Commit 3a35162b authored by Kirill Smelkov's avatar Kirill Smelkov

kpi: Establish data model for DRB.IPLatDl and DRB.UEActive

3GPP says that this values are averages over collected samples and over
observed time period. But if we are to follow 3GPP as-is there is a problem how
to aggregate two Measurements corresponding to two different periods into one
bigger Mesurement that corresponds to combined time period.

-> Solve that by introducing "statistical profile" types and use them for DRB.IPLatDl and DRB.UEActive;
-> Teach Calc.aggregate to aggregate such statistical profiles via corresponding math.

See individual patches for details.

/reviewed-by @paul.graydon
/reviewed-on !9
parents 7164e99c 6d2694d8
...@@ -355,7 +355,7 @@ ...@@ -355,7 +355,7 @@
"source": [ "source": [
"Let's now look at <u>raw counters</u>.\n", "Let's now look at <u>raw counters</u>.\n",
"\n", "\n",
"Each Measurement comes with counters measured during particular interval. To get total values we need to aggregate them throughout all observation time via `Calc.sum`. Let's use already-loaded MeasurementLog data to showcase this:" "Each Measurement comes with counters measured during particular interval. To get total values we need to aggregate them throughout all observation time via `Calc.aggregate`. Let's use already-loaded MeasurementLog data to showcase this:"
] ]
}, },
{ {
...@@ -371,7 +371,7 @@ ...@@ -371,7 +371,7 @@
"mhead = mlog.data()[0]\n", "mhead = mlog.data()[0]\n",
"mtail = mlog.data()[-1]\n", "mtail = mlog.data()[-1]\n",
"calc_total = kpi.Calc(mlog, mhead['X.Tstart'], mtail['X.Tstart']+mtail['X.δT'])\n", "calc_total = kpi.Calc(mlog, mhead['X.Tstart'], mtail['X.Tstart']+mtail['X.δT'])\n",
"Σ = calc_total.sum()" "Σ = calc_total.aggregate()"
] ]
}, },
{ {
......
...@@ -136,7 +136,7 @@ def main(): ...@@ -136,7 +136,7 @@ def main():
mhead = mlog.data()[0] mhead = mlog.data()[0]
mtail = mlog.data()[-1] mtail = mlog.data()[-1]
calc_total = kpi.Calc(mlog, mhead['X.Tstart'], mtail['X.Tstart']+mtail['X.δT']) calc_total = kpi.Calc(mlog, mhead['X.Tstart'], mtail['X.Tstart']+mtail['X.δT'])
Σ = calc_total.sum() Σ = calc_total.aggregate()
print_ΣMeasurement(Σ) print_ΣMeasurement(Σ)
......
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
- Calc is KPI calculator. It can be instantiated on MeasurementLog and time - Calc is KPI calculator. It can be instantiated on MeasurementLog and time
interval over which to perform computations. Use Calc methods such as interval over which to perform computations. Use Calc methods such as
.erab_accessibility() and .eutran_ip_throughput() to compute KPIs, and .sum() .erab_accessibility() and .eutran_ip_throughput() to compute KPIs, and .aggregate()
to compute aggregated measurements. to compute aggregated measurements.
- MeasurementLog maintains journal with result of measurements. Use .append() - MeasurementLog maintains journal with result of measurements. Use .append()
...@@ -54,6 +54,8 @@ from __future__ import print_function, division, absolute_import ...@@ -54,6 +54,8 @@ from __future__ import print_function, division, absolute_import
import numpy as np import numpy as np
from golang import func from golang import func
import warnings
# Calc provides way to compute KPIs over given measurement data and time interval. # Calc provides way to compute KPIs over given measurement data and time interval.
# #
...@@ -71,7 +73,7 @@ from golang import func ...@@ -71,7 +73,7 @@ from golang import func
# ──────|─────|────[────|────)──────|──────|────────> # ──────|─────|────[────|────)──────|──────|────────>
# ←─ τ_lo τ_hi ──→ time # ←─ τ_lo τ_hi ──→ time
# #
# It is also possible to merely aggregate measured values via .sum() . # It is also possible to merely aggregate measured values via .aggregate() .
# #
# See also: MeasurementLog, Measurement, ΣMeasurement. # See also: MeasurementLog, Measurement, ΣMeasurement.
class Calc: class Calc:
...@@ -119,6 +121,41 @@ class MeasurementLog: ...@@ -119,6 +121,41 @@ class MeasurementLog:
pass pass
# Stat[dtype] represents result of statistical profiling with arbitrary sampling
# for a value with specified dtype.
#
# It is organized as NumPy structured scalar with avg, min, max and n fields.
#
# It is used inside Measurement for e.g. DRB.IPLatDl.QCI .
class Stat(np.void):
# _dtype_for returns dtype that Stat[dtype] will use.
@classmethod
def _dtype_for(cls, dtype):
return np.dtype((cls, [
('avg', np.float64), # NOTE even int becomes float on averaging
('min', dtype),
('max', dtype),
('n', np.int64)]))
# StatT[dtype] represents result of statistical profiling with time-based sampling
# for a value with specified dtype.
#
# It is organized as NumPy structured scalar with avg, min and max fields.
#
# NOTE contrary to Stat there is no n field and containing Measurement.X.δT
# should be taken to know during which time period the profile was collected.
#
# It is used inside Measurement for e.g. DRB.UEActive .
class StatT(np.void):
# _dtype_for returns dtype that StatT[dtype] will use.
@classmethod
def _dtype_for(cls, dtype):
return np.dtype((cls, [
('avg', np.float64), # see avg note in Stat
('min', dtype),
('max', dtype)]))
# Measurement represents set of measured values and events observed and counted # Measurement represents set of measured values and events observed and counted
# during one particular period of time. # during one particular period of time.
# #
...@@ -155,16 +192,22 @@ class MeasurementLog: ...@@ -155,16 +192,22 @@ class MeasurementLog:
class Measurement(np.void): class Measurement(np.void):
Tcc = np.int32 # cumulative counter Tcc = np.int32 # cumulative counter
Ttime = np.float64 # time is represented in seconds since epoch Ttime = np.float64 # time is represented in seconds since epoch
S = Stat ._dtype_for # statistical profile with arbitrary sampling
St = StatT._dtype_for # statistical profile with time-based sampling
# _dtype defines measured values and events. # _dtype defines measured values and events.
_dtype = np.dtype([ _dtype = np.dtype([
('X.Tstart', Ttime), # when the measurement started ('X.Tstart', Ttime), # when the measurement started
('X.δT', Ttime), # time interval during which the measurement was made ('X.δT', Ttime), # time interval during which the measurement was made
# below come values/events as specified by TS 32.425 and TS 32.450 # below comes definition of values/events as specified by TS 32.425 and TS 32.450
# NOTE all .QCI and .CAUSE are expanded from outside. #
# - .QCI suffix means a value comes as array of per-QCI values.
# - .CAUSE suffix means a value comes as array of per-CAUSE values.
#
# NOTE both .QCI and .CAUSE are expanded from outside.
# #
# NAME TYPE UNIT TS 32.425 reference + ... # NAME TYPE/DTYPE UNIT TS 32.425 reference + ...
('RRC.ConnEstabAtt.CAUSE', Tcc), # 1 4.1.1.1 ('RRC.ConnEstabAtt.CAUSE', Tcc), # 1 4.1.1.1
('RRC.ConnEstabSucc.CAUSE', Tcc), # 1 4.1.1.2 ('RRC.ConnEstabSucc.CAUSE', Tcc), # 1 4.1.1.2
...@@ -179,9 +222,10 @@ class Measurement(np.void): ...@@ -179,9 +222,10 @@ class Measurement(np.void):
('DRB.PdcpSduBitrateUl.QCI', np.float64),# bit/s 4.4.1.1 NOTE not kbit/s ('DRB.PdcpSduBitrateUl.QCI', np.float64),# bit/s 4.4.1.1 NOTE not kbit/s
('DRB.PdcpSduBitrateDl.QCI', np.float64),# bit/s 4.4.1.2 NOTE not kbit/s ('DRB.PdcpSduBitrateDl.QCI', np.float64),# bit/s 4.4.1.2 NOTE not kbit/s
# XXX mean is not good for our model
# TODO mean -> total + npkt? ('DRB.UEActive', St(np.int32)), # 1 4.4.2.4 36.314:4.1.3.3
#('DRB.IPLatDl.QCI', Ttime), # s 4.4.5.1 32.450:6.3.2 NOTE not ms
('DRB.IPLatDl.QCI', S(Ttime)), # s 4.4.5.1 32.450:6.3.2 NOTE not ms
# DRB.IPThpX.QCI = DRB.IPVolX.QCI / DRB.IPTimeX.QCI 4.4.6.1-2 32.450:6.3.1 # DRB.IPThpX.QCI = DRB.IPVolX.QCI / DRB.IPTimeX.QCI 4.4.6.1-2 32.450:6.3.1
('DRB.IPVolDl.QCI', np.int64), # bit 4.4.6.3 32.450:6.3.1 NOTE not kbit ('DRB.IPVolDl.QCI', np.int64), # bit 4.4.6.3 32.450:6.3.1 NOTE not kbit
...@@ -206,6 +250,8 @@ class Measurement(np.void): ...@@ -206,6 +250,8 @@ class Measurement(np.void):
('PEE.Energy', np.float64),# J 4.12.2 NOTE not kWh ('PEE.Energy', np.float64),# J 4.12.2 NOTE not kWh
]) ])
del S, St
# Interval is NumPy structured scalar that represents [lo,hi) interval. # Interval is NumPy structured scalar that represents [lo,hi) interval.
# #
...@@ -224,7 +270,7 @@ class Interval(np.void): ...@@ -224,7 +270,7 @@ class Interval(np.void):
# It is similar to Measurement, but each value comes accompanied with # It is similar to Measurement, but each value comes accompanied with
# information about how much time there was no data for that field: # information about how much time there was no data for that field:
# #
# Σ[f].value = Σ Mi[f] if Mi[f] ≠ NA # Σ[f].value = Aggregate Mi[f] if Mi[f] ≠ NA
# i # i
# #
# Σ[f].τ_na = Σ Mi[X.δT] if Mi[f] = NA # Σ[f].τ_na = Σ Mi[X.δT] if Mi[f] = NA
...@@ -232,10 +278,10 @@ class Interval(np.void): ...@@ -232,10 +278,10 @@ class Interval(np.void):
class ΣMeasurement(np.void): class ΣMeasurement(np.void):
_ = [] _ = []
for name in Measurement._dtype.names: for name in Measurement._dtype.names:
typ = Measurement._dtype.fields[name][0].type dtyp = Measurement._dtype.fields[name][0]
if not name.startswith('X.'): # X.Tstart, X.δT if not name.startswith('X.'): # X.Tstart, X.δT
typ = np.dtype([('value', typ), ('τ_na', Measurement.Ttime)]) dtyp = np.dtype([('value', dtyp), ('τ_na', Measurement.Ttime)])
_.append((name, typ)) _.append((name, dtyp))
_dtype = np.dtype(_) _dtype = np.dtype(_)
del _ del _
...@@ -273,6 +319,25 @@ def __new__(cls): ...@@ -273,6 +319,25 @@ def __new__(cls):
Σ[field]['τ_na'] = 0 Σ[field]['τ_na'] = 0
return Σ return Σ
# Stat() creates new Stat instance with specified values and dtype.
@func(Stat)
def __new__(cls, min, avg, max, n, dtype=np.float64):
s = _newscalar(cls, cls._dtype_for(dtype))
s['min'] = min
s['avg'] = avg
s['max'] = max
s['n'] = n
return s
# StatT() creates new StatT instance with specified values and dtype.
@func(StatT)
def __new__(cls, min, avg, max, dtype=np.float64):
s = _newscalar(cls, cls._dtype_for(dtype))
s['min'] = min
s['avg'] = avg
s['max'] = max
return s
# _all_qci expands <name>.QCI into <name>.sum and [] of <name>.<qci> for all possible qci values. # _all_qci expands <name>.QCI into <name>.sum and [] of <name>.<qci> for all possible qci values.
# TODO remove and use direct array access (after causes are expanded into array too) # TODO remove and use direct array access (after causes are expanded into array too)
...@@ -366,6 +431,34 @@ def __str__(m): ...@@ -366,6 +431,34 @@ def __str__(m):
vv.append(_vstr(m[field])) vv.append(_vstr(m[field]))
return "(%s)" % ', '.join(vv) return "(%s)" % ', '.join(vv)
# __repr__ returns Stat(min, avg, max, n, dtype=...)
# NA values are represented as "ø".
@func(Stat)
def __repr__(s):
return "Stat(%s, %s, %s, %s, dtype=%s)" % (_vstr(s['min']), _vstr(s['avg']),
_vstr(s['max']), _vstr(s['n']), s['min'].dtype)
# __repr__ returns StatT(min, avg, max, dtype=...)
# NA values are represented as "ø".
@func(StatT)
def __repr__(s):
return "StatT(%s, %s, %s, dtype=%s)" % (_vstr(s['min']), _vstr(s['avg']),
_vstr(s['max']), s['min'].dtype)
# __str__ returns "<min avg max>·n"
# NA values are represented as "ø".
@func(Stat)
def __str__(s):
return "<%s %s %s>·%s" % (_vstr(s['min']), _vstr(s['avg']), _vstr(s['max']), _vstr(s['n']))
# __str__ returns "<min avg max>"
# NA values are represented as "ø".
@func(StatT)
def __str__(s):
return "<%s %s %s>" % (_vstr(s['min']), _vstr(s['avg']), _vstr(s['max']))
# _vstr returns string representation of scalar or subarray v. # _vstr returns string representation of scalar or subarray v.
def _vstr(v): # -> str def _vstr(v): # -> str
if v.shape == (): # scalar if v.shape == (): # scalar
...@@ -377,9 +470,17 @@ def _vstr(v): # -> str ...@@ -377,9 +470,17 @@ def _vstr(v): # -> str
va = [] # subarray with some non-ø data va = [] # subarray with some non-ø data
for k in range(v.shape[0]): for k in range(v.shape[0]):
if v[k] == 0: vk = v[k]
if isinstance(vk, np.void):
for name in vk.dtype.names:
if vk[name] != 0:
break
else:
continue continue
va.append('%d:%s' % (k, 'ø' if isNA(v[k]) else str(v[k]))) else:
if vk == 0:
continue
va.append('%d:%s' % (k, 'ø' if isNA(vk) else str(vk)))
return "{%s}" % ' '.join(va) return "{%s}" % ' '.join(va)
...@@ -422,8 +523,14 @@ def _check_valid(m): ...@@ -422,8 +523,14 @@ def _check_valid(m):
continue continue
# * ≥ 0 # * ≥ 0
if not isinstance(v, np.void):
if v < 0: if v < 0:
bad(".%s < 0 (%s)" % (field, v)) bad(".%s < 0 (%s)" % (field, v))
else:
for vfield in v.dtype.names:
vf = v[vfield]
if not isNA(vf) and vf < 0:
bad(".%s.%s < 0 (%s)" % (field, vfield, vf))
# fini ≤ init # fini ≤ init
if "Succ" in field: if "Succ" in field:
...@@ -696,14 +803,32 @@ def eutran_ip_throughput(calc): # -> IPThp[QCI][dl,ul] ...@@ -696,14 +803,32 @@ def eutran_ip_throughput(calc): # -> IPThp[QCI][dl,ul]
return thp return thp
# sum aggregates values of all Measurements in covered time interval. # aggregate aggregates values of all Measurements in covered time interval.
# TODO tests
@func(Calc) @func(Calc)
def sum(calc): # -> ΣMeasurement def aggregate(calc): # -> ΣMeasurement
Σ = ΣMeasurement() Σ = ΣMeasurement()
Σ['X.Tstart'] = calc.τ_lo Σ['X.Tstart'] = calc.τ_lo
Σ['X.δT'] = calc.τ_hi - calc.τ_lo Σ['X.δT'] = calc.τ_hi - calc.τ_lo
def xmin(a, b):
if isNA(a): return b
if isNA(b): return a
return min(a, b)
def xmax(a, b):
if isNA(a): return b
if isNA(b): return a
return max(a, b)
def xavg(a, na, b, nb): # -> <ab>, na+nb
if isNA(a) or isNA(na):
return b, nb
if isNA(b) or isNA(nb):
return a, na
nab = na+nb
ab = (a*na + b*nb)/nab
return ab, nab
for m in calc._miter(): for m in calc._miter():
for field in m.dtype.names: for field in m.dtype.names:
if field.startswith('X.'): # X.Tstart, X.δT if field.startswith('X.'): # X.Tstart, X.δT
...@@ -713,15 +838,45 @@ def sum(calc): # -> ΣMeasurement ...@@ -713,15 +838,45 @@ def sum(calc): # -> ΣMeasurement
if v.shape != (): # skip subarrays - rely on aliases if v.shape != (): # skip subarrays - rely on aliases
continue continue
Σf = Σ[field] # view to Σ[field]
Σv = Σf['value'] # view to Σ[field]['value']
if isNA(v): if isNA(v):
Σ[field]['τ_na'] += m['X.δT'] Σf['τ_na'] += m['X.δT']
continue
if isNA(Σv):
Σf['value'] = v
continue
if isinstance(v, np.number):
Σf['value'] += v
elif isinstance(v, StatT):
Σv['min'] = xmin(Σv['min'], v['min'])
Σv['max'] = xmax(Σv['max'], v['max'])
# TODO better sum everything and then divide as a whole to avoid loss of precision
Σv['avg'], _ = xavg(Σv['avg'], m['X.Tstart'] - Σ['X.Tstart'] - Σf['τ_na'],
v['avg'], m['X.δT'])
elif isinstance(v, Stat):
Σv['min'] = xmin(Σv['min'], v['min'])
Σv['max'] = xmax(Σv['max'], v['max'])
# TODO better sum everything and then divide as a whole to avoid loss of precision
Σv['avg'], Σv['n'] = xavg(Σv['avg'], Σv['n'],
v['avg'], v['n'])
else: else:
if isNA(Σ[field]['value']): raise AssertionError("Calc.aggregate: unexpected type %r" % type(v))
Σ[field]['value'] = 0
Σ[field]['value'] += v
return Σ return Σ
# sum is deprecated alias to aggregate.
@func(Calc)
def sum(calc):
warnings.warn("Calc.sum is deprecated -> use Calc.aggregate instead", DeprecationWarning, stacklevel=4)
return calc.aggregate()
# _miter iterates through [.τ_lo, .τ_hi) yielding Measurements. # _miter iterates through [.τ_lo, .τ_hi) yielding Measurements.
# #
...@@ -819,10 +974,13 @@ def _i2pc(x: Interval): # -> Interval ...@@ -819,10 +974,13 @@ def _i2pc(x: Interval): # -> Interval
# _newscalar creates new NumPy scalar instance with specified type and dtype. # _newscalar creates new NumPy scalar instance with specified type and dtype.
def _newscalar(typ, dtype): def _newscalar(typ, dtype):
_ = np.zeros(shape=(), dtype=(typ, dtype)) dtyp = np.dtype((typ, dtype)) # dtype with .type adjusted to be typ
assert dtyp == dtype
assert dtyp.type is typ
_ = np.zeros(shape=(), dtype=dtyp)
s = _[()] s = _[()]
assert type(s) is typ assert type(s) is typ
assert s.dtype == dtype assert s.dtype is dtyp
return s return s
...@@ -833,15 +991,20 @@ def NA(dtype): ...@@ -833,15 +991,20 @@ def NA(dtype):
typ = dtype.type typ = dtype.type
# float # float
if issubclass(typ, np.floating): if issubclass(typ, np.floating):
na = np.nan na = typ(np.nan) # return the same type as dtype has, e.g. np.int32, not int
# int: NA is min value # int: NA is min value
elif issubclass(typ, np.signedinteger): elif issubclass(typ, np.signedinteger):
na = np.iinfo(typ).min na = typ(np.iinfo(typ).min)
# structure: NA is combination of NAs for fields
elif issubclass(typ, np.void):
na = _newscalar(typ, dtype)
for field in dtype.names:
na[field] = NA(dtype.fields[field][0])
else: else:
raise AssertionError("NA not defined for dtype %s" % (dtype,)) raise AssertionError("NA not defined for dtype %s" % (dtype,))
return typ(na) # return the same type as dtype has, e.g. np.int32, not int assert type(na) is typ
return na
# isNA returns whether value represent NA. # isNA returns whether value represent NA.
...@@ -850,6 +1013,26 @@ def NA(dtype): ...@@ -850,6 +1013,26 @@ def NA(dtype):
# returns array(True/False) if value is array. # returns array(True/False) if value is array.
def isNA(value): def isNA(value):
na = NA(value.dtype) na = NA(value.dtype)
# `nan == nan` gives False
# work it around by checking for nan explicitly
if isinstance(na, np.void): # items are structured scalars
vna = None
for field in value.dtype.names:
nf = na[field]
vf = value[field]
if np.isnan(nf):
x = np.isnan(vf)
else:
x = (vf == nf)
if vna is None:
vna = x
else:
vna &= x
return vna
else:
if np.isnan(na): if np.isnan(na):
return np.isnan(value) # `nan == nan` gives False return np.isnan(value)
return value == na return value == na
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
# Copyright (C) 2022-2023 Nexedi SA and Contributors. # Copyright (C) 2022-2024 Nexedi SA and Contributors.
# Kirill Smelkov <kirr@nexedi.com> # Kirill Smelkov <kirr@nexedi.com>
# #
# This program is free software: you can Use, Study, Modify and Redistribute # This program is free software: you can Use, Study, Modify and Redistribute
...@@ -20,10 +20,13 @@ ...@@ -20,10 +20,13 @@
from __future__ import print_function, division, absolute_import from __future__ import print_function, division, absolute_import
from xlte.kpi import Calc, MeasurementLog, Measurement, Interval, NA, isNA, Σqci, Σcause, nqci from xlte.kpi import Calc, MeasurementLog, Measurement, ΣMeasurement, Interval, \
Stat, StatT, NA, isNA, Σqci, Σcause, nqci
import numpy as np import numpy as np
from pytest import raises from pytest import raises
ms = 1e-3
def test_Measurement(): def test_Measurement():
m = Measurement() m = Measurement()
...@@ -43,6 +46,8 @@ def test_Measurement(): ...@@ -43,6 +46,8 @@ def test_Measurement():
_('DRB.IPVolDl.sum') # int64 _('DRB.IPVolDl.sum') # int64
_('DRB.IPTimeDl.7') # .QCI alias _('DRB.IPTimeDl.7') # .QCI alias
_('DRB.IPTimeDl.QCI') # .QCI array _('DRB.IPTimeDl.QCI') # .QCI array
_('DRB.IPLatDl.7') # .QCI alias to Stat
_('DRB.IPLatDl.QCI') # .QCI array of Stat
# everything automatically # everything automatically
for name in m.dtype.names: for name in m.dtype.names:
_(name) _(name)
...@@ -53,6 +58,12 @@ def test_Measurement(): ...@@ -53,6 +58,12 @@ def test_Measurement():
assert m['S1SIG.ConnEstabAtt'] == 123 assert m['S1SIG.ConnEstabAtt'] == 123
m['RRC.ConnEstabAtt.sum'] = 17 m['RRC.ConnEstabAtt.sum'] = 17
assert m['RRC.ConnEstabAtt.sum'] == 17 assert m['RRC.ConnEstabAtt.sum'] == 17
m['DRB.UEActive']['min'] = 1
m['DRB.UEActive']['avg'] = 6
m['DRB.UEActive']['max'] = 8
assert m['DRB.UEActive']['min'] == 1
assert m['DRB.UEActive']['avg'] == 6
assert m['DRB.UEActive']['max'] == 8
m['DRB.IPVolDl.QCI'][:] = 0 m['DRB.IPVolDl.QCI'][:] = 0
m['DRB.IPVolDl.5'] = 55 m['DRB.IPVolDl.5'] = 55
m['DRB.IPVolDl.7'] = NA(m['DRB.IPVolDl.7'].dtype) m['DRB.IPVolDl.7'] = NA(m['DRB.IPVolDl.7'].dtype)
...@@ -65,17 +76,32 @@ def test_Measurement(): ...@@ -65,17 +76,32 @@ def test_Measurement():
continue continue
assert m['DRB.IPVolDl.%d' % k] == 0 assert m['DRB.IPVolDl.%d' % k] == 0
assert m['DRB.IPVolDl.QCI'][k] == 0 assert m['DRB.IPVolDl.QCI'][k] == 0
m['DRB.IPLatDl.QCI'][:]['avg'] = 0
m['DRB.IPLatDl.QCI'][:]['min'] = 0
m['DRB.IPLatDl.QCI'][:]['max'] = 0
m['DRB.IPLatDl.QCI'][:]['n'] = 0
m['DRB.IPLatDl.QCI'][3]['avg'] = 33
m['DRB.IPLatDl.QCI'][3]['n'] = 123
m['DRB.IPLatDl.4']['avg'] = 44
m['DRB.IPLatDl.4']['n'] = 432
m['DRB.IPLatDl.8']['avg'] = NA(m['DRB.IPLatDl.8']['avg'].dtype)
m['DRB.IPLatDl.8']['n'] = NA(m['DRB.IPLatDl.8']['n'] .dtype)
# str/repr # str/repr
assert repr(m) == "Measurement(RRC.ConnEstabAtt.sum=17, DRB.IPVolDl.QCI={5:55 7:ø 9:99}, S1SIG.ConnEstabAtt=123)" assert repr(m) == "Measurement(RRC.ConnEstabAtt.sum=17, DRB.UEActive=<1 6.0 8>, DRB.IPLatDl.QCI={3:<0.0 33.0 0.0>·123 4:<0.0 44.0 0.0>·432 8:<0.0 ø 0.0>·ø}, DRB.IPVolDl.QCI={5:55 7:ø 9:99}, S1SIG.ConnEstabAtt=123)"
assert repr(m['DRB.UEActive']) == "StatT(1, 6.0, 8, dtype=int32)"
assert repr(m['DRB.IPLatDl.3']) == "Stat(0.0, 33.0, 0.0, 123, dtype=float64)"
s = str(m) s = str(m)
assert s[0] == '(' assert s[0] == '('
assert s[-1] == ')' assert s[-1] == ')'
v = s[1:-1].split(', ') v = s[1:-1].split(', ')
vok = ['ø'] * len(m._dtype0.names) vok = ['ø'] * len(m._dtype0.names)
vok[m.dtype.names.index("RRC.ConnEstabAtt.sum")] = "17" vok[m.dtype.names.index("RRC.ConnEstabAtt.sum")] = "17"
vok[m.dtype.names.index("DRB.UEActive")] = "<1 6.0 8>"
vok[m.dtype.names.index("S1SIG.ConnEstabAtt")] = "123" vok[m.dtype.names.index("S1SIG.ConnEstabAtt")] = "123"
vok[m.dtype.names.index("DRB.IPVolDl.QCI")] = "{5:55 7:ø 9:99}" vok[m.dtype.names.index("DRB.IPVolDl.QCI")] = "{5:55 7:ø 9:99}"
vok[m.dtype.names.index("DRB.IPLatDl.QCI")] = "{3:<0.0 33.0 0.0>·123 4:<0.0 44.0 0.0>·432 8:<0.0 ø 0.0>·ø}"
assert v == vok assert v == vok
# verify that time fields has enough precision # verify that time fields has enough precision
...@@ -496,6 +522,65 @@ def test_Calc_eutran_ip_throughput(): ...@@ -496,6 +522,65 @@ def test_Calc_eutran_ip_throughput():
assert thp[qci]['ul'] == I(0) assert thp[qci]['ul'] == I(0)
# verify Calc.aggregate .
def test_Calc_aggregate():
mlog = MeasurementLog()
m1 = Measurement()
m1['X.Tstart'] = 1
m1['X.δT'] = 2
m1['S1SIG.ConnEstabAtt'] = 12 # Tcc
m1['ERAB.SessionTimeUE'] = 1.2 # Ttime
m1['DRB.UEActive'] = StatT(1, 3.7, 5) # StatT
m1['DRB.IPLatDl.7'] = Stat(4*ms, 7.32*ms, 25*ms, 17) # Stat
m2 = Measurement()
m2['X.Tstart'] = 5 # NOTE [3,5) is NA hole
m2['X.δT'] = 3
m2['S1SIG.ConnEstabAtt'] = 11
m2['ERAB.SessionTimeUE'] = 0.7
m2['DRB.UEActive'] = StatT(2, 3.2, 7)
m2['DRB.IPLatDl.7'] = Stat(3*ms, 5.23*ms, 11*ms, 11)
mlog.append(m1)
mlog.append(m2)
calc = Calc(mlog, 0, 10)
assert calc.τ_lo == 0
assert calc.τ_hi == 10
M = calc.aggregate()
assert isinstance(M, ΣMeasurement)
assert M['X.Tstart'] == 0
assert M['X.δT'] == 10
assert M['S1SIG.ConnEstabAtt']['value'] == 12 + 11
assert M['S1SIG.ConnEstabAtt']['τ_na'] == 5 # [0,1) [3,5) [8,10)
assert M['ERAB.SessionTimeUE']['value'] == 1.2 + 0.7
assert M['ERAB.SessionTimeUE']['τ_na'] == 5
assert M['DRB.UEActive']['value'] == StatT(1, (3.7*2 + 3.2*3)/(2+3), 7)
assert M['DRB.UEActive']['τ_na'] == 5
assert M['DRB.IPLatDl.7']['value'] == Stat(3*ms, (7.32*17 + 5.23*11)/(17+11)*ms, 25*ms, 17+11)
assert M['DRB.IPLatDl.7']['τ_na'] == 5
# assert that everything else is NA with τ_na == 10
def _(name):
f = M[name]
if f.shape != ():
return # don't check X.QCI - rely on aliases
assert isNA(f['value'])
assert f['τ_na'] == 10
for name in M.dtype.names:
if name not in ('X.Tstart', 'X.δT', 'S1SIG.ConnEstabAtt',
'ERAB.SessionTimeUE', 'DRB.UEActive', 'DRB.IPLatDl.7'):
_(name)
# verify Σqci. # verify Σqci.
def test_Σqci(): def test_Σqci():
m = Measurement() m = Measurement()
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment