Commit 8945ef3f authored by David S. Miller's avatar David S. Miller

Merge branch 'systemport'

Florian Fainelli says:

====================
net: Broadcom SYSTEMPORT driver

This patchset adds support for the Broadcom SYSTEMPORT Ethernet MAC
controller which is used in the latest Broadcom BCM7xxx Set Top Box
System-on-a-Chip. This Ethernet MAC is interfaced to an internal
switch which will get a separate driver submitted later on.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 23193668 b8302205
* Broadcom BCM7xxx Ethernet Systemport Controller (SYSTEMPORT)
Required properties:
- compatible: should be one of "brcm,systemport-v1.00" or "brcm,systemport"
- reg: address and length of the register set for the device.
- interrupts: interrupts for the device, first cell must be for the the rx
interrupts, and the second cell should be for the transmit queues
- local-mac-address: Ethernet MAC address (48 bits) of this adapter
- phy-mode: Should be a string describing the PHY interface to the
Ethernet switch/PHY, see Documentation/devicetree/bindings/net/ethernet.txt
- fixed-link: see Documentation/devicetree/bindings/net/fsl-tsec-phy.txt for
the property specific details
Optional properties:
- systemport,num-tier2-arb: number of tier 2 arbiters, an integer
- systemport,num-tier1-arb: number of tier 1 arbiters, an integer
- systemport,num-txq: number of HW transmit queues, an integer
- systemport,num-rxq: number of HW receive queues, an integer
Example:
ethernet@f04a0000 {
compatible = "brcm,systemport-v1.00";
reg = <0xf04a0000 0x4650>;
local-mac-address = [ 00 11 22 33 44 55 ];
fixed-link = <0 1 1000 0 0>;
phy-mode = "gmii";
interrupts = <0x0 0x16 0x0>,
<0x0 0x17 0x0>;
};
......@@ -1967,6 +1967,12 @@ S: Maintained
F: drivers/bcma/
F: include/linux/bcma/
BROADCOM SYSTEMPORT ETHERNET DRIVER
M: Florian Fainelli <f.fainelli@gmail.com>
L: netdev@vger.kernel.org
S: Supported
F: drivers/net/ethernet/broadcom/bcmsysport.*
BROCADE BFA FC SCSI DRIVER
M: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
M: Sudarsana Kalluru <sudarsana.kalluru@qlogic.com>
......
......@@ -150,4 +150,15 @@ config BGMAC
In case of using this driver on BCM4706 it's also requires to enable
BCMA_DRIVER_GMAC_CMN to make it work.
config SYSTEMPORT
tristate "Broadcom SYSTEMPORT internal MAC support"
depends on OF
select MII
select PHYLIB
select FIXED_PHY if SYSTEMPORT=y
help
This driver supports the built-in Ethernet MACs found in the
Broadcom BCM7xxx Set Top Box family chipset using an internal
Ethernet switch.
endif # NET_VENDOR_BROADCOM
......@@ -11,3 +11,4 @@ obj-$(CONFIG_BNX2X) += bnx2x/
obj-$(CONFIG_SB1250_MAC) += sb1250-mac.o
obj-$(CONFIG_TIGON3) += tg3.o
obj-$(CONFIG_BGMAC) += bgmac.o
obj-$(CONFIG_SYSTEMPORT) += bcmsysport.o
/*
* Broadcom BCM7xxx System Port Ethernet MAC driver
*
* Copyright (C) 2014 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include "bcmsysport.h"
/* I/O accessors register helpers */
#define BCM_SYSPORT_IO_MACRO(name, offset) \
static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off) \
{ \
u32 reg = __raw_readl(priv->base + offset + off); \
return reg; \
} \
static inline void name##_writel(struct bcm_sysport_priv *priv, \
u32 val, u32 off) \
{ \
__raw_writel(val, priv->base + offset + off); \
} \
BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET);
BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET);
BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET);
BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET);
BCM_SYSPORT_IO_MACRO(rdma, SYS_PORT_RDMA_OFFSET);
BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET);
/* L2-interrupt masking/unmasking helpers, does automatic saving of the applied
* mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths.
*/
#define BCM_SYSPORT_INTR_L2(which) \
static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \
u32 mask) \
{ \
intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR); \
priv->irq##which##_mask &= ~(mask); \
} \
static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \
u32 mask) \
{ \
intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET); \
priv->irq##which##_mask |= (mask); \
} \
BCM_SYSPORT_INTR_L2(0)
BCM_SYSPORT_INTR_L2(1)
/* Register accesses to GISB/RBUS registers are expensive (few hundred
* nanoseconds), so keep the check for 64-bits explicit here to save
* one register write per-packet on 32-bits platforms.
*/
static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv,
void __iomem *d,
dma_addr_t addr)
{
#ifdef CONFIG_PHYS_ADDR_T_64BIT
__raw_writel(upper_32_bits(addr) & DESC_ADDR_HI_MASK,
d + DESC_ADDR_HI_STATUS_LEN);
#endif
__raw_writel(lower_32_bits(addr), d + DESC_ADDR_LO);
}
static inline void tdma_port_write_desc_addr(struct bcm_sysport_priv *priv,
struct dma_desc *desc,
unsigned int port)
{
/* Ports are latched, so write upper address first */
tdma_writel(priv, desc->addr_status_len, TDMA_WRITE_PORT_HI(port));
tdma_writel(priv, desc->addr_lo, TDMA_WRITE_PORT_LO(port));
}
/* Ethtool operations */
static int bcm_sysport_set_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
return phy_ethtool_sset(priv->phydev, cmd);
}
static int bcm_sysport_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
return phy_ethtool_gset(priv->phydev, cmd);
}
static int bcm_sysport_set_rx_csum(struct net_device *dev,
netdev_features_t wanted)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u32 reg;
priv->rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
reg = rxchk_readl(priv, RXCHK_CONTROL);
if (priv->rx_csum_en)
reg |= RXCHK_EN;
else
reg &= ~RXCHK_EN;
/* If UniMAC forwards CRC, we need to skip over it to get
* a valid CHK bit to be set in the per-packet status word
*/
if (priv->rx_csum_en && priv->crc_fwd)
reg |= RXCHK_SKIP_FCS;
else
reg &= ~RXCHK_SKIP_FCS;
rxchk_writel(priv, reg, RXCHK_CONTROL);
return 0;
}
static int bcm_sysport_set_tx_csum(struct net_device *dev,
netdev_features_t wanted)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u32 reg;
/* Hardware transmit checksum requires us to enable the Transmit status
* block prepended to the packet contents
*/
priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
reg = tdma_readl(priv, TDMA_CONTROL);
if (priv->tsb_en)
reg |= TSB_EN;
else
reg &= ~TSB_EN;
tdma_writel(priv, reg, TDMA_CONTROL);
return 0;
}
static int bcm_sysport_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = features ^ dev->features;
netdev_features_t wanted = dev->wanted_features;
int ret = 0;
if (changed & NETIF_F_RXCSUM)
ret = bcm_sysport_set_rx_csum(dev, wanted);
if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
ret = bcm_sysport_set_tx_csum(dev, wanted);
return ret;
}
/* Hardware counters must be kept in sync because the order/offset
* is important here (order in structure declaration = order in hardware)
*/
static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = {
/* general stats */
STAT_NETDEV(rx_packets),
STAT_NETDEV(tx_packets),
STAT_NETDEV(rx_bytes),
STAT_NETDEV(tx_bytes),
STAT_NETDEV(rx_errors),
STAT_NETDEV(tx_errors),
STAT_NETDEV(rx_dropped),
STAT_NETDEV(tx_dropped),
STAT_NETDEV(multicast),
/* UniMAC RSV counters */
STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
STAT_MIB_RX("rx_pkts", mib.rx.pkt),
STAT_MIB_RX("rx_bytes", mib.rx.bytes),
STAT_MIB_RX("rx_multicast", mib.rx.mca),
STAT_MIB_RX("rx_broadcast", mib.rx.bca),
STAT_MIB_RX("rx_fcs", mib.rx.fcs),
STAT_MIB_RX("rx_control", mib.rx.cf),
STAT_MIB_RX("rx_pause", mib.rx.pf),
STAT_MIB_RX("rx_unknown", mib.rx.uo),
STAT_MIB_RX("rx_align", mib.rx.aln),
STAT_MIB_RX("rx_outrange", mib.rx.flr),
STAT_MIB_RX("rx_code", mib.rx.cde),
STAT_MIB_RX("rx_carrier", mib.rx.fcr),
STAT_MIB_RX("rx_oversize", mib.rx.ovr),
STAT_MIB_RX("rx_jabber", mib.rx.jbr),
STAT_MIB_RX("rx_mtu_err", mib.rx.mtue),
STAT_MIB_RX("rx_good_pkts", mib.rx.pok),
STAT_MIB_RX("rx_unicast", mib.rx.uc),
STAT_MIB_RX("rx_ppp", mib.rx.ppp),
STAT_MIB_RX("rx_crc", mib.rx.rcrc),
/* UniMAC TSV counters */
STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
STAT_MIB_TX("tx_pkts", mib.tx.pkts),
STAT_MIB_TX("tx_multicast", mib.tx.mca),
STAT_MIB_TX("tx_broadcast", mib.tx.bca),
STAT_MIB_TX("tx_pause", mib.tx.pf),
STAT_MIB_TX("tx_control", mib.tx.cf),
STAT_MIB_TX("tx_fcs_err", mib.tx.fcs),
STAT_MIB_TX("tx_oversize", mib.tx.ovr),
STAT_MIB_TX("tx_defer", mib.tx.drf),
STAT_MIB_TX("tx_excess_defer", mib.tx.edf),
STAT_MIB_TX("tx_single_col", mib.tx.scl),
STAT_MIB_TX("tx_multi_col", mib.tx.mcl),
STAT_MIB_TX("tx_late_col", mib.tx.lcl),
STAT_MIB_TX("tx_excess_col", mib.tx.ecl),
STAT_MIB_TX("tx_frags", mib.tx.frg),
STAT_MIB_TX("tx_total_col", mib.tx.ncl),
STAT_MIB_TX("tx_jabber", mib.tx.jbr),
STAT_MIB_TX("tx_bytes", mib.tx.bytes),
STAT_MIB_TX("tx_good_pkts", mib.tx.pok),
STAT_MIB_TX("tx_unicast", mib.tx.uc),
/* UniMAC RUNT counters */
STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
/* RXCHK misc statistics */
STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR),
STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc,
RXCHK_OTHER_DISC_CNTR),
/* RBUF misc statistics */
STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR),
STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR),
};
#define BCM_SYSPORT_STATS_LEN ARRAY_SIZE(bcm_sysport_gstrings_stats)
static void bcm_sysport_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
strlcpy(info->version, "0.1", sizeof(info->version));
strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
info->n_stats = BCM_SYSPORT_STATS_LEN;
}
static u32 bcm_sysport_get_msglvl(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
return priv->msg_enable;
}
static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
priv->msg_enable = enable;
}
static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set)
{
switch (string_set) {
case ETH_SS_STATS:
return BCM_SYSPORT_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void bcm_sysport_get_strings(struct net_device *dev,
u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
memcpy(data + i * ETH_GSTRING_LEN,
bcm_sysport_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
}
break;
default:
break;
}
}
static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv)
{
int i, j = 0;
for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
const struct bcm_sysport_stats *s;
u8 offset = 0;
u32 val = 0;
char *p;
s = &bcm_sysport_gstrings_stats[i];
switch (s->type) {
case BCM_SYSPORT_STAT_NETDEV:
continue;
case BCM_SYSPORT_STAT_MIB_RX:
case BCM_SYSPORT_STAT_MIB_TX:
case BCM_SYSPORT_STAT_RUNT:
if (s->type != BCM_SYSPORT_STAT_MIB_RX)
offset = UMAC_MIB_STAT_OFFSET;
val = umac_readl(priv, UMAC_MIB_START + j + offset);
break;
case BCM_SYSPORT_STAT_RXCHK:
val = rxchk_readl(priv, s->reg_offset);
if (val == ~0)
rxchk_writel(priv, 0, s->reg_offset);
break;
case BCM_SYSPORT_STAT_RBUF:
val = rbuf_readl(priv, s->reg_offset);
if (val == ~0)
rbuf_writel(priv, 0, s->reg_offset);
break;
}
j += s->stat_sizeof;
p = (char *)priv + s->stat_offset;
*(u32 *)p = val;
}
netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n");
}
static void bcm_sysport_get_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
int i;
if (netif_running(dev))
bcm_sysport_update_mib_counters(priv);
for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
const struct bcm_sysport_stats *s;
char *p;
s = &bcm_sysport_gstrings_stats[i];
if (s->type == BCM_SYSPORT_STAT_NETDEV)
p = (char *)&dev->stats;
else
p = (char *)priv;
p += s->stat_offset;
data[i] = *(u32 *)p;
}
}
static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb)
{
dev_kfree_skb_any(cb->skb);
cb->skb = NULL;
dma_unmap_addr_set(cb, dma_addr, 0);
}
static int bcm_sysport_rx_refill(struct bcm_sysport_priv *priv,
struct bcm_sysport_cb *cb)
{
struct device *kdev = &priv->pdev->dev;
struct net_device *ndev = priv->netdev;
dma_addr_t mapping;
int ret;
cb->skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH);
if (!cb->skb) {
netif_err(priv, rx_err, ndev, "SKB alloc failed\n");
return -ENOMEM;
}
mapping = dma_map_single(kdev, cb->skb->data,
RX_BUF_LENGTH, DMA_FROM_DEVICE);
ret = dma_mapping_error(kdev, mapping);
if (ret) {
bcm_sysport_free_cb(cb);
netif_err(priv, rx_err, ndev, "DMA mapping failure\n");
return ret;
}
dma_unmap_addr_set(cb, dma_addr, mapping);
dma_desc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
priv->rx_bd_assign_index++;
priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
priv->rx_bd_assign_ptr = priv->rx_bds +
(priv->rx_bd_assign_index * DESC_SIZE);
netif_dbg(priv, rx_status, ndev, "RX refill\n");
return 0;
}
static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv)
{
struct bcm_sysport_cb *cb;
int ret = 0;
unsigned int i;
for (i = 0; i < priv->num_rx_bds; i++) {
cb = &priv->rx_cbs[priv->rx_bd_assign_index];
if (cb->skb)
continue;
ret = bcm_sysport_rx_refill(priv, cb);
if (ret)
break;
}
return ret;
}
/* Poll the hardware for up to budget packets to process */
static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv,
unsigned int budget)
{
struct device *kdev = &priv->pdev->dev;
struct net_device *ndev = priv->netdev;
unsigned int processed = 0, to_process;
struct bcm_sysport_cb *cb;
struct sk_buff *skb;
unsigned int p_index;
u16 len, status;
struct rsb *rsb;
/* Determine how much we should process since last call */
p_index = rdma_readl(priv, RDMA_PROD_INDEX);
p_index &= RDMA_PROD_INDEX_MASK;
if (p_index < priv->rx_c_index)
to_process = (RDMA_CONS_INDEX_MASK + 1) -
priv->rx_c_index + p_index;
else
to_process = p_index - priv->rx_c_index;
netif_dbg(priv, rx_status, ndev,
"p_index=%d rx_c_index=%d to_process=%d\n",
p_index, priv->rx_c_index, to_process);
while ((processed < to_process) &&
(processed < budget)) {
cb = &priv->rx_cbs[priv->rx_read_ptr];
skb = cb->skb;
dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
/* Extract the Receive Status Block prepended */
rsb = (struct rsb *)skb->data;
len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK;
status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) &
DESC_STATUS_MASK;
processed++;
priv->rx_read_ptr++;
if (priv->rx_read_ptr == priv->num_rx_bds)
priv->rx_read_ptr = 0;
netif_dbg(priv, rx_status, ndev,
"p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n",
p_index, priv->rx_c_index, priv->rx_read_ptr,
len, status);
if (unlikely(!skb)) {
netif_err(priv, rx_err, ndev, "out of memory!\n");
ndev->stats.rx_dropped++;
ndev->stats.rx_errors++;
goto refill;
}
if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) {
netif_err(priv, rx_status, ndev, "fragmented packet!\n");
ndev->stats.rx_dropped++;
ndev->stats.rx_errors++;
bcm_sysport_free_cb(cb);
goto refill;
}
if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) {
netif_err(priv, rx_err, ndev, "error packet\n");
if (RX_STATUS_OVFLOW)
ndev->stats.rx_over_errors++;
ndev->stats.rx_dropped++;
ndev->stats.rx_errors++;
bcm_sysport_free_cb(cb);
goto refill;
}
skb_put(skb, len);
/* Hardware validated our checksum */
if (likely(status & DESC_L4_CSUM))
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* Hardware pre-pends packets with 2bytes between Ethernet
* and IP header plus we have the Receive Status Block, strip
* off all of this from the SKB.
*/
skb_pull(skb, sizeof(*rsb) + 2);
len -= (sizeof(*rsb) + 2);
/* UniMAC may forward CRC */
if (priv->crc_fwd) {
skb_trim(skb, len - ETH_FCS_LEN);
len -= ETH_FCS_LEN;
}
skb->protocol = eth_type_trans(skb, ndev);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += len;
napi_gro_receive(&priv->napi, skb);
refill:
bcm_sysport_rx_refill(priv, cb);
}
return processed;
}
static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_priv *priv,
struct bcm_sysport_cb *cb,
unsigned int *bytes_compl,
unsigned int *pkts_compl)
{
struct device *kdev = &priv->pdev->dev;
struct net_device *ndev = priv->netdev;
if (cb->skb) {
ndev->stats.tx_bytes += cb->skb->len;
*bytes_compl += cb->skb->len;
dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len),
DMA_TO_DEVICE);
ndev->stats.tx_packets++;
(*pkts_compl)++;
bcm_sysport_free_cb(cb);
/* SKB fragment */
} else if (dma_unmap_addr(cb, dma_addr)) {
ndev->stats.tx_bytes += dma_unmap_len(cb, dma_len);
dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len), DMA_TO_DEVICE);
dma_unmap_addr_set(cb, dma_addr, 0);
}
}
/* Reclaim queued SKBs for transmission completion, lockless version */
static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
struct bcm_sysport_tx_ring *ring)
{
struct net_device *ndev = priv->netdev;
unsigned int c_index, last_c_index, last_tx_cn, num_tx_cbs;
unsigned int pkts_compl = 0, bytes_compl = 0;
struct bcm_sysport_cb *cb;
struct netdev_queue *txq;
u32 hw_ind;
txq = netdev_get_tx_queue(ndev, ring->index);
/* Compute how many descriptors have been processed since last call */
hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index));
c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK;
ring->p_index = (hw_ind & RING_PROD_INDEX_MASK);
last_c_index = ring->c_index;
num_tx_cbs = ring->size;
c_index &= (num_tx_cbs - 1);
if (c_index >= last_c_index)
last_tx_cn = c_index - last_c_index;
else
last_tx_cn = num_tx_cbs - last_c_index + c_index;
netif_dbg(priv, tx_done, ndev,
"ring=%d c_index=%d last_tx_cn=%d last_c_index=%d\n",
ring->index, c_index, last_tx_cn, last_c_index);
while (last_tx_cn-- > 0) {
cb = ring->cbs + last_c_index;
bcm_sysport_tx_reclaim_one(priv, cb, &bytes_compl, &pkts_compl);
ring->desc_count++;
last_c_index++;
last_c_index &= (num_tx_cbs - 1);
}
ring->c_index = c_index;
if (netif_tx_queue_stopped(txq) && pkts_compl)
netif_tx_wake_queue(txq);
netif_dbg(priv, tx_done, ndev,
"ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n",
ring->index, ring->c_index, pkts_compl, bytes_compl);
return pkts_compl;
}
/* Locked version of the per-ring TX reclaim routine */
static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
struct bcm_sysport_tx_ring *ring)
{
unsigned int released;
spin_lock(&ring->lock);
released = __bcm_sysport_tx_reclaim(priv, ring);
spin_unlock(&ring->lock);
return released;
}
static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget)
{
struct bcm_sysport_tx_ring *ring =
container_of(napi, struct bcm_sysport_tx_ring, napi);
unsigned int work_done = 0;
work_done = bcm_sysport_tx_reclaim(ring->priv, ring);
if (work_done < budget) {
napi_complete(napi);
/* re-enable TX interrupt */
intrl2_1_mask_clear(ring->priv, BIT(ring->index));
}
return work_done;
}
static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv)
{
unsigned int q;
for (q = 0; q < priv->netdev->num_tx_queues; q++)
bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]);
}
static int bcm_sysport_poll(struct napi_struct *napi, int budget)
{
struct bcm_sysport_priv *priv =
container_of(napi, struct bcm_sysport_priv, napi);
unsigned int work_done = 0;
work_done = bcm_sysport_desc_rx(priv, budget);
priv->rx_c_index += work_done;
priv->rx_c_index &= RDMA_CONS_INDEX_MASK;
rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX);
if (work_done < budget) {
napi_complete(napi);
/* re-enable RX interrupts */
intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE);
}
return work_done;
}
/* RX and misc interrupt routine */
static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct bcm_sysport_priv *priv = netdev_priv(dev);
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
if (unlikely(priv->irq0_stat == 0)) {
netdev_warn(priv->netdev, "spurious RX interrupt\n");
return IRQ_NONE;
}
if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) {
if (likely(napi_schedule_prep(&priv->napi))) {
/* disable RX interrupts */
intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE);
__napi_schedule(&priv->napi);
}
}
/* TX ring is full, perform a full reclaim since we do not know
* which one would trigger this interrupt
*/
if (priv->irq0_stat & INTRL2_0_TX_RING_FULL)
bcm_sysport_tx_reclaim_all(priv);
return IRQ_HANDLED;
}
/* TX interrupt service routine */
static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct bcm_sysport_tx_ring *txr;
unsigned int ring;
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
if (unlikely(priv->irq1_stat == 0)) {
netdev_warn(priv->netdev, "spurious TX interrupt\n");
return IRQ_NONE;
}
for (ring = 0; ring < dev->num_tx_queues; ring++) {
if (!(priv->irq1_stat & BIT(ring)))
continue;
txr = &priv->tx_rings[ring];
if (likely(napi_schedule_prep(&txr->napi))) {
intrl2_1_mask_set(priv, BIT(ring));
__napi_schedule(&txr->napi);
}
}
return IRQ_HANDLED;
}
static int bcm_sysport_insert_tsb(struct sk_buff *skb, struct net_device *dev)
{
struct sk_buff *nskb;
struct tsb *tsb;
u32 csum_info;
u8 ip_proto;
u16 csum_start;
u16 ip_ver;
/* Re-allocate SKB if needed */
if (unlikely(skb_headroom(skb) < sizeof(*tsb))) {
nskb = skb_realloc_headroom(skb, sizeof(*tsb));
dev_kfree_skb(skb);
if (!nskb) {
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
return -ENOMEM;
}
skb = nskb;
}
tsb = (struct tsb *)skb_push(skb, sizeof(*tsb));
/* Zero-out TSB by default */
memset(tsb, 0, sizeof(*tsb));
if (skb->ip_summed == CHECKSUM_PARTIAL) {
ip_ver = htons(skb->protocol);
switch (ip_ver) {
case ETH_P_IP:
ip_proto = ip_hdr(skb)->protocol;
break;
case ETH_P_IPV6:
ip_proto = ipv6_hdr(skb)->nexthdr;
break;
default:
return 0;
}
/* Get the checksum offset and the L4 (transport) offset */
csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb);
csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK;
csum_info |= (csum_start << L4_PTR_SHIFT);
if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
csum_info |= L4_LENGTH_VALID;
if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
csum_info |= L4_UDP;
} else
csum_info = 0;
tsb->l4_ptr_dest_map = csum_info;
}
return 0;
}
static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
struct bcm_sysport_tx_ring *ring;
struct bcm_sysport_cb *cb;
struct netdev_queue *txq;
struct dma_desc *desc;
dma_addr_t mapping;
u32 len_status;
u16 queue;
int ret;
queue = skb_get_queue_mapping(skb);
txq = netdev_get_tx_queue(dev, queue);
ring = &priv->tx_rings[queue];
/* lock against tx reclaim in BH context */
spin_lock(&ring->lock);
if (unlikely(ring->desc_count == 0)) {
netif_tx_stop_queue(txq);
netdev_err(dev, "queue %d awake and ring full!\n", queue);
ret = NETDEV_TX_BUSY;
goto out;
}
/* Insert TSB and checksum infos */
if (priv->tsb_en) {
ret = bcm_sysport_insert_tsb(skb, dev);
if (ret) {
ret = NETDEV_TX_OK;
goto out;
}
}
mapping = dma_map_single(kdev, skb->data, skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(kdev, mapping)) {
netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n",
skb->data, skb->len);
ret = NETDEV_TX_OK;
goto out;
}
/* Remember the SKB for future freeing */
cb = &ring->cbs[ring->curr_desc];
cb->skb = skb;
dma_unmap_addr_set(cb, dma_addr, mapping);
dma_unmap_len_set(cb, dma_len, skb->len);
/* Fetch a descriptor entry from our pool */
desc = ring->desc_cpu;
desc->addr_lo = lower_32_bits(mapping);
len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK;
len_status |= (skb->len << DESC_LEN_SHIFT);
len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) <<
DESC_STATUS_SHIFT;
if (skb->ip_summed == CHECKSUM_PARTIAL)
len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT);
ring->curr_desc++;
if (ring->curr_desc == ring->size)
ring->curr_desc = 0;
ring->desc_count--;
/* Ensure write completion of the descriptor status/length
* in DRAM before the System Port WRITE_PORT register latches
* the value
*/
wmb();
desc->addr_status_len = len_status;
wmb();
/* Write this descriptor address to the RING write port */
tdma_port_write_desc_addr(priv, desc, ring->index);
/* Check ring space and update SW control flow */
if (ring->desc_count == 0)
netif_tx_stop_queue(txq);
netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n",
ring->index, ring->desc_count, ring->curr_desc);
ret = NETDEV_TX_OK;
out:
spin_unlock(&ring->lock);
return ret;
}
static void bcm_sysport_tx_timeout(struct net_device *dev)
{
netdev_warn(dev, "transmit timeout!\n");
dev->trans_start = jiffies;
dev->stats.tx_errors++;
netif_tx_wake_all_queues(dev);
}
/* phylib adjust link callback */
static void bcm_sysport_adj_link(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct phy_device *phydev = priv->phydev;
unsigned int changed = 0;
u32 cmd_bits = 0, reg;
if (priv->old_link != phydev->link) {
changed = 1;
priv->old_link = phydev->link;
}
if (priv->old_duplex != phydev->duplex) {
changed = 1;
priv->old_duplex = phydev->duplex;
}
switch (phydev->speed) {
case SPEED_2500:
cmd_bits = CMD_SPEED_2500;
break;
case SPEED_1000:
cmd_bits = CMD_SPEED_1000;
break;
case SPEED_100:
cmd_bits = CMD_SPEED_100;
break;
case SPEED_10:
cmd_bits = CMD_SPEED_10;
break;
default:
break;
}
cmd_bits <<= CMD_SPEED_SHIFT;
if (phydev->duplex == DUPLEX_HALF)
cmd_bits |= CMD_HD_EN;
if (priv->old_pause != phydev->pause) {
changed = 1;
priv->old_pause = phydev->pause;
}
if (!phydev->pause)
cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE;
reg = umac_readl(priv, UMAC_CMD);
reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) |
CMD_HD_EN | CMD_RX_PAUSE_IGNORE |
CMD_TX_PAUSE_IGNORE);
reg |= cmd_bits;
umac_writel(priv, reg, UMAC_CMD);
if (changed)
phy_print_status(priv->phydev);
}
static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv,
unsigned int index)
{
struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
struct device *kdev = &priv->pdev->dev;
size_t size;
void *p;
u32 reg;
/* Simple descriptors partitioning for now */
size = 256;
/* We just need one DMA descriptor which is DMA-able, since writing to
* the port will allocate a new descriptor in its internal linked-list
*/
p = dma_zalloc_coherent(kdev, 1, &ring->desc_dma, GFP_KERNEL);
if (!p) {
netif_err(priv, hw, priv->netdev, "DMA alloc failed\n");
return -ENOMEM;
}
ring->cbs = kzalloc(sizeof(struct bcm_sysport_cb) * size, GFP_KERNEL);
if (!ring->cbs) {
netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
return -ENOMEM;
}
/* Initialize SW view of the ring */
spin_lock_init(&ring->lock);
ring->priv = priv;
netif_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64);
ring->index = index;
ring->size = size;
ring->alloc_size = ring->size;
ring->desc_cpu = p;
ring->desc_count = ring->size;
ring->curr_desc = 0;
/* Initialize HW ring */
tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index));
tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index));
tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index));
tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index));
tdma_writel(priv, RING_IGNORE_STATUS, TDMA_DESC_RING_MAPPING(index));
tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index));
/* Program the number of descriptors as MAX_THRESHOLD and half of
* its size for the hysteresis trigger
*/
tdma_writel(priv, ring->size |
1 << RING_HYST_THRESH_SHIFT,
TDMA_DESC_RING_MAX_HYST(index));
/* Enable the ring queue in the arbiter */
reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN);
reg |= (1 << index);
tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN);
napi_enable(&ring->napi);
netif_dbg(priv, hw, priv->netdev,
"TDMA cfg, size=%d, desc_cpu=%p\n",
ring->size, ring->desc_cpu);
return 0;
}
static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv,
unsigned int index)
{
struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
struct device *kdev = &priv->pdev->dev;
u32 reg;
/* Caller should stop the TDMA engine */
reg = tdma_readl(priv, TDMA_STATUS);
if (!(reg & TDMA_DISABLED))
netdev_warn(priv->netdev, "TDMA not stopped!\n");
napi_disable(&ring->napi);
netif_napi_del(&ring->napi);
bcm_sysport_tx_reclaim(priv, ring);
kfree(ring->cbs);
ring->cbs = NULL;
if (ring->desc_dma) {
dma_free_coherent(kdev, 1, ring->desc_cpu, ring->desc_dma);
ring->desc_dma = 0;
}
ring->size = 0;
ring->alloc_size = 0;
netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n");
}
/* RDMA helper */
static inline int rdma_enable_set(struct bcm_sysport_priv *priv,
unsigned int enable)
{
unsigned int timeout = 1000;
u32 reg;
reg = rdma_readl(priv, RDMA_CONTROL);
if (enable)
reg |= RDMA_EN;
else
reg &= ~RDMA_EN;
rdma_writel(priv, reg, RDMA_CONTROL);
/* Poll for RMDA disabling completion */
do {
reg = rdma_readl(priv, RDMA_STATUS);
if (!!(reg & RDMA_DISABLED) == !enable)
return 0;
usleep_range(1000, 2000);
} while (timeout-- > 0);
netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n");
return -ETIMEDOUT;
}
/* TDMA helper */
static inline int tdma_enable_set(struct bcm_sysport_priv *priv,
unsigned int enable)
{
unsigned int timeout = 1000;
u32 reg;
reg = tdma_readl(priv, TDMA_CONTROL);
if (enable)
reg |= TDMA_EN;
else
reg &= ~TDMA_EN;
tdma_writel(priv, reg, TDMA_CONTROL);
/* Poll for TMDA disabling completion */
do {
reg = tdma_readl(priv, TDMA_STATUS);
if (!!(reg & TDMA_DISABLED) == !enable)
return 0;
usleep_range(1000, 2000);
} while (timeout-- > 0);
netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n");
return -ETIMEDOUT;
}
static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv)
{
u32 reg;
int ret;
/* Initialize SW view of the RX ring */
priv->num_rx_bds = NUM_RX_DESC;
priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET;
priv->rx_bd_assign_ptr = priv->rx_bds;
priv->rx_bd_assign_index = 0;
priv->rx_c_index = 0;
priv->rx_read_ptr = 0;
priv->rx_cbs = kzalloc(priv->num_rx_bds *
sizeof(struct bcm_sysport_cb), GFP_KERNEL);
if (!priv->rx_cbs) {
netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
return -ENOMEM;
}
ret = bcm_sysport_alloc_rx_bufs(priv);
if (ret) {
netif_err(priv, hw, priv->netdev, "SKB allocation failed\n");
return ret;
}
/* Initialize HW, ensure RDMA is disabled */
reg = rdma_readl(priv, RDMA_STATUS);
if (!(reg & RDMA_DISABLED))
rdma_enable_set(priv, 0);
rdma_writel(priv, 0, RDMA_WRITE_PTR_LO);
rdma_writel(priv, 0, RDMA_WRITE_PTR_HI);
rdma_writel(priv, 0, RDMA_PROD_INDEX);
rdma_writel(priv, 0, RDMA_CONS_INDEX);
rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT |
RX_BUF_LENGTH, RDMA_RING_BUF_SIZE);
/* Operate the queue in ring mode */
rdma_writel(priv, 0, RDMA_START_ADDR_HI);
rdma_writel(priv, 0, RDMA_START_ADDR_LO);
rdma_writel(priv, 0, RDMA_END_ADDR_HI);
rdma_writel(priv, NUM_HW_RX_DESC_WORDS - 1, RDMA_END_ADDR_LO);
rdma_writel(priv, 1, RDMA_MBDONE_INTR);
netif_dbg(priv, hw, priv->netdev,
"RDMA cfg, num_rx_bds=%d, rx_bds=%p\n",
priv->num_rx_bds, priv->rx_bds);
return 0;
}
static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv)
{
struct bcm_sysport_cb *cb;
unsigned int i;
u32 reg;
/* Caller should ensure RDMA is disabled */
reg = rdma_readl(priv, RDMA_STATUS);
if (!(reg & RDMA_DISABLED))
netdev_warn(priv->netdev, "RDMA not stopped!\n");
for (i = 0; i < priv->num_rx_bds; i++) {
cb = &priv->rx_cbs[i];
if (dma_unmap_addr(cb, dma_addr))
dma_unmap_single(&priv->pdev->dev,
dma_unmap_addr(cb, dma_addr),
RX_BUF_LENGTH, DMA_FROM_DEVICE);
bcm_sysport_free_cb(cb);
}
kfree(priv->rx_cbs);
priv->rx_cbs = NULL;
netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n");
}
static void bcm_sysport_set_rx_mode(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u32 reg;
reg = umac_readl(priv, UMAC_CMD);
if (dev->flags & IFF_PROMISC)
reg |= CMD_PROMISC;
else
reg &= ~CMD_PROMISC;
umac_writel(priv, reg, UMAC_CMD);
/* No support for ALLMULTI */
if (dev->flags & IFF_ALLMULTI)
return;
}
static inline void umac_enable_set(struct bcm_sysport_priv *priv,
unsigned int enable)
{
u32 reg;
reg = umac_readl(priv, UMAC_CMD);
if (enable)
reg |= CMD_RX_EN | CMD_TX_EN;
else
reg &= ~(CMD_RX_EN | CMD_TX_EN);
umac_writel(priv, reg, UMAC_CMD);
}
static inline int umac_reset(struct bcm_sysport_priv *priv)
{
unsigned int timeout = 0;
u32 reg;
int ret = 0;
umac_writel(priv, 0, UMAC_CMD);
while (timeout++ < 1000) {
reg = umac_readl(priv, UMAC_CMD);
if (!(reg & CMD_SW_RESET))
break;
udelay(1);
}
if (timeout == 1000) {
dev_err(&priv->pdev->dev,
"timeout waiting for MAC to come out of reset\n");
ret = -ETIMEDOUT;
}
return ret;
}
static void umac_set_hw_addr(struct bcm_sysport_priv *priv,
unsigned char *addr)
{
umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
(addr[2] << 8) | addr[3], UMAC_MAC0);
umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}
static void topctrl_flush(struct bcm_sysport_priv *priv)
{
topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
mdelay(1);
topctrl_writel(priv, 0, RX_FLUSH_CNTL);
topctrl_writel(priv, 0, TX_FLUSH_CNTL);
}
static int bcm_sysport_open(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
unsigned int i;
u32 reg;
int ret;
/* Reset UniMAC */
ret = umac_reset(priv);
if (ret) {
netdev_err(dev, "UniMAC reset failed\n");
return ret;
}
/* Flush TX and RX FIFOs at TOPCTRL level */
topctrl_flush(priv);
/* Disable the UniMAC RX/TX */
umac_enable_set(priv, 0);
/* Enable RBUF 2bytes alignment and Receive Status Block */
reg = rbuf_readl(priv, RBUF_CONTROL);
reg |= RBUF_4B_ALGN | RBUF_RSB_EN;
rbuf_writel(priv, reg, RBUF_CONTROL);
/* Set maximum frame length */
umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
/* Set MAC address */
umac_set_hw_addr(priv, dev->dev_addr);
/* Read CRC forward */
priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD);
priv->phydev = of_phy_connect_fixed_link(dev, bcm_sysport_adj_link,
priv->phy_interface);
if (!priv->phydev) {
netdev_err(dev, "could not attach to PHY\n");
return -ENODEV;
}
/* Reset house keeping link status */
priv->old_duplex = -1;
priv->old_link = -1;
priv->old_pause = -1;
/* mask all interrupts and request them */
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev);
if (ret) {
netdev_err(dev, "failed to request RX interrupt\n");
goto out_phy_disconnect;
}
ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0, dev->name, dev);
if (ret) {
netdev_err(dev, "failed to request TX interrupt\n");
goto out_free_irq0;
}
/* Initialize both hardware and software ring */
for (i = 0; i < dev->num_tx_queues; i++) {
ret = bcm_sysport_init_tx_ring(priv, i);
if (ret) {
netdev_err(dev, "failed to initialize TX ring %d\n",
i);
goto out_free_tx_ring;
}
}
/* Initialize linked-list */
tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
/* Initialize RX ring */
ret = bcm_sysport_init_rx_ring(priv);
if (ret) {
netdev_err(dev, "failed to initialize RX ring\n");
goto out_free_rx_ring;
}
/* Turn on RDMA */
ret = rdma_enable_set(priv, 1);
if (ret)
goto out_free_rx_ring;
/* Enable RX interrupt and TX ring full interrupt */
intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
/* Turn on TDMA */
ret = tdma_enable_set(priv, 1);
if (ret)
goto out_clear_rx_int;
/* Enable NAPI */
napi_enable(&priv->napi);
/* Turn on UniMAC TX/RX */
umac_enable_set(priv, 1);
phy_start(priv->phydev);
/* Enable TX interrupts for the 32 TXQs */
intrl2_1_mask_clear(priv, 0xffffffff);
/* Last call before we start the real business */
netif_tx_start_all_queues(dev);
return 0;
out_clear_rx_int:
intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
out_free_rx_ring:
bcm_sysport_fini_rx_ring(priv);
out_free_tx_ring:
for (i = 0; i < dev->num_tx_queues; i++)
bcm_sysport_fini_tx_ring(priv, i);
free_irq(priv->irq1, dev);
out_free_irq0:
free_irq(priv->irq0, dev);
out_phy_disconnect:
phy_disconnect(priv->phydev);
return ret;
}
static int bcm_sysport_stop(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
unsigned int i;
u32 reg;
int ret;
/* stop all software from updating hardware */
netif_tx_stop_all_queues(dev);
napi_disable(&priv->napi);
phy_stop(priv->phydev);
/* mask all interrupts */
intrl2_0_mask_set(priv, 0xffffffff);
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
intrl2_1_mask_set(priv, 0xffffffff);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
/* Disable UniMAC RX */
reg = umac_readl(priv, UMAC_CMD);
reg &= ~CMD_RX_EN;
umac_writel(priv, reg, UMAC_CMD);
ret = tdma_enable_set(priv, 0);
if (ret) {
netdev_err(dev, "timeout disabling RDMA\n");
return ret;
}
/* Wait for a maximum packet size to be drained */
usleep_range(2000, 3000);
ret = rdma_enable_set(priv, 0);
if (ret) {
netdev_err(dev, "timeout disabling TDMA\n");
return ret;
}
/* Disable UniMAC TX */
reg = umac_readl(priv, UMAC_CMD);
reg &= ~CMD_TX_EN;
umac_writel(priv, reg, UMAC_CMD);
/* Free RX/TX rings SW structures */
for (i = 0; i < dev->num_tx_queues; i++)
bcm_sysport_fini_tx_ring(priv, i);
bcm_sysport_fini_rx_ring(priv);
free_irq(priv->irq0, dev);
free_irq(priv->irq1, dev);
/* Disconnect from PHY */
phy_disconnect(priv->phydev);
return 0;
}
static struct ethtool_ops bcm_sysport_ethtool_ops = {
.get_settings = bcm_sysport_get_settings,
.set_settings = bcm_sysport_set_settings,
.get_drvinfo = bcm_sysport_get_drvinfo,
.get_msglevel = bcm_sysport_get_msglvl,
.set_msglevel = bcm_sysport_set_msglvl,
.get_link = ethtool_op_get_link,
.get_strings = bcm_sysport_get_strings,
.get_ethtool_stats = bcm_sysport_get_stats,
.get_sset_count = bcm_sysport_get_sset_count,
};
static const struct net_device_ops bcm_sysport_netdev_ops = {
.ndo_start_xmit = bcm_sysport_xmit,
.ndo_tx_timeout = bcm_sysport_tx_timeout,
.ndo_open = bcm_sysport_open,
.ndo_stop = bcm_sysport_stop,
.ndo_set_features = bcm_sysport_set_features,
.ndo_set_rx_mode = bcm_sysport_set_rx_mode,
};
#define REV_FMT "v%2x.%02x"
static int bcm_sysport_probe(struct platform_device *pdev)
{
struct bcm_sysport_priv *priv;
struct device_node *dn;
struct net_device *dev;
const void *macaddr;
struct resource *r;
u32 txq, rxq;
int ret;
dn = pdev->dev.of_node;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
/* Read the Transmit/Receive Queue properties */
if (of_property_read_u32(dn, "systemport,num-txq", &txq))
txq = TDMA_NUM_RINGS;
if (of_property_read_u32(dn, "systemport,num-rxq", &rxq))
rxq = 1;
dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq);
if (!dev)
return -ENOMEM;
/* Initialize private members */
priv = netdev_priv(dev);
priv->irq0 = platform_get_irq(pdev, 0);
priv->irq1 = platform_get_irq(pdev, 1);
if (priv->irq0 <= 0 || priv->irq1 <= 0) {
dev_err(&pdev->dev, "invalid interrupts\n");
ret = -EINVAL;
goto err;
}
priv->base = devm_request_and_ioremap(&pdev->dev, r);
if (!priv->base) {
dev_err(&pdev->dev, "register remap failed\n");
ret = -ENOMEM;
goto err;
}
priv->netdev = dev;
priv->pdev = pdev;
priv->phy_interface = of_get_phy_mode(dn);
/* Default to GMII interface mode */
if (priv->phy_interface < 0)
priv->phy_interface = PHY_INTERFACE_MODE_GMII;
/* Initialize netdevice members */
macaddr = of_get_mac_address(dn);
if (!macaddr || !is_valid_ether_addr(macaddr)) {
dev_warn(&pdev->dev, "using random Ethernet MAC\n");
random_ether_addr(dev->dev_addr);
} else {
ether_addr_copy(dev->dev_addr, macaddr);
}
SET_NETDEV_DEV(dev, &pdev->dev);
dev_set_drvdata(&pdev->dev, dev);
SET_ETHTOOL_OPS(dev, &bcm_sysport_ethtool_ops);
dev->netdev_ops = &bcm_sysport_netdev_ops;
netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64);
/* HW supported features, none enabled by default */
dev->hw_features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
/* Set the needed headroom once and for all */
BUILD_BUG_ON(sizeof(struct tsb) != 8);
dev->needed_headroom += sizeof(struct tsb);
/* We are interfaced to a switch which handles the multicast
* filtering for us, so we do not support programming any
* multicast hash table in this Ethernet MAC.
*/
dev->flags &= ~IFF_MULTICAST;
ret = register_netdev(dev);
if (ret) {
dev_err(&pdev->dev, "failed to register net_device\n");
goto err;
}
priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK;
dev_info(&pdev->dev,
"Broadcom SYSTEMPORT" REV_FMT
" at 0x%p (irqs: %d, %d, TXQs: %d, RXQs: %d)\n",
(priv->rev >> 8) & 0xff, priv->rev & 0xff,
priv->base, priv->irq0, priv->irq1, txq, rxq);
return 0;
err:
free_netdev(dev);
return ret;
}
static int bcm_sysport_remove(struct platform_device *pdev)
{
struct net_device *dev = dev_get_drvdata(&pdev->dev);
/* Not much to do, ndo_close has been called
* and we use managed allocations
*/
unregister_netdev(dev);
free_netdev(dev);
dev_set_drvdata(&pdev->dev, NULL);
return 0;
}
static const struct of_device_id bcm_sysport_of_match[] = {
{ .compatible = "brcm,systemport-v1.00" },
{ .compatible = "brcm,systemport" },
{ /* sentinel */ }
};
static struct platform_driver bcm_sysport_driver = {
.probe = bcm_sysport_probe,
.remove = bcm_sysport_remove,
.driver = {
.name = "brcm-systemport",
.owner = THIS_MODULE,
.of_match_table = bcm_sysport_of_match,
},
};
module_platform_driver(bcm_sysport_driver);
MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver");
MODULE_ALIAS("platform:brcm-systemport");
MODULE_LICENSE("GPL");
/*
* Broadcom BCM7xxx System Port Ethernet MAC driver
*
* Copyright (C) 2014 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __BCM_SYSPORT_H
#define __BCM_SYSPORT_H
#include <linux/if_vlan.h>
/* Receive/transmit descriptor format */
#define DESC_ADDR_HI_STATUS_LEN 0x00
#define DESC_ADDR_HI_SHIFT 0
#define DESC_ADDR_HI_MASK 0xff
#define DESC_STATUS_SHIFT 8
#define DESC_STATUS_MASK 0x3ff
#define DESC_LEN_SHIFT 18
#define DESC_LEN_MASK 0x7fff
#define DESC_ADDR_LO 0x04
/* HW supports 40-bit addressing hence the */
#define DESC_SIZE (WORDS_PER_DESC * sizeof(u32))
/* Default RX buffer allocation size */
#define RX_BUF_LENGTH 2048
/* Body(1500) + EH_SIZE(14) + VLANTAG(4) + BRCMTAG(6) + FCS(4) = 1528.
* 1536 is multiple of 256 bytes
*/
#define ENET_BRCM_TAG_LEN 6
#define ENET_PAD 8
#define UMAC_MAX_MTU_SIZE (ETH_DATA_LEN + ETH_HLEN + VLAN_HLEN + \
ENET_BRCM_TAG_LEN + ETH_FCS_LEN + ENET_PAD)
/* Transmit status block */
struct tsb {
u32 pcp_dei_vid;
#define PCP_DEI_MASK 0xf
#define VID_SHIFT 4
#define VID_MASK 0xfff
u32 l4_ptr_dest_map;
#define L4_CSUM_PTR_MASK 0x1ff
#define L4_PTR_SHIFT 9
#define L4_PTR_MASK 0x1ff
#define L4_UDP (1 << 18)
#define L4_LENGTH_VALID (1 << 19)
#define DEST_MAP_SHIFT 20
#define DEST_MAP_MASK 0x1ff
};
/* Receive status block uses the same
* definitions as the DMA descriptor
*/
struct rsb {
u32 rx_status_len;
u32 brcm_egress_tag;
};
/* Common Receive/Transmit status bits */
#define DESC_L4_CSUM (1 << 7)
#define DESC_SOP (1 << 8)
#define DESC_EOP (1 << 9)
/* Receive Status bits */
#define RX_STATUS_UCAST 0
#define RX_STATUS_BCAST 0x04
#define RX_STATUS_MCAST 0x08
#define RX_STATUS_L2_MCAST 0x0c
#define RX_STATUS_ERR (1 << 4)
#define RX_STATUS_OVFLOW (1 << 5)
#define RX_STATUS_PARSE_FAIL (1 << 6)
/* Transmit Status bits */
#define TX_STATUS_VLAN_NO_ACT 0x00
#define TX_STATUS_VLAN_PCP_TSB 0x01
#define TX_STATUS_VLAN_QUEUE 0x02
#define TX_STATUS_VLAN_VID_TSB 0x03
#define TX_STATUS_OWR_CRC (1 << 2)
#define TX_STATUS_APP_CRC (1 << 3)
#define TX_STATUS_BRCM_TAG_NO_ACT 0
#define TX_STATUS_BRCM_TAG_ZERO 0x10
#define TX_STATUS_BRCM_TAG_ONE_QUEUE 0x20
#define TX_STATUS_BRCM_TAG_ONE_TSB 0x30
#define TX_STATUS_SKIP_BYTES (1 << 6)
/* Specific register definitions */
#define SYS_PORT_TOPCTRL_OFFSET 0
#define REV_CNTL 0x00
#define REV_MASK 0xffff
#define RX_FLUSH_CNTL 0x04
#define RX_FLUSH (1 << 0)
#define TX_FLUSH_CNTL 0x08
#define TX_FLUSH (1 << 0)
#define MISC_CNTL 0x0c
#define SYS_CLK_SEL (1 << 0)
#define TDMA_EOP_SEL (1 << 1)
/* Level-2 Interrupt controller offsets and defines */
#define SYS_PORT_INTRL2_0_OFFSET 0x200
#define SYS_PORT_INTRL2_1_OFFSET 0x240
#define INTRL2_CPU_STATUS 0x00
#define INTRL2_CPU_SET 0x04
#define INTRL2_CPU_CLEAR 0x08
#define INTRL2_CPU_MASK_STATUS 0x0c
#define INTRL2_CPU_MASK_SET 0x10
#define INTRL2_CPU_MASK_CLEAR 0x14
/* Level-2 instance 0 interrupt bits */
#define INTRL2_0_GISB_ERR (1 << 0)
#define INTRL2_0_RBUF_OVFLOW (1 << 1)
#define INTRL2_0_TBUF_UNDFLOW (1 << 2)
#define INTRL2_0_MPD (1 << 3)
#define INTRL2_0_BRCM_MATCH_TAG (1 << 4)
#define INTRL2_0_RDMA_MBDONE (1 << 5)
#define INTRL2_0_OVER_MAX_THRESH (1 << 6)
#define INTRL2_0_BELOW_HYST_THRESH (1 << 7)
#define INTRL2_0_FREE_LIST_EMPTY (1 << 8)
#define INTRL2_0_TX_RING_FULL (1 << 9)
#define INTRL2_0_DESC_ALLOC_ERR (1 << 10)
#define INTRL2_0_UNEXP_PKTSIZE_ACK (1 << 11)
/* RXCHK offset and defines */
#define SYS_PORT_RXCHK_OFFSET 0x300
#define RXCHK_CONTROL 0x00
#define RXCHK_EN (1 << 0)
#define RXCHK_SKIP_FCS (1 << 1)
#define RXCHK_BAD_CSUM_DIS (1 << 2)
#define RXCHK_BRCM_TAG_EN (1 << 3)
#define RXCHK_BRCM_TAG_MATCH_SHIFT 4
#define RXCHK_BRCM_TAG_MATCH_MASK 0xff
#define RXCHK_PARSE_TNL (1 << 12)
#define RXCHK_VIOL_EN (1 << 13)
#define RXCHK_VIOL_DIS (1 << 14)
#define RXCHK_INCOM_PKT (1 << 15)
#define RXCHK_V6_DUPEXT_EN (1 << 16)
#define RXCHK_V6_DUPEXT_DIS (1 << 17)
#define RXCHK_ETHERTYPE_DIS (1 << 18)
#define RXCHK_L2_HDR_DIS (1 << 19)
#define RXCHK_L3_HDR_DIS (1 << 20)
#define RXCHK_MAC_RX_ERR_DIS (1 << 21)
#define RXCHK_PARSE_AUTH (1 << 22)
#define RXCHK_BRCM_TAG0 0x04
#define RXCHK_BRCM_TAG(i) ((i) * RXCHK_BRCM_TAG0)
#define RXCHK_BRCM_TAG0_MASK 0x24
#define RXCHK_BRCM_TAG_MASK(i) ((i) * RXCHK_BRCM_TAG0_MASK)
#define RXCHK_BRCM_TAG_MATCH_STATUS 0x44
#define RXCHK_ETHERTYPE 0x48
#define RXCHK_BAD_CSUM_CNTR 0x4C
#define RXCHK_OTHER_DISC_CNTR 0x50
/* TXCHCK offsets and defines */
#define SYS_PORT_TXCHK_OFFSET 0x380
#define TXCHK_PKT_RDY_THRESH 0x00
/* Receive buffer offset and defines */
#define SYS_PORT_RBUF_OFFSET 0x400
#define RBUF_CONTROL 0x00
#define RBUF_RSB_EN (1 << 0)
#define RBUF_4B_ALGN (1 << 1)
#define RBUF_BRCM_TAG_STRIP (1 << 2)
#define RBUF_BAD_PKT_DISC (1 << 3)
#define RBUF_RESUME_THRESH_SHIFT 4
#define RBUF_RESUME_THRESH_MASK 0xff
#define RBUF_OK_TO_SEND_SHIFT 12
#define RBUF_OK_TO_SEND_MASK 0xff
#define RBUF_CRC_REPLACE (1 << 20)
#define RBUF_OK_TO_SEND_MODE (1 << 21)
#define RBUF_RSB_SWAP (1 << 22)
#define RBUF_ACPI_EN (1 << 23)
#define RBUF_PKT_RDY_THRESH 0x04
#define RBUF_STATUS 0x08
#define RBUF_WOL_MODE (1 << 0)
#define RBUF_MPD (1 << 1)
#define RBUF_ACPI (1 << 2)
#define RBUF_OVFL_DISC_CNTR 0x0c
#define RBUF_ERR_PKT_CNTR 0x10
/* Transmit buffer offset and defines */
#define SYS_PORT_TBUF_OFFSET 0x600
#define TBUF_CONTROL 0x00
#define TBUF_BP_EN (1 << 0)
#define TBUF_MAX_PKT_THRESH_SHIFT 1
#define TBUF_MAX_PKT_THRESH_MASK 0x1f
#define TBUF_FULL_THRESH_SHIFT 8
#define TBUF_FULL_THRESH_MASK 0x1f
/* UniMAC offset and defines */
#define SYS_PORT_UMAC_OFFSET 0x800
#define UMAC_CMD 0x008
#define CMD_TX_EN (1 << 0)
#define CMD_RX_EN (1 << 1)
#define CMD_SPEED_SHIFT 2
#define CMD_SPEED_10 0
#define CMD_SPEED_100 1
#define CMD_SPEED_1000 2
#define CMD_SPEED_2500 3
#define CMD_SPEED_MASK 3
#define CMD_PROMISC (1 << 4)
#define CMD_PAD_EN (1 << 5)
#define CMD_CRC_FWD (1 << 6)
#define CMD_PAUSE_FWD (1 << 7)
#define CMD_RX_PAUSE_IGNORE (1 << 8)
#define CMD_TX_ADDR_INS (1 << 9)
#define CMD_HD_EN (1 << 10)
#define CMD_SW_RESET (1 << 13)
#define CMD_LCL_LOOP_EN (1 << 15)
#define CMD_AUTO_CONFIG (1 << 22)
#define CMD_CNTL_FRM_EN (1 << 23)
#define CMD_NO_LEN_CHK (1 << 24)
#define CMD_RMT_LOOP_EN (1 << 25)
#define CMD_PRBL_EN (1 << 27)
#define CMD_TX_PAUSE_IGNORE (1 << 28)
#define CMD_TX_RX_EN (1 << 29)
#define CMD_RUNT_FILTER_DIS (1 << 30)
#define UMAC_MAC0 0x00c
#define UMAC_MAC1 0x010
#define UMAC_MAX_FRAME_LEN 0x014
#define UMAC_TX_FLUSH 0x334
#define UMAC_MIB_START 0x400
/* There is a 0xC gap between the end of RX and beginning of TX stats and then
* between the end of TX stats and the beginning of the RX RUNT
*/
#define UMAC_MIB_STAT_OFFSET 0xc
#define UMAC_MIB_CTRL 0x580
#define MIB_RX_CNT_RST (1 << 0)
#define MIB_RUNT_CNT_RST (1 << 1)
#define MIB_TX_CNT_RST (1 << 2)
#define UMAC_MDF_CTRL 0x650
#define UMAC_MDF_ADDR 0x654
/* Receive DMA offset and defines */
#define SYS_PORT_RDMA_OFFSET 0x2000
#define RDMA_CONTROL 0x1000
#define RDMA_EN (1 << 0)
#define RDMA_RING_CFG (1 << 1)
#define RDMA_DISC_EN (1 << 2)
#define RDMA_BUF_DATA_OFFSET_SHIFT 4
#define RDMA_BUF_DATA_OFFSET_MASK 0x3ff
#define RDMA_STATUS 0x1004
#define RDMA_DISABLED (1 << 0)
#define RDMA_DESC_RAM_INIT_BUSY (1 << 1)
#define RDMA_BP_STATUS (1 << 2)
#define RDMA_SCB_BURST_SIZE 0x1008
#define RDMA_RING_BUF_SIZE 0x100c
#define RDMA_RING_SIZE_SHIFT 16
#define RDMA_WRITE_PTR_HI 0x1010
#define RDMA_WRITE_PTR_LO 0x1014
#define RDMA_PROD_INDEX 0x1018
#define RDMA_PROD_INDEX_MASK 0xffff
#define RDMA_CONS_INDEX 0x101c
#define RDMA_CONS_INDEX_MASK 0xffff
#define RDMA_START_ADDR_HI 0x1020
#define RDMA_START_ADDR_LO 0x1024
#define RDMA_END_ADDR_HI 0x1028
#define RDMA_END_ADDR_LO 0x102c
#define RDMA_MBDONE_INTR 0x1030
#define RDMA_INTR_THRESH_MASK 0xff
#define RDMA_TIMEOUT_SHIFT 16
#define RDMA_TIMEOUT_MASK 0xffff
#define RDMA_XON_XOFF_THRESH 0x1034
#define RDMA_XON_XOFF_THRESH_MASK 0xffff
#define RDMA_XOFF_THRESH_SHIFT 16
#define RDMA_READ_PTR_HI 0x1038
#define RDMA_READ_PTR_LO 0x103c
#define RDMA_OVERRIDE 0x1040
#define RDMA_LE_MODE (1 << 0)
#define RDMA_REG_MODE (1 << 1)
#define RDMA_TEST 0x1044
#define RDMA_TP_OUT_SEL (1 << 0)
#define RDMA_MEM_SEL (1 << 1)
#define RDMA_DEBUG 0x1048
/* Transmit DMA offset and defines */
#define TDMA_NUM_RINGS 32 /* rings = queues */
#define TDMA_PORT_SIZE DESC_SIZE /* two 32-bits words */
#define SYS_PORT_TDMA_OFFSET 0x4000
#define TDMA_WRITE_PORT_OFFSET 0x0000
#define TDMA_WRITE_PORT_HI(i) (TDMA_WRITE_PORT_OFFSET + \
(i) * TDMA_PORT_SIZE)
#define TDMA_WRITE_PORT_LO(i) (TDMA_WRITE_PORT_OFFSET + \
sizeof(u32) + (i) * TDMA_PORT_SIZE)
#define TDMA_READ_PORT_OFFSET (TDMA_WRITE_PORT_OFFSET + \
(TDMA_NUM_RINGS * TDMA_PORT_SIZE))
#define TDMA_READ_PORT_HI(i) (TDMA_READ_PORT_OFFSET + \
(i) * TDMA_PORT_SIZE)
#define TDMA_READ_PORT_LO(i) (TDMA_READ_PORT_OFFSET + \
sizeof(u32) + (i) * TDMA_PORT_SIZE)
#define TDMA_READ_PORT_CMD_OFFSET (TDMA_READ_PORT_OFFSET + \
(TDMA_NUM_RINGS * TDMA_PORT_SIZE))
#define TDMA_READ_PORT_CMD(i) (TDMA_READ_PORT_CMD_OFFSET + \
(i) * sizeof(u32))
#define TDMA_DESC_RING_00_BASE (TDMA_READ_PORT_CMD_OFFSET + \
(TDMA_NUM_RINGS * sizeof(u32)))
/* Register offsets and defines relatives to a specific ring number */
#define RING_HEAD_TAIL_PTR 0x00
#define RING_HEAD_MASK 0x7ff
#define RING_TAIL_SHIFT 11
#define RING_TAIL_MASK 0x7ff
#define RING_FLUSH (1 << 24)
#define RING_EN (1 << 25)
#define RING_COUNT 0x04
#define RING_COUNT_MASK 0x7ff
#define RING_BUFF_DONE_SHIFT 11
#define RING_BUFF_DONE_MASK 0x7ff
#define RING_MAX_HYST 0x08
#define RING_MAX_THRESH_MASK 0x7ff
#define RING_HYST_THRESH_SHIFT 11
#define RING_HYST_THRESH_MASK 0x7ff
#define RING_INTR_CONTROL 0x0c
#define RING_INTR_THRESH_MASK 0x7ff
#define RING_EMPTY_INTR_EN (1 << 15)
#define RING_TIMEOUT_SHIFT 16
#define RING_TIMEOUT_MASK 0xffff
#define RING_PROD_CONS_INDEX 0x10
#define RING_PROD_INDEX_MASK 0xffff
#define RING_CONS_INDEX_SHIFT 16
#define RING_CONS_INDEX_MASK 0xffff
#define RING_MAPPING 0x14
#define RING_QID_MASK 0x3
#define RING_PORT_ID_SHIFT 3
#define RING_PORT_ID_MASK 0x7
#define RING_IGNORE_STATUS (1 << 6)
#define RING_FAILOVER_EN (1 << 7)
#define RING_CREDIT_SHIFT 8
#define RING_CREDIT_MASK 0xffff
#define RING_PCP_DEI_VID 0x18
#define RING_VID_MASK 0x7ff
#define RING_DEI (1 << 12)
#define RING_PCP_SHIFT 13
#define RING_PCP_MASK 0x7
#define RING_PKT_SIZE_ADJ_SHIFT 16
#define RING_PKT_SIZE_ADJ_MASK 0xf
#define TDMA_DESC_RING_SIZE 28
/* Defininition for a given TX ring base address */
#define TDMA_DESC_RING_BASE(i) (TDMA_DESC_RING_00_BASE + \
((i) * TDMA_DESC_RING_SIZE))
/* Ring indexed register addreses */
#define TDMA_DESC_RING_HEAD_TAIL_PTR(i) (TDMA_DESC_RING_BASE(i) + \
RING_HEAD_TAIL_PTR)
#define TDMA_DESC_RING_COUNT(i) (TDMA_DESC_RING_BASE(i) + \
RING_COUNT)
#define TDMA_DESC_RING_MAX_HYST(i) (TDMA_DESC_RING_BASE(i) + \
RING_MAX_HYST)
#define TDMA_DESC_RING_INTR_CONTROL(i) (TDMA_DESC_RING_BASE(i) + \
RING_INTR_CONTROL)
#define TDMA_DESC_RING_PROD_CONS_INDEX(i) \
(TDMA_DESC_RING_BASE(i) + \
RING_PROD_CONS_INDEX)
#define TDMA_DESC_RING_MAPPING(i) (TDMA_DESC_RING_BASE(i) + \
RING_MAPPING)
#define TDMA_DESC_RING_PCP_DEI_VID(i) (TDMA_DESC_RING_BASE(i) + \
RING_PCP_DEI_VID)
#define TDMA_CONTROL 0x600
#define TDMA_EN (1 << 0)
#define TSB_EN (1 << 1)
#define TSB_SWAP (1 << 2)
#define ACB_ALGO (1 << 3)
#define BUF_DATA_OFFSET_SHIFT 4
#define BUF_DATA_OFFSET_MASK 0x3ff
#define VLAN_EN (1 << 14)
#define SW_BRCM_TAG (1 << 15)
#define WNC_KPT_SIZE_UPDATE (1 << 16)
#define SYNC_PKT_SIZE (1 << 17)
#define ACH_TXDONE_DELAY_SHIFT 18
#define ACH_TXDONE_DELAY_MASK 0xff
#define TDMA_STATUS 0x604
#define TDMA_DISABLED (1 << 0)
#define TDMA_LL_RAM_INIT_BUSY (1 << 1)
#define TDMA_SCB_BURST_SIZE 0x608
#define TDMA_OVER_MAX_THRESH_STATUS 0x60c
#define TDMA_OVER_HYST_THRESH_STATUS 0x610
#define TDMA_TPID 0x614
#define TDMA_FREE_LIST_HEAD_TAIL_PTR 0x618
#define TDMA_FREE_HEAD_MASK 0x7ff
#define TDMA_FREE_TAIL_SHIFT 11
#define TDMA_FREE_TAIL_MASK 0x7ff
#define TDMA_FREE_LIST_COUNT 0x61c
#define TDMA_FREE_LIST_COUNT_MASK 0x7ff
#define TDMA_TIER2_ARB_CTRL 0x620
#define TDMA_ARB_MODE_RR 0
#define TDMA_ARB_MODE_WEIGHT_RR 0x1
#define TDMA_ARB_MODE_STRICT 0x2
#define TDMA_ARB_MODE_DEFICIT_RR 0x3
#define TDMA_CREDIT_SHIFT 4
#define TDMA_CREDIT_MASK 0xffff
#define TDMA_TIER1_ARB_0_CTRL 0x624
#define TDMA_ARB_EN (1 << 0)
#define TDMA_TIER1_ARB_0_QUEUE_EN 0x628
#define TDMA_TIER1_ARB_1_CTRL 0x62c
#define TDMA_TIER1_ARB_1_QUEUE_EN 0x630
#define TDMA_TIER1_ARB_2_CTRL 0x634
#define TDMA_TIER1_ARB_2_QUEUE_EN 0x638
#define TDMA_TIER1_ARB_3_CTRL 0x63c
#define TDMA_TIER1_ARB_3_QUEUE_EN 0x640
#define TDMA_SCB_ENDIAN_OVERRIDE 0x644
#define TDMA_LE_MODE (1 << 0)
#define TDMA_REG_MODE (1 << 1)
#define TDMA_TEST 0x648
#define TDMA_TP_OUT_SEL (1 << 0)
#define TDMA_MEM_TM (1 << 1)
#define TDMA_DEBUG 0x64c
/* Transmit/Receive descriptor */
struct dma_desc {
u32 addr_status_len;
u32 addr_lo;
};
/* Number of Receive hardware descriptor words */
#define NUM_HW_RX_DESC_WORDS 1024
/* Real number of usable descriptors */
#define NUM_RX_DESC (NUM_HW_RX_DESC_WORDS / WORDS_PER_DESC)
/* Internal linked-list RAM has up to 1536 entries */
#define NUM_TX_DESC 1536
#define WORDS_PER_DESC (sizeof(struct dma_desc) / sizeof(u32))
/* Rx/Tx common counter group.*/
struct bcm_sysport_pkt_counters {
u32 cnt_64; /* RO Received/Transmited 64 bytes packet */
u32 cnt_127; /* RO Rx/Tx 127 bytes packet */
u32 cnt_255; /* RO Rx/Tx 65-255 bytes packet */
u32 cnt_511; /* RO Rx/Tx 256-511 bytes packet */
u32 cnt_1023; /* RO Rx/Tx 512-1023 bytes packet */
u32 cnt_1518; /* RO Rx/Tx 1024-1518 bytes packet */
u32 cnt_mgv; /* RO Rx/Tx 1519-1522 good VLAN packet */
u32 cnt_2047; /* RO Rx/Tx 1522-2047 bytes packet*/
u32 cnt_4095; /* RO Rx/Tx 2048-4095 bytes packet*/
u32 cnt_9216; /* RO Rx/Tx 4096-9216 bytes packet*/
};
/* RSV, Receive Status Vector */
struct bcm_sysport_rx_counters {
struct bcm_sysport_pkt_counters pkt_cnt;
u32 pkt; /* RO (0x428) Received pkt count*/
u32 bytes; /* RO Received byte count */
u32 mca; /* RO # of Received multicast pkt */
u32 bca; /* RO # of Receive broadcast pkt */
u32 fcs; /* RO # of Received FCS error */
u32 cf; /* RO # of Received control frame pkt*/
u32 pf; /* RO # of Received pause frame pkt */
u32 uo; /* RO # of unknown op code pkt */
u32 aln; /* RO # of alignment error count */
u32 flr; /* RO # of frame length out of range count */
u32 cde; /* RO # of code error pkt */
u32 fcr; /* RO # of carrier sense error pkt */
u32 ovr; /* RO # of oversize pkt*/
u32 jbr; /* RO # of jabber count */
u32 mtue; /* RO # of MTU error pkt*/
u32 pok; /* RO # of Received good pkt */
u32 uc; /* RO # of unicast pkt */
u32 ppp; /* RO # of PPP pkt */
u32 rcrc; /* RO (0x470),# of CRC match pkt */
};
/* TSV, Transmit Status Vector */
struct bcm_sysport_tx_counters {
struct bcm_sysport_pkt_counters pkt_cnt;
u32 pkts; /* RO (0x4a8) Transmited pkt */
u32 mca; /* RO # of xmited multicast pkt */
u32 bca; /* RO # of xmited broadcast pkt */
u32 pf; /* RO # of xmited pause frame count */
u32 cf; /* RO # of xmited control frame count */
u32 fcs; /* RO # of xmited FCS error count */
u32 ovr; /* RO # of xmited oversize pkt */
u32 drf; /* RO # of xmited deferral pkt */
u32 edf; /* RO # of xmited Excessive deferral pkt*/
u32 scl; /* RO # of xmited single collision pkt */
u32 mcl; /* RO # of xmited multiple collision pkt*/
u32 lcl; /* RO # of xmited late collision pkt */
u32 ecl; /* RO # of xmited excessive collision pkt*/
u32 frg; /* RO # of xmited fragments pkt*/
u32 ncl; /* RO # of xmited total collision count */
u32 jbr; /* RO # of xmited jabber count*/
u32 bytes; /* RO # of xmited byte count */
u32 pok; /* RO # of xmited good pkt */
u32 uc; /* RO (0x0x4f0)# of xmited unitcast pkt */
};
struct bcm_sysport_mib {
struct bcm_sysport_rx_counters rx;
struct bcm_sysport_tx_counters tx;
u32 rx_runt_cnt;
u32 rx_runt_fcs;
u32 rx_runt_fcs_align;
u32 rx_runt_bytes;
u32 rxchk_bad_csum;
u32 rxchk_other_pkt_disc;
u32 rbuf_ovflow_cnt;
u32 rbuf_err_cnt;
};
/* HW maintains a large list of counters */
enum bcm_sysport_stat_type {
BCM_SYSPORT_STAT_NETDEV = -1,
BCM_SYSPORT_STAT_MIB_RX,
BCM_SYSPORT_STAT_MIB_TX,
BCM_SYSPORT_STAT_RUNT,
BCM_SYSPORT_STAT_RXCHK,
BCM_SYSPORT_STAT_RBUF,
};
/* Macros to help define ethtool statistics */
#define STAT_NETDEV(m) { \
.stat_string = __stringify(m), \
.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
.stat_offset = offsetof(struct net_device_stats, m), \
.type = BCM_SYSPORT_STAT_NETDEV, \
}
#define STAT_MIB(str, m, _type) { \
.stat_string = str, \
.stat_sizeof = sizeof(((struct bcm_sysport_priv *)0)->m), \
.stat_offset = offsetof(struct bcm_sysport_priv, m), \
.type = _type, \
}
#define STAT_MIB_RX(str, m) STAT_MIB(str, m, BCM_SYSPORT_STAT_MIB_RX)
#define STAT_MIB_TX(str, m) STAT_MIB(str, m, BCM_SYSPORT_STAT_MIB_TX)
#define STAT_RUNT(str, m) STAT_MIB(str, m, BCM_SYSPORT_STAT_RUNT)
#define STAT_RXCHK(str, m, ofs) { \
.stat_string = str, \
.stat_sizeof = sizeof(((struct bcm_sysport_priv *)0)->m), \
.stat_offset = offsetof(struct bcm_sysport_priv, m), \
.type = BCM_SYSPORT_STAT_RXCHK, \
.reg_offset = ofs, \
}
#define STAT_RBUF(str, m, ofs) { \
.stat_string = str, \
.stat_sizeof = sizeof(((struct bcm_sysport_priv *)0)->m), \
.stat_offset = offsetof(struct bcm_sysport_priv, m), \
.type = BCM_SYSPORT_STAT_RBUF, \
.reg_offset = ofs, \
}
struct bcm_sysport_stats {
char stat_string[ETH_GSTRING_LEN];
int stat_sizeof;
int stat_offset;
enum bcm_sysport_stat_type type;
/* reg offset from UMAC base for misc counters */
u16 reg_offset;
};
/* Software house keeping helper structure */
struct bcm_sysport_cb {
struct sk_buff *skb; /* SKB for RX packets */
void __iomem *bd_addr; /* Buffer descriptor PHYS addr */
DEFINE_DMA_UNMAP_ADDR(dma_addr);
DEFINE_DMA_UNMAP_LEN(dma_len);
};
/* Software view of the TX ring */
struct bcm_sysport_tx_ring {
spinlock_t lock; /* Ring lock for tx reclaim/xmit */
struct napi_struct napi; /* NAPI per tx queue */
dma_addr_t desc_dma; /* DMA cookie */
unsigned int index; /* Ring index */
unsigned int size; /* Ring current size */
unsigned int alloc_size; /* Ring one-time allocated size */
unsigned int desc_count; /* Number of descriptors */
unsigned int curr_desc; /* Current descriptor */
unsigned int c_index; /* Last consumer index */
unsigned int p_index; /* Current producer index */
struct bcm_sysport_cb *cbs; /* Transmit control blocks */
struct dma_desc *desc_cpu; /* CPU view of the descriptor */
struct bcm_sysport_priv *priv; /* private context backpointer */
};
/* Driver private structure */
struct bcm_sysport_priv {
void __iomem *base;
u32 irq0_stat;
u32 irq0_mask;
u32 irq1_stat;
u32 irq1_mask;
struct napi_struct napi ____cacheline_aligned;
struct net_device *netdev;
struct platform_device *pdev;
int irq0;
int irq1;
/* Transmit rings */
struct bcm_sysport_tx_ring tx_rings[TDMA_NUM_RINGS];
/* Receive queue */
void __iomem *rx_bds;
void __iomem *rx_bd_assign_ptr;
unsigned int rx_bd_assign_index;
struct bcm_sysport_cb *rx_cbs;
unsigned int num_rx_bds;
unsigned int rx_read_ptr;
unsigned int rx_c_index;
/* PHY device */
struct phy_device *phydev;
phy_interface_t phy_interface;
int old_pause;
int old_link;
int old_duplex;
/* Misc fields */
unsigned int rx_csum_en:1;
unsigned int tsb_en:1;
unsigned int crc_fwd:1;
u16 rev;
/* MIB related fields */
struct bcm_sysport_mib mib;
/* Ethtool */
u32 msg_enable;
};
#endif /* __BCM_SYSPORT_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment