Commit af04d868 authored by Dave Jones's avatar Dave Jones Committed by Jeff Garzik

Merge gt96100 mips net drvr updates from 2.4.x:

* Moved to 2.4.14, ppopov@mvista.com.  Modified driver to add
proper gt96100A support.
* Moved eth port 0 to irq 3 (mapped to GT_SERINT0 on EV96100A)
in order for both ports to work. Also cleaned up boot
option support (mac address string parsing), fleshed out
gt96100_cleanup_module(), and other general code cleanups
<stevel@mvista.com>.
parent 03965cfa
/* /*
* Copyright 2000 MontaVista Software Inc. * Copyright 2000, 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc. * Author: MontaVista Software, Inc.
* stevel@mvista.com or source@mvista.com * stevel@mvista.com or source@mvista.com
* *
...@@ -22,8 +22,23 @@ ...@@ -22,8 +22,23 @@
* *
* Ethernet driver for the MIPS GT96100 Advanced Communication Controller. * Ethernet driver for the MIPS GT96100 Advanced Communication Controller.
* *
* Revision history
*
* 11.11.2001 Moved to 2.4.14, ppopov@mvista.com. Modified driver to add
* proper gt96100A support.
* 12.05.2001 Moved eth port 0 to irq 3 (mapped to GT_SERINT0 on EV96100A)
* in order for both ports to work. Also cleaned up boot
* option support (mac address string parsing), fleshed out
* gt96100_cleanup_module(), and other general code cleanups
* <stevel@mvista.com>.
*/ */
#ifndef __OPTIMIZE__
#error You must compile this file with the correct options!
#error See the last lines of the source file.
#error You must compile this driver with "-O".
#endif
#ifndef __mips__ #ifndef __mips__
#error This driver only works with MIPS architectures! #error This driver only works with MIPS architectures!
#endif #endif
...@@ -45,34 +60,49 @@ ...@@ -45,34 +60,49 @@
#include <linux/etherdevice.h> #include <linux/etherdevice.h>
#include <linux/skbuff.h> #include <linux/skbuff.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/ctype.h>
#include <asm/irq.h> #include <asm/irq.h>
#include <asm/bitops.h> #include <asm/bitops.h>
#include <asm/io.h> #include <asm/io.h>
#include "gt96100eth.h" #define DESC_BE 1
#define DESC_DATA_BE 1
#ifdef GT96100_DEBUG #define GT96100_DEBUG 2
static int gt96100_debug = GT96100_DEBUG;
#else #include "gt96100eth.h"
static int gt96100_debug = 3;
#endif
// prototypes // prototypes
static void *dmaalloc(size_t size, dma_addr_t * dma_handle); static void* dmaalloc(size_t size, dma_addr_t *dma_handle);
static void dmafree(size_t size, void *vaddr); static void dmafree(size_t size, void *vaddr);
static void gt96100_delay(int msec);
static int gt96100_add_hash_entry(struct net_device *dev, static int gt96100_add_hash_entry(struct net_device *dev,
unsigned char *addr); unsigned char* addr);
static void read_mib_counters(struct gt96100_private *gp); static void read_mib_counters(struct gt96100_private *gp);
static int read_MII(struct net_device *dev, u32 reg); static int read_MII(int phy_addr, u32 reg);
static int write_MII(struct net_device *dev, u32 reg, u16 data); static int write_MII(int phy_addr, u32 reg, u16 data);
static void dump_MII(struct net_device *dev); #if 0
static void dump_tx_ring(struct net_device *dev);
static void dump_rx_ring(struct net_device *dev);
#endif
static int gt96100_init_module(void);
static void gt96100_cleanup_module(void);
static void dump_MII(int dbg_lvl, struct net_device *dev);
static void dump_tx_desc(int dbg_lvl, struct net_device *dev, int i);
static void dump_rx_desc(int dbg_lvl, struct net_device *dev, int i);
static void dump_skb(int dbg_lvl, struct net_device *dev,
struct sk_buff *skb);
static void dump_hw_addr(int dbg_lvl, struct net_device *dev,
const char* pfx, unsigned char* addr_str);
static void update_stats(struct gt96100_private *gp); static void update_stats(struct gt96100_private *gp);
static void abort(struct net_device *dev, u32 abort_bits); static void abort(struct net_device *dev, u32 abort_bits);
static void hard_stop(struct net_device *dev); static void hard_stop(struct net_device *dev);
static void enable_ether_irq(struct net_device *dev); static void enable_ether_irq(struct net_device *dev);
static void disable_ether_irq(struct net_device *dev); static void disable_ether_irq(struct net_device *dev);
static int __init gt96100_probe1(struct net_device *dev, long ioaddr, static int gt96100_probe1(int port_num);
int irq, int port_num); static void reset_tx(struct net_device *dev);
static void reset_rx(struct net_device *dev);
static int gt96100_check_tx_consistent(struct gt96100_private *gp);
static int gt96100_init(struct net_device *dev); static int gt96100_init(struct net_device *dev);
static int gt96100_open(struct net_device *dev); static int gt96100_open(struct net_device *dev);
static int gt96100_close(struct net_device *dev); static int gt96100_close(struct net_device *dev);
...@@ -81,134 +111,229 @@ static int gt96100_rx(struct net_device *dev, u32 status); ...@@ -81,134 +111,229 @@ static int gt96100_rx(struct net_device *dev, u32 status);
static void gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void gt96100_tx_timeout(struct net_device *dev); static void gt96100_tx_timeout(struct net_device *dev);
static void gt96100_set_rx_mode(struct net_device *dev); static void gt96100_set_rx_mode(struct net_device *dev);
static struct net_device_stats *gt96100_get_stats(struct net_device *dev); static struct net_device_stats* gt96100_get_stats(struct net_device *dev);
static char version[] __devinitdata = extern char * __init prom_getcmdline(void);
"gt96100eth.c:0.1 stevel@mvista.com\n";
// FIX! Need real Ethernet addresses static int max_interrupt_work = 32;
static unsigned char gt96100_station_addr[2][6] __devinitdata =
{ {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
{0x01, 0x02, 0x03, 0x04, 0x05, 0x07}
};
#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0)) #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
#define RUN_AT(x) (jiffies + (x)) #define RUN_AT(x) (jiffies + (x))
// For reading/writing 32-bit words from/to DMA memory // For reading/writing 32-bit words and half-words from/to DMA memory
#ifdef DESC_BE
#define cpu_to_dma32 cpu_to_be32 #define cpu_to_dma32 cpu_to_be32
#define dma32_to_cpu be32_to_cpu #define dma32_to_cpu be32_to_cpu
#define cpu_to_dma16 cpu_to_be16
#define dma16_to_cpu be16_to_cpu
#else
#define cpu_to_dma32 cpu_to_le32
#define dma32_to_cpu le32_to_cpu
#define cpu_to_dma16 cpu_to_le16
#define dma16_to_cpu le16_to_cpu
#endif
static char mac0[18] = "00.02.03.04.05.06";
static char mac1[18] = "00.01.02.03.04.05";
MODULE_PARM(mac0, "c18");
MODULE_PARM(mac1, "c18");
MODULE_PARM_DESC(mac0, "MAC address for GT96100 ethernet port 0");
MODULE_PARM_DESC(mac1, "MAC address for GT96100 ethernet port 1");
/* /*
* Base address and interupt of the GT96100 ethernet controllers * Info for the GT96100 ethernet controller's ports.
*/ */
static struct { static struct gt96100_if_t {
unsigned int port; struct net_device *dev;
int irq; unsigned int iobase; // IO Base address of this port
int irq; // IRQ number of this port
char *mac_str;
} gt96100_iflist[NUM_INTERFACES] = { } gt96100_iflist[NUM_INTERFACES] = {
{ {
GT96100_ETH0_BASE, GT96100_ETHER0_IRQ}, { NULL,
GT96100_ETH1_BASE, GT96100_ETHER1_IRQ} GT96100_ETH0_BASE, GT96100_ETHER0_IRQ,
mac0
},
{
NULL,
GT96100_ETH1_BASE, GT96100_ETHER1_IRQ,
mac1
}
}; };
static inline const char*
chip_name(int chip_rev)
{
switch (chip_rev) {
case REV_GT96100:
return "GT96100";
case REV_GT96100A_1:
case REV_GT96100A:
return "GT96100A";
default:
return "Unknown GT96100";
}
}
/* /*
DMA memory allocation, derived from pci_alloc_consistent. DMA memory allocation, derived from pci_alloc_consistent.
*/ */
static void *dmaalloc(size_t size, dma_addr_t * dma_handle) static void *
dmaalloc(size_t size, dma_addr_t *dma_handle)
{ {
void *ret; void *ret;
ret = ret = (void *)__get_free_pages(GFP_ATOMIC | GFP_DMA,
(void *) __get_free_pages(GFP_ATOMIC | GFP_DMA, get_order(size));
get_order(size));
if (ret != NULL) { if (ret != NULL) {
dma_cache_inv((unsigned long) ret, size); dma_cache_inv((unsigned long)ret, size);
if (dma_handle != NULL) if (dma_handle != NULL)
*dma_handle = virt_to_phys(ret); *dma_handle = virt_to_phys(ret);
/* bump virtual address up to non-cached area */ /* bump virtual address up to non-cached area */
ret = KSEG1ADDR(ret); ret = (void*)KSEG1ADDR(ret);
} }
return ret; return ret;
} }
static void dmafree(size_t size, void *vaddr) static void
dmafree(size_t size, void *vaddr)
{ {
vaddr = KSEG0ADDR(vaddr); vaddr = (void*)KSEG0ADDR(vaddr);
free_pages((unsigned long) vaddr, get_order(size)); free_pages((unsigned long)vaddr, get_order(size));
} }
static int read_MII(struct net_device *dev, u32 reg)
static void
gt96100_delay(int ms)
{
if (in_interrupt())
return;
else {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(ms*HZ/1000);
}
}
static int
parse_mac_addr(struct net_device *dev, char* macstr)
{
int i, j;
unsigned char result, value;
for (i=0; i<6; i++) {
result = 0;
if (i != 5 && *(macstr+2) != '.') {
err(__FILE__ "invalid mac address format: %d %c\n",
i, *(macstr+2));
return -EINVAL;
}
for (j=0; j<2; j++) {
if (isxdigit(*macstr) &&
(value = isdigit(*macstr) ? *macstr-'0' :
toupper(*macstr)-'A'+10) < 16) {
result = result*16 + value;
macstr++;
} else {
err(__FILE__ "invalid mac address "
"character: %c\n", *macstr);
return -EINVAL;
}
}
macstr++; // step over '.'
dev->dev_addr[i] = result;
}
return 0;
}
static int
read_MII(int phy_addr, u32 reg)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
int timedout = 20; int timedout = 20;
u32 smir = smirOpCode | (gp->phy_addr << smirPhyAdBit) | u32 smir = smirOpCode | (phy_addr << smirPhyAdBit) |
(reg << smirRegAdBit); (reg << smirRegAdBit);
// wait for last operation to complete // wait for last operation to complete
while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) { while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
// snooze for 1 msec and check again // snooze for 1 msec and check again
#if 0 gt96100_delay(1);
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) { if (--timedout == 0) {
printk(KERN_ERR "%s: read_MII busy timeout!!\n", printk(KERN_ERR __FUNCTION__ ": busy timeout!!\n");
dev->name); return -ENODEV;
return -1;
} }
} }
GT96100_WRITE(GT96100_ETH_SMI_REG, smir); GT96100_WRITE(GT96100_ETH_SMI_REG, smir);
timedout = 20; timedout = 20;
// wait for read to complete // wait for read to complete
while (!(smir = GT96100_READ(GT96100_ETH_SMI_REG) & smirReadValid)) { while (!((smir = GT96100_READ(GT96100_ETH_SMI_REG)) & smirReadValid)) {
// snooze for 1 msec and check again // snooze for 1 msec and check again
#if 0 gt96100_delay(1);
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) { if (--timedout == 0) {
printk(KERN_ERR "%s: read_MII timeout!!\n", printk(KERN_ERR __FUNCTION__ ": timeout!!\n");
dev->name); return -ENODEV;
return -1;
} }
} }
return (int) (smir & smirDataMask); return (int)(smir & smirDataMask);
}
static void
dump_tx_desc(int dbg_lvl, struct net_device *dev, int i)
{
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
gt96100_td_t *td = &gp->tx_ring[i];
dbg(dbg_lvl, "Tx descriptor at 0x%08lx:\n", virt_to_phys(td));
dbg(dbg_lvl,
" cmdstat=%04x, byte_cnt=%04x, buff_ptr=%04x, next=%04x\n",
dma32_to_cpu(td->cmdstat),
dma16_to_cpu(td->byte_cnt),
dma32_to_cpu(td->buff_ptr),
dma32_to_cpu(td->next));
}
static void
dump_rx_desc(int dbg_lvl, struct net_device *dev, int i)
{
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
gt96100_rd_t *rd = &gp->rx_ring[i];
dbg(dbg_lvl, "Rx descriptor at 0x%08lx:\n", virt_to_phys(rd));
dbg(dbg_lvl, " cmdstat=%04x, buff_sz=%04x, byte_cnt=%04x, "
"buff_ptr=%04x, next=%04x\n",
dma32_to_cpu(rd->cmdstat),
dma16_to_cpu(rd->buff_sz),
dma16_to_cpu(rd->byte_cnt),
dma32_to_cpu(rd->buff_ptr),
dma32_to_cpu(rd->next));
} }
static int write_MII(struct net_device *dev, u32 reg, u16 data) static int
write_MII(int phy_addr, u32 reg, u16 data)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv;
int timedout = 20; int timedout = 20;
u32 smir = u32 smir = (phy_addr << smirPhyAdBit) |
(gp->phy_addr << smirPhyAdBit) | (reg << smirRegAdBit) | data; (reg << smirRegAdBit) | data;
// wait for last operation to complete // wait for last operation to complete
while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) { while (GT96100_READ(GT96100_ETH_SMI_REG) & smirBusy) {
// snooze for 1 msec and check again // snooze for 1 msec and check again
#if 0 gt96100_delay(1);
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) { if (--timedout == 0) {
printk(KERN_ERR "%s: write_MII busy timeout!!\n", printk(KERN_ERR __FUNCTION__ ": busy timeout!!\n");
dev->name);
return -1; return -1;
} }
} }
...@@ -217,109 +342,203 @@ static int write_MII(struct net_device *dev, u32 reg, u16 data) ...@@ -217,109 +342,203 @@ static int write_MII(struct net_device *dev, u32 reg, u16 data)
return 0; return 0;
} }
#if 0
// These routines work, just disabled to avoid compile warnings
static void
dump_tx_ring(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
int i;
dbg(0, __FUNCTION__ ": txno/txni/cnt=%d/%d/%d\n",
gp->tx_next_out, gp->tx_next_in, gp->tx_count);
static void dump_MII(struct net_device *dev) for (i=0; i<TX_RING_SIZE; i++)
dump_tx_desc(0, dev, i);
}
static void
dump_rx_ring(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
int i;
dbg(0, __FUNCTION__ ": rxno=%d\n", gp->rx_next_out);
for (i=0; i<RX_RING_SIZE; i++)
dump_rx_desc(0, dev, i);
}
#endif
static void
dump_MII(int dbg_lvl, struct net_device *dev)
{ {
int i, val; int i, val;
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
if (dbg_lvl <= GT96100_DEBUG) {
for (i=0; i<7; i++) {
if ((val = read_MII(gp->phy_addr, i)) >= 0)
printk("MII Reg %d=%x\n", i, val);
}
for (i=16; i<21; i++) {
if ((val = read_MII(gp->phy_addr, i)) >= 0)
printk("MII Reg %d=%x\n", i, val);
}
}
}
for (i = 0; i < 7; i++) { static void
if ((val = read_MII(dev, i)) >= 0) dump_hw_addr(int dbg_lvl, struct net_device *dev, const char* pfx,
printk("%s: MII Reg %d=%x\n", dev->name, i, val); unsigned char* addr_str)
{
int i;
char buf[100], octet[5];
if (dbg_lvl <= GT96100_DEBUG) {
strcpy(buf, pfx);
for (i = 0; i < 6; i++) {
sprintf(octet, "%2.2x%s",
addr_str[i], i<5 ? ":" : "\n");
strcat(buf, octet);
}
info("%s", buf);
} }
for (i = 16; i < 21; i++) { }
if ((val = read_MII(dev, i)) >= 0)
printk("%s: MII Reg %d=%x\n", dev->name, i, val);
static void
dump_skb(int dbg_lvl, struct net_device *dev, struct sk_buff *skb)
{
int i;
unsigned char* skbdata;
if (dbg_lvl <= GT96100_DEBUG) {
dbg(dbg_lvl, __FUNCTION__
": skb=%p, skb->data=%p, skb->len=%d\n",
skb, skb->data, skb->len);
skbdata = (unsigned char*)KSEG1ADDR(skb->data);
for (i=0; i<skb->len; i++) {
if (!(i % 16))
printk(KERN_DEBUG "\n %3.3x: %2.2x,",
i, skbdata[i]);
else
printk(KERN_DEBUG "%2.2x,", skbdata[i]);
}
printk(KERN_DEBUG "\n");
} }
} }
static int static int
gt96100_add_hash_entry(struct net_device *dev, unsigned char *addr) gt96100_add_hash_entry(struct net_device *dev, unsigned char* addr)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
u16 hashResult, stmp; //u16 hashResult, stmp;
unsigned char ctmp, hash_ea[6]; //unsigned char ctmp, hash_ea[6];
u32 tblEntry, *tblEntryAddr; u32 tblEntry1, tblEntry0, *tblEntryAddr;
int i; int i;
for (i = 0; i < 6; i++) { tblEntry1 = hteValid | hteRD;
tblEntry1 |= (u32)addr[5] << 3;
tblEntry1 |= (u32)addr[4] << 11;
tblEntry1 |= (u32)addr[3] << 19;
tblEntry1 |= ((u32)addr[2] & 0x1f) << 27;
dbg(3, __FUNCTION__ ": tblEntry1=%x\n", tblEntry1);
tblEntry0 = ((u32)addr[2] >> 5) & 0x07;
tblEntry0 |= (u32)addr[1] << 3;
tblEntry0 |= (u32)addr[0] << 11;
dbg(3, __FUNCTION__ ": tblEntry0=%x\n", tblEntry0);
#if 0
for (i=0; i<6; i++) {
// nibble swap // nibble swap
ctmp = nibswap(addr[i]); ctmp = nibswap(addr[i]);
// invert every nibble // invert every nibble
hash_ea[i] = ((ctmp & 1) << 3) | ((ctmp & 8) >> 3) | hash_ea[i] = ((ctmp&1)<<3) | ((ctmp&8)>>3) |
((ctmp & 2) << 1) | ((ctmp & 4) >> 1); ((ctmp&2)<<1) | ((ctmp&4)>>1);
hash_ea[i] |= ((ctmp & 0x10) << 3) | ((ctmp & 0x80) >> 3) | hash_ea[i] |= ((ctmp&0x10)<<3) | ((ctmp&0x80)>>3) |
((ctmp & 0x20) << 1) | ((ctmp & 0x40) >> 1); ((ctmp&0x20)<<1) | ((ctmp&0x40)>>1);
} }
dump_hw_addr(3, dev, __FUNCTION__ ": nib swap/invt addr=", hash_ea);
if (gp->hash_mode == 0) { if (gp->hash_mode == 0) {
hashResult = ((u16) hash_ea[0] & 0xfc) << 7; hashResult = ((u16)hash_ea[0] & 0xfc) << 7;
stmp = stmp = ((u16)hash_ea[0] & 0x03) |
((u16) hash_ea[0] & 0x03) | (((u16) hash_ea[1] & 0x7f) (((u16)hash_ea[1] & 0x7f) << 2);
<< 2); stmp ^= (((u16)hash_ea[1] >> 7) & 0x01) |
stmp ^= ((u16)hash_ea[2] << 1);
(((u16) hash_ea[1] >> 7) & 0x01) | ((u16) hash_ea[2] << stmp ^= (u16)hash_ea[3] | (((u16)hash_ea[4] & 1) << 8);
1);
stmp ^= (u16) hash_ea[3] | (((u16) hash_ea[4] & 1) << 8);
hashResult |= stmp; hashResult |= stmp;
} else { } else {
return -1; // don't support hash mode 1 return -1; // don't support hash mode 1
} }
dbg(3, __FUNCTION__ ": hashResult=%x\n", hashResult);
tblEntryAddr = tblEntryAddr =
(u32 *) (&gp->hash_table[((u32) hashResult & 0x7ff) << 3]); (u32 *)(&gp->hash_table[((u32)hashResult & 0x7ff) << 3]);
dbg(3, __FUNCTION__ ": tblEntryAddr=%p\n", tblEntryAddr);
for (i = 0; i < HASH_HOP_NUMBER; i++) { for (i=0; i<HASH_HOP_NUMBER; i++) {
if ((*tblEntryAddr & hteValid) if ((*tblEntryAddr & hteValid) &&
&& !(*tblEntryAddr & hteSkip)) { !(*tblEntryAddr & hteSkip)) {
// This entry is already occupied, go to next entry // This entry is already occupied, go to next entry
tblEntryAddr += 2; tblEntryAddr += 2;
dbg(3, __FUNCTION__ ": skipping to %p\n",
tblEntryAddr);
} else { } else {
memset(tblEntryAddr, 0, 8); memset(tblEntryAddr, 0, 8);
tblEntry = hteValid | hteRD; tblEntryAddr[1] = cpu_to_dma32(tblEntry1);
tblEntry |= (u32) addr[5] << 3; tblEntryAddr[0] = cpu_to_dma32(tblEntry0);
tblEntry |= (u32) addr[4] << 11;
tblEntry |= (u32) addr[3] << 19;
tblEntry |= ((u32) addr[2] & 0x1f) << 27;
*(tblEntryAddr + 1) = cpu_to_dma32(tblEntry);
tblEntry = ((u32) addr[2] >> 5) & 0x07;
tblEntry |= (u32) addr[1] << 3;
tblEntry |= (u32) addr[0] << 11;
*tblEntryAddr = cpu_to_dma32(tblEntry);
break; break;
} }
} }
if (i >= HASH_HOP_NUMBER) { if (i >= HASH_HOP_NUMBER) {
printk(KERN_ERR "%s: gt96100_add_hash_entry expired!\n", err(__FUNCTION__ ": expired!\n");
dev->name); return -1; // Couldn't find an unused entry
return -1; // Couldn't find an unused entry }
#else
tblEntryAddr = (u32 *)gp->hash_table;
for (i=0; i<RX_HASH_TABLE_SIZE/4; i+=2) {
tblEntryAddr[i+1] = cpu_to_dma32(tblEntry1);
tblEntryAddr[i] = cpu_to_dma32(tblEntry0);
} }
#endif
return 0; return 0;
} }
static void read_mib_counters(struct gt96100_private *gp) static void
read_mib_counters(struct gt96100_private *gp)
{ {
u32 *mib_regs = (u32 *) & gp->mib; u32* mib_regs = (u32*)&gp->mib;
int i; int i;
for (i = 0; i < sizeof(mib_counters_t) / sizeof(u32); i++) for (i=0; i<sizeof(mib_counters_t)/sizeof(u32); i++)
mib_regs[i] = mib_regs[i] = GT96100ETH_READ(gp, GT96100_ETH_MIB_COUNT_BASE +
GT96100ETH_READ(gp, i*sizeof(u32));
GT96100_ETH_MIB_COUNT_BASE +
i * sizeof(u32));
} }
static void update_stats(struct gt96100_private *gp) static void
update_stats(struct gt96100_private *gp)
{ {
mib_counters_t *mib = &gp->mib; mib_counters_t *mib = &gp->mib;
struct net_device_stats *stats = &gp->stats; struct net_device_stats *stats = &gp->stats;
read_mib_counters(gp); read_mib_counters(gp);
stats->rx_packets = mib->totalFramesReceived; stats->rx_packets = mib->totalFramesReceived;
stats->tx_packets = mib->framesSent; stats->tx_packets = mib->framesSent;
stats->rx_bytes = mib->totalByteReceived; stats->rx_bytes = mib->totalByteReceived;
...@@ -329,8 +548,7 @@ static void update_stats(struct gt96100_private *gp) ...@@ -329,8 +548,7 @@ static void update_stats(struct gt96100_private *gp)
//rx_dropped incremented by gt96100_rx //rx_dropped incremented by gt96100_rx
//tx_dropped incremented by gt96100_tx //tx_dropped incremented by gt96100_tx
stats->multicast = mib->multicastFramesReceived; stats->multicast = mib->multicastFramesReceived;
// Tx collisions incremented by ISR, so add in MIB Rx collisions // collisions incremented by gt96100_tx_complete
stats->collisions += mib->collision + mib->lateCollision;
stats->rx_length_errors = mib->oversizeFrames + mib->fragments; stats->rx_length_errors = mib->oversizeFrames + mib->fragments;
// The RxError condition means the Rx DMA encountered a // The RxError condition means the Rx DMA encountered a
// CPU owned descriptor, which, if things are working as // CPU owned descriptor, which, if things are working as
...@@ -339,13 +557,13 @@ static void update_stats(struct gt96100_private *gp) ...@@ -339,13 +557,13 @@ static void update_stats(struct gt96100_private *gp)
stats->rx_crc_errors = mib->cRCError; stats->rx_crc_errors = mib->cRCError;
} }
static void abort(struct net_device *dev, u32 abort_bits) static void
abort(struct net_device *dev, u32 abort_bits)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
int timedout = 100; // wait up to 100 msec for hard stop to complete int timedout = 100; // wait up to 100 msec for hard stop to complete
if (gt96100_debug > 2) dbg(3, __FUNCTION__ "\n");
printk(KERN_INFO "%s: abort\n", dev->name);
// Return if neither Rx or Tx abort bits are set // Return if neither Rx or Tx abort bits are set
if (!(abort_bits & (sdcmrAR | sdcmrAT))) if (!(abort_bits & (sdcmrAR | sdcmrAT)))
...@@ -353,48 +571,36 @@ static void abort(struct net_device *dev, u32 abort_bits) ...@@ -353,48 +571,36 @@ static void abort(struct net_device *dev, u32 abort_bits)
// make sure only the Rx/Tx abort bits are set // make sure only the Rx/Tx abort bits are set
abort_bits &= (sdcmrAR | sdcmrAT); abort_bits &= (sdcmrAR | sdcmrAT);
spin_lock(&gp->lock); spin_lock(&gp->lock);
// abort any Rx/Tx DMA immediately // abort any Rx/Tx DMA immediately
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, abort_bits); GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, abort_bits);
if (gt96100_debug > 2) dbg(3, __FUNCTION__ ": SDMA comm = %x\n",
printk(KERN_INFO "%s: abort: SDMA comm = %x\n", GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
dev->name, GT96100ETH_READ(gp,
GT96100_ETH_SDMA_COMM));
// wait for abort to complete // wait for abort to complete
while (GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM) & abort_bits) { while (GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM) & abort_bits) {
// snooze for 20 msec and check again // snooze for 20 msec and check again
#if 0 gt96100_delay(1);
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(10 * HZ / 10000);
#else
mdelay(1);
#endif
if (--timedout == 0) { if (--timedout == 0) {
printk(KERN_ERR "%s: abort timeout!!\n", err(__FUNCTION__ ": timeout!!\n");
dev->name);
break; break;
} }
} }
if (gt96100_debug > 2)
printk(KERN_INFO "%s: abort: timedout=%d\n", dev->name,
timedout);
spin_unlock(&gp->lock); spin_unlock(&gp->lock);
} }
static void hard_stop(struct net_device *dev) static void
hard_stop(struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
if (gt96100_debug > 2) dbg(3, __FUNCTION__ "\n");
printk(KERN_INFO "%s: hard stop\n", dev->name);
disable_ether_irq(dev); disable_ether_irq(dev);
...@@ -405,207 +611,236 @@ static void hard_stop(struct net_device *dev) ...@@ -405,207 +611,236 @@ static void hard_stop(struct net_device *dev)
} }
static void enable_ether_irq(struct net_device *dev) static void
enable_ether_irq(struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
u32 intMask; u32 intMask;
/*
* route ethernet interrupt to GT_SERINT0 for port 0,
* GT_INT0 for port 1.
*/
int intr_mask_reg = (gp->port_num == 0) ?
GT96100_SERINT0_MASK : GT96100_INT0_HIGH_MASK;
if (gp->chip_rev >= REV_GT96100A_1) {
intMask = icrTxBufferLow | icrTxEndLow |
icrTxErrorLow | icrRxOVR | icrTxUdr |
icrRxBufferQ0 | icrRxErrorQ0 |
icrMIIPhySTC | icrEtherIntSum;
}
else {
intMask = icrTxBufferLow | icrTxEndLow |
icrTxErrorLow | icrRxOVR | icrTxUdr |
icrRxBuffer | icrRxError |
icrMIIPhySTC | icrEtherIntSum;
}
// unmask interrupts // unmask interrupts
GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, intMask);
icrRxBuffer | icrTxBufferLow | icrTxEndLow |
icrRxError | icrTxErrorLow | icrRxOVR | intMask = GT96100_READ(intr_mask_reg);
icrTxUdr | icrRxBufferQ0 | icrRxErrorQ0 | intMask |= 1<<gp->port_num;
icrMIIPhySTC); GT96100_WRITE(intr_mask_reg, intMask);
// now route ethernet interrupts to GT Int0 (eth0 and eth1 will be
// sharing it).
// FIX! The kernel's irq code should do this
intMask = GT96100_READ(GT96100_INT0_HIGH_MASK);
intMask |= 1 << gp->port_num;
GT96100_WRITE(GT96100_INT0_HIGH_MASK, intMask);
} }
static void disable_ether_irq(struct net_device *dev) static void
disable_ether_irq(struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
u32 intMask; u32 intMask;
int intr_mask_reg = (gp->port_num == 0) ?
GT96100_SERINT0_MASK : GT96100_INT0_HIGH_MASK;
// FIX! The kernel's irq code should do this intMask = GT96100_READ(intr_mask_reg);
intMask = GT96100_READ(GT96100_INT0_HIGH_MASK); intMask &= ~(1<<gp->port_num);
intMask &= ~(1 << gp->port_num); GT96100_WRITE(intr_mask_reg, intMask);
GT96100_WRITE(GT96100_INT0_HIGH_MASK, intMask);
GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, 0); GT96100ETH_WRITE(gp, GT96100_ETH_INT_MASK, 0);
} }
/* /*
* Probe for a GT96100 ethernet controller. * Init GT96100 ethernet controller driver
*/ */
int __init gt96100_probe(struct net_device *dev) int gt96100_init_module(void)
{ {
unsigned int base_addr = dev ? dev->base_addr : 0; int i, retval=0;
int i; u16 vendor_id, device_id;
u32 cpuConfig;
#ifndef CONFIG_MIPS_GT96100ETH #ifndef CONFIG_MIPS_GT96100ETH
return -ENODEV; return -ENODEV;
#endif #endif
if (gt96100_debug > 2) // probe for GT96100 by reading PCI0 vendor/device ID register
printk(KERN_INFO "%s: gt96100_probe\n", dev->name); pcibios_read_config_word(0, 0, PCI_VENDOR_ID, &vendor_id);
pcibios_read_config_word(0, 0, PCI_DEVICE_ID, &device_id);
if (vendor_id != PCI_VENDOR_ID_GALILEO ||
(device_id != PCI_DEVICE_ID_GALILEO_GT96100 &&
device_id != PCI_DEVICE_ID_GALILEO_GT96100A)) {
printk(KERN_ERR __FILE__ ": GT96100 not found!\n");
return -ENODEV;
}
if (base_addr >= KSEG0) /* Check a single specified location. */ cpuConfig = GT96100_READ(GT96100_CPU_INTERF_CONFIG);
return gt96100_probe1(dev, base_addr, dev->irq, 0); if (cpuConfig & (1<<12)) {
else if (base_addr != 0) /* Don't probe at all. */ printk(KERN_ERR __FILE__
return -ENXIO; ": must be in Big Endian mode!\n");
return -ENODEV;
}
// for (i = 0; i<NUM_INTERFACES; i++) { for (i=0; i < NUM_INTERFACES; i++) {
for (i = NUM_INTERFACES - 1; i >= 0; i--) { retval |= gt96100_probe1(i);
int base_addr = gt96100_iflist[i].port;
#if 0
if (check_region(base_addr, GT96100_ETH_IO_SIZE)) {
printk(KERN_ERR
"%s: gt96100_probe: ioaddr 0x%lx taken?\n",
dev->name, base_addr);
continue;
}
#endif
if (gt96100_probe1
(dev, base_addr, gt96100_iflist[i].irq, i) == 0)
return 0;
} }
return -ENODEV;
return retval;
} }
static int __init static int __init
gt96100_probe1(struct net_device *dev, long ioaddr, int irq, int port_num) gt96100_probe1(int port_num)
{ {
static unsigned version_printed = 0;
struct gt96100_private *gp = NULL; struct gt96100_private *gp = NULL;
int i, retval; struct gt96100_if_t *gtif = &gt96100_iflist[port_num];
u32 cpuConfig; int phy_addr, phy_id1, phy_id2;
u32 phyAD;
// FIX! probe for GT96100 by reading a suitable register int retval;
unsigned char chip_rev;
if (gt96100_debug > 2) struct net_device *dev = NULL;
printk(KERN_INFO "gt96100_probe1: ioaddr 0x%lx, irq %d\n",
ioaddr, irq); if (gtif->irq < 0) {
printk(KERN_ERR __FUNCTION__
request_region(ioaddr, GT96100_ETH_IO_SIZE, "GT96100ETH"); ": irq unknown - probing not supported\n");
return -ENODEV;
cpuConfig = GT96100_READ(GT96100_CPU_INTERF_CONFIG);
if (cpuConfig & (1 << 12)) {
printk(KERN_ERR
"gt96100_probe1: must be in Big Endian mode!\n");
retval = -ENODEV;
goto free_region;
} }
pcibios_read_config_byte(0, 0, PCI_REVISION_ID, &chip_rev);
if (gt96100_debug > 2) if (chip_rev >= REV_GT96100A_1) {
printk(KERN_INFO phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
"gt96100_probe1: chip in Big Endian mode - cool\n"); phy_addr = (phyAD >> (5*port_num)) & 0x1f;
} else {
/* Allocate a new 'dev' if needed. */ /*
if (dev == NULL) * not sure what's this about -- probably
dev = init_etherdev(0, sizeof(struct gt96100_private)); * a gt bug
*/
if (gt96100_debug && version_printed++ == 0) phy_addr = port_num;
printk(version); phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
phyAD &= ~(0x1f << (port_num*5));
if (irq < 0) { phyAD |= phy_addr << (port_num*5);
printk(KERN_ERR GT96100_WRITE(GT96100_ETH_PHY_ADDR_REG, phyAD);
"gt96100_probe1: irq unknown - probing not supported\n"); }
retval = -ENODEV;
goto free_region; // probe for the external PHY
if ((phy_id1 = read_MII(phy_addr, 2)) <= 0 ||
(phy_id2 = read_MII(phy_addr, 3)) <= 0) {
printk(KERN_ERR __FUNCTION__
": no PHY found on MII%d\n", port_num);
return -ENODEV;
}
if (!request_region(gtif->iobase, GT96100_ETH_IO_SIZE, "GT96100ETH")) {
printk(KERN_ERR __FUNCTION__ ": request_region failed\n");
return -EBUSY;
} }
printk(KERN_INFO "%s: GT-96100 ethernet found at 0x%lx, irq %d\n", dev = init_etherdev(0, sizeof(struct gt96100_private));
dev->name, ioaddr, irq); gtif->dev = dev;
/* private struct aligned and zeroed by init_etherdev */ /* private struct aligned and zeroed by init_etherdev */
/* Fill in the 'dev' fields. */ /* Fill in the 'dev' fields. */
dev->base_addr = ioaddr; dev->base_addr = gtif->iobase;
dev->irq = irq; dev->irq = gtif->irq;
memcpy(dev->dev_addr, gt96100_station_addr[port_num],
sizeof(dev->dev_addr)); if ((retval = parse_mac_addr(dev, gtif->mac_str))) {
err(__FUNCTION__ ": MAC address parse failed\n");
printk(KERN_INFO "%s: HW Address ", dev->name); retval = -EINVAL;
for (i = 0; i < sizeof(dev->dev_addr); i++) { goto free_region;
printk("%2.2x", dev->dev_addr[i]);
printk(i < 5 ? ":" : "\n");
} }
/* Initialize our private structure. */ /* Initialize our private structure. */
if (dev->priv == NULL) { if (dev->priv == NULL) {
gp = gp = (struct gt96100_private *)kmalloc(sizeof(*gp),
(struct gt96100_private *) kmalloc(sizeof(*gp),
GFP_KERNEL); GFP_KERNEL);
if (gp == NULL) { if (gp == NULL) {
retval = -ENOMEM; retval = -ENOMEM;
goto free_region; goto free_region;
} }
dev->priv = gp; dev->priv = gp;
} }
gp = dev->priv; gp = dev->priv;
memset(gp, 0, sizeof(*gp)); // clear it memset(gp, 0, sizeof(*gp)); // clear it
gp->port_num = port_num; gp->port_num = port_num;
gp->io_size = GT96100_ETH_IO_SIZE; gp->io_size = GT96100_ETH_IO_SIZE;
gp->port_offset = port_num * GT96100_ETH_IO_SIZE; gp->port_offset = port_num * GT96100_ETH_IO_SIZE;
gp->phy_addr = port_num + 1; gp->phy_addr = phy_addr;
gp->chip_rev = chip_rev;
if (gt96100_debug > 2) info("%s found at 0x%x, irq %d\n",
printk(KERN_INFO "%s: gt96100_probe1, port %d\n", chip_name(gp->chip_rev), gtif->iobase, gtif->irq);
dev->name, gp->port_num); dump_hw_addr(0, dev, "HW Address ", dev->dev_addr);
info("%s chip revision=%d\n", chip_name(gp->chip_rev), gp->chip_rev);
info("%s ethernet port %d\n", chip_name(gp->chip_rev), gp->port_num);
info("external PHY ID1=0x%04x, ID2=0x%04x\n", phy_id1, phy_id2);
// Allocate Rx and Tx descriptor rings // Allocate Rx and Tx descriptor rings
if (gp->rx_ring == NULL) { if (gp->rx_ring == NULL) {
// All descriptors in ring must be 16-byte aligned // All descriptors in ring must be 16-byte aligned
gp->rx_ring = dmaalloc(sizeof(gt96100_rd_t) * RX_RING_SIZE gp->rx_ring = dmaalloc(sizeof(gt96100_rd_t) * RX_RING_SIZE
+ + sizeof(gt96100_td_t) * TX_RING_SIZE,
sizeof(gt96100_td_t) * TX_RING_SIZE,
&gp->rx_ring_dma); &gp->rx_ring_dma);
if (gp->rx_ring == NULL) { if (gp->rx_ring == NULL) {
retval = -ENOMEM; retval = -ENOMEM;
goto free_region; goto free_region;
} }
gp->tx_ring = gp->tx_ring = (gt96100_td_t *)(gp->rx_ring + RX_RING_SIZE);
(gt96100_td_t *) (gp->rx_ring + RX_RING_SIZE);
gp->tx_ring_dma = gp->tx_ring_dma =
gp->rx_ring_dma + sizeof(gt96100_rd_t) * RX_RING_SIZE; gp->rx_ring_dma + sizeof(gt96100_rd_t) * RX_RING_SIZE;
} }
if (gt96100_debug > 2) // Allocate the Rx Data Buffers
printk(KERN_INFO if (gp->rx_buff == NULL) {
"%s: gt96100_probe1, rx_ring=%p, tx_ring=%p\n", gp->rx_buff = dmaalloc(PKT_BUF_SZ*RX_RING_SIZE,
dev->name, gp->rx_ring, gp->tx_ring); &gp->rx_buff_dma);
if (gp->rx_buff == NULL) {
dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE
+ sizeof(gt96100_td_t) * TX_RING_SIZE,
gp->rx_ring);
retval = -ENOMEM;
goto free_region;
}
}
dbg(3, __FUNCTION__ ": rx_ring=%p, tx_ring=%p\n",
gp->rx_ring, gp->tx_ring);
// Allocate Rx Hash Table // Allocate Rx Hash Table
if (gp->hash_table == NULL) { if (gp->hash_table == NULL) {
gp->hash_table = (char *) dmaalloc(RX_HASH_TABLE_SIZE, gp->hash_table = (char*)dmaalloc(RX_HASH_TABLE_SIZE,
&gp->hash_table_dma); &gp->hash_table_dma);
if (gp->hash_table == NULL) { if (gp->hash_table == NULL) {
dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE dmafree(sizeof(gt96100_rd_t) * RX_RING_SIZE
+ sizeof(gt96100_td_t) * TX_RING_SIZE, + sizeof(gt96100_td_t) * TX_RING_SIZE,
gp->rx_ring); gp->rx_ring);
dmafree(PKT_BUF_SZ*RX_RING_SIZE, gp->rx_buff);
retval = -ENOMEM; retval = -ENOMEM;
goto free_region; goto free_region;
} }
} }
if (gt96100_debug > 2) dbg(3, __FUNCTION__ ": hash=%p\n", gp->hash_table);
printk(KERN_INFO "%s: gt96100_probe1, hash=%p\n",
dev->name, gp->hash_table);
spin_lock_init(&gp->lock); spin_lock_init(&gp->lock);
dev->open = gt96100_open; dev->open = gt96100_open;
dev->hard_start_xmit = gt96100_tx; dev->hard_start_xmit = gt96100_tx;
dev->stop = gt96100_close; dev->stop = gt96100_close;
...@@ -619,317 +854,358 @@ gt96100_probe1(struct net_device *dev, long ioaddr, int irq, int port_num) ...@@ -619,317 +854,358 @@ gt96100_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
ether_setup(dev); ether_setup(dev);
return 0; return 0;
free_region: free_region:
release_region(ioaddr, gp->io_size); release_region(gtif->iobase, GT96100_ETH_IO_SIZE);
unregister_netdev(dev); unregister_netdev(dev);
if (dev->priv != NULL) if (dev->priv != NULL)
kfree(dev->priv); kfree (dev->priv);
kfree(dev); kfree (dev);
printk(KERN_ERR "%s: gt96100_probe1 failed. Returns %d\n", err(__FUNCTION__ " failed. Returns %d\n", retval);
dev->name, retval);
return retval; return retval;
} }
static int gt96100_init(struct net_device *dev) static void
reset_tx(struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
unsigned long flags;
u32 phyAD, ciu;
int i; int i;
if (gt96100_debug > 2) abort(dev, sdcmrAT);
printk("%s: gt96100_init: dev=%p\n", dev->name, dev);
// Stop and disable Port
hard_stop(dev);
spin_lock_irqsave(&gp->lock, flags);
// First things first, set-up hash table for (i=0; i<TX_RING_SIZE; i++) {
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE); // clear it if (gp->tx_skbuff[i]) {
gp->hash_mode = 0; if (in_interrupt())
// Add a single entry to hash table - our ethernet address dev_kfree_skb_irq(gp->tx_skbuff[i]);
gt96100_add_hash_entry(dev, dev->dev_addr); else
// Set-up DMA ptr to hash table dev_kfree_skb(gp->tx_skbuff[i]);
GT96100ETH_WRITE(gp, GT96100_ETH_HASH_TBL_PTR, gp->hash_table_dma); gp->tx_skbuff[i] = NULL;
if (gt96100_debug > 2) }
printk("%s: gt96100_init: Hash Tbl Ptr=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_HASH_TBL_PTR));
// Setup Tx descriptor ring gp->tx_ring[i].cmdstat = 0; // CPU owns
for (i = 0; i < TX_RING_SIZE; i++) {
gp->tx_ring[i].cmdstat = 0; // CPU owns
gp->tx_ring[i].byte_cnt = 0; gp->tx_ring[i].byte_cnt = 0;
gp->tx_ring[i].buff_ptr = 0; gp->tx_ring[i].buff_ptr = 0;
gp->tx_ring[i].next = gp->tx_ring[i].next =
cpu_to_dma32(gp->tx_ring_dma + cpu_to_dma32(gp->tx_ring_dma +
sizeof(gt96100_td_t) * (i + 1)); sizeof(gt96100_td_t) * (i+1));
dump_tx_desc(4, dev, i);
} }
/* Wrap the ring. */ /* Wrap the ring. */
gp->tx_ring[i - 1].next = cpu_to_dma32(gp->tx_ring_dma); gp->tx_ring[i-1].next = cpu_to_dma32(gp->tx_ring_dma);
// setup only the lowest priority TxCDP reg // setup only the lowest priority TxCDP reg
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR0, GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR0, gp->tx_ring_dma);
gp->tx_ring_dma);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR1, 0); GT96100ETH_WRITE(gp, GT96100_ETH_CURR_TX_DESC_PTR1, 0);
if (gt96100_debug > 2)
printk("%s: gt96100_init: Curr Tx Desc Ptr0=%x\n", // init Tx indeces and pkt counter
dev->name, GT96100ETH_READ(gp, gp->tx_next_in = gp->tx_next_out = 0;
GT96100_ETH_CURR_TX_DESC_PTR0)); gp->tx_count = 0;
// Setup Rx descriptor ring }
for (i = 0; i < RX_RING_SIZE; i++) {
dma_addr_t rx_buff_dma; static void
reset_rx(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
int i;
abort(dev, sdcmrAR);
for (i=0; i<RX_RING_SIZE; i++) {
gp->rx_ring[i].next = gp->rx_ring[i].next =
cpu_to_dma32(gp->rx_ring_dma + cpu_to_dma32(gp->rx_ring_dma +
sizeof(gt96100_rd_t) * (i + 1)); sizeof(gt96100_rd_t) * (i+1));
if (gp->rx_buff[i] == NULL) gp->rx_ring[i].buff_ptr =
gp->rx_buff[i] = cpu_to_dma32(gp->rx_buff_dma + i*PKT_BUF_SZ);
dmaalloc(PKT_BUF_SZ, &rx_buff_dma); gp->rx_ring[i].buff_sz = cpu_to_dma16(PKT_BUF_SZ);
else // Give ownership to device, set first and last, enable intr
rx_buff_dma = virt_to_phys(gp->rx_buff[i]);
if (gp->rx_buff[i] == NULL)
break;
gp->rx_ring[i].buff_ptr = cpu_to_dma32(rx_buff_dma);
gp->rx_ring[i].buff_cnt_sz =
cpu_to_dma32(PKT_BUF_SZ << rdBuffSzBit);
// Give ownership to device, enable interrupt
gp->rx_ring[i].cmdstat = gp->rx_ring[i].cmdstat =
cpu_to_dma32((u32) (rxOwn | rxEI)); cpu_to_dma32((u32)(rxFirst | rxLast | rxOwn | rxEI));
dump_rx_desc(4, dev, i);
} }
/* Wrap the ring. */
if (i != RX_RING_SIZE) { gp->rx_ring[i-1].next = cpu_to_dma32(gp->rx_ring_dma);
int j;
for (j = 0; j < RX_RING_SIZE; j++) { // Setup only the lowest priority RxFDP and RxCDP regs
if (gp->rx_buff[j]) { for (i=0; i<4; i++) {
dmafree(PKT_BUF_SZ, gp->rx_buff[j]); if (i == 0) {
gp->rx_buff[j] = NULL; GT96100ETH_WRITE(gp, GT96100_ETH_1ST_RX_DESC_PTR0,
} gp->rx_ring_dma);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_RX_DESC_PTR0,
gp->rx_ring_dma);
} else {
GT96100ETH_WRITE(gp,
GT96100_ETH_1ST_RX_DESC_PTR0 + i*4,
0);
GT96100ETH_WRITE(gp,
GT96100_ETH_CURR_RX_DESC_PTR0 + i*4,
0);
} }
printk(KERN_ERR "%s: Rx ring allocation failed.\n",
dev->name);
spin_unlock_irqrestore(&gp->lock, flags);
return -ENOMEM;
} }
/* Wrap the ring. */ // init Rx NextOut index
gp->rx_ring[i - 1].next = cpu_to_dma32(gp->rx_ring_dma); gp->rx_next_out = 0;
}
// Set our MII PHY device address
phyAD = GT96100_READ(GT96100_ETH_PHY_ADDR_REG);
phyAD &= ~(0x1f << (gp->port_num * 5));
phyAD |= gp->phy_addr << (gp->port_num * 5);
GT96100_WRITE(GT96100_ETH_PHY_ADDR_REG, phyAD);
if (gt96100_debug > 2)
printk("%s: gt96100_init: PhyAD=%x\n", dev->name,
GT96100_READ(GT96100_ETH_PHY_ADDR_REG));
// Clear all the RxFDP and RXCDP regs...
for (i = 0; i < 4; i++) {
GT96100ETH_WRITE(gp, GT96100_ETH_1ST_RX_DESC_PTR0 + i * 4,
0);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_RX_DESC_PTR0 + i * 4,
0);
}
// and setup only the lowest priority RxFDP and RxCDP regs
GT96100ETH_WRITE(gp, GT96100_ETH_1ST_RX_DESC_PTR0,
gp->rx_ring_dma);
GT96100ETH_WRITE(gp, GT96100_ETH_CURR_RX_DESC_PTR0,
gp->rx_ring_dma);
if (gt96100_debug > 2)
printk("%s: gt96100_init: 1st/Curr Rx Desc Ptr0=%x/%x\n",
dev->name, GT96100ETH_READ(gp,
GT96100_ETH_1ST_RX_DESC_PTR0),
GT96100ETH_READ(gp, GT96100_ETH_CURR_RX_DESC_PTR0));
// init Rx/Tx indeces and pkt counters
gp->rx_next_out = gp->tx_next_in = gp->tx_next_out = 0;
gp->tx_count = 0;
// setup DMA
// FIX! this should be done by Kernel setup code // Returns 1 if the Tx counter and indeces don't gel
ciu = GT96100_READ(GT96100_CIU_ARBITER_CONFIG); static int
ciu |= (0x0c << (gp->port_num * 2)); // set Ether DMA req priority to high gt96100_check_tx_consistent(struct gt96100_private *gp)
// FIX! setting the following bit causes the EV96100 board to hang!!! {
//ciu |= (1 << (24+gp->port_num)); // pull Ethernet port out of Reset??? int diff = gp->tx_next_in - gp->tx_next_out;
// FIX! endian mode???
ciu &= ~(1 << 31); // set desc endianess to Big diff = diff<0 ? TX_RING_SIZE + diff : diff;
GT96100_WRITE(GT96100_CIU_ARBITER_CONFIG, ciu); diff = gp->tx_count == TX_RING_SIZE ? diff + TX_RING_SIZE : diff;
if (gt96100_debug > 2)
printk("%s: gt96100_init: CIU Config=%x/%x\n", dev->name, return (diff != gp->tx_count);
ciu, GT96100_READ(GT96100_CIU_ARBITER_CONFIG)); }
static int
gt96100_init(struct net_device *dev)
{
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
u32 tmp;
u16 mii_reg;
dbg(3, __FUNCTION__ ": dev=%p\n", dev);
dbg(3, __FUNCTION__ ": scs10_lo=%4x, scs10_hi=%4x\n",
GT96100_READ(0x8), GT96100_READ(0x10));
dbg(3, __FUNCTION__ ": scs32_lo=%4x, scs32_hi=%4x\n",
GT96100_READ(0x18), GT96100_READ(0x20));
// Stop and disable Port
hard_stop(dev);
// Setup CIU Arbiter
tmp = GT96100_READ(GT96100_CIU_ARBITER_CONFIG);
tmp |= (0x0c << (gp->port_num*2)); // set Ether DMA req priority to hi
#ifndef DESC_BE
tmp &= ~(1<<31); // set desc endianess to little
#else
tmp |= (1<<31);
#endif
GT96100_WRITE(GT96100_CIU_ARBITER_CONFIG, tmp);
dbg(3, __FUNCTION__ ": CIU Config=%x/%x\n",
tmp, GT96100_READ(GT96100_CIU_ARBITER_CONFIG));
// Set routing.
tmp = GT96100_READ(GT96100_ROUTE_MAIN) & (0x3f << 18);
tmp |= (0x07 << (18 + gp->port_num*3));
GT96100_WRITE(GT96100_ROUTE_MAIN, tmp);
/* set MII as peripheral func */
tmp = GT96100_READ(GT96100_GPP_CONFIG2);
tmp |= 0x7fff << (gp->port_num*16);
GT96100_WRITE(GT96100_GPP_CONFIG2, tmp);
/* Set up MII port pin directions */
tmp = GT96100_READ(GT96100_GPP_IO2);
tmp |= 0x003d << (gp->port_num*16);
GT96100_WRITE(GT96100_GPP_IO2, tmp);
// Set-up hash table
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE); // clear it
gp->hash_mode = 0;
// Add a single entry to hash table - our ethernet address
gt96100_add_hash_entry(dev, dev->dev_addr);
// Set-up DMA ptr to hash table
GT96100ETH_WRITE(gp, GT96100_ETH_HASH_TBL_PTR, gp->hash_table_dma);
dbg(3, __FUNCTION__ ": Hash Tbl Ptr=%x\n",
GT96100ETH_READ(gp, GT96100_ETH_HASH_TBL_PTR));
// Setup Tx
reset_tx(dev);
dbg(3, __FUNCTION__ ": Curr Tx Desc Ptr0=%x\n",
GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0));
// Setup Rx
reset_rx(dev);
dbg(3, __FUNCTION__ ": 1st/Curr Rx Desc Ptr0=%x/%x\n",
GT96100ETH_READ(gp, GT96100_ETH_1ST_RX_DESC_PTR0),
GT96100ETH_READ(gp, GT96100_ETH_CURR_RX_DESC_PTR0));
// eth port config register
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP | pcxrDPLXen);
mii_reg = read_MII(gp->phy_addr, 0x11); /* int enable register */
mii_reg |= 2; /* enable mii interrupt */
write_MII(gp->phy_addr, 0x11, mii_reg);
dbg(3, __FUNCTION__ ": PhyAD=%x\n",
GT96100_READ(GT96100_ETH_PHY_ADDR_REG));
// setup DMA
// We want the Rx/Tx DMA to write/read data to/from memory in // We want the Rx/Tx DMA to write/read data to/from memory in
// Big Endian mode. Also set DMA Burst Size to 8 64Bit words. // Big Endian mode. Also set DMA Burst Size to 8 64Bit words.
// FIX! endian mode??? #ifdef DESC_DATA_BE
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG,
(0xf<<sdcrRCBit) | sdcrRIFB | (3<<sdcrBSZBit));
#else
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG, GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_CONFIG,
//sdcrBLMR | sdcrBLMT | sdcrBLMR | sdcrBLMT |
(0xf << sdcrRCBit) | sdcrRIFB | (3 << sdcrBSZBit)); (0xf<<sdcrRCBit) | sdcrRIFB | (3<<sdcrBSZBit));
if (gt96100_debug > 2) #endif
printk("%s: gt96100_init: SDMA Config=%x\n", dev->name, dbg(3, __FUNCTION__ ": SDMA Config=%x\n",
GT96100ETH_READ(gp, GT96100_ETH_SDMA_CONFIG)); GT96100ETH_READ(gp, GT96100_ETH_SDMA_CONFIG));
// start Rx DMA // start Rx DMA
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD); GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
if (gt96100_debug > 2) dbg(3, __FUNCTION__ ": SDMA Comm=%x\n",
printk("%s: gt96100_init: SDMA Comm=%x\n", dev->name, GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
GT96100ETH_READ(gp, GT96100_ETH_SDMA_COMM));
// enable this port (set hash size to 1/2K)
// enable interrupts GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, pcrEN | pcrHS);
enable_ether_irq(dev); dbg(3, __FUNCTION__ ": Port Config=%x\n",
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG));
/* /*
* Disable all Type-of-Service queueing. All Rx packets will be * Disable all Type-of-Service queueing. All Rx packets will be
* treated normally and will be sent to the lowest priority * treated normally and will be sent to the lowest priority
* queue. * queue.
* *
* Disable flow-control for now. FIX! support flow control? * Disable flow-control for now. FIXME: support flow control?
*/ */
// clear all the MIB ctr regs // clear all the MIB ctr regs
// Enable reg clear on read. FIX! desc of this bit is inconsistent
// in the GT-96100A datasheet.
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT, GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP); pcxrFCTL | pcxrFCTLen | pcxrFLP |
pcxrPRIOrxOverride);
read_mib_counters(gp); read_mib_counters(gp);
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT, GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG_EXT,
pcxrFCTL | pcxrFCTLen | pcxrFLP | pcxrMIBclrMode); pcxrFCTL | pcxrFCTLen | pcxrFLP |
pcxrPRIOrxOverride | pcxrMIBclrMode);
dbg(3, __FUNCTION__ ": Port Config Ext=%x\n",
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG_EXT));
if (gt96100_debug > 2) netif_start_queue(dev);
printk("%s: gt96100_init: Port Config Ext=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG_EXT));
// enable this port (set hash size to 1/2K) dump_MII(4, dev);
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, pcrEN | pcrHS);
if (gt96100_debug > 2)
printk("%s: gt96100_init: Port Config=%x\n", dev->name,
GT96100ETH_READ(gp, GT96100_ETH_PORT_CONFIG));
// we should now be receiving frames // enable interrupts
if (gt96100_debug > 2) enable_ether_irq(dev);
dump_MII(dev);
spin_unlock_irqrestore(&gp->lock, flags); // we should now be receiving frames
return 0; return 0;
} }
static int gt96100_open(struct net_device *dev) static int
gt96100_open(struct net_device *dev)
{ {
int retval; int retval;
MOD_INC_USE_COUNT; MOD_INC_USE_COUNT;
if (gt96100_debug > 2) dbg(2, __FUNCTION__ ": dev=%p\n", dev);
printk("%s: gt96100_open: dev=%p\n", dev->name, dev);
if ((retval = request_irq(dev->irq, &gt96100_interrupt,
SA_SHIRQ, dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
dev->irq);
MOD_DEC_USE_COUNT;
return retval;
}
// Initialize and startup the GT-96100 ethernet port // Initialize and startup the GT-96100 ethernet port
if ((retval = gt96100_init(dev))) { if ((retval = gt96100_init(dev))) {
printk(KERN_ERR "%s: error in gt96100_init\n", dev->name); err("error in gt96100_init\n");
free_irq(dev->irq, dev); free_irq(dev->irq, dev);
MOD_DEC_USE_COUNT; MOD_DEC_USE_COUNT;
return retval; return retval;
} }
netif_start_queue(dev); if ((retval = request_irq(dev->irq, &gt96100_interrupt,
SA_SHIRQ, dev->name, dev))) {
if (gt96100_debug > 2) err("unable to get IRQ %d\n", dev->irq);
printk("%s: gt96100_open: Initialization done.\n", MOD_DEC_USE_COUNT;
dev->name); return retval;
}
dbg(2, __FUNCTION__ ": Initialization done.\n");
return 0; return 0;
} }
static int gt96100_close(struct net_device *dev) static int
gt96100_close(struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; dbg(3, __FUNCTION__ ": dev=%p\n", dev);
int i;
if (gt96100_debug > 2)
printk("%s: gt96100_close: dev=%p\n", dev->name, dev);
// stop the device // stop the device
if (netif_device_present(dev)) { if (netif_device_present(dev)) {
netif_stop_queue(dev); netif_stop_queue(dev);
hard_stop(dev); hard_stop(dev);
} }
// free the Rx DMA buffers
for (i = 0; i < RX_RING_SIZE; i++) {
if (gp->rx_buff[i]) {
dmafree(PKT_BUF_SZ, gp->rx_buff[i]);
gp->rx_buff[i] = NULL;
}
}
free_irq(dev->irq, dev); free_irq(dev->irq, dev);
MOD_DEC_USE_COUNT; MOD_DEC_USE_COUNT;
return 0; return 0;
} }
static int gt96100_tx(struct sk_buff *skb, struct net_device *dev) static int
gt96100_tx(struct sk_buff *skb, struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
unsigned long flags; unsigned long flags;
int nextIn; int nextIn;
if (gt96100_debug > 2)
printk("%s: gt96100_tx: skb->len=%d, skb->data=%p\n",
dev->name, skb->len, skb->data);
spin_lock_irqsave(&gp->lock, flags); spin_lock_irqsave(&gp->lock, flags);
nextIn = gp->tx_next_in;
dbg(3, __FUNCTION__ ": nextIn=%d\n", nextIn);
if (gp->tx_count >= TX_RING_SIZE) { if (gp->tx_count >= TX_RING_SIZE) {
printk(KERN_WARNING warn("Tx Ring full, pkt dropped.\n");
"%s: Tx Ring full, refusing to send buffer.\n",
dev->name);
gp->stats.tx_dropped++; gp->stats.tx_dropped++;
spin_unlock_irqrestore(&gp->lock, flags); spin_unlock_irqrestore(&gp->lock, flags);
return 1; return 1;
} }
// Prepare the Descriptor at tx_next_in
nextIn = gp->tx_next_in; if (!(gp->last_psr & psrLink)) {
err(__FUNCTION__ ": Link down, pkt dropped.\n");
gp->stats.tx_dropped++;
spin_unlock_irqrestore(&gp->lock, flags);
return 1;
}
if (dma32_to_cpu(gp->tx_ring[nextIn].cmdstat) & txOwn) { if (dma32_to_cpu(gp->tx_ring[nextIn].cmdstat) & txOwn) {
printk(KERN_ERR "%s: gt96100_tx: TxOwn bit wrong!!\n", err(__FUNCTION__ ": device owns descriptor, pkt dropped.\n");
dev->name); gp->stats.tx_dropped++;
// stop the queue, so Tx timeout can fix it
netif_stop_queue(dev);
spin_unlock_irqrestore(&gp->lock, flags);
return 1;
} }
// Prepare the Descriptor at tx_next_in
gp->tx_skbuff[nextIn] = skb; gp->tx_skbuff[nextIn] = skb;
gp->tx_ring[nextIn].byte_cnt = gp->tx_ring[nextIn].byte_cnt = cpu_to_dma16(skb->len);
cpu_to_dma32(skb->len << tdByteCntBit); gp->tx_ring[nextIn].buff_ptr = cpu_to_dma32(virt_to_phys(skb->data));
gp->tx_ring[nextIn].buff_ptr = // make sure packet gets written back to memory
cpu_to_dma32(virt_to_phys(skb->data)); dma_cache_wback_inv((unsigned long)(skb->data), skb->len);
// Give ownership to device, set first and last desc, enable interrupt // Give ownership to device, set first and last desc, enable interrupt
// Setting of ownership bit must be *last*! // Setting of ownership bit must be *last*!
gp->tx_ring[nextIn].cmdstat = gp->tx_ring[nextIn].cmdstat =
cpu_to_dma32((u32) (txOwn | txEI | txFirst | txLast)); cpu_to_dma32((u32)(txOwn | txGenCRC | txEI |
txPad | txFirst | txLast));
dump_tx_desc(4, dev, nextIn);
dump_skb(4, dev, skb);
// increment tx_next_in with wrap // increment tx_next_in with wrap
gp->tx_next_in = (nextIn + 1) % TX_RING_SIZE; gp->tx_next_in = (nextIn + 1) % TX_RING_SIZE;
// If count is zero, DMA should be stopped, so restart // If DMA is stopped, restart
if (gp->tx_count == 0) { if (!(GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS) & psrTxLow))
if (GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS) &
psrTxLow) printk(KERN_WARNING
"%s: Tx count zero but Tx queue running!\n",
dev->name);
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
sdcmrERD | sdcmrTXDL); sdcmrERD | sdcmrTXDL);
}
// increment count and stop queue if full // increment count and stop queue if full
if (++gp->tx_count == TX_RING_SIZE) if (++gp->tx_count == TX_RING_SIZE) {
gp->tx_full = 1;
netif_stop_queue(dev); netif_stop_queue(dev);
dbg(2, "Tx Ring now full, queue stopped.\n");
}
dev->trans_start = jiffies; dev->trans_start = jiffies;
spin_unlock_irqrestore(&gp->lock, flags); spin_unlock_irqrestore(&gp->lock, flags);
...@@ -937,317 +1213,438 @@ static int gt96100_tx(struct sk_buff *skb, struct net_device *dev) ...@@ -937,317 +1213,438 @@ static int gt96100_tx(struct sk_buff *skb, struct net_device *dev)
} }
static int gt96100_rx(struct net_device *dev, u32 status) static int
gt96100_rx(struct net_device *dev, u32 status)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
struct sk_buff *skb; struct sk_buff *skb;
int pkt_len, nextOut; int pkt_len, nextOut, cdp;
gt96100_rd_t *rd; gt96100_rd_t *rd;
u32 cmdstat; u32 cmdstat;
dbg(3, __FUNCTION__ ": dev=%p, status=%x\n", dev, status);
if (gt96100_debug > 2) cdp = (GT96100ETH_READ(gp, GT96100_ETH_1ST_RX_DESC_PTR0)
printk("%s: gt96100_rx: dev=%p, status = %x\n", - gp->rx_ring_dma) / sizeof(gt96100_rd_t);
dev->name, dev, status);
// Continue until we reach the current descriptor pointer // Continue until we reach 1st descriptor pointer
for (nextOut = gp->rx_next_out; for (nextOut = gp->rx_next_out; nextOut != cdp;
nextOut !=
(GT96100ETH_READ(gp, GT96100_ETH_CURR_RX_DESC_PTR0) -
gp->rx_ring_dma) / sizeof(gt96100_rd_t);
nextOut = (nextOut + 1) % RX_RING_SIZE) { nextOut = (nextOut + 1) % RX_RING_SIZE) {
if (--gp->intr_work_done == 0)
break;
rd = &gp->rx_ring[nextOut]; rd = &gp->rx_ring[nextOut];
cmdstat = dma32_to_cpu(rd->cmdstat); cmdstat = dma32_to_cpu(rd->cmdstat);
dbg(4, __FUNCTION__ ": Rx desc cmdstat=%x, nextOut=%d\n",
cmdstat, nextOut);
if (cmdstat & (u32)rxOwn) {
//err(__FUNCTION__ ": device owns descriptor!\n");
// DMA is not finished updating descriptor???
// Leave and come back later to pick-up where
// we left off.
break;
}
if (cmdstat & (u32) rxOwn) { // Drop this received pkt if there were any errors
cmdstat &= ~((u32) rxOwn); if (((cmdstat & (u32)(rxErrorSummary)) &&
(cmdstat & (u32)(rxFirst))) || (status & icrRxError)) {
// update the detailed rx error counters that
// are not covered by the MIB counters.
if (cmdstat & (u32)rxOverrun)
gp->stats.rx_fifo_errors++;
cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat); rd->cmdstat = cpu_to_dma32(cmdstat);
printk(KERN_ERR
"%s: gt96100_rx: ownership bit wrong!\n",
dev->name);
}
// must be first and last (ie only) buffer of packet
if (!(cmdstat & (u32) rxFirst)
|| !(cmdstat & (u32) rxLast)) {
printk(KERN_ERR
"%s: gt96100_rx: desc not first and last!\n",
dev->name);
continue; continue;
} }
// drop this received pkt if there were any errors
if ((cmdstat & (u32) rxErrorSummary) /*
|| (status & icrRxErrorQ0)) { * Must be first and last (ie only) descriptor of packet. We
// update the detailed rx error counters that are not covered * ignore (drop) any packets that do not fit in one descriptor.
// by the MIB counters. * Every descriptor's receive buffer is large enough to hold
if (cmdstat & (u32) rxOverrun) * the maximum 802.3 frame size, so a multi-descriptor packet
gp->stats.rx_fifo_errors++; * indicates an error. Most if not all corrupted packets will
* have already been dropped by the above check for the
* rxErrorSummary status bit.
*/
if (!(cmdstat & (u32)rxFirst) || !(cmdstat & (u32)rxLast)) {
if (cmdstat & (u32)rxFirst) {
/*
* This is the first descriptor of a
* multi-descriptor packet. It isn't corrupted
* because the above check for rxErrorSummary
* would have dropped it already, so what's
* the deal with this packet? Good question,
* let's dump it out.
*/
err(__FUNCTION__
": desc not first and last!\n");
dump_rx_desc(0, dev, nextOut);
}
cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat);
// continue to drop every descriptor of this packet
continue; continue;
} }
pkt_len = dma32_to_cpu(rd->buff_cnt_sz) & rdByteCntMask; pkt_len = dma16_to_cpu(rd->byte_cnt);
/* Create new skb. */ /* Create new skb. */
skb = dev_alloc_skb(pkt_len + 2); skb = dev_alloc_skb(pkt_len+2);
if (skb == NULL) { if (skb == NULL) {
printk(KERN_ERR err(__FUNCTION__
"%s: Memory squeeze, dropping packet.\n", ": Memory squeeze, dropping packet.\n");
dev->name);
gp->stats.rx_dropped++; gp->stats.rx_dropped++;
cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat);
continue; continue;
} }
skb->dev = dev; skb->dev = dev;
skb_reserve(skb, 2); /* 16 byte IP header align */ skb_reserve(skb, 2); /* 16 byte IP header align */
skb_put(skb, pkt_len); /* Make room */ memcpy(skb_put(skb, pkt_len),
eth_copy_and_sum(skb, gp->rx_buff[nextOut], pkt_len, 0); &gp->rx_buff[nextOut*PKT_BUF_SZ], pkt_len);
skb->protocol = eth_type_trans(skb, dev); skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); /* pass the packet to upper layers */ dump_skb(4, dev, skb);
netif_rx(skb); /* pass the packet to upper layers */
dev->last_rx = jiffies;
// now we can release ownership of this desc back to device // now we can release ownership of this desc back to device
cmdstat |= (u32) rxOwn; cmdstat |= (u32)rxOwn;
rd->cmdstat = cpu_to_dma32(cmdstat); rd->cmdstat = cpu_to_dma32(cmdstat);
dev->last_rx = jiffies;
} }
if (nextOut == gp->rx_next_out)
dbg(3, __FUNCTION__ ": RxCDP did not increment?\n");
gp->rx_next_out = nextOut; gp->rx_next_out = nextOut;
return 0; return 0;
} }
static void gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs) static void
gt96100_tx_complete(struct net_device *dev, u32 status)
{ {
struct net_device *dev = (struct net_device *) dev_id; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; int nextOut, cdp;
u32 status; gt96100_td_t *td;
u32 cmdstat;
if (dev == NULL) { cdp = (GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0)
printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name); - gp->tx_ring_dma) / sizeof(gt96100_td_t);
return;
// Continue until we reach the current descriptor pointer
for (nextOut = gp->tx_next_out; nextOut != cdp;
nextOut = (nextOut + 1) % TX_RING_SIZE) {
if (--gp->intr_work_done == 0)
break;
td = &gp->tx_ring[nextOut];
cmdstat = dma32_to_cpu(td->cmdstat);
dbg(3, __FUNCTION__ ": Tx desc cmdstat=%x, nextOut=%d\n",
cmdstat, nextOut);
if (cmdstat & (u32)txOwn) {
//dump_tx_ring(dev);
// DMA is not finished writing descriptor???
// Leave and come back later to pick-up where
// we left off.
break;
}
// increment Tx error stats
if (cmdstat & (u32)txErrorSummary) {
dbg(2, __FUNCTION__ ": Tx error, cmdstat = %x\n",
cmdstat);
gp->stats.tx_errors++;
if (cmdstat & (u32)txReTxLimit)
gp->stats.tx_aborted_errors++;
if (cmdstat & (u32)txUnderrun)
gp->stats.tx_fifo_errors++;
if (cmdstat & (u32)txLateCollision)
gp->stats.tx_window_errors++;
}
if (cmdstat & (u32)txCollision)
gp->stats.collisions +=
(u32)((cmdstat & txReTxCntMask) >>
txReTxCntBit);
// Wake the queue if the ring was full
if (gp->tx_full) {
gp->tx_full = 0;
if (gp->last_psr & psrLink) {
netif_wake_queue(dev);
dbg(2, __FUNCTION__
": Tx Ring was full, queue waked\n");
}
}
// decrement tx ring buffer count
if (gp->tx_count) gp->tx_count--;
// free the skb
if (gp->tx_skbuff[nextOut]) {
dbg(3, __FUNCTION__ ": good Tx, skb=%p\n",
gp->tx_skbuff[nextOut]);
dev_kfree_skb_irq(gp->tx_skbuff[nextOut]);
gp->tx_skbuff[nextOut] = NULL;
} else {
err(__FUNCTION__ ": no skb!\n");
}
} }
status = GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE); gp->tx_next_out = nextOut;
// ACK interrupts
#if 0
GT96100ETH_CLRBIT(gp, GT96100_ETH_INT_CAUSE,
icrEtherIntSum | icrRxBufferQ1 | icrRxBufferQ2 |
icrRxBufferQ3 | icrRxBufferQ0 | icrTxBufferHigh |
icrTxEndHigh | icrTxBufferLow | icrTxEndLow |
icrTxErrorHigh | icrTxErrorLow | icrTxUdr);
#else
GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, 0);
#endif
if ((status & icrEtherIntSum) == 0) { if (gt96100_check_tx_consistent(gp)) {
// not our interrupt err(__FUNCTION__ ": Tx queue inconsistent!\n");
//printk("%s: isr: no ints? icr=%x,cp0_cause=%x\n",
// dev->name, status, read_32bit_cp0_register(CP0_CAUSE));
return;
} }
if ((status & icrTxEndLow) && gp->tx_count != 0) {
// we must restart the DMA
dbg(3, __FUNCTION__ ": Restarting Tx DMA\n");
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM,
sdcmrERD | sdcmrTXDL);
}
}
if (gt96100_debug > 3)
printk("%s: isr: entry, icr=%x\n", dev->name, status);
if (status & (icrRxBufferQ1 | icrRxBufferQ2 | icrRxBufferQ3)) { static void
printk(KERN_ERR "%s: isr: Rx intr in unused queues!?\n", gt96100_interrupt(int irq, void *dev_id, struct pt_regs *regs)
dev->name); {
struct net_device *dev = (struct net_device *)dev_id;
struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
u32 status;
if (dev == NULL) {
err(__FUNCTION__ ": null dev ptr\n");
return;
} }
if (status & icrRxBufferQ0) { dbg(3, __FUNCTION__ ": entry, icr=%x\n",
gt96100_rx(dev, status); GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE));
}
if (status & (icrTxBufferHigh | icrTxEndHigh)) { spin_lock(&gp->lock);
printk(KERN_ERR "%s: isr: Tx intr in unused queue!?\n",
dev->name);
}
if (status & icrMIIPhySTC) { gp->intr_work_done = max_interrupt_work;
u32 psr = GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS);
printk("%s: port status:\n", dev->name);
printk
("%s: %s MBit/s, %s-duplex, flow-control %s, link is %s,\n",
dev->name, psr & psrSpeed ? "100" : "10",
psr & psrDuplex ? "full" : "half",
psr & psrFctl ? "disabled" : "enabled",
psr & psrLink ? "up" : "down");
printk
("%s: TxLowQ is %s, TxHighQ is %s, Transmitter is %s\n",
dev->name, psr & psrTxLow ? "running" : "stopped",
psr & psrTxHigh ? "running" : "stopped",
psr & psrTxInProg ? "on" : "off");
gp->last_psr = psr;
}
if (status & (icrTxBufferLow | icrTxEndLow)) { while (gp->intr_work_done > 0) {
int nextOut;
gt96100_td_t *td;
u32 cmdstat;
// Continue until we reach the current descriptor pointer
for (nextOut = gp->tx_next_out;
nextOut !=
(GT96100ETH_READ(gp, GT96100_ETH_CURR_TX_DESC_PTR0) -
gp->tx_ring_dma) / sizeof(gt96100_td_t);
nextOut = (nextOut + 1) % TX_RING_SIZE) {
td = &gp->tx_ring[nextOut];
cmdstat = dma32_to_cpu(td->cmdstat);
if (gt96100_debug > 2)
printk("%s: isr: Tx desc cmdstat=%x\n",
dev->name, cmdstat);
if (cmdstat & (u32) txOwn) {
cmdstat &= ~((u32) txOwn);
td->cmdstat = cpu_to_dma32(cmdstat);
printk(KERN_ERR
"%s: isr: Tx ownership bit wrong!\n",
dev->name);
}
// increment Tx error stats
if (cmdstat & (u32) txErrorSummary) {
if (gt96100_debug > 2)
printk
("%s: gt96100_interrupt: Tx error, cmdstat = %x\n",
dev->name, cmdstat);
gp->stats.tx_errors++;
if (cmdstat & (u32) txReTxLimit)
gp->stats.collisions++;
if (cmdstat & (u32) txUnderrun)
gp->stats.tx_fifo_errors++;
if (cmdstat & (u32) txLateCollision)
gp->stats.tx_window_errors++;
}
// Wake the queue if the ring was full
if (gp->tx_count == TX_RING_SIZE)
netif_wake_queue(dev);
// decrement tx ring buffer count status = GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE);
if (gp->tx_count) // ACK interrupts
gp->tx_count--; GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, ~status);
// free the skb if ((status & icrEtherIntSum) == 0 &&
if (gp->tx_skbuff[nextOut]) { !(status & (icrTxBufferLow|icrTxBufferHigh|icrRxBuffer)))
if (gt96100_debug > 2) break;
printk
("%s: isr: good Tx, skb=%p\n", if (status & icrMIIPhySTC) {
dev->name, u32 psr = GT96100ETH_READ(gp, GT96100_ETH_PORT_STATUS);
gp->tx_skbuff[nextOut]); if (gp->last_psr != psr) {
dev_kfree_skb_irq(gp->tx_skbuff[nextOut]); dbg(0, "port status:\n");
gp->tx_skbuff[nextOut] = NULL; dbg(0, " %s MBit/s, %s-duplex, "
} else { "flow-control %s, link is %s,\n",
printk(KERN_ERR "%s: isr: no skb!\n", psr & psrSpeed ? "100":"10",
dev->name); psr & psrDuplex ? "full":"half",
psr & psrFctl ? "disabled":"enabled",
psr & psrLink ? "up":"down");
dbg(0, " TxLowQ is %s, TxHighQ is %s, "
"Transmitter is %s\n",
psr & psrTxLow ? "running":"stopped",
psr & psrTxHigh ? "running":"stopped",
psr & psrTxInProg ? "on":"off");
if ((psr & psrLink) && !gp->tx_full &&
netif_queue_stopped(dev)) {
dbg(0, __FUNCTION__
": Link up, waking queue.\n");
netif_wake_queue(dev);
} else if (!(psr & psrLink) &&
!netif_queue_stopped(dev)) {
dbg(0, __FUNCTION__
"Link down, stopping queue.\n");
netif_stop_queue(dev);
}
gp->last_psr = psr;
} }
}
if (gp->tx_count == 0 && nextOut != gp->tx_next_in) { if (--gp->intr_work_done == 0)
// FIX! this should probably be a panic break;
printk(KERN_ERR
"%s: isr: warning! Tx queue inconsistent\n",
dev->name);
} }
if (status & (icrTxBufferLow | icrTxEndLow))
gt96100_tx_complete(dev, status);
gp->tx_next_out = nextOut; if (status & (icrRxBuffer | icrRxError)) {
gt96100_rx(dev, status);
if ((status & icrTxEndLow) && gp->tx_count != 0) { }
// we must restart the DMA
if (gt96100_debug > 2) // Now check TX errors (RX errors were handled in gt96100_rx)
printk("%s: isr: Restarting Tx DMA\n", if (status & icrTxErrorLow) {
dev->name); err(__FUNCTION__ ": Tx resource error\n");
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, if (--gp->intr_work_done == 0)
sdcmrERD | sdcmrTXDL); break;
}
if (status & icrTxUdr) {
err(__FUNCTION__ ": Tx underrun error\n");
if (--gp->intr_work_done == 0)
break;
} }
}
// Now check TX errors (RX errors were handled in gt96100_rx)
if (status & icrTxErrorHigh) {
printk(KERN_ERR
"%s: isr: Tx resource error in unused queue!?\n",
dev->name);
}
if (status & icrTxErrorLow) {
printk(KERN_ERR "%s: isr: Tx resource error\n", dev->name);
} }
if (status & icrTxUdr) { if (gp->intr_work_done == 0) {
printk(KERN_ERR "%s: isr: Tx underrun error\n", dev->name); // ACK any remaining pending interrupts
GT96100ETH_WRITE(gp, GT96100_ETH_INT_CAUSE, 0);
dbg(3, __FUNCTION__ ": hit max work\n");
} }
dbg(3, __FUNCTION__ ": exit, icr=%x\n",
GT96100ETH_READ(gp, GT96100_ETH_INT_CAUSE));
if (gt96100_debug > 3) spin_unlock(&gp->lock);
printk("%s: isr: exit, icr=%x\n",
dev->name, GT96100ETH_READ(gp,
GT96100_ETH_INT_CAUSE));
} }
/* static void
* The Tx ring has been full longer than the watchdog timeout gt96100_tx_timeout(struct net_device *dev)
* value, meaning that the interrupt routine has not been freeing
* up space in the Tx ring buffer.
*/
static void gt96100_tx_timeout(struct net_device *dev)
{ {
// struct gt96100_private *gp = (struct gt96100_private *)dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
unsigned long flags;
printk(KERN_ERR "%s: gt96100_tx_timeout: dev=%p\n", dev->name,
dev); spin_lock_irqsave(&gp->lock, flags);
if (!(gp->last_psr & psrLink)) {
err("tx_timeout: link down.\n");
spin_unlock_irqrestore(&gp->lock, flags);
} else {
if (gt96100_check_tx_consistent(gp))
err("tx_timeout: Tx ring error.\n");
// FIX! do something, like reset the device disable_ether_irq(dev);
spin_unlock_irqrestore(&gp->lock, flags);
reset_tx(dev);
enable_ether_irq(dev);
netif_wake_queue(dev);
}
} }
static void gt96100_set_rx_mode(struct net_device *dev) static void
gt96100_set_rx_mode(struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
unsigned long flags; unsigned long flags;
struct dev_mc_list *mcptr; //struct dev_mc_list *mcptr;
if (gt96100_debug > 2) dbg(3, __FUNCTION__ ": dev=%p, flags=%x\n", dev, dev->flags);
printk("%s: gt96100_set_rx_mode: dev=%p, flags=%x\n",
dev->name, dev, dev->flags);
// stop the Receiver DMA // stop the Receiver DMA
abort(dev, sdcmrAR); abort(dev, sdcmrAR);
spin_lock_irqsave(&gp->lock, flags); spin_lock_irqsave(&gp->lock, flags);
if (dev->flags & IFF_PROMISC) if (dev->flags & IFF_PROMISC) {
GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG, GT96100ETH_WRITE(gp, GT96100_ETH_PORT_CONFIG,
pcrEN | pcrHS | pcrPM); pcrEN | pcrHS | pcrPM);
}
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE); // clear hash table #if 0
// Add our ethernet address /*
gt96100_add_hash_entry(dev, dev->dev_addr); FIXME: currently multicast doesn't work - need to get hash table
working first.
*/
if (dev->mc_count) { if (dev->mc_count) {
// clear hash table
memset(gp->hash_table, 0, RX_HASH_TABLE_SIZE);
// Add our ethernet address
gt96100_add_hash_entry(dev, dev->dev_addr);
for (mcptr = dev->mc_list; mcptr; mcptr = mcptr->next) { for (mcptr = dev->mc_list; mcptr; mcptr = mcptr->next) {
dump_hw_addr(2, dev, __FUNCTION__ ": addr=",
mcptr->dmi_addr);
gt96100_add_hash_entry(dev, mcptr->dmi_addr); gt96100_add_hash_entry(dev, mcptr->dmi_addr);
} }
} }
#endif
// restart Rx DMA // restart Rx DMA
GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD); GT96100ETH_WRITE(gp, GT96100_ETH_SDMA_COMM, sdcmrERD);
spin_unlock_irqrestore(&gp->lock, flags); spin_unlock_irqrestore(&gp->lock, flags);
} }
static struct net_device_stats *gt96100_get_stats(struct net_device *dev) static struct net_device_stats *
gt96100_get_stats(struct net_device *dev)
{ {
struct gt96100_private *gp = (struct gt96100_private *) dev->priv; struct gt96100_private *gp = (struct gt96100_private *)dev->priv;
unsigned long flags; unsigned long flags;
if (gt96100_debug > 2) dbg(3, __FUNCTION__ ": dev=%p\n", dev);
printk("%s: gt96100_get_stats: dev=%p\n", dev->name, dev);
if (netif_device_present(dev)) { if (netif_device_present(dev)) {
spin_lock_irqsave(&gp->lock, flags); spin_lock_irqsave (&gp->lock, flags);
update_stats(gp); update_stats(gp);
spin_unlock_irqrestore(&gp->lock, flags); spin_unlock_irqrestore (&gp->lock, flags);
} }
return &gp->stats; return &gp->stats;
} }
module_init(gt96100_probe); static void gt96100_cleanup_module(void)
MODULE_LICENSE("GPL"); {
int i;
for (i=0; i<NUM_INTERFACES; i++) {
struct gt96100_if_t *gtif = &gt96100_iflist[i];
if (gtif->dev != NULL) {
struct gt96100_private *gp =
(struct gt96100_private *)gtif->dev->priv;
release_region(gtif->iobase, gp->io_size);
unregister_netdev(gtif->dev);
if (gtif->dev->priv != NULL)
kfree (gtif->dev->priv);
kfree (gtif->dev);
}
}
}
#ifndef MODULE
static int __init gt96100_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
for(this_opt=strtok(options, ",");
this_opt; this_opt=strtok(NULL, ",")) {
if (!strncmp(this_opt, "mac0:", 5)) {
memcpy(mac0, this_opt+5, 17);
mac0[17]= '\0';
} else if (!strncmp(this_opt, "mac1:", 5)) {
memcpy(mac1, this_opt+5, 17);
mac1[17]= '\0';
}
}
return 1;
}
__setup("gt96100eth=", gt96100_setup);
#endif /* !MODULE */
module_init(gt96100_init_module);
module_exit(gt96100_cleanup_module);
MODULE_AUTHOR("Steve Longerbeam <stevel@mvista.com>");
MODULE_DESCRIPTION("GT96100 Ethernet driver");
...@@ -29,29 +29,43 @@ ...@@ -29,29 +29,43 @@
#include <asm/galileo-boards/gt96100.h> #include <asm/galileo-boards/gt96100.h>
#define dbg(lvl, format, arg...) \
if (lvl <= GT96100_DEBUG) \
printk(KERN_DEBUG "%s: " format, dev->name , ## arg)
#define err(format, arg...) \
printk(KERN_ERR "%s: " format, dev->name , ## arg)
#define info(format, arg...) \
printk(KERN_INFO "%s: " format, dev->name , ## arg)
#define warn(format, arg...) \
printk(KERN_WARNING "%s: " format, dev->name , ## arg)
/* Keep the ring sizes a power of two for efficiency. */ /* Keep the ring sizes a power of two for efficiency. */
#define TX_RING_SIZE 16 #define TX_RING_SIZE 16
#define RX_RING_SIZE 32 #define RX_RING_SIZE 32
#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
#define RX_HASH_TABLE_SIZE 16384 #define RX_HASH_TABLE_SIZE 16384
#define HASH_HOP_NUMBER 12 #define HASH_HOP_NUMBER 12
#define NUM_INTERFACES 2 #define NUM_INTERFACES 2
#define GT96100ETH_TX_TIMEOUT HZ #define GT96100ETH_TX_TIMEOUT HZ/4
#define GT96100_ETH0_BASE (MIPS_GT96100_BASE + GT96100_ETH_PORT_CONFIG) #define GT96100_ETH0_BASE (MIPS_GT96100_BASE + GT96100_ETH_PORT_CONFIG)
#define GT96100_ETH1_BASE (GT96100_ETH0_BASE + GT96100_ETH_IO_SIZE) #define GT96100_ETH1_BASE (GT96100_ETH0_BASE + GT96100_ETH_IO_SIZE)
#ifdef CONFIG_MIPS_EV96100 #ifdef CONFIG_MIPS_EV96100
#define GT96100_ETHER0_IRQ 4 #define GT96100_ETHER0_IRQ 3
#define GT96100_ETHER1_IRQ 4 #define GT96100_ETHER1_IRQ 4
#else #else
#define GT96100_ETHER0_IRQ -1 #define GT96100_ETHER0_IRQ -1
#define GT96100_ETHER1_IRQ -1 #define GT96100_ETHER1_IRQ -1
#endif #endif
#define REV_GT96100 1
#define REV_GT96100A_1 2
#define REV_GT96100A 3
#define GT96100ETH_READ(gp, offset) \ #define GT96100ETH_READ(gp, offset) \
GT96100_READ((gp->port_offset + offset)) GT96100_READ((gp->port_offset + offset))
...@@ -70,13 +84,13 @@ ...@@ -70,13 +84,13 @@
/* Bit definitions of the SMI Reg */ /* Bit definitions of the SMI Reg */
enum { enum {
smirDataMask = 0xffff, smirDataMask = 0xffff,
smirPhyAdMask = 0x1f << 16, smirPhyAdMask = 0x1f<<16,
smirPhyAdBit = 16, smirPhyAdBit = 16,
smirRegAdMask = 0x1f << 21, smirRegAdMask = 0x1f<<21,
smirRegAdBit = 21, smirRegAdBit = 21,
smirOpCode = 1 << 26, smirOpCode = 1<<26,
smirReadValid = 1 << 27, smirReadValid = 1<<27,
smirBusy = 1 << 28 smirBusy = 1<<28
}; };
/* Bit definitions of the Port Config Reg */ /* Bit definitions of the Port Config Reg */
...@@ -84,17 +98,17 @@ enum pcr_bits { ...@@ -84,17 +98,17 @@ enum pcr_bits {
pcrPM = 1, pcrPM = 1,
pcrRBM = 2, pcrRBM = 2,
pcrPBF = 4, pcrPBF = 4,
pcrEN = 1 << 7, pcrEN = 1<<7,
pcrLPBKMask = 0x3 << 8, pcrLPBKMask = 0x3<<8,
pcrLPBKBit = 8, pcrLPBKBit = 8,
pcrFC = 1 << 10, pcrFC = 1<<10,
pcrHS = 1 << 12, pcrHS = 1<<12,
pcrHM = 1 << 13, pcrHM = 1<<13,
pcrHDM = 1 << 14, pcrHDM = 1<<14,
pcrHD = 1 << 15, pcrHD = 1<<15,
pcrISLMask = 0x7 << 28, pcrISLMask = 0x7<<28,
pcrISLBit = 28, pcrISLBit = 28,
pcrACCS = 1 << 31 pcrACCS = 1<<31
}; };
/* Bit definitions of the Port Config Extend Reg */ /* Bit definitions of the Port Config Extend Reg */
...@@ -102,27 +116,27 @@ enum pcxr_bits { ...@@ -102,27 +116,27 @@ enum pcxr_bits {
pcxrIGMP = 1, pcxrIGMP = 1,
pcxrSPAN = 2, pcxrSPAN = 2,
pcxrPAR = 4, pcxrPAR = 4,
pcxrPRIOtxMask = 0x7 << 3, pcxrPRIOtxMask = 0x7<<3,
pcxrPRIOtxBit = 3, pcxrPRIOtxBit = 3,
pcxrPRIOrxMask = 0x3 << 6, pcxrPRIOrxMask = 0x3<<6,
pcxrPRIOrxBit = 6, pcxrPRIOrxBit = 6,
pcxrPRIOrxOverride = 1 << 8, pcxrPRIOrxOverride = 1<<8,
pcxrDPLXen = 1 << 9, pcxrDPLXen = 1<<9,
pcxrFCTLen = 1 << 10, pcxrFCTLen = 1<<10,
pcxrFLP = 1 << 11, pcxrFLP = 1<<11,
pcxrFCTL = 1 << 12, pcxrFCTL = 1<<12,
pcxrMFLMask = 0x3 << 14, pcxrMFLMask = 0x3<<14,
pcxrMFLBit = 14, pcxrMFLBit = 14,
pcxrMIBclrMode = 1 << 16, pcxrMIBclrMode = 1<<16,
pcxrSpeed = 1 << 18, pcxrSpeed = 1<<18,
pcxrSpeeden = 1 << 19, pcxrSpeeden = 1<<19,
pcxrRMIIen = 1 << 20, pcxrRMIIen = 1<<20,
pcxrDSCPen = 1 << 21 pcxrDSCPen = 1<<21
}; };
/* Bit definitions of the Port Command Reg */ /* Bit definitions of the Port Command Reg */
enum pcmr_bits { enum pcmr_bits {
pcmrFJ = 1 << 15 pcmrFJ = 1<<15
}; };
...@@ -132,119 +146,124 @@ enum psr_bits { ...@@ -132,119 +146,124 @@ enum psr_bits {
psrDuplex = 2, psrDuplex = 2,
psrFctl = 4, psrFctl = 4,
psrLink = 8, psrLink = 8,
psrPause = 1 << 4, psrPause = 1<<4,
psrTxLow = 1 << 5, psrTxLow = 1<<5,
psrTxHigh = 1 << 6, psrTxHigh = 1<<6,
psrTxInProg = 1 << 7 psrTxInProg = 1<<7
}; };
/* Bit definitions of the SDMA Config Reg */ /* Bit definitions of the SDMA Config Reg */
enum sdcr_bits { enum sdcr_bits {
sdcrRCMask = 0xf << 2, sdcrRCMask = 0xf<<2,
sdcrRCBit = 2, sdcrRCBit = 2,
sdcrBLMR = 1 << 6, sdcrBLMR = 1<<6,
sdcrBLMT = 1 << 7, sdcrBLMT = 1<<7,
sdcrPOVR = 1 << 8, sdcrPOVR = 1<<8,
sdcrRIFB = 1 << 9, sdcrRIFB = 1<<9,
sdcrBSZMask = 0x3 << 12, sdcrBSZMask = 0x3<<12,
sdcrBSZBit = 12 sdcrBSZBit = 12
}; };
/* Bit definitions of the SDMA Command Reg */ /* Bit definitions of the SDMA Command Reg */
enum sdcmr_bits { enum sdcmr_bits {
sdcmrERD = 1 << 7, sdcmrERD = 1<<7,
sdcmrAR = 1 << 15, sdcmrAR = 1<<15,
sdcmrSTDH = 1 << 16, sdcmrSTDH = 1<<16,
sdcmrSTDL = 1 << 17, sdcmrSTDL = 1<<17,
sdcmrTXDH = 1 << 23, sdcmrTXDH = 1<<23,
sdcmrTXDL = 1 << 24, sdcmrTXDL = 1<<24,
sdcmrAT = 1 << 31 sdcmrAT = 1<<31
}; };
/* Bit definitions of the Interrupt Cause Reg */ /* Bit definitions of the Interrupt Cause Reg */
enum icr_bits { enum icr_bits {
icrRxBuffer = 1, icrRxBuffer = 1,
icrTxBufferHigh = 1 << 2, icrTxBufferHigh = 1<<2,
icrTxBufferLow = 1 << 3, icrTxBufferLow = 1<<3,
icrTxEndHigh = 1 << 6, icrTxEndHigh = 1<<6,
icrTxEndLow = 1 << 7, icrTxEndLow = 1<<7,
icrRxError = 1 << 8, icrRxError = 1<<8,
icrTxErrorHigh = 1 << 10, icrTxErrorHigh = 1<<10,
icrTxErrorLow = 1 << 11, icrTxErrorLow = 1<<11,
icrRxOVR = 1 << 12, icrRxOVR = 1<<12,
icrTxUdr = 1 << 13, icrTxUdr = 1<<13,
icrRxBufferQ0 = 1 << 16, icrRxBufferQ0 = 1<<16,
icrRxBufferQ1 = 1 << 17, icrRxBufferQ1 = 1<<17,
icrRxBufferQ2 = 1 << 18, icrRxBufferQ2 = 1<<18,
icrRxBufferQ3 = 1 << 19, icrRxBufferQ3 = 1<<19,
icrRxErrorQ0 = 1 << 20, icrRxErrorQ0 = 1<<20,
icrRxErrorQ1 = 1 << 21, icrRxErrorQ1 = 1<<21,
icrRxErrorQ2 = 1 << 22, icrRxErrorQ2 = 1<<22,
icrRxErrorQ3 = 1 << 23, icrRxErrorQ3 = 1<<23,
icrMIIPhySTC = 1 << 28, icrMIIPhySTC = 1<<28,
icrSMIdone = 1 << 29, icrSMIdone = 1<<29,
icrEtherIntSum = 1 << 31 icrEtherIntSum = 1<<31
}; };
/* The Rx and Tx descriptor lists. */ /* The Rx and Tx descriptor lists. */
typedef struct { typedef struct {
#ifdef DESC_BE
u16 byte_cnt;
u16 reserved;
#else
u16 reserved;
u16 byte_cnt;
#endif
u32 cmdstat; u32 cmdstat;
u32 byte_cnt;
u32 buff_ptr;
u32 next; u32 next;
} gt96100_td_t; u32 buff_ptr;
} gt96100_td_t __attribute__ ((packed));
#define tdByteCntBit 16
typedef struct { typedef struct {
#ifdef DESC_BE
u16 buff_sz;
u16 byte_cnt;
#else
u16 byte_cnt;
u16 buff_sz;
#endif
u32 cmdstat; u32 cmdstat;
u32 buff_cnt_sz;
u32 buff_ptr;
u32 next; u32 next;
} gt96100_rd_t; u32 buff_ptr;
} gt96100_rd_t __attribute__ ((packed));
#define rdBuffSzBit 16
#define rdByteCntMask 0xffff
/* Values for the Tx command-status descriptor entry. */ /* Values for the Tx command-status descriptor entry. */
enum td_cmdstat { enum td_cmdstat {
txOwn = 1 << 31, txOwn = 1<<31,
txAutoMode = 1 << 30, txAutoMode = 1<<30,
txEI = 1 << 23, txEI = 1<<23,
txGenCRC = 1 << 22, txGenCRC = 1<<22,
txPad = 1 << 18, txPad = 1<<18,
txFirst = 1 << 17, txFirst = 1<<17,
txLast = 1 << 16, txLast = 1<<16,
txErrorSummary = 1 << 15, txErrorSummary = 1<<15,
txReTxCntMask = 0x0f << 10, txReTxCntMask = 0x0f<<10,
txReTxCntBit = 10, txReTxCntBit = 10,
txCollision = 1 << 9, txCollision = 1<<9,
txReTxLimit = 1 << 8, txReTxLimit = 1<<8,
txUnderrun = 1 << 6, txUnderrun = 1<<6,
txLateCollision = 1 << 5 txLateCollision = 1<<5
}; };
#define TxReTxCntBit 10
/* Values for the Rx command-status descriptor entry. */ /* Values for the Rx command-status descriptor entry. */
enum rd_cmdstat { enum rd_cmdstat {
rxOwn = 1 << 31, rxOwn = 1<<31,
rxAutoMode = 1 << 30, rxAutoMode = 1<<30,
rxEI = 1 << 23, rxEI = 1<<23,
rxFirst = 1 << 17, rxFirst = 1<<17,
rxLast = 1 << 16, rxLast = 1<<16,
rxErrorSummary = 1 << 15, rxErrorSummary = 1<<15,
rxIGMP = 1 << 14, rxIGMP = 1<<14,
rxHashExpired = 1 << 13, rxHashExpired = 1<<13,
rxMissedFrame = 1 << 12, rxMissedFrame = 1<<12,
rxFrameType = 1 << 11, rxFrameType = 1<<11,
rxShortFrame = 1 << 8, rxShortFrame = 1<<8,
rxMaxFrameLen = 1 << 7, rxMaxFrameLen = 1<<7,
rxOverrun = 1 << 6, rxOverrun = 1<<6,
rxCollision = 1 << 4, rxCollision = 1<<4,
rxCRCError = 1 rxCRCError = 1
}; };
...@@ -286,40 +305,44 @@ typedef struct { ...@@ -286,40 +305,44 @@ typedef struct {
struct gt96100_private { struct gt96100_private {
gt96100_rd_t *rx_ring; gt96100_rd_t* rx_ring;
gt96100_td_t *tx_ring; gt96100_td_t* tx_ring;
// The Rx and Tx rings must be 16-byte aligned // The Rx and Tx rings must be 16-byte aligned
dma_addr_t rx_ring_dma; dma_addr_t rx_ring_dma;
dma_addr_t tx_ring_dma; dma_addr_t tx_ring_dma;
char *hash_table; char* hash_table;
// The Hash Table must be 8-byte aligned // The Hash Table must be 8-byte aligned
dma_addr_t hash_table_dma; dma_addr_t hash_table_dma;
int hash_mode; int hash_mode;
// The Rx buffers must be 8-byte aligned // The Rx buffers must be 8-byte aligned
char *rx_buff[RX_RING_SIZE]; char* rx_buff;
dma_addr_t rx_buff_dma;
// Tx buffers (tx_skbuff[i]->data) with less than 8 bytes // Tx buffers (tx_skbuff[i]->data) with less than 8 bytes
// of payload must be 8-byte aligned // of payload must be 8-byte aligned
struct sk_buff *tx_skbuff[TX_RING_SIZE]; struct sk_buff* tx_skbuff[TX_RING_SIZE];
int rx_next_out; /* The next free ring entry to receive */ int rx_next_out; /* The next free ring entry to receive */
int tx_next_in; /* The next free ring entry to send */ int tx_next_in; /* The next free ring entry to send */
int tx_next_out; /* The last ring entry the ISR processed */ int tx_next_out; /* The last ring entry the ISR processed */
int tx_count; /* current # of pkts waiting to be sent in Tx ring */ int tx_count; /* current # of pkts waiting to be sent in Tx ring */
int intr_work_done; /* number of Rx and Tx pkts processed in the isr */
int tx_full; /* Tx ring is full */
mib_counters_t mib; mib_counters_t mib;
struct net_device_stats stats; struct net_device_stats stats;
int io_size; int io_size;
int port_num; // 0 or 1 int port_num; // 0 or 1
int chip_rev;
u32 port_offset; u32 port_offset;
int phy_addr; // PHY address
u32 last_psr; // last value of the port status register
int phy_addr; // PHY address int options; /* User-settable misc. driver options. */
u32 last_psr; // last value of the port status register
int options; /* User-settable misc. driver options. */
int drv_flags; int drv_flags;
unsigned char phys[2]; /* MII device addresses. */ struct timer_list timer;
spinlock_t lock; /* Serialise access to device */ spinlock_t lock; /* Serialise access to device */
}; };
#endif #endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment