Commit 033c5cdd authored by Mark's avatar Mark

Merge pull request #115 from markflorisson88/_fused_dispatch_rebased

fused runtime dispatch for buffers
parents 52138792 5e76c087
......@@ -14,6 +14,7 @@ import re
import sys
from string import Template
import operator
import textwrap
import Naming
import Options
......@@ -376,7 +377,7 @@ class UtilityCode(UtilityCodeBase):
self.cleanup(writer, output.module_pos)
def sub_tempita(s, context, file, name):
def sub_tempita(s, context, file=None, name=None):
"Run tempita on string s with given context."
if not s:
return None
......@@ -1940,6 +1941,75 @@ class PyrexCodeWriter(object):
def dedent(self):
self.level -= 1
class PyxCodeWriter(object):
"""
Can be used for writing out some Cython code. To use the indenter
functionality, the Cython.Compiler.Importer module will have to be used
to load the code to support python 2.4
"""
def __init__(self, buffer=None, indent_level=0, context=None, encoding='ascii'):
self.buffer = buffer or StringIOTree()
self.level = indent_level
self.context = context
self.encoding = encoding
def indent(self, levels=1):
self.level += levels
return True
def dedent(self, levels=1):
self.level -= levels
def indenter(self, line):
"""
Instead of
with pyx_code.indenter("for i in range(10):"):
pyx_code.putln("print i")
write
if pyx_code.indenter("for i in range(10);"):
pyx_code.putln("print i")
pyx_code.dedent()
"""
self.putln(line)
self.indent()
return True
def getvalue(self):
result = self.buffer.getvalue()
if not isinstance(result, unicode):
result = result.decode(self.encoding)
return result
def putln(self, line, context=None):
context = context or self.context
if context:
line = sub_tempita(line, context)
self._putln(line)
def _putln(self, line):
self.buffer.write("%s%s\n" % (self.level * " ", line))
def put_chunk(self, chunk, context=None):
context = context or self.context
if context:
chunk = sub_tempita(chunk, context)
chunk = textwrap.dedent(chunk)
for line in chunk.splitlines():
self._putln(line)
def insertion_point(self):
return PyxCodeWriter(self.buffer.insertion_point(), self.level,
self.context)
def named_insertion_point(self, name):
setattr(self, name, self.insertion_point())
class ClosureTempAllocator(object):
def __init__(self, klass):
......
......@@ -6222,7 +6222,7 @@ class PyCFunctionNode(ExprNode, ModuleNameMixin):
env.use_utility_code(fused_function_utility_code)
else:
env.use_utility_code(binding_cfunc_utility_code)
self.analyse_default_args(env)
self.analyse_default_args(env)
#TODO(craig,haoyu) This should be moved to a better place
self.set_mod_name(env)
......@@ -6245,7 +6245,7 @@ class PyCFunctionNode(ExprNode, ModuleNameMixin):
else:
arg.default = DefaultLiteralArgNode(arg.pos, arg.default)
default_args.append(arg)
if nonliteral_objects or nonliteral_objects:
if nonliteral_objects or nonliteral_other:
module_scope = env.global_scope()
cname = module_scope.next_id(Naming.defaults_struct_prefix)
scope = Symtab.StructOrUnionScope(cname)
......
import copy
from Cython.Compiler import (ExprNodes, PyrexTypes, MemoryView,
ParseTreeTransforms, StringEncoding,
Errors)
from Cython.Compiler.ExprNodes import CloneNode, ProxyNode, TupleNode
from Cython.Compiler.Nodes import (FuncDefNode, CFuncDefNode, StatListNode,
DefNode)
class FusedCFuncDefNode(StatListNode):
"""
This node replaces a function with fused arguments. It deep-copies the
function for every permutation of fused types, and allocates a new local
scope for it. It keeps track of the original function in self.node, and
the entry of the original function in the symbol table is given the
'fused_cfunction' attribute which points back to us.
Then when a function lookup occurs (to e.g. call it), the call can be
dispatched to the right function.
node FuncDefNode the original function
nodes [FuncDefNode] list of copies of node with different specific types
py_func DefNode the fused python function subscriptable from
Python space
__signatures__ A DictNode mapping signature specialization strings
to PyCFunction nodes
resulting_fused_function PyCFunction for the fused DefNode that delegates
to specializations
fused_func_assignment Assignment of the fused function to the function name
defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
defaults would result in many different tuples)
specialized_pycfuncs List of synthesized pycfunction nodes for the
specializations
code_object CodeObjectNode shared by all specializations and the
fused function
"""
__signatures__ = None
resulting_fused_function = None
fused_func_assignment = None
defaults_tuple = None
def __init__(self, node, env):
super(FusedCFuncDefNode, self).__init__(node.pos)
self.nodes = []
self.node = node
is_def = isinstance(self.node, DefNode)
if is_def:
self.copy_def(env)
else:
self.copy_cdef(env)
# Perform some sanity checks. If anything fails, it's a bug
for n in self.nodes:
assert not n.entry.type.is_fused
assert not n.local_scope.return_type.is_fused
if node.return_type.is_fused:
assert not n.return_type.is_fused
if not is_def and n.cfunc_declarator.optional_arg_count:
assert n.type.op_arg_struct
node.entry.fused_cfunction = self
# Copy the nodes as AnalyseDeclarationsTransform will prepend
# self.py_func to self.stats, as we only want specialized
# CFuncDefNodes in self.nodes
self.stats = self.nodes[:]
def copy_def(self, env):
"""
Create a copy of the original def or lambda function for specialized
versions.
"""
fused_compound_types = PyrexTypes.unique(
[arg.type for arg in self.node.args if arg.type.is_fused])
permutations = PyrexTypes.get_all_specialized_permutations(fused_compound_types)
if self.node.entry in env.pyfunc_entries:
env.pyfunc_entries.remove(self.node.entry)
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
self._specialize_function_args(copied_node.args, fused_to_specific)
copied_node.return_type = self.node.return_type.specialize(
fused_to_specific)
copied_node.analyse_declarations(env)
self.create_new_local_scope(copied_node, env, fused_to_specific)
self.specialize_copied_def(copied_node, cname, self.node.entry,
fused_to_specific, fused_compound_types)
PyrexTypes.specialize_entry(copied_node.entry, cname)
copied_node.entry.used = True
env.entries[copied_node.entry.name] = copied_node.entry
if not self.replace_fused_typechecks(copied_node):
break
self.orig_py_func = self.node
self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
def copy_cdef(self, env):
"""
Create a copy of the original c(p)def function for all specialized
versions.
"""
permutations = self.node.type.get_all_specialized_permutations()
# print 'Node %s has %d specializations:' % (self.node.entry.name,
# len(permutations))
# import pprint; pprint.pprint([d for cname, d in permutations])
if self.node.entry in env.cfunc_entries:
env.cfunc_entries.remove(self.node.entry)
# Prevent copying of the python function
self.orig_py_func = orig_py_func = self.node.py_func
self.node.py_func = None
if orig_py_func:
env.pyfunc_entries.remove(orig_py_func.entry)
fused_types = self.node.type.get_fused_types()
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# Make the types in our CFuncType specific
type = copied_node.type.specialize(fused_to_specific)
entry = copied_node.entry
copied_node.type = type
entry.type, type.entry = type, entry
entry.used = (entry.used or
self.node.entry.defined_in_pxd or
env.is_c_class_scope or
entry.is_cmethod)
if self.node.cfunc_declarator.optional_arg_count:
self.node.cfunc_declarator.declare_optional_arg_struct(
type, env, fused_cname=cname)
copied_node.return_type = type.return_type
self.create_new_local_scope(copied_node, env, fused_to_specific)
# Make the argument types in the CFuncDeclarator specific
self._specialize_function_args(copied_node.cfunc_declarator.args,
fused_to_specific)
type.specialize_entry(entry, cname)
env.cfunc_entries.append(entry)
# If a cpdef, declare all specialized cpdefs (this
# also calls analyse_declarations)
copied_node.declare_cpdef_wrapper(env)
if copied_node.py_func:
env.pyfunc_entries.remove(copied_node.py_func.entry)
self.specialize_copied_def(
copied_node.py_func, cname, self.node.entry.as_variable,
fused_to_specific, fused_types)
if not self.replace_fused_typechecks(copied_node):
break
if orig_py_func:
self.py_func = self.make_fused_cpdef(orig_py_func, env,
is_def=False)
else:
self.py_func = orig_py_func
def _specialize_function_args(self, args, fused_to_specific):
for arg in args:
if arg.type.is_fused:
arg.type = arg.type.specialize(fused_to_specific)
if arg.type.is_memoryviewslice:
MemoryView.validate_memslice_dtype(arg.pos, arg.type.dtype)
def create_new_local_scope(self, node, env, f2s):
"""
Create a new local scope for the copied node and append it to
self.nodes. A new local scope is needed because the arguments with the
fused types are aready in the local scope, and we need the specialized
entries created after analyse_declarations on each specialized version
of the (CFunc)DefNode.
f2s is a dict mapping each fused type to its specialized version
"""
node.create_local_scope(env)
node.local_scope.fused_to_specific = f2s
# This is copied from the original function, set it to false to
# stop recursion
node.has_fused_arguments = False
self.nodes.append(node)
def specialize_copied_def(self, node, cname, py_entry, f2s, fused_types):
"""Specialize the copy of a DefNode given the copied node,
the specialization cname and the original DefNode entry"""
type_strings = [
PyrexTypes.specialization_signature_string(fused_type, f2s)
for fused_type in fused_types
]
node.specialized_signature_string = ', '.join(type_strings)
node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
cname, node.entry.pymethdef_cname)
node.entry.doc = py_entry.doc
node.entry.doc_cname = py_entry.doc_cname
def replace_fused_typechecks(self, copied_node):
"""
Branch-prune fused type checks like
if fused_t is int:
...
Returns whether an error was issued and whether we should stop in
in order to prevent a flood of errors.
"""
num_errors = Errors.num_errors
transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
copied_node.local_scope)
transform(copied_node)
if Errors.num_errors > num_errors:
return False
return True
def _fused_instance_checks(self, normal_types, pyx_code, env):
"""
Genereate Cython code for instance checks, matching an object to
specialized types.
"""
if_ = 'if'
for specialized_type in normal_types:
# all_numeric = all_numeric and specialized_type.is_numeric
py_type_name = specialized_type.py_type_name()
# in the case of long, unicode or bytes we need to instance
# check for long_, unicode_, bytes_ (long = long is no longer
# valid code with control flow analysis)
specialized_check_name = py_type_name
if py_type_name in ('long', 'unicode', 'bytes'):
specialized_check_name += '_'
specialized_type_name = specialized_type.specialization_string
pyx_code.context.update(locals())
pyx_code.put_chunk(
u"""
{{if_}} isinstance(arg, {{specialized_check_name}}):
dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'
""")
if_ = 'elif'
if not normal_types:
# we need an 'if' to match the following 'else'
pyx_code.putln("if 0: pass")
def _dtype_name(self, dtype):
if dtype.is_typedef:
return '___pyx_%s' % dtype
return str(dtype).replace(' ', '_')
def _dtype_type(self, dtype):
if dtype.is_typedef:
return self._dtype_name(dtype)
return str(dtype)
def _sizeof_dtype(self, dtype):
if dtype.is_pyobject:
return 'sizeof(void *)'
else:
return "sizeof(%s)" % self._dtype_type(dtype)
def _buffer_check_numpy_dtype_setup_cases(self, pyx_code):
"Setup some common cases to match dtypes against specializations"
if pyx_code.indenter("if dtype.kind in ('i', 'u'):"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_int")
pyx_code.dedent()
if pyx_code.indenter("elif dtype.kind == 'f':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_float")
pyx_code.dedent()
if pyx_code.indenter("elif dtype.kind == 'c':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_complex")
pyx_code.dedent()
if pyx_code.indenter("elif dtype.kind == 'O':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_object")
pyx_code.dedent()
match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'"
no_match = "dest_sig[{{dest_sig_idx}}] = None"
def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types):
"""
Match a numpy dtype object to the individual specializations.
"""
self._buffer_check_numpy_dtype_setup_cases(pyx_code)
for specialized_type in specialized_buffer_types:
dtype = specialized_type.dtype
pyx_code.context.update(
itemsize_match=self._sizeof_dtype(dtype) + " == itemsize",
signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype),
dtype=dtype,
specialized_type_name=specialized_type.specialization_string)
dtypes = [
(dtype.is_int, pyx_code.dtype_int),
(dtype.is_float, pyx_code.dtype_float),
(dtype.is_complex, pyx_code.dtype_complex)
]
for dtype_category, codewriter in dtypes:
if dtype_category:
cond = '{{itemsize_match}}'
if dtype.is_int:
cond += ' and {{signed_match}}'
if codewriter.indenter("if %s:" % cond):
# codewriter.putln("print 'buffer match found based on numpy dtype'")
codewriter.putln(self.match)
codewriter.putln("break")
codewriter.dedent()
def _buffer_parse_format_string_check(self, pyx_code, decl_code,
specialized_type, env):
"""
For each specialized type, try to coerce the object to a memoryview
slice of that type. This means obtaining a buffer and parsing the
format string.
TODO: separate buffer acquisition from format parsing
"""
dtype = specialized_type.dtype
if specialized_type.is_buffer:
axes = [('direct', 'strided')] * specialized_type.ndim
else:
axes = specialized_type.axes
memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes)
memslice_type.create_from_py_utility_code(env)
pyx_code.context.update(
coerce_from_py_func=memslice_type.from_py_function,
dtype=dtype)
decl_code.putln(
"{{memviewslice_cname}} {{coerce_from_py_func}}(object)")
pyx_code.context.update(
specialized_type_name=specialized_type.specialization_string,
sizeof_dtype=self._sizeof_dtype(dtype))
pyx_code.put_chunk(
u"""
# try {{dtype}}
if itemsize == -1 or itemsize == {{sizeof_dtype}}:
memslice = {{coerce_from_py_func}}(arg)
if memslice.memview:
__PYX_XDEC_MEMVIEW(&memslice, 1)
# print 'found a match for the buffer through format parsing'
%s
break
else:
PyErr_Clear()
""" % self.match)
def _buffer_checks(self, buffer_types, pyx_code, decl_code, env):
"""
Generate Cython code to match objects to buffer specializations.
First try to get a numpy dtype object and match it against the individual
specializations. If that fails, try naively to coerce the object
to each specialization, which obtains the buffer each time and tries
to match the format string.
"""
from Cython.Compiler import ExprNodes
if buffer_types:
if pyx_code.indenter(u"else:"):
# The first thing to find a match in this loop breaks out of the loop
if pyx_code.indenter(u"while 1:"):
pyx_code.put_chunk(
u"""
if numpy is not None:
if isinstance(arg, numpy.ndarray):
dtype = arg.dtype
elif (__pyx_memoryview_check(arg) and
isinstance(arg.base, numpy.ndarray)):
dtype = arg.base.dtype
else:
dtype = None
itemsize = -1
if dtype is not None:
itemsize = dtype.itemsize
kind = ord(dtype.kind)
dtype_signed = kind == ord('i')
""")
pyx_code.indent(2)
pyx_code.named_insertion_point("numpy_dtype_checks")
self._buffer_check_numpy_dtype(pyx_code, buffer_types)
pyx_code.dedent(2)
for specialized_type in buffer_types:
self._buffer_parse_format_string_check(
pyx_code, decl_code, specialized_type, env)
pyx_code.putln(self.no_match)
pyx_code.putln("break")
pyx_code.dedent()
pyx_code.dedent()
else:
pyx_code.putln("else: %s" % self.no_match)
def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types):
"""
If we have any buffer specializations, write out some variable
declarations and imports.
"""
decl_code.put_chunk(
u"""
ctypedef struct {{memviewslice_cname}}:
void *memview
void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil)
bint __pyx_memoryview_check(object)
""")
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef {{memviewslice_cname}} memslice
cdef Py_ssize_t itemsize
cdef bint dtype_signed
cdef char kind
itemsize = -1
""")
pyx_code.imports.put_chunk(
u"""
try:
import numpy
except ImportError:
numpy = None
""")
seen_int_dtypes = set()
for buffer_type in all_buffer_types:
dtype = buffer_type.dtype
if dtype.is_typedef:
#decl_code.putln("ctypedef %s %s" % (dtype.resolve(),
# self._dtype_name(dtype)))
decl_code.putln('ctypedef %s %s "%s"' % (dtype.resolve(),
self._dtype_name(dtype),
dtype.declaration_code("")))
if buffer_type.dtype.is_int:
if str(dtype) not in seen_int_dtypes:
seen_int_dtypes.add(str(dtype))
pyx_code.context.update(dtype_name=self._dtype_name(dtype),
dtype_type=self._dtype_type(dtype))
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef bint {{dtype_name}}_is_signed
{{dtype_name}}_is_signed = <{{dtype_type}}> -1 < 0
""")
def _split_fused_types(self, arg):
"""
Specialize fused types and split into normal types and buffer types.
"""
specialized_types = PyrexTypes.get_specialized_types(arg.type)
# Prefer long over int, etc
# specialized_types.sort()
seen_py_type_names = set()
normal_types, buffer_types = [], []
for specialized_type in specialized_types:
py_type_name = specialized_type.py_type_name()
if py_type_name:
if py_type_name in seen_py_type_names:
continue
seen_py_type_names.add(py_type_name)
normal_types.append(specialized_type)
elif specialized_type.is_buffer or specialized_type.is_memoryviewslice:
buffer_types.append(specialized_type)
return normal_types, buffer_types
def _unpack_argument(self, pyx_code):
pyx_code.put_chunk(
u"""
# PROCESSING ARGUMENT {{arg_tuple_idx}}
if {{arg_tuple_idx}} < len(args):
arg = args[{{arg_tuple_idx}}]
elif '{{arg.name}}' in kwargs:
arg = kwargs['{{arg.name}}']
else:
{{if arg.default:}}
arg = defaults[{{default_idx}}]
{{else}}
raise TypeError("Expected at least %d arguments" % len(args))
{{endif}}
""")
def make_fused_cpdef(self, orig_py_func, env, is_def):
"""
This creates the function that is indexable from Python and does
runtime dispatch based on the argument types. The function gets the
arg tuple and kwargs dict (or None) and the defaults tuple
as arguments from the Binding Fused Function's tp_call.
"""
from Cython.Compiler import TreeFragment, Code, MemoryView, UtilityCode
# { (arg_pos, FusedType) : specialized_type }
seen_fused_types = set()
context = {
'memviewslice_cname': MemoryView.memviewslice_cname,
'func_args': self.node.args,
'n_fused': len([arg for arg in self.node.args]),
'name': orig_py_func.entry.name,
}
pyx_code = Code.PyxCodeWriter(context=context)
decl_code = Code.PyxCodeWriter(context=context)
decl_code.put_chunk(
u"""
cdef extern from *:
void PyErr_Clear()
""")
decl_code.indent()
pyx_code.put_chunk(
u"""
def __pyx_fused_cpdef(signatures, args, kwargs, defaults):
import sys
if sys.version_info >= (3, 0):
long_ = int
unicode_ = str
bytes_ = bytes
else:
long_ = long
unicode_ = unicode
bytes_ = str
dest_sig = [None] * {{n_fused}}
if kwargs is None:
kwargs = {}
cdef Py_ssize_t i
# instance check body
""")
pyx_code.indent() # indent following code to function body
pyx_code.named_insertion_point("imports")
pyx_code.named_insertion_point("local_variable_declarations")
fused_index = 0
default_idx = 0
all_buffer_types = set()
for i, arg in enumerate(self.node.args):
if arg.type.is_fused and arg.type not in seen_fused_types:
seen_fused_types.add(arg.type)
context.update(
arg_tuple_idx=i,
arg=arg,
dest_sig_idx=fused_index,
default_idx=default_idx,
)
normal_types, buffer_types = self._split_fused_types(arg)
self._unpack_argument(pyx_code)
self._fused_instance_checks(normal_types, pyx_code, env)
self._buffer_checks(buffer_types, pyx_code, decl_code, env)
fused_index += 1
all_buffer_types.update(buffer_types)
if arg.default:
default_idx += 1
if all_buffer_types:
self._buffer_declarations(pyx_code, decl_code, all_buffer_types)
pyx_code.put_chunk(
u"""
candidates = []
for sig in signatures:
match_found = filter(None, dest_sig)
for src_type, dst_type in zip(sig.strip('()').split(', '), dest_sig):
if dst_type is not None and match_found:
match_found = src_type == dst_type
if match_found:
candidates.append(sig)
if not candidates:
raise TypeError("No matching signature found")
elif len(candidates) > 1:
raise TypeError("Function call with ambiguous argument types")
else:
return signatures[candidates[0]]
""")
fragment_code = pyx_code.getvalue()
# print decl_code.getvalue()
# print fragment_code
fragment = TreeFragment.TreeFragment(fragment_code, level='module')
ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root)
UtilityCode.declare_declarations_in_scope(decl_code.getvalue(), env)
ast.scope = env
ast.analyse_declarations(env)
py_func = ast.stats[-1] # the DefNode
self.fragment_scope = ast.scope
if isinstance(self.node, DefNode):
py_func.specialized_cpdefs = self.nodes[:]
else:
py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
return py_func
def update_fused_defnode_entry(self, env):
copy_attributes = (
'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname',
'pymethdef_cname', 'doc', 'doc_cname', 'is_member',
'scope'
)
entry = self.py_func.entry
for attr in copy_attributes:
setattr(entry, attr,
getattr(self.orig_py_func.entry, attr))
self.py_func.name = self.orig_py_func.name
self.py_func.doc = self.orig_py_func.doc
env.entries.pop('__pyx_fused_cpdef', None)
if isinstance(self.node, DefNode):
env.entries[entry.name] = entry
else:
env.entries[entry.name].as_variable = entry
env.pyfunc_entries.append(entry)
self.py_func.entry.fused_cfunction = self
for node in self.nodes:
if isinstance(self.node, DefNode):
node.fused_py_func = self.py_func
else:
node.py_func.fused_py_func = self.py_func
node.entry.as_variable = entry
self.synthesize_defnodes()
self.stats.append(self.__signatures__)
env.use_utility_code(ExprNodes.import_utility_code)
def analyse_expressions(self, env):
"""
Analyse the expressions. Take care to only evaluate default arguments
once and clone the result for all specializations
"""
if self.py_func:
self.__signatures__.analyse_expressions(env)
self.py_func.analyse_expressions(env)
self.resulting_fused_function.analyse_expressions(env)
self.fused_func_assignment.analyse_expressions(env)
self.defaults = defaults = []
for arg in self.node.args:
if arg.default:
arg.default.analyse_expressions(env)
defaults.append(ProxyNode(arg.default))
else:
defaults.append(None)
for stat in self.stats:
stat.analyse_expressions(env)
if isinstance(stat, FuncDefNode):
for arg, default in zip(stat.args, defaults):
if default is not None:
arg.default = CloneNode(default).coerce_to(arg.type, env)
if self.py_func:
args = [CloneNode(default) for default in defaults if default]
self.defaults_tuple = TupleNode(self.pos, args=args)
self.defaults_tuple.analyse_types(env, skip_children=True)
self.defaults_tuple = ProxyNode(self.defaults_tuple)
self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
fused_func = self.resulting_fused_function.arg
fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
fused_func.code_object = CloneNode(self.code_object)
for pycfunc in self.specialized_pycfuncs:
pycfunc.code_object = CloneNode(self.code_object)
pycfunc.analyse_types(env)
pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
def synthesize_defnodes(self):
"""
Create the __signatures__ dict of PyCFunctionNode specializations.
"""
if isinstance(self.nodes[0], CFuncDefNode):
nodes = [node.py_func for node in self.nodes]
else:
nodes = self.nodes
signatures = [
StringEncoding.EncodedString(node.specialized_signature_string)
for node in nodes]
keys = [ExprNodes.StringNode(node.pos, value=sig)
for node, sig in zip(nodes, signatures)]
values = [ExprNodes.PyCFunctionNode.from_defnode(node, True)
for node in nodes]
self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos,
zip(keys, values))
self.specialized_pycfuncs = values
for pycfuncnode in values:
pycfuncnode.is_specialization = True
def generate_function_definitions(self, env, code):
if self.py_func:
self.py_func.pymethdef_required = True
self.fused_func_assignment.generate_function_definitions(env, code)
for stat in self.stats:
if isinstance(stat, FuncDefNode) and stat.entry.used:
code.mark_pos(stat.pos)
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
# Note: all def function specialization are wrapped in PyCFunction
# nodes in the self.__signatures__ dictnode.
for default in self.defaults:
if default is not None:
default.generate_evaluation_code(code)
if self.py_func:
self.defaults_tuple.generate_evaluation_code(code)
self.code_object.generate_evaluation_code(code)
for stat in self.stats:
code.mark_pos(stat.pos)
if isinstance(stat, ExprNodes.ExprNode):
stat.generate_evaluation_code(code)
else:
stat.generate_execution_code(code)
if self.__signatures__:
self.resulting_fused_function.generate_evaluation_code(code)
code.putln(
"((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
(self.resulting_fused_function.result(),
self.__signatures__.result()))
code.put_giveref(self.__signatures__.result())
self.fused_func_assignment.generate_execution_code(code)
# Dispose of results
self.resulting_fused_function.generate_disposal_code(code)
self.defaults_tuple.generate_disposal_code(code)
self.code_object.generate_disposal_code(code)
for default in self.defaults:
if default is not None:
default.generate_disposal_code(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
\ No newline at end of file
......@@ -2228,539 +2228,6 @@ class CFuncDefNode(FuncDefNode):
code.putln('}')
class FusedCFuncDefNode(StatListNode):
"""
This node replaces a function with fused arguments. It deep-copies the
function for every permutation of fused types, and allocates a new local
scope for it. It keeps track of the original function in self.node, and
the entry of the original function in the symbol table is given the
'fused_cfunction' attribute which points back to us.
Then when a function lookup occurs (to e.g. call it), the call can be
dispatched to the right function.
node FuncDefNode the original function
nodes [FuncDefNode] list of copies of node with different specific types
py_func DefNode the fused python function subscriptable from
Python space
__signatures__ A DictNode mapping signature specialization strings
to PyCFunction nodes
resulting_fused_function PyCFunction for the fused DefNode that delegates
to specializations
fused_func_assignment Assignment of the fused function to the function name
defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
defaults would result in many different tuples)
specialized_pycfuncs List of synthesized pycfunction nodes for the
specializations
code_object CodeObjectNode shared by all specializations and the
fused function
"""
__signatures__ = None
resulting_fused_function = None
fused_func_assignment = None
defaults_tuple = None
def __init__(self, node, env):
super(FusedCFuncDefNode, self).__init__(node.pos)
self.nodes = []
self.node = node
is_def = isinstance(self.node, DefNode)
if is_def:
self.copy_def(env)
else:
self.copy_cdef(env)
# Perform some sanity checks. If anything fails, it's a bug
for n in self.nodes:
assert not n.entry.type.is_fused
assert not n.local_scope.return_type.is_fused
if node.return_type.is_fused:
assert not n.return_type.is_fused
if not is_def and n.cfunc_declarator.optional_arg_count:
assert n.type.op_arg_struct
node.entry.fused_cfunction = self
if self.py_func:
self.py_func.entry.fused_cfunction = self
for node in self.nodes:
if is_def:
node.fused_py_func = self.py_func
else:
node.py_func.fused_py_func = self.py_func
node.entry.as_variable = self.py_func.entry
# Copy the nodes as AnalyseDeclarationsTransform will prepend
# self.py_func to self.stats, as we only want specialized
# CFuncDefNodes in self.nodes
self.stats = self.nodes[:]
if self.py_func:
self.synthesize_defnodes()
self.stats.append(self.__signatures__)
def copy_def(self, env):
"""
Create a copy of the original def or lambda function for specialized
versions.
"""
fused_compound_types = PyrexTypes.unique(
[arg.type for arg in self.node.args if arg.type.is_fused])
permutations = PyrexTypes.get_all_specialized_permutations(fused_compound_types)
if self.node.entry in env.pyfunc_entries:
env.pyfunc_entries.remove(self.node.entry)
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
self._specialize_function_args(copied_node.args, fused_to_specific)
copied_node.return_type = self.node.return_type.specialize(
fused_to_specific)
copied_node.analyse_declarations(env)
self.create_new_local_scope(copied_node, env, fused_to_specific)
self.specialize_copied_def(copied_node, cname, self.node.entry,
fused_to_specific, fused_compound_types)
PyrexTypes.specialize_entry(copied_node.entry, cname)
copied_node.entry.used = True
env.entries[copied_node.entry.name] = copied_node.entry
if not self.replace_fused_typechecks(copied_node):
break
self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
def copy_cdef(self, env):
"""
Create a copy of the original c(p)def function for all specialized
versions.
"""
permutations = self.node.type.get_all_specialized_permutations()
# print 'Node %s has %d specializations:' % (self.node.entry.name,
# len(permutations))
# import pprint; pprint.pprint([d for cname, d in permutations])
if self.node.entry in env.cfunc_entries:
env.cfunc_entries.remove(self.node.entry)
# Prevent copying of the python function
orig_py_func = self.node.py_func
self.node.py_func = None
if orig_py_func:
env.pyfunc_entries.remove(orig_py_func.entry)
fused_types = self.node.type.get_fused_types()
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# Make the types in our CFuncType specific
type = copied_node.type.specialize(fused_to_specific)
entry = copied_node.entry
copied_node.type = type
entry.type, type.entry = type, entry
entry.used = (entry.used or
self.node.entry.defined_in_pxd or
env.is_c_class_scope or
entry.is_cmethod)
if self.node.cfunc_declarator.optional_arg_count:
self.node.cfunc_declarator.declare_optional_arg_struct(
type, env, fused_cname=cname)
copied_node.return_type = type.return_type
self.create_new_local_scope(copied_node, env, fused_to_specific)
# Make the argument types in the CFuncDeclarator specific
self._specialize_function_args(copied_node.cfunc_declarator.args,
fused_to_specific)
type.specialize_entry(entry, cname)
env.cfunc_entries.append(entry)
# If a cpdef, declare all specialized cpdefs (this
# also calls analyse_declarations)
copied_node.declare_cpdef_wrapper(env)
if copied_node.py_func:
env.pyfunc_entries.remove(copied_node.py_func.entry)
self.specialize_copied_def(
copied_node.py_func, cname, self.node.entry.as_variable,
fused_to_specific, fused_types)
if not self.replace_fused_typechecks(copied_node):
break
if orig_py_func:
self.py_func = self.make_fused_cpdef(orig_py_func, env,
is_def=False)
else:
self.py_func = orig_py_func
def _specialize_function_args(self, args, fused_to_specific):
import MemoryView
for arg in args:
if arg.type.is_fused:
arg.type = arg.type.specialize(fused_to_specific)
if arg.type.is_memoryviewslice:
MemoryView.validate_memslice_dtype(arg.pos, arg.type.dtype)
def create_new_local_scope(self, node, env, f2s):
"""
Create a new local scope for the copied node and append it to
self.nodes. A new local scope is needed because the arguments with the
fused types are aready in the local scope, and we need the specialized
entries created after analyse_declarations on each specialized version
of the (CFunc)DefNode.
f2s is a dict mapping each fused type to its specialized version
"""
node.create_local_scope(env)
node.local_scope.fused_to_specific = f2s
# This is copied from the original function, set it to false to
# stop recursion
node.has_fused_arguments = False
self.nodes.append(node)
def specialize_copied_def(self, node, cname, py_entry, f2s, fused_types):
"""Specialize the copy of a DefNode given the copied node,
the specialization cname and the original DefNode entry"""
type_strings = [
PyrexTypes.specialization_signature_string(fused_type, f2s)
for fused_type in fused_types
]
node.specialized_signature_string = ', '.join(type_strings)
node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
cname, node.entry.pymethdef_cname)
node.entry.doc = py_entry.doc
node.entry.doc_cname = py_entry.doc_cname
def replace_fused_typechecks(self, copied_node):
"""
Branch-prune fused type checks like
if fused_t is int:
...
Returns whether an error was issued and whether we should stop in
in order to prevent a flood of errors.
"""
from Cython.Compiler import ParseTreeTransforms
num_errors = Errors.num_errors
transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
copied_node.local_scope)
transform(copied_node)
if Errors.num_errors > num_errors:
return False
return True
def make_fused_cpdef(self, orig_py_func, env, is_def):
"""
This creates the function that is indexable from Python and does
runtime dispatch based on the argument types. The function gets the
arg tuple and kwargs dict (or None) as arugments from the Binding
Fused Function's tp_call.
"""
from Cython.Compiler import TreeFragment
from Cython.Compiler import ParseTreeTransforms
# { (arg_pos, FusedType) : specialized_type }
seen_fused_types = set()
# list of statements that do the instance checks
body_stmts = []
args = self.node.args
for i, arg in enumerate(args):
arg_type = arg.type
if arg_type.is_fused and arg_type not in seen_fused_types:
seen_fused_types.add(arg_type)
specialized_types = PyrexTypes.get_specialized_types(arg_type)
# Prefer long over int, etc
# specialized_types.sort()
seen_py_type_names = set()
first_check = True
body_stmts.append(u"""
if nargs >= %(nextidx)d or '%(argname)s' in kwargs:
if nargs >= %(nextidx)d:
arg = args[%(idx)d]
else:
arg = kwargs['%(argname)s']
""" % {'idx': i, 'nextidx': i + 1, 'argname': arg.name})
all_numeric = True
for specialized_type in specialized_types:
py_type_name = specialized_type.py_type_name()
if not py_type_name or py_type_name in seen_py_type_names:
continue
seen_py_type_names.add(py_type_name)
all_numeric = all_numeric and specialized_type.is_numeric
if first_check:
if_ = 'if'
first_check = False
else:
if_ = 'elif'
# in the case of long, unicode or bytes we need to instance
# check for long_, unicode_, bytes_ (long = long is no longer
# valid code with control flow analysis)
instance_check_py_type_name = py_type_name
if py_type_name in ('long', 'unicode', 'bytes'):
instance_check_py_type_name += '_'
tup = (if_, instance_check_py_type_name,
len(seen_fused_types) - 1,
specialized_type.typeof_name())
body_stmts.append(
" %s isinstance(arg, %s): "
"dest_sig[%d] = '%s'" % tup)
if arg.default and all_numeric:
arg.default.analyse_types(env)
ts = specialized_types
if arg.default.type.is_complex:
typelist = [t for t in ts if t.is_complex]
elif arg.default.type.is_float:
typelist = [t for t in ts if t.is_float]
else:
typelist = [t for t in ts if t.is_int]
if typelist:
body_stmts.append(u"""\
else:
dest_sig[%d] = '%s'
""" % (i, typelist[0].typeof_name()))
fmt_dict = {
'body': '\n'.join(body_stmts),
'nargs': len(args),
'name': orig_py_func.entry.name,
}
fragment_code = u"""
def __pyx_fused_cpdef(signatures, args, kwargs):
#if len(args) < %(nargs)d:
# raise TypeError("Invalid number of arguments, expected %(nargs)d, "
# "got %%d" %% len(args))
cdef int nargs
nargs = len(args)
import sys
if sys.version_info >= (3, 0):
long_ = int
unicode_ = str
bytes_ = bytes
else:
long_ = long
unicode_ = unicode
bytes_ = str
dest_sig = [None] * %(nargs)d
if kwargs is None:
kwargs = {}
# instance check body
%(body)s
candidates = []
for sig in signatures:
match_found = [x for x in dest_sig if x]
for src_type, dst_type in zip(sig.strip('()').split(', '), dest_sig):
if dst_type is not None and match_found:
match_found = src_type == dst_type
if match_found:
candidates.append(sig)
if not candidates:
raise TypeError("No matching signature found")
elif len(candidates) > 1:
raise TypeError("Function call with ambiguous argument types")
else:
return signatures[candidates[0]]
""" % fmt_dict
fragment = TreeFragment.TreeFragment(fragment_code, level='module')
# analyse the declarations of our fragment ...
py_func, = fragment.substitute(pos=self.node.pos).stats
# Analyse the function object ...
py_func.analyse_declarations(env)
# ... and its body
py_func.scope = env
# Will be analysed later by underlying AnalyseDeclarationsTransform
#ParseTreeTransforms.AnalyseDeclarationsTransform(None)(py_func)
e, orig_e = py_func.entry, orig_py_func.entry
# Update the new entry ...
py_func.name = e.name = orig_e.name
e.cname, e.func_cname = orig_e.cname, orig_e.func_cname
e.pymethdef_cname = orig_e.pymethdef_cname
e.doc, e.doc_cname = orig_e.doc, orig_e.doc_cname
# e.signature = TypeSlots.binaryfunc
py_func.doc = orig_py_func.doc
# ... and the symbol table
env.entries.pop('__pyx_fused_cpdef', None)
if is_def:
env.entries[e.name] = e
else:
env.entries[e.name].as_variable = e
env.pyfunc_entries.append(e)
if is_def:
py_func.specialized_cpdefs = self.nodes[:]
else:
py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
return py_func
def analyse_expressions(self, env):
"""
Analyse the expressions. Take care to only evaluate default arguments
once and clone the result for all specializations
"""
from ExprNodes import CloneNode, ProxyNode, TupleNode
if self.py_func:
self.__signatures__.analyse_expressions(env)
self.py_func.analyse_expressions(env)
self.resulting_fused_function.analyse_expressions(env)
self.fused_func_assignment.analyse_expressions(env)
self.defaults = defaults = []
for arg in self.node.args:
if arg.default:
arg.default.analyse_expressions(env)
defaults.append(ProxyNode(arg.default))
else:
defaults.append(None)
for node in self.stats:
node.analyse_expressions(env)
if isinstance(node, FuncDefNode):
for arg, default in zip(node.args, defaults):
if default is not None:
arg.default = CloneNode(default).coerce_to(arg.type, env)
if self.py_func:
args = [CloneNode(default) for default in defaults if default]
defaults_tuple = TupleNode(self.pos, args=args)
defaults_tuple.analyse_types(env, skip_children=True)
self.defaults_tuple = ProxyNode(defaults_tuple)
self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
fused_func = self.resulting_fused_function.arg
fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
fused_func.code_object = CloneNode(self.code_object)
for pycfunc in self.specialized_pycfuncs:
pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
pycfunc.code_object = CloneNode(self.code_object)
def synthesize_defnodes(self):
"""
Create the __signatures__ dict of PyCFunctionNode specializations.
"""
import ExprNodes, StringEncoding
if isinstance(self.nodes[0], CFuncDefNode):
nodes = [node.py_func for node in self.nodes]
else:
nodes = self.nodes
signatures = [
StringEncoding.EncodedString(node.specialized_signature_string)
for node in nodes]
keys = [ExprNodes.StringNode(node.pos, value=sig)
for node, sig in zip(nodes, signatures)]
values = [ExprNodes.PyCFunctionNode.from_defnode(node, True)
for node in nodes]
self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos,
zip(keys, values))
self.specialized_pycfuncs = values
for pycfuncnode in values:
pycfuncnode.is_specialization = True
def generate_function_definitions(self, env, code):
if self.py_func:
self.py_func.pymethdef_required = True
self.fused_func_assignment.generate_function_definitions(env, code)
for stat in self.stats:
if isinstance(stat, FuncDefNode) and stat.entry.used:
code.mark_pos(stat.pos)
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
import ExprNodes
for default in self.defaults:
if default is not None:
default.generate_evaluation_code(code)
if self.py_func:
self.defaults_tuple.generate_evaluation_code(code)
self.code_object.generate_evaluation_code(code)
for stat in self.stats:
code.mark_pos(stat.pos)
if isinstance(stat, ExprNodes.ExprNode):
stat.generate_evaluation_code(code)
elif not isinstance(stat, FuncDefNode) or stat.entry.used:
stat.generate_execution_code(code)
if self.__signatures__:
self.resulting_fused_function.generate_evaluation_code(code)
code.putln(
"((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
(self.resulting_fused_function.result(),
self.__signatures__.result()))
code.put_giveref(self.__signatures__.result())
self.fused_func_assignment.generate_execution_code(code)
# Dispose of results
self.resulting_fused_function.generate_disposal_code(code)
self.defaults_tuple.generate_disposal_code(code)
self.code_object.generate_disposal_code(code)
for default in self.defaults:
if default is not None:
default.generate_disposal_code(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
class PyArgDeclNode(Node):
# Argument which must be a Python object (used
# for * and ** arguments).
......@@ -3170,7 +2637,7 @@ class DefNode(FuncDefNode):
decorator.decorator.analyse_expressions(env)
def needs_assignment_synthesis(self, env, code=None):
if self.is_wrapper or self.specialized_cpdefs:
if self.is_wrapper or self.specialized_cpdefs or self.entry.is_fused_specialized:
return False
if self.is_staticmethod:
return True
......
......@@ -1488,7 +1488,8 @@ if VALUE is not None:
return node
node = Nodes.FusedCFuncDefNode(node, env)
from Cython.Compiler import FusedNode
node = FusedNode.FusedCFuncDefNode(node, env)
self.fused_function = node
self.visitchildren(node)
......@@ -1498,6 +1499,7 @@ if VALUE is not None:
# Create PyCFunction nodes for each specialization
node.stats.insert(0, node.py_func)
node.py_func = self.visit(node.py_func)
node.update_fused_defnode_entry(env)
pycfunc = ExprNodes.PyCFunctionNode.from_defnode(node.py_func,
True)
pycfunc = ExprNodes.ProxyNode(pycfunc.coerce_to_temp(env))
......
......@@ -790,10 +790,9 @@ class BufferType(BaseType):
def __str__(self):
# avoid ', ', as fused functions split the signature string on ', '
cast_str = ''
if self.cast:
cast_str = ',cast=True'
else:
cast_str = ''
return "%s[%s,ndim=%d%s]" % (self.base, self.dtype, self.ndim,
cast_str)
......@@ -2661,6 +2660,7 @@ def specialize_entry(entry, cname):
"""
Specialize an entry of a copied fused function or method
"""
entry.is_fused_specialized = True
entry.name = get_fused_cname(cname, entry.name)
if entry.is_cmethod:
......
......@@ -120,6 +120,8 @@ class Entry(object):
# error_on_uninitialized Have Control Flow issue an error when this entry is
# used uninitialized
# cf_used boolean Entry is used
# is_fused_specialized boolean Whether this entry of a cdef or def function
# is a specialization
# TODO: utility_code and utility_code_definition serves the same purpose...
......@@ -179,6 +181,7 @@ class Entry(object):
prev_entry = None
might_overflow = 0
fused_cfunction = None
is_fused_specialized = False
utility_code_definition = None
in_with_gil_block = 0
from_cython_utility_code = None
......@@ -360,11 +363,11 @@ class Scope(object):
# Return the module-level scope containing this scope.
return self.outer_scope.builtin_scope()
def declare(self, name, cname, type, pos, visibility, shadow = 0):
def declare(self, name, cname, type, pos, visibility, shadow = 0, is_type = 0):
# Create new entry, and add to dictionary if
# name is not None. Reports a warning if already
# declared.
if type.is_buffer and not isinstance(self, LocalScope):
if type.is_buffer and not isinstance(self, LocalScope): # and not is_type:
error(pos, 'Buffer types only allowed as function local variables')
if not self.in_cinclude and cname and re.match("^_[_A-Z]+$", cname):
# See http://www.gnu.org/software/libc/manual/html_node/Reserved-Names.html#Reserved-Names
......@@ -415,7 +418,8 @@ class Scope(object):
# Add an entry for a type definition.
if not cname:
cname = name
entry = self.declare(name, cname, type, pos, visibility, shadow)
entry = self.declare(name, cname, type, pos, visibility, shadow,
is_type=True)
entry.is_type = 1
entry.api = api
if defining:
......
......@@ -231,6 +231,12 @@ class TreeFragment(object):
substitutions = nodes,
temps = self.temps + temps, pos = pos)
class SetPosTransform(VisitorTransform):
def __init__(self, pos):
super(SetPosTransform, self).__init__()
self.pos = pos
def visit_Node(self, node):
node.pos = self.pos
self.visitchildren(node)
return node
......@@ -167,3 +167,11 @@ class CythonUtilityCode(Code.UtilityCodeBase):
dep.declare_in_scope(dest_scope)
return original_scope
def declare_declarations_in_scope(declaration_string, env, private_type=True,
*args, **kwargs):
"""
Declare some declarations given as Cython code in declaration_string
in scope env.
"""
CythonUtilityCode(declaration_string, *args, **kwargs).declare_in_scope(env)
......@@ -740,8 +740,6 @@ __pyx_FusedFunction_callfunction(PyObject *func, PyObject *args, PyObject *kw)
int static_specialized = (cyfunc->flags & __Pyx_CYFUNCTION_STATICMETHOD &&
!((__pyx_FusedFunctionObject *) func)->__signatures__);
//PyObject_Print(args, stdout, Py_PRINT_RAW);
if (cyfunc->flags & __Pyx_CYFUNCTION_CCLASS && !static_specialized) {
Py_ssize_t argc;
PyObject *new_args;
......@@ -827,8 +825,9 @@ __pyx_FusedFunction_call(PyObject *func, PyObject *args, PyObject *kw)
}
if (binding_func->__signatures__) {
PyObject *tup = PyTuple_Pack(3, binding_func->__signatures__, args,
kw == NULL ? Py_None : kw);
PyObject *tup = PyTuple_Pack(4, binding_func->__signatures__, args,
kw == NULL ? Py_None : kw,
binding_func->func.defaults_tuple);
if (!tup)
goto __pyx_err;
......
......@@ -978,7 +978,7 @@ cdef memoryview_fromslice({{memviewslice_name}} *memviewslice,
result.from_slice = memviewslice[0]
__PYX_INC_MEMVIEW(memviewslice, 1)
result.from_object = <object> memviewslice.memview.obj
result.from_object = (<memoryview> memviewslice.memview).base
result.typeinfo = memviewslice.memview.typeinfo
result.view = memviewslice.memview.view
......
......@@ -373,7 +373,19 @@ class PyxArgs(object):
setup_args={} #None
##pyxargs=None
def _have_importers():
has_py_importer = False
has_pyx_importer = False
for importer in sys.meta_path:
if isinstance(importer, PyxImporter):
if isinstance(importer, PyImporter):
has_py_importer = True
else:
has_pyx_importer = True
return has_py_importer, has_pyx_importer
def install(pyximport=True, pyimport=False, build_dir=None, build_in_temp=True,
setup_args={}, reload_support=False,
load_py_module_on_import_failure=False):
......@@ -426,23 +438,32 @@ def install(pyximport=True, pyimport=False, build_dir=None, build_in_temp=True,
pyxargs.reload_support = reload_support
pyxargs.load_py_module_on_import_failure = load_py_module_on_import_failure
has_py_importer = False
has_pyx_importer = False
for importer in sys.meta_path:
if isinstance(importer, PyxImporter):
if isinstance(importer, PyImporter):
has_py_importer = True
else:
has_pyx_importer = True
has_py_importer, has_pyx_importer = _have_importers()
py_importer, pyx_importer = None, None
if pyimport and not has_py_importer:
importer = PyImporter(pyxbuild_dir=build_dir)
sys.meta_path.insert(0, importer)
py_importer = PyImporter(pyxbuild_dir=build_dir)
sys.meta_path.insert(0, py_importer)
if pyximport and not has_pyx_importer:
importer = PyxImporter(pyxbuild_dir=build_dir)
sys.meta_path.append(importer)
pyx_importer = PyxImporter(pyxbuild_dir=build_dir)
sys.meta_path.append(pyx_importer)
return py_importer, pyx_importer
def uninstall(py_importer, pyx_importer):
"""
Uninstall an import hook.
"""
try:
sys.meta_path.remove(py_importer)
except ValueError:
pass
try:
sys.meta_path.remove(pyx_importer)
except ValueError:
pass
# MAIN
......
......@@ -1251,6 +1251,8 @@ def refactor_for_py3(distdir, cy3_dir):
recursive-include Cython *.py *.pyx *.pxd
recursive-include Cython/Debugger/Tests *
recursive-include Cython/Utility *
recursive-exclude pyximport test
include pyximport/*.py
include runtests.py
include cython.py
''')
......
......@@ -112,6 +112,7 @@ def compile_cython_modules(profile=False, compile_more=False, cython_with_refnan
"Cython.Compiler.FlowControl",
"Cython.Compiler.Code",
"Cython.Runtime.refnanny",
# "Cython.Compiler.FusedNode",
]
if compile_more:
compiled_modules.extend([
......
......@@ -107,3 +107,27 @@ def test_defaults_fused(cython.floating arg1, cython.floating arg2 = counter2())
(2.0,)
"""
print arg1, arg2
funcs = []
for i in range(10):
def defaults_fused(cython.floating a, cython.floating b = i):
return a, b
funcs.append(defaults_fused)
def test_dynamic_defaults_fused():
"""
>>> test_dynamic_defaults_fused()
i 0 func result (1.0, 0.0) defaults (0,)
i 1 func result (1.0, 1.0) defaults (1,)
i 2 func result (1.0, 2.0) defaults (2,)
i 3 func result (1.0, 3.0) defaults (3,)
i 4 func result (1.0, 4.0) defaults (4,)
i 5 func result (1.0, 5.0) defaults (5,)
i 6 func result (1.0, 6.0) defaults (6,)
i 7 func result (1.0, 7.0) defaults (7,)
i 8 func result (1.0, 8.0) defaults (8,)
i 9 func result (1.0, 9.0) defaults (9,)
"""
for i, f in enumerate(funcs):
print "i", i, "func result", f(1.0), "defaults", get_defaults(f)
......@@ -4,6 +4,8 @@
cimport numpy as np
cimport cython
from libc.stdlib cimport malloc
def little_endian():
cdef int endian_detector = 1
return (<char*>&endian_detector)[0] != 0
......@@ -503,19 +505,28 @@ def test_point_record():
test[i].y = -i
print repr(test).replace('<', '!').replace('>', '!')
def test_fused_ndarray_dtype(np.ndarray[cython.floating, ndim=1] a):
# Test fused np.ndarray dtypes and runtime dispatch
def test_fused_ndarray_floating_dtype(np.ndarray[cython.floating, ndim=1] a):
"""
>>> import cython
>>> sorted(test_fused_ndarray_dtype.__signatures__)
>>> sorted(test_fused_ndarray_floating_dtype.__signatures__)
['double', 'float']
>>> test_fused_ndarray_dtype[cython.double](np.arange(10, dtype=np.float64))
>>> test_fused_ndarray_floating_dtype[cython.double](np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1] 5.0 6.0
>>> test_fused_ndarray_dtype[cython.float](np.arange(10, dtype=np.float32))
>>> test_fused_ndarray_floating_dtype(np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1] 5.0 6.0
>>> test_fused_ndarray_floating_dtype[cython.float](np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1] 5.0 6.0
>>> test_fused_ndarray_floating_dtype(np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1] 5.0 6.0
"""
cdef np.ndarray[cython.floating, ndim=1] b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
double_array = np.linspace(0, 1, 100)
int32_array = np.arange(100, dtype=np.int32)
......@@ -537,10 +548,8 @@ def test_fused_external(np.ndarray[fused_external, ndim=1] a):
>>> test_fused_external["int32_t"](int32_array)
int32
>>> test_fused_external(np.arange(100)) # fix in next release
Traceback (most recent call last):
...
TypeError: No matching signature found
>>> test_fused_external(np.arange(100))
int64
"""
print a.dtype
......@@ -568,4 +577,245 @@ def test_fused_cpdef_buffers():
cdef np.ndarray[np.int32_t] typed_array = int32_array
_fused_cpdef_buffers(typed_array)
def test_fused_ndarray_integral_dtype(np.ndarray[cython.integral, ndim=1] a):
"""
>>> import cython
>>> sorted(test_fused_ndarray_integral_dtype.__signatures__)
['int', 'long', 'short']
>>> test_fused_ndarray_integral_dtype[cython.int](np.arange(10, dtype=np.dtype('i')))
ndarray[int,ndim=1] ndarray[int,ndim=1] 5 6
>>> test_fused_ndarray_integral_dtype(np.arange(10, dtype=np.dtype('i')))
ndarray[int,ndim=1] ndarray[int,ndim=1] 5 6
>>> test_fused_ndarray_integral_dtype[cython.long](np.arange(10, dtype=np.long))
ndarray[long,ndim=1] ndarray[long,ndim=1] 5 6
>>> test_fused_ndarray_integral_dtype(np.arange(10, dtype=np.long))
ndarray[long,ndim=1] ndarray[long,ndim=1] 5 6
"""
cdef np.ndarray[cython.integral, ndim=1] b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
cdef fused fused_dtype:
float complex
double complex
object
def test_fused_ndarray_other_dtypes(np.ndarray[fused_dtype, ndim=1] a):
"""
>>> import cython
>>> sorted(test_fused_ndarray_other_dtypes.__signatures__)
['double complex', 'float complex', 'object']
>>> test_fused_ndarray_other_dtypes(np.arange(10, dtype=np.complex64))
ndarray[float complex,ndim=1] ndarray[float complex,ndim=1] (5+0j) (6+0j)
>>> test_fused_ndarray_other_dtypes(np.arange(10, dtype=np.complex128))
ndarray[double complex,ndim=1] ndarray[double complex,ndim=1] (5+0j) (6+0j)
>>> test_fused_ndarray_other_dtypes(np.arange(10, dtype=np.object))
ndarray[Python object,ndim=1] ndarray[Python object,ndim=1] 5 6
"""
cdef np.ndarray[fused_dtype, ndim=1] b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
# Test fusing the array types together and runtime dispatch
cdef struct Foo:
int a
float b
cdef fused fused_FooArray:
np.ndarray[Foo, ndim=1]
cdef fused fused_ndarray:
np.ndarray[float, ndim=1]
np.ndarray[double, ndim=1]
np.ndarray[Foo, ndim=1]
def get_Foo_array():
cdef Foo[:] result = <Foo[:10]> malloc(sizeof(Foo) * 10)
result[5].b = 9.0
return np.asarray(result)
def test_fused_ndarray(fused_ndarray a):
"""
>>> import cython
>>> sorted(test_fused_ndarray.__signatures__)
['ndarray[Foo,ndim=1]', 'ndarray[double,ndim=1]', 'ndarray[float,ndim=1]']
>>> test_fused_ndarray(get_Foo_array())
ndarray[Foo,ndim=1] ndarray[Foo,ndim=1]
9.0
>>> test_fused_ndarray(np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1]
5.0
>>> test_fused_ndarray(np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1]
5.0
"""
cdef fused_ndarray b = a
print cython.typeof(a), cython.typeof(b)
if fused_ndarray in fused_FooArray:
print b[5].b
else:
print b[5]
cpdef test_fused_cpdef_ndarray(fused_ndarray a):
"""
>>> import cython
>>> sorted(test_fused_cpdef_ndarray.__signatures__)
['ndarray[Foo,ndim=1]', 'ndarray[double,ndim=1]', 'ndarray[float,ndim=1]']
>>> test_fused_cpdef_ndarray(get_Foo_array())
ndarray[Foo,ndim=1] ndarray[Foo,ndim=1]
9.0
>>> test_fused_cpdef_ndarray(np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1]
5.0
>>> test_fused_cpdef_ndarray(np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1]
5.0
"""
cdef fused_ndarray b = a
print cython.typeof(a), cython.typeof(b)
if fused_ndarray in fused_FooArray:
print b[5].b
else:
print b[5]
def test_fused_cpdef_ndarray_cdef_call():
"""
>>> test_fused_cpdef_ndarray_cdef_call()
ndarray[Foo,ndim=1] ndarray[Foo,ndim=1]
9.0
"""
cdef np.ndarray[Foo, ndim=1] foo_array = get_Foo_array()
test_fused_cpdef_ndarray(foo_array)
cdef fused int_type:
np.int32_t
np.int64_t
float64_array = np.arange(10, dtype=np.float64)
float32_array = np.arange(10, dtype=np.float32)
int32_array = np.arange(10, dtype=np.int32)
int64_array = np.arange(10, dtype=np.int64)
def test_dispatch_non_clashing_declarations_repeating_types(np.ndarray[cython.floating] a1,
np.ndarray[int_type] a2,
np.ndarray[cython.floating] a3,
np.ndarray[int_type] a4):
"""
>>> test_dispatch_non_clashing_declarations_repeating_types(float64_array, int32_array, float64_array, int32_array)
1.0 2 3.0 4
>>> test_dispatch_non_clashing_declarations_repeating_types(float64_array, int64_array, float64_array, int64_array)
1.0 2 3.0 4
>>> test_dispatch_non_clashing_declarations_repeating_types(float64_array, int32_array, float64_array, int64_array)
Traceback (most recent call last):
...
TypeError: No matching signature found
"""
print a1[1], a2[2], a3[3], a4[4]
ctypedef np.int32_t typedeffed_type
cdef fused typedeffed_fused_type:
typedeffed_type
int
long
def test_dispatch_typedef(np.ndarray[typedeffed_fused_type] a):
"""
>>> test_dispatch_typedef(int32_array)
5
"""
print a[5]
cdef extern from "types.h":
ctypedef char actually_long_t
cdef fused confusing_fused_typedef:
actually_long_t
int
unsigned long
double complex
unsigned char
signed char
def test_dispatch_external_typedef(np.ndarray[confusing_fused_typedef] a):
"""
>>> test_dispatch_external_typedef(np.arange(-5, 5, dtype=np.long))
-2
"""
print a[3]
# test fused memoryview slices
cdef fused memslice_fused_dtype:
float
double
int
long
float complex
double complex
object
def test_fused_memslice_other_dtypes(memslice_fused_dtype[:] a):
"""
>>> import cython
>>> sorted(test_fused_memslice_other_dtypes.__signatures__)
['double', 'double complex', 'float', 'float complex', 'int', 'long', 'object']
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.complex64))
float complex[:] float complex[:] (5+0j) (6+0j)
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.complex128))
double complex[:] double complex[:] (5+0j) (6+0j)
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.float32))
float[:] float[:] 5.0 6.0
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.dtype('i')))
int[:] int[:] 5 6
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.object))
object[:] object[:] 5 6
"""
cdef memslice_fused_dtype[:] b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
cdef fused memslice_fused:
float[:]
double[:]
int[:]
long[:]
float complex[:]
double complex[:]
object[:]
def test_fused_memslice(memslice_fused a):
"""
>>> import cython
>>> sorted(test_fused_memslice.__signatures__)
['double complex[:]', 'double[:]', 'float complex[:]', 'float[:]', 'int[:]', 'long[:]', 'object[:]']
>>> test_fused_memslice(np.arange(10, dtype=np.complex64))
float complex[:] float complex[:] (5+0j) (6+0j)
>>> test_fused_memslice(np.arange(10, dtype=np.complex128))
double complex[:] double complex[:] (5+0j) (6+0j)
>>> test_fused_memslice(np.arange(10, dtype=np.float32))
float[:] float[:] 5.0 6.0
>>> test_fused_memslice(np.arange(10, dtype=np.dtype('i')))
int[:] int[:] 5 6
>>> test_fused_memslice(np.arange(10, dtype=np.object))
object[:] object[:] 5 6
"""
cdef memslice_fused b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
def test_dispatch_memoryview_object():
"""
>>> test_dispatch_memoryview_object()
int[:] int[:] 5 6
"""
cdef int[:] m = np.arange(10, dtype=np.dtype('i'))
cdef int[:] m2 = m
cdef int[:] m3 = <object> m
test_fused_memslice(m3)
include "numpy_common.pxi"
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment