Commit edb42dc7 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'dmaengine-fix-4.4-rc6' of git://git.infradead.org/users/vkoul/slave-dma

Pull dmaengine fixes from Vinod Koul:
 "This has fixes spread thru driver, notably among them:

   - edma fixes for recent edma DT changes which went into 4.4
   - odd fixes for at_hdmac
   - minor fixes on bc dma and mic dma"

* tag 'dmaengine-fix-4.4-rc6' of git://git.infradead.org/users/vkoul/slave-dma:
  dmaengine: at_xdmac: fix at_xdmac_prep_dma_memcpy()
  dmaengine: edma: DT: Change reserved slot array from 16bit to 32bit type
  dmaengine: edma: DT: Change memcpy channel array from 16bit to 32bit type
  dmaengine: mic_x100: add missing spin_unlock
  dmaengine: bcm2835-dma: Convert to use DMA pool
  dmaengine: at_xdmac: fix bad behavior in interleaved mode
  dmaengine: at_xdmac: fix false condition for memset_sg transfers
  dmaengine: at_xdmac: fix macro typo
parents 8c2b759e aa876cd4
...@@ -22,8 +22,7 @@ Required properties: ...@@ -22,8 +22,7 @@ Required properties:
Optional properties: Optional properties:
- ti,hwmods: Name of the hwmods associated to the eDMA CC - ti,hwmods: Name of the hwmods associated to the eDMA CC
- ti,edma-memcpy-channels: List of channels allocated to be used for memcpy, iow - ti,edma-memcpy-channels: List of channels allocated to be used for memcpy, iow
these channels will be SW triggered channels. The list must these channels will be SW triggered channels. See example.
contain 16 bits numbers, see example.
- ti,edma-reserved-slot-ranges: PaRAM slot ranges which should not be used by - ti,edma-reserved-slot-ranges: PaRAM slot ranges which should not be used by
the driver, they are allocated to be used by for example the the driver, they are allocated to be used by for example the
DSP. See example. DSP. See example.
...@@ -56,10 +55,9 @@ edma: edma@49000000 { ...@@ -56,10 +55,9 @@ edma: edma@49000000 {
ti,tptcs = <&edma_tptc0 7>, <&edma_tptc1 7>, <&edma_tptc2 0>; ti,tptcs = <&edma_tptc0 7>, <&edma_tptc1 7>, <&edma_tptc2 0>;
/* Channel 20 and 21 is allocated for memcpy */ /* Channel 20 and 21 is allocated for memcpy */
ti,edma-memcpy-channels = /bits/ 16 <20 21>; ti,edma-memcpy-channels = <20 21>;
/* The following PaRAM slots are reserved: 35-45 and 100-110 */ /* The following PaRAM slots are reserved: 35-44 and 100-109 */
ti,edma-reserved-slot-ranges = /bits/ 16 <35 10>, ti,edma-reserved-slot-ranges = <35 10>, <100 10>;
/bits/ 16 <100 10>;
}; };
edma_tptc0: tptc@49800000 { edma_tptc0: tptc@49800000 {
......
...@@ -156,7 +156,7 @@ ...@@ -156,7 +156,7 @@
#define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */ #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */
#define AT_XDMAC_CC_WRIP_DONE (0x0 << 23) #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23)
#define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23) #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23)
#define AT_XDMAC_CC_PERID(i) (0x7f & (h) << 24) /* Channel Peripheral Identifier */ #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */
#define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */ #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */
#define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */ #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */
#define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */ #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */
...@@ -965,7 +965,9 @@ at_xdmac_prep_interleaved(struct dma_chan *chan, ...@@ -965,7 +965,9 @@ at_xdmac_prep_interleaved(struct dma_chan *chan,
NULL, NULL,
src_addr, dst_addr, src_addr, dst_addr,
xt, xt->sgl); xt, xt->sgl);
for (i = 0; i < xt->numf; i++)
/* Length of the block is (BLEN+1) microblocks. */
for (i = 0; i < xt->numf - 1; i++)
at_xdmac_increment_block_count(chan, first); at_xdmac_increment_block_count(chan, first);
dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n", dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
...@@ -1086,6 +1088,7 @@ at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, ...@@ -1086,6 +1088,7 @@ at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
/* Check remaining length and change data width if needed. */ /* Check remaining length and change data width if needed. */
dwidth = at_xdmac_align_width(chan, dwidth = at_xdmac_align_width(chan,
src_addr | dst_addr | xfer_size); src_addr | dst_addr | xfer_size);
chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth); chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
ublen = xfer_size >> dwidth; ublen = xfer_size >> dwidth;
...@@ -1333,7 +1336,7 @@ at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl, ...@@ -1333,7 +1336,7 @@ at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
* since we don't care about the stride anymore. * since we don't care about the stride anymore.
*/ */
if ((i == (sg_len - 1)) && if ((i == (sg_len - 1)) &&
sg_dma_len(ppsg) == sg_dma_len(psg)) { sg_dma_len(psg) == sg_dma_len(sg)) {
dev_dbg(chan2dev(chan), dev_dbg(chan2dev(chan),
"%s: desc 0x%p can be merged with desc 0x%p\n", "%s: desc 0x%p can be merged with desc 0x%p\n",
__func__, desc, pdesc); __func__, desc, pdesc);
......
...@@ -31,6 +31,7 @@ ...@@ -31,6 +31,7 @@
*/ */
#include <linux/dmaengine.h> #include <linux/dmaengine.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
...@@ -62,6 +63,11 @@ struct bcm2835_dma_cb { ...@@ -62,6 +63,11 @@ struct bcm2835_dma_cb {
uint32_t pad[2]; uint32_t pad[2];
}; };
struct bcm2835_cb_entry {
struct bcm2835_dma_cb *cb;
dma_addr_t paddr;
};
struct bcm2835_chan { struct bcm2835_chan {
struct virt_dma_chan vc; struct virt_dma_chan vc;
struct list_head node; struct list_head node;
...@@ -72,18 +78,18 @@ struct bcm2835_chan { ...@@ -72,18 +78,18 @@ struct bcm2835_chan {
int ch; int ch;
struct bcm2835_desc *desc; struct bcm2835_desc *desc;
struct dma_pool *cb_pool;
void __iomem *chan_base; void __iomem *chan_base;
int irq_number; int irq_number;
}; };
struct bcm2835_desc { struct bcm2835_desc {
struct bcm2835_chan *c;
struct virt_dma_desc vd; struct virt_dma_desc vd;
enum dma_transfer_direction dir; enum dma_transfer_direction dir;
unsigned int control_block_size; struct bcm2835_cb_entry *cb_list;
struct bcm2835_dma_cb *control_block_base;
dma_addr_t control_block_base_phys;
unsigned int frames; unsigned int frames;
size_t size; size_t size;
...@@ -143,10 +149,13 @@ static inline struct bcm2835_desc *to_bcm2835_dma_desc( ...@@ -143,10 +149,13 @@ static inline struct bcm2835_desc *to_bcm2835_dma_desc(
static void bcm2835_dma_desc_free(struct virt_dma_desc *vd) static void bcm2835_dma_desc_free(struct virt_dma_desc *vd)
{ {
struct bcm2835_desc *desc = container_of(vd, struct bcm2835_desc, vd); struct bcm2835_desc *desc = container_of(vd, struct bcm2835_desc, vd);
dma_free_coherent(desc->vd.tx.chan->device->dev, int i;
desc->control_block_size,
desc->control_block_base, for (i = 0; i < desc->frames; i++)
desc->control_block_base_phys); dma_pool_free(desc->c->cb_pool, desc->cb_list[i].cb,
desc->cb_list[i].paddr);
kfree(desc->cb_list);
kfree(desc); kfree(desc);
} }
...@@ -199,7 +208,7 @@ static void bcm2835_dma_start_desc(struct bcm2835_chan *c) ...@@ -199,7 +208,7 @@ static void bcm2835_dma_start_desc(struct bcm2835_chan *c)
c->desc = d = to_bcm2835_dma_desc(&vd->tx); c->desc = d = to_bcm2835_dma_desc(&vd->tx);
writel(d->control_block_base_phys, c->chan_base + BCM2835_DMA_ADDR); writel(d->cb_list[0].paddr, c->chan_base + BCM2835_DMA_ADDR);
writel(BCM2835_DMA_ACTIVE, c->chan_base + BCM2835_DMA_CS); writel(BCM2835_DMA_ACTIVE, c->chan_base + BCM2835_DMA_CS);
} }
...@@ -232,9 +241,16 @@ static irqreturn_t bcm2835_dma_callback(int irq, void *data) ...@@ -232,9 +241,16 @@ static irqreturn_t bcm2835_dma_callback(int irq, void *data)
static int bcm2835_dma_alloc_chan_resources(struct dma_chan *chan) static int bcm2835_dma_alloc_chan_resources(struct dma_chan *chan)
{ {
struct bcm2835_chan *c = to_bcm2835_dma_chan(chan); struct bcm2835_chan *c = to_bcm2835_dma_chan(chan);
struct device *dev = c->vc.chan.device->dev;
dev_dbg(c->vc.chan.device->dev, dev_dbg(dev, "Allocating DMA channel %d\n", c->ch);
"Allocating DMA channel %d\n", c->ch);
c->cb_pool = dma_pool_create(dev_name(dev), dev,
sizeof(struct bcm2835_dma_cb), 0, 0);
if (!c->cb_pool) {
dev_err(dev, "unable to allocate descriptor pool\n");
return -ENOMEM;
}
return request_irq(c->irq_number, return request_irq(c->irq_number,
bcm2835_dma_callback, 0, "DMA IRQ", c); bcm2835_dma_callback, 0, "DMA IRQ", c);
...@@ -246,6 +262,7 @@ static void bcm2835_dma_free_chan_resources(struct dma_chan *chan) ...@@ -246,6 +262,7 @@ static void bcm2835_dma_free_chan_resources(struct dma_chan *chan)
vchan_free_chan_resources(&c->vc); vchan_free_chan_resources(&c->vc);
free_irq(c->irq_number, c); free_irq(c->irq_number, c);
dma_pool_destroy(c->cb_pool);
dev_dbg(c->vc.chan.device->dev, "Freeing DMA channel %u\n", c->ch); dev_dbg(c->vc.chan.device->dev, "Freeing DMA channel %u\n", c->ch);
} }
...@@ -261,8 +278,7 @@ static size_t bcm2835_dma_desc_size_pos(struct bcm2835_desc *d, dma_addr_t addr) ...@@ -261,8 +278,7 @@ static size_t bcm2835_dma_desc_size_pos(struct bcm2835_desc *d, dma_addr_t addr)
size_t size; size_t size;
for (size = i = 0; i < d->frames; i++) { for (size = i = 0; i < d->frames; i++) {
struct bcm2835_dma_cb *control_block = struct bcm2835_dma_cb *control_block = d->cb_list[i].cb;
&d->control_block_base[i];
size_t this_size = control_block->length; size_t this_size = control_block->length;
dma_addr_t dma; dma_addr_t dma;
...@@ -343,6 +359,7 @@ static struct dma_async_tx_descriptor *bcm2835_dma_prep_dma_cyclic( ...@@ -343,6 +359,7 @@ static struct dma_async_tx_descriptor *bcm2835_dma_prep_dma_cyclic(
dma_addr_t dev_addr; dma_addr_t dev_addr;
unsigned int es, sync_type; unsigned int es, sync_type;
unsigned int frame; unsigned int frame;
int i;
/* Grab configuration */ /* Grab configuration */
if (!is_slave_direction(direction)) { if (!is_slave_direction(direction)) {
...@@ -374,27 +391,31 @@ static struct dma_async_tx_descriptor *bcm2835_dma_prep_dma_cyclic( ...@@ -374,27 +391,31 @@ static struct dma_async_tx_descriptor *bcm2835_dma_prep_dma_cyclic(
if (!d) if (!d)
return NULL; return NULL;
d->c = c;
d->dir = direction; d->dir = direction;
d->frames = buf_len / period_len; d->frames = buf_len / period_len;
/* Allocate memory for control blocks */ d->cb_list = kcalloc(d->frames, sizeof(*d->cb_list), GFP_KERNEL);
d->control_block_size = d->frames * sizeof(struct bcm2835_dma_cb); if (!d->cb_list) {
d->control_block_base = dma_zalloc_coherent(chan->device->dev,
d->control_block_size, &d->control_block_base_phys,
GFP_NOWAIT);
if (!d->control_block_base) {
kfree(d); kfree(d);
return NULL; return NULL;
} }
/* Allocate memory for control blocks */
for (i = 0; i < d->frames; i++) {
struct bcm2835_cb_entry *cb_entry = &d->cb_list[i];
cb_entry->cb = dma_pool_zalloc(c->cb_pool, GFP_ATOMIC,
&cb_entry->paddr);
if (!cb_entry->cb)
goto error_cb;
}
/* /*
* Iterate over all frames, create a control block * Iterate over all frames, create a control block
* for each frame and link them together. * for each frame and link them together.
*/ */
for (frame = 0; frame < d->frames; frame++) { for (frame = 0; frame < d->frames; frame++) {
struct bcm2835_dma_cb *control_block = struct bcm2835_dma_cb *control_block = d->cb_list[frame].cb;
&d->control_block_base[frame];
/* Setup adresses */ /* Setup adresses */
if (d->dir == DMA_DEV_TO_MEM) { if (d->dir == DMA_DEV_TO_MEM) {
...@@ -428,12 +449,21 @@ static struct dma_async_tx_descriptor *bcm2835_dma_prep_dma_cyclic( ...@@ -428,12 +449,21 @@ static struct dma_async_tx_descriptor *bcm2835_dma_prep_dma_cyclic(
* This DMA engine driver currently only supports cyclic DMA. * This DMA engine driver currently only supports cyclic DMA.
* Therefore, wrap around at number of frames. * Therefore, wrap around at number of frames.
*/ */
control_block->next = d->control_block_base_phys + control_block->next = d->cb_list[((frame + 1) % d->frames)].paddr;
sizeof(struct bcm2835_dma_cb)
* ((frame + 1) % d->frames);
} }
return vchan_tx_prep(&c->vc, &d->vd, flags); return vchan_tx_prep(&c->vc, &d->vd, flags);
error_cb:
i--;
for (; i >= 0; i--) {
struct bcm2835_cb_entry *cb_entry = &d->cb_list[i];
dma_pool_free(c->cb_pool, cb_entry->cb, cb_entry->paddr);
}
kfree(d->cb_list);
kfree(d);
return NULL;
} }
static int bcm2835_dma_slave_config(struct dma_chan *chan, static int bcm2835_dma_slave_config(struct dma_chan *chan,
......
...@@ -1752,16 +1752,14 @@ static enum dma_status edma_tx_status(struct dma_chan *chan, ...@@ -1752,16 +1752,14 @@ static enum dma_status edma_tx_status(struct dma_chan *chan,
return ret; return ret;
} }
static bool edma_is_memcpy_channel(int ch_num, u16 *memcpy_channels) static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
{ {
s16 *memcpy_ch = memcpy_channels;
if (!memcpy_channels) if (!memcpy_channels)
return false; return false;
while (*memcpy_ch != -1) { while (*memcpy_channels != -1) {
if (*memcpy_ch == ch_num) if (*memcpy_channels == ch_num)
return true; return true;
memcpy_ch++; memcpy_channels++;
} }
return false; return false;
} }
...@@ -1775,7 +1773,7 @@ static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) ...@@ -1775,7 +1773,7 @@ static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
{ {
struct dma_device *s_ddev = &ecc->dma_slave; struct dma_device *s_ddev = &ecc->dma_slave;
struct dma_device *m_ddev = NULL; struct dma_device *m_ddev = NULL;
s16 *memcpy_channels = ecc->info->memcpy_channels; s32 *memcpy_channels = ecc->info->memcpy_channels;
int i, j; int i, j;
dma_cap_zero(s_ddev->cap_mask); dma_cap_zero(s_ddev->cap_mask);
...@@ -1996,16 +1994,16 @@ static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, ...@@ -1996,16 +1994,16 @@ static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
if (prop) { if (prop) {
const char pname[] = "ti,edma-memcpy-channels"; const char pname[] = "ti,edma-memcpy-channels";
size_t nelm = sz / sizeof(s16); size_t nelm = sz / sizeof(s32);
s16 *memcpy_ch; s32 *memcpy_ch;
memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s16), memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
GFP_KERNEL); GFP_KERNEL);
if (!memcpy_ch) if (!memcpy_ch)
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
ret = of_property_read_u16_array(dev->of_node, pname, ret = of_property_read_u32_array(dev->of_node, pname,
(u16 *)memcpy_ch, nelm); (u32 *)memcpy_ch, nelm);
if (ret) if (ret)
return ERR_PTR(ret); return ERR_PTR(ret);
...@@ -2017,31 +2015,50 @@ static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, ...@@ -2017,31 +2015,50 @@ static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
&sz); &sz);
if (prop) { if (prop) {
const char pname[] = "ti,edma-reserved-slot-ranges"; const char pname[] = "ti,edma-reserved-slot-ranges";
u32 (*tmp)[2];
s16 (*rsv_slots)[2]; s16 (*rsv_slots)[2];
size_t nelm = sz / sizeof(*rsv_slots); size_t nelm = sz / sizeof(*tmp);
struct edma_rsv_info *rsv_info; struct edma_rsv_info *rsv_info;
int i;
if (!nelm) if (!nelm)
return info; return info;
tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return ERR_PTR(-ENOMEM);
rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
if (!rsv_info) if (!rsv_info) {
kfree(tmp);
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
}
rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
GFP_KERNEL); GFP_KERNEL);
if (!rsv_slots) if (!rsv_slots) {
kfree(tmp);
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
}
ret = of_property_read_u16_array(dev->of_node, pname, ret = of_property_read_u32_array(dev->of_node, pname,
(u16 *)rsv_slots, nelm * 2); (u32 *)tmp, nelm * 2);
if (ret) if (ret) {
kfree(tmp);
return ERR_PTR(ret); return ERR_PTR(ret);
}
for (i = 0; i < nelm; i++) {
rsv_slots[i][0] = tmp[i][0];
rsv_slots[i][1] = tmp[i][1];
}
rsv_slots[nelm][0] = -1; rsv_slots[nelm][0] = -1;
rsv_slots[nelm][1] = -1; rsv_slots[nelm][1] = -1;
info->rsv = rsv_info; info->rsv = rsv_info;
info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
kfree(tmp);
} }
return info; return info;
......
...@@ -317,6 +317,7 @@ mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest, ...@@ -317,6 +317,7 @@ mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
struct device *dev = mic_dma_ch_to_device(mic_ch); struct device *dev = mic_dma_ch_to_device(mic_ch);
int result; int result;
struct dma_async_tx_descriptor *tx = NULL;
if (!len && !flags) if (!len && !flags)
return NULL; return NULL;
...@@ -324,10 +325,13 @@ mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest, ...@@ -324,10 +325,13 @@ mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
spin_lock(&mic_ch->prep_lock); spin_lock(&mic_ch->prep_lock);
result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len); result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
if (result >= 0) if (result >= 0)
return allocate_tx(mic_ch); tx = allocate_tx(mic_ch);
if (!tx)
dev_err(dev, "Error enqueueing dma, error=%d\n", result); dev_err(dev, "Error enqueueing dma, error=%d\n", result);
spin_unlock(&mic_ch->prep_lock); spin_unlock(&mic_ch->prep_lock);
return NULL; return tx;
} }
static struct dma_async_tx_descriptor * static struct dma_async_tx_descriptor *
...@@ -335,13 +339,14 @@ mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags) ...@@ -335,13 +339,14 @@ mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
{ {
struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch); struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
int ret; int ret;
struct dma_async_tx_descriptor *tx = NULL;
spin_lock(&mic_ch->prep_lock); spin_lock(&mic_ch->prep_lock);
ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0); ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
if (!ret) if (!ret)
return allocate_tx(mic_ch); tx = allocate_tx(mic_ch);
spin_unlock(&mic_ch->prep_lock); spin_unlock(&mic_ch->prep_lock);
return NULL; return tx;
} }
/* Return the status of the transaction */ /* Return the status of the transaction */
......
...@@ -72,7 +72,7 @@ struct edma_soc_info { ...@@ -72,7 +72,7 @@ struct edma_soc_info {
struct edma_rsv_info *rsv; struct edma_rsv_info *rsv;
/* List of channels allocated for memcpy, terminated with -1 */ /* List of channels allocated for memcpy, terminated with -1 */
s16 *memcpy_channels; s32 *memcpy_channels;
s8 (*queue_priority_mapping)[2]; s8 (*queue_priority_mapping)[2];
const s16 (*xbar_chans)[2]; const s16 (*xbar_chans)[2];
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment