL
)
goto
error
;
}
else
{
Py_DECREF
(
denominator
);
denominator
=
py_exponent
;
py_exponent
=
NULL
;
}
/* Returns ints instead of longs where possible */
INPLACE_UPDATE
(
numerator
,
PyNumber_Int
(
numerator
));
if
(
numerator
==
NULL
)
goto
error
;
INPLACE_UPDATE
(
denominator
,
PyNumber_Int
(
denominator
));
if
(
denominator
==
NULL
)
goto
error
;
result_pair
=
PyTuple_Pack
(
2
,
numerator
,
denominator
);
#undef INPLACE_UPDATE
error:
Py_XDECREF
(
py_exponent
);
Py_XDECREF
(
denominator
);
Py_XDECREF
(
numerator
);
return
result_pair
;
}
PyDoc_STRVAR
(
float_as_integer_ratio_doc
,
"float.as_integer_ratio() -> (int, int)
\n
"
"
\n
"
"Return a pair of integers, whose ratio is exactly equal to the original
\n
"
"float and with a positive denominator.
\n
"
"Raise OverflowError on infinities and a ValueError on NaNs.
\n
"
"
\n
"
">>> (10.0).as_integer_ratio()
\n
"
"(10, 1)
\n
"
">>> (0.0).as_integer_ratio()
\n
"
"(0, 1)
\n
"
">>> (-.25).as_integer_ratio()
\n
"
"(-1, 4)"
);
static
PyObject
*
float_subtype_new
(
PyTypeObject
*
type
,
PyObject
*
args
,
PyObject
*
kwds
);
static
PyObject
*
float_new
(
PyTypeObject
*
type
,
PyObject
*
args
,
PyObject
*
kwds
)
{
PyObject
*
x
=
Py_False
;
/* Integer zero */
static
char
*
kwlist
[]
=
{
"x"
,
0
};
if
(
type
!=
&
PyFloat_Type
)
return
float_subtype_new
(
type
,
args
,
kwds
);
/* Wimp out */
if
(
!
PyArg_ParseTupleAndKeywords
(
args
,
kwds
,
"|O:float"
,
kwlist
,
&
x
))
return
NULL
;
/* If it's a string, but not a string subclass, use
PyFloat_FromString. */
if
(
PyString_CheckExact
(
x
))
return
PyFloat_FromString
(
x
,
NULL
);
return
PyNumber_Float
(
x
);
}
/* Wimpy, slow approach to tp_new calls for subtypes of float:
first create a regular float from whatever arguments we got,
then allocate a subtype instance and initialize its ob_fval
from the regular float. The regular float is then thrown away.
*/
static
PyObject
*
float_subtype_new
(
PyTypeObject
*
type
,
PyObject
*
args
,
PyObject
*
kwds
)
{
PyObject
*
tmp
,
*
newobj
;
assert
(
PyType_IsSubtype
(
type
,
&
PyFloat_Type
));
tmp
=
float_new
(
&
PyFloat_Type
,
args
,
kwds
);
if
(
tmp
==
NULL
)
return
NULL
;
assert
(
PyFloat_CheckExact
(
tmp
));
newobj
=
type
->
tp_alloc
(
type
,
0
);
if
(
newobj
==
NULL
)
{
Py_DECREF
(
tmp
);
return
NULL
;
}
((
PyFloatObject
*
)
newobj
)
->
ob_fval
=
((
PyFloatObject
*
)
tmp
)
->
ob_fval
;
Py_DECREF
(
tmp
);
return
newobj
;
}
static
PyObject
*
float_getnewargs
(
PyFloatObject
*
v
)
{
return
Py_BuildValue
(
"(d)"
,
v
->
ob_fval
);
}
/* this is for the benefit of the pack/unpack routines below */
typedef
enum
{
unknown_format
,
ieee_big_endian_format
,
ieee_little_endian_format
}
float_format_type
;
static
float_format_type
double_format
,
float_format
;
static
float_format_type
detected_double_format
,
detected_float_format
;
static
PyObject
*
float_getformat
(
PyTypeObject
*
v
,
PyObject
*
arg
)
{
char
*
s
;
float_format_type
r
;
if
(
!
PyString_Check
(
arg
))
{
PyErr_Format
(
PyExc_TypeError
,
"__getformat__() argument must be string, not %.500s"
,
Py_TYPE
(
arg
)
->
tp_name
);
return
NULL
;
}
s
=
PyString_AS_STRING
(
arg
);
if
(
strcmp
(
s
,
"double"
)
==
0
)
{
r
=
double_format
;
}
else
if
(
strcmp
(
s
,
"float"
)
==
0
)
{
r
=
float_format
;
}
else
{
PyErr_SetString
(
PyExc_ValueError
,
"__getformat__() argument 1 must be "
"'double' or 'float'"
);
return
NULL
;
}
switch
(
r
)
{
case
unknown_format
:
return
PyString_FromString
(
"unknown"
);
case
ieee_little_endian_format
:
return
PyString_FromString
(
"IEEE, little-endian"
);
case
ieee_big_endian_format
:
return
PyString_FromString
(
"IEEE, big-endian"
);
default:
Py_FatalError
(
"insane float_format or double_format"
);
return
NULL
;
}
}
PyDoc_STRVAR
(
float_getformat_doc
,
"float.__getformat__(typestr) -> string
\n
"
"
\n
"
"You probably don't want to use this function. It exists mainly to be
\n
"
"used in Python's test suite.
\n
"
"
\n
"
"typestr must be 'double' or 'float'. This function returns whichever of
\n
"
"'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the
\n
"
"format of floating point numbers used by the C type named by typestr."
);
static
PyObject
*
float_setformat
(
PyTypeObject
*
v
,
PyObject
*
args
)
{
char
*
typestr
;
char
*
format
;
float_format_type
f
;
float_format_type
detected
;
float_format_type
*
p
;
if
(
!
PyArg_ParseTuple
(
args
,
"ss:__setformat__"
,
&
typestr
,
&
format
))
return
NULL
;
if
(
strcmp
(
typestr
,
"double"
)
==
0
)
{
p
=
&
double_format
;
detected
=
detected_double_format
;
}
else
if
(
strcmp
(
typestr
,
"float"
)
==
0
)
{
p
=
&
float_format
;
detected
=
detected_float_format
;
}
else
{
PyErr_SetString
(
PyExc_ValueError
,
"__setformat__() argument 1 must "
"be 'double' or 'float'"
);
return
NULL
;
}
if
(
strcmp
(
format
,
"unknown"
)
==
0
)
{
f
=
unknown_format
;
}
else
if
(
strcmp
(
format
,
"IEEE, little-endian"
)
==
0
)
{
f
=
ieee_little_endian_format
;
}
else
if
(
strcmp
(
format
,
"IEEE, big-endian"
)
==
0
)
{
f
=
ieee_big_endian_format
;
}
else
{
PyErr_SetString
(
PyExc_ValueError
,
"__setformat__() argument 2 must be "
"'unknown', 'IEEE, little-endian' or "
"'IEEE, big-endian'"
);
return
NULL
;
}
if
(
f
!=
unknown_format
&&
f
!=
detected
)
{
PyErr_Format
(
PyExc_ValueError
,
"can only set %s format to 'unknown' or the "
"detected platform value"
,
typestr
);
return
NULL
;
}
*
p
=
f
;
Py_RETURN_NONE
;
}
PyDoc_STRVAR
(
float_setformat_doc
,
"float.__setformat__(typestr, fmt) -> None
\n
"
"
\n
"
"You probably don't want to use this function. It exists mainly to be
\n
"
"used in Python's test suite.
\n
"
"
\n
"
"typestr must be 'double' or 'float'. fmt must be one of 'unknown',
\n
"
"'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be
\n
"
"one of the latter two if it appears to match the underlying C reality.
\n
"
"
\n
"
"Override the automatic determination of C-level floating point type.
\n
"
"This affects how floats are converted to and from binary strings."
);
static
PyObject
*
float_getzero
(
PyObject
*
v
,
void
*
closure
)
{
return
PyFloat_FromDouble
(
0
.
0
);
}
static
PyObject
*
float__format__
(
PyObject
*
self
,
PyObject
*
args
)
{
PyObject
*
format_spec
;
if
(
!
PyArg_ParseTuple
(
args
,
"O:__format__"
,
&
format_spec
))
return
NULL
;
if
(
PyBytes_Check
(
format_spec
))
return
_PyFloat_FormatAdvanced
(
self
,
PyBytes_AS_STRING
(
format_spec
),
PyBytes_GET_SIZE
(
format_spec
));
if
(
PyUnicode_Check
(
format_spec
))
{
/* Convert format_spec to a str */
PyObject
*
result
;
PyObject
*
str_spec
=
PyObject_Str
(
format_spec
);
if
(
str_spec
==
NULL
)
return
NULL
;
result
=
_PyFloat_FormatAdvanced
(
self
,
PyBytes_AS_STRING
(
str_spec
),
PyBytes_GET_SIZE
(
str_spec
));
Py_DECREF
(
str_spec
);
return
result
;
}
PyErr_SetString
(
PyExc_TypeError
,
"__format__ requires str or unicode"
);
return
NULL
;
}
PyDoc_STRVAR
(
float__format__doc
,
"float.__format__(format_spec) -> string
\n
"
"
\n
"
"Formats the float according to format_spec."
);
static
PyMethodDef
float_methods
[]
=
{
{
"conjugate"
,
(
PyCFunction
)
float_float
,
METH_NOARGS
,
"Return self, the complex conjugate of any float."
},
{
"__trunc__"
,
(
PyCFunction
)
float_trunc
,
METH_NOARGS
,
"Return the Integral closest to x between 0 and x."
},
{
"as_integer_ratio"
,
(
PyCFunction
)
float_as_integer_ratio
,
METH_NOARGS
,
float_as_integer_ratio_doc
},
{
"fromhex"
,
(
PyCFunction
)
float_fromhex
,
METH_O
|
METH_CLASS
,
float_fromhex_doc
},
{
"hex"
,
(
PyCFunction
)
float_hex
,
METH_NOARGS
,
float_hex_doc
},
{
"is_integer"
,
(
PyCFunction
)
float_is_integer
,
METH_NOARGS
,
"Return True if the float is an integer."
},
#if 0
{"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
"Return True if the float is positive or negative infinite."},
{"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
"Return True if the float is finite, neither infinite nor NaN."},
{"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
"Return True if the float is not a number (NaN)."},
#endif
{
"__getnewargs__"
,
(
PyCFunction
)
float_getnewargs
,
METH_NOARGS
},
{
"__getformat__"
,
(
PyCFunction
)
float_getformat
,
METH_O
|
METH_CLASS
,
float_getformat_doc
},
{
"__setformat__"
,
(
PyCFunction
)
float_setformat
,
METH_VARARGS
|
METH_CLASS
,
float_setformat_doc
},
{
"__format__"
,
(
PyCFunction
)
float__format__
,
METH_VARARGS
,
float__format__doc
},
{
NULL
,
NULL
}
/* sentinel */
};
static
PyGetSetDef
float_getset
[]
=
{
{
"real"
,
(
getter
)
float_float
,
(
setter
)
NULL
,
"the real part of a complex number"
,
NULL
},
{
"imag"
,
(
getter
)
float_getzero
,
(
setter
)
NULL
,
"the imaginary part of a complex number"
,
NULL
},
{
NULL
}
/* Sentinel */
};
PyDoc_STRVAR
(
float_doc
,
"float(x) -> floating point number
\n
\
\n
\
Convert a string or number to a floating point number, if possible."
);
static
PyNumberMethods
float_as_number
=
{
float_add
,
/*nb_add*/
float_sub
,
/*nb_subtract*/
float_mul
,
/*nb_multiply*/
float_classic_div
,
/*nb_divide*/
float_rem
,
/*nb_remainder*/
float_divmod
,
/*nb_divmod*/
float_pow
,
/*nb_power*/
(
unaryfunc
)
float_neg
,
/*nb_negative*/
(
unaryfunc
)
float_float
,
/*nb_positive*/
(
unaryfunc
)
float_abs
,
/*nb_absolute*/
(
inquiry
)
float_nonzero
,
/*nb_nonzero*/
0
,
/*nb_invert*/
0
,
/*nb_lshift*/
0
,
/*nb_rshift*/
0
,
/*nb_and*/
0
,
/*nb_xor*/
0
,
/*nb_or*/
float_coerce
,
/*nb_coerce*/
float_trunc
,
/*nb_int*/
float_long
,
/*nb_long*/
float_float
,
/*nb_float*/
0
,
/* nb_oct */
0
,
/* nb_hex */
0
,
/* nb_inplace_add */
0
,
/* nb_inplace_subtract */
0
,
/* nb_inplace_multiply */
0
,
/* nb_inplace_divide */
0
,
/* nb_inplace_remainder */
0
,
/* nb_inplace_power */
0
,
/* nb_inplace_lshift */
0
,
/* nb_inplace_rshift */
0
,
/* nb_inplace_and */
0
,
/* nb_inplace_xor */
0
,
/* nb_inplace_or */
float_floor_div
,
/* nb_floor_divide */
float_div
,
/* nb_true_divide */
0
,
/* nb_inplace_floor_divide */
0
,
/* nb_inplace_true_divide */
};
// pyston change: don't need this
#if 0
PyTypeObject PyFloat_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"float",
sizeof(PyFloatObject),
0,
(destructor)float_dealloc, /* tp_dealloc */
(printfunc)float_print, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)float_repr, /* tp_repr */
&float_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)float_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)float_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
float_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
float_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
float_methods, /* tp_methods */
0, /* tp_members */
float_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
float_new, /* tp_new */
};
void
_PyFloat_Init(void)
{
/* We attempt to determine if this machine is using IEEE
floating point formats by peering at the bits of some
carefully chosen values. If it looks like we are on an
IEEE platform, the float packing/unpacking routines can
just copy bits, if not they resort to arithmetic & shifts
and masks. The shifts & masks approach works on all finite
values, but what happens to infinities, NaNs and signed
zeroes on packing is an accident, and attempting to unpack
a NaN or an infinity will raise an exception.
Note that if we're on some whacked-out platform which uses
IEEE formats but isn't strictly little-endian or big-
endian, we will fall back to the portable shifts & masks
method. */
#if SIZEOF_DOUBLE == 8
{
double x = 9006104071832581.0;
if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
detected_double_format = ieee_big_endian_format;
else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
detected_double_format = ieee_little_endian_format;
else
detected_double_format = unknown_format;
}
#else
detected_double_format = unknown_format;
#endif
#if SIZEOF_FLOAT == 4
{
float
y
=
16711938
.
0
;
if
(
memcmp
(
&
y
,
"
\x4b\x7f\x01\x02
"
,
4
)
==
0
)
detected_float_format
=
ieee_big_endian_format
;
else
if
(
memcmp
(
&
y
,
"
\x02\x01\x7f\x4b
"
,
4
)
==
0
)
detected_float_format
=
ieee_little_endian_format
;
else
detected_float_format
=
unknown_format
;
}
#else
detected_float_format
=
unknown_format
;
#endif
double_format
=
detected_double_format
;
float_format
=
detected_float_format
;
/* Init float info */
if
(
FloatInfoType
.
tp_name
==
0
)
PyStructSequence_InitType
(
&
FloatInfoType
,
&
floatinfo_desc
);
}
int
PyFloat_ClearFreeList
(
void
)
{
PyFloatObject
*
p
;
PyFloatBlock
*
list
,
*
next
;
int
i
;
int
u
;
/* remaining unfreed ints per block */
int
freelist_size
=
0
;
list
=
block_list
;
block_list
=
NULL
;
free_list
=
NULL
;
while
(
list
!=
NULL
)
{
u
=
0
;
for
(
i
=
0
,
p
=
&
list
->
objects
[
0
];
i
<
N_FLOATOBJECTS
;
i
++
,
p
++
)
{
if
(
PyFloat_CheckExact
(
p
)
&&
Py_REFCNT
(
p
)
!=
0
)
u
++
;
}
next
=
list
->
next
;
if
(
u
)
{
list
->
next
=
block_list
;
block_list
=
list
;
for
(
i
=
0
,
p
=
&
list
->
objects
[
0
];
i
<
N_FLOATOBJECTS
;
i
++
,
p
++
)
{
if
(
!
PyFloat_CheckExact
(
p
)
||
Py_REFCNT
(
p
)
==
0
)
{
Py_TYPE
(
p
)
=
(
struct
_typeobject
*
)
free_list
;
free_list
=
p
;
}
}
}
else
{
PyMem_FREE
(
list
);
}
freelist_size
+=
u
;
list
=
next
;
}
return
freelist_size
;
}
void
PyFloat_Fini
(
void
)
{
PyFloatObject
*
p
;
PyFloatBlock
*
list
;
int
i
;
int
u
;
/* total unfreed floats per block */
u
=
PyFloat_ClearFreeList
();
if
(
!
Py_VerboseFlag
)
return
;
fprintf
(
stderr
,
"# cleanup floats"
);
if
(
!
u
)
{
fprintf
(
stderr
,
"
\n
"
);
}
else
{
fprintf
(
stderr
,
": %d unfreed float%s
\n
"
,
u
,
u
==
1
?
""
:
"s"
);
}
if
(
Py_VerboseFlag
>
1
)
{
list
=
block_list
;
while
(
list
!=
NULL
)
{
for
(
i
=
0
,
p
=
&
list
->
objects
[
0
];
i
<
N_FLOATOBJECTS
;
i
++
,
p
++
)
{
if
(
PyFloat_CheckExact
(
p
)
&&
Py_REFCNT
(
p
)
!=
0
)
{
char
*
buf
=
PyOS_double_to_string
(
PyFloat_AS_DOUBLE
(
p
),
'r'
,
0
,
0
,
NULL
);
if
(
buf
)
{
/* XXX(twouters) cast
refcount to long
until %zd is
universally
available
*/
fprintf
(
stderr
,
"# <float at %p, refcnt=%ld, val=%s>
\n
"
,
p
,
(
long
)
Py_REFCNT
(
p
),
buf
);
PyMem_Free
(
buf
);
}
}
}
list
=
list
->
next
;
}
}
}
#endif
// pyston change: comment this out
#if 0
/*----------------------------------------------------------------------------
* _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
*/
int
_PyFloat_Pack4(double x, unsigned char *p, int le)
{
if (float_format == unknown_format) {
unsigned char sign;
int e;
double f;
unsigned int fbits;
int incr = 1;
if (le) {
p += 3;
incr = -1;
}
if (x < 0) {
sign = 1;
x = -x;
}
else
sign = 0;
f = frexp(x, &e);
/* Normalize f to be in the range [1.0, 2.0) */
if (0.5 <= f && f < 1.0) {
f *= 2.0;
e--;
}
else if (f == 0.0)
e = 0;
else {
PyErr_SetString(PyExc_SystemError,
"frexp() result out of range");
return -1;
}
if (e >= 128)
goto Overflow;
else if (e < -126) {
/* Gradual underflow */
f = ldexp(f, 126 + e);
e = 0;
}
else if (!(e == 0 && f == 0.0)) {
e += 127;
f -= 1.0; /* Get rid of leading 1 */
}
f *= 8388608.0; /* 2**23 */
fbits = (unsigned int)(f + 0.5); /* Round */
assert(fbits <= 8388608);
if (fbits >> 23) {
/* The carry propagated out of a string of 23 1 bits. */
fbits = 0;
++e;
if (e >= 255)
goto Overflow;
}
/* First byte */
*p = (sign << 7) | (e >> 1);
p += incr;
/* Second byte */
*p = (char) (((e & 1) << 7) | (fbits >> 16));
p += incr;
/* Third byte */
*p = (fbits >> 8) & 0xFF;
p += incr;
/* Fourth byte */
*p = fbits & 0xFF;
/* Done */
return 0;
}
else {
float y = (float)x;
const char *s = (char*)&y;
int i, incr = 1;
if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
goto Overflow;
if ((float_format == ieee_little_endian_format && !le)
|| (float_format == ieee_big_endian_format && le)) {
p += 3;
incr = -1;
}
for (i = 0; i < 4; i++) {
*p = *s++;
p += incr;
}
return 0;
}
Overflow:
PyErr_SetString(PyExc_OverflowError,
"float too large to pack with f format");
return -1;
}
int
_PyFloat_Pack8(double x, unsigned char *p, int le)
{
if (double_format == unknown_format) {
unsigned char sign;
int e;
double f;
unsigned int fhi, flo;
int incr = 1;
if (le) {
p += 7;
incr = -1;
}
if (x < 0) {
sign = 1;
x = -x;
}
else
sign = 0;
f = frexp(x, &e);
/* Normalize f to be in the range [1.0, 2.0) */
if (0.5 <= f && f < 1.0) {
f *= 2.0;
e--;
}
else if (f == 0.0)
e = 0;
else {
PyErr_SetString(PyExc_SystemError,
"frexp() result out of range");
return -1;
}
if (e >= 1024)
goto Overflow;
else if (e < -1022) {
/* Gradual underflow */
f = ldexp(f, 1022 + e);
e = 0;
}
else if (!(e == 0 && f == 0.0)) {
e += 1023;
f -= 1.0; /* Get rid of leading 1 */
}
/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
f *= 268435456.0; /* 2**28 */
fhi = (unsigned int)f; /* Truncate */
assert(fhi < 268435456);
f -= (double)fhi;
f *= 16777216.0; /* 2**24 */
flo = (unsigned int)(f + 0.5); /* Round */
assert(flo <= 16777216);
if (flo >> 24) {
/* The carry propagated out of a string of 24 1 bits. */
flo = 0;
++fhi;
if (fhi >> 28) {
/* And it also progagated out of the next 28 bits. */
fhi = 0;
++e;
if (e >= 2047)
goto Overflow;
}
}
/* First byte */
*p = (sign << 7) | (e >> 4);
p += incr;
/* Second byte */
*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
p += incr;
/* Third byte */
*p = (fhi >> 16) & 0xFF;
p += incr;
/* Fourth byte */
*p = (fhi >> 8) & 0xFF;
p += incr;
/* Fifth byte */
*p = fhi & 0xFF;
p += incr;
/* Sixth byte */
*p = (flo >> 16) & 0xFF;
p += incr;
/* Seventh byte */
*p = (flo >> 8) & 0xFF;
p += incr;
/* Eighth byte */
*p = flo & 0xFF;
/* p += incr; Unneeded (for now) */
/* Done */
return 0;
Overflow:
PyErr_SetString(PyExc_OverflowError,
"float too large to pack with d format");
return -1;
}
else {
const char *s = (char*)&x;
int i, incr = 1;
if ((double_format == ieee_little_endian_format && !le)
|| (double_format == ieee_big_endian_format && le)) {
p += 7;
incr = -1;
}
for (i = 0; i < 8; i++) {
*p = *s++;
p += incr;
}
return 0;
}
}
double
_PyFloat_Unpack4(const unsigned char *p, int le)
{
if (float_format == unknown_format) {
unsigned char sign;
int e;
unsigned int f;
double x;
int incr = 1;
if (le) {
p += 3;
incr = -1;
}
/* First byte */
sign = (*p >> 7) & 1;
e = (*p & 0x7F) << 1;
p += incr;
/* Second byte */
e |= (*p >> 7) & 1;
f = (*p & 0x7F) << 16;
p += incr;
if (e == 255) {
PyErr_SetString(
PyExc_ValueError,
"can't unpack IEEE 754 special value "
"on non-IEEE platform");
return -1;
}
/* Third byte */
f |= *p << 8;
p += incr;
/* Fourth byte */
f |= *p;
x = (double)f / 8388608.0;
/* XXX This sadly ignores Inf/NaN issues */
if (e == 0)
e = -126;
else {
x += 1.0;
e -= 127;
}
x = ldexp(x, e);
if (sign)
x = -x;
return x;
}
else {
float x;
if ((float_format == ieee_little_endian_format && !le)
|| (float_format == ieee_big_endian_format && le)) {
char buf[4];
char *d = &buf[3];
int i;
for (i = 0; i < 4; i++) {
*d-- = *p++;
}
memcpy(&x, buf, 4);
}
else {
memcpy(&x, p, 4);
}
return x;
}
}
double
_PyFloat_Unpack8(const unsigned char *p, int le)
{
if (double_format == unknown_format) {
unsigned char sign;
int e;
unsigned int fhi, flo;
double x;
int incr = 1;
if (le) {
p += 7;
incr = -1;
}
/* First byte */
sign = (*p >> 7) & 1;
e = (*p & 0x7F) << 4;
p += incr;
/* Second byte */
e |= (*p >> 4) & 0xF;
fhi = (*p & 0xF) << 24;
p += incr;
if (e == 2047) {
PyErr_SetString(
PyExc_ValueError,
"can't unpack IEEE 754 special value "
"on non-IEEE platform");
return -1.0;
}
/* Third byte */
fhi |= *p << 16;
p += incr;
/* Fourth byte */
fhi |= *p << 8;
p += incr;
/* Fifth byte */
fhi |= *p;
p += incr;
/* Sixth byte */
flo = *p << 16;
p += incr;
/* Seventh byte */
flo |= *p << 8;
p += incr;
/* Eighth byte */
flo |= *p;
x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
x /= 268435456.0; /* 2**28 */
if (e == 0)
e = -1022;
else {
x += 1.0;
e -= 1023;
}
x = ldexp(x, e);
if (sign)
x = -x;
return x;
}
else {
double x;
if ((double_format == ieee_little_endian_format && !le)
|| (double_format == ieee_big_endian_format && le)) {
char buf[8];
char *d = &buf[7];
int i;
for (i = 0; i < 8; i++) {
*d-- = *p++;
}
memcpy(&x, buf, 8);
}
else {
memcpy(&x, p, 8);
}
return x;
}
}
#endif
src/runtime/float.cpp
View file @
fb499bc7
...
...
@@ -17,6 +17,7 @@
#include <cstring>
#include <gmp.h>
#include "capi/types.h"
#include "core/types.h"
#include "runtime/inline/boxing.h"
#include "runtime/long.h"
...
...
@@ -24,6 +25,11 @@
#include "runtime/types.h"
#include "runtime/util.h"
extern
"C"
PyObject
*
float_hex
(
PyObject
*
v
)
noexcept
;
extern
"C"
PyObject
*
float_fromhex
(
PyObject
*
cls
,
PyObject
*
arg
)
noexcept
;
extern
"C"
PyObject
*
float_as_integer_ratio
(
PyObject
*
v
,
PyObject
*
unused
)
noexcept
;
extern
"C"
PyObject
*
float_is_integer
(
PyObject
*
v
)
noexcept
;
namespace
pyston
{
extern
"C"
PyObject
*
PyFloat_FromDouble
(
double
d
)
noexcept
{
...
...
@@ -1424,6 +1430,12 @@ exit:
return
result
;
}
static
PyMethodDef
float_methods
[]
=
{
{
"hex"
,
(
PyCFunction
)
float_hex
,
METH_NOARGS
,
NULL
},
{
"fromhex"
,
(
PyCFunction
)
float_fromhex
,
METH_O
|
METH_CLASS
,
NULL
},
{
"as_integer_ratio"
,
(
PyCFunction
)
float_as_integer_ratio
,
METH_NOARGS
,
NULL
},
{
"is_integer"
,
(
PyCFunction
)
float_is_integer
,
METH_NOARGS
,
NULL
}
};
void
setupFloat
()
{
_addFunc
(
"__add__"
,
BOXED_FLOAT
,
(
void
*
)
floatAddFloat
,
(
void
*
)
floatAddInt
,
(
void
*
)
floatAdd
);
float_cls
->
giveAttr
(
"__radd__"
,
float_cls
->
getattr
(
"__add__"
));
...
...
@@ -1472,6 +1484,10 @@ void setupFloat() {
new
BoxedClassmethod
(
new
BoxedBuiltinFunctionOrMethod
(
boxRTFunction
((
void
*
)
floatGetFormat
,
STR
,
2
),
"__getformat__"
,
floatGetFormatDoc
)));
for
(
auto
&
md
:
float_methods
)
{
float_cls
->
giveAttr
(
md
.
ml_name
,
new
BoxedMethodDescriptor
(
&
md
,
float_cls
));
}
float_cls
->
freeze
();
floatFormatInit
();
...
...
src/runtime/types.h
View file @
fb499bc7
...
...
@@ -407,6 +407,8 @@ public:
DEFAULT_CLASS_SIMPLE
(
float_cls
);
};
static_assert
(
sizeof
(
BoxedFloat
)
==
sizeof
(
PyFloatObject
),
""
);
static_assert
(
offsetof
(
BoxedFloat
,
d
)
==
offsetof
(
PyFloatObject
,
ob_fval
),
""
);
class
BoxedComplex
:
public
Box
{
public:
...
...
test/tests/float.py
View file @
fb499bc7
...
...
@@ -58,3 +58,9 @@ try:
float
.
__getformat__
(
'oooga booga boooga'
)
except
Exception
as
e
:
print
e
.
message
print
float
.
fromhex
(
"f0.04a"
)
print
(
5.0
).
hex
()
print
(
0.5
).
as_integer_ratio
()
print
(
0.5
).
is_integer
()
print
(
1.0
).
is_integer
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment