Commit f90e5a3d authored by David S. Miller's avatar David S. Miller

Merge branch 'mtk_eth_soc-flo-offload-plus-wireless'

Felix Fietkau says:

====================
MediaTek SoC flow offload improvements + wireless support

This series contains the following improvements to mediatek ethernet flow
offload support:

- support dma-coherent on ethernet to improve performance
- add ipv6 offload support
- rework hardware flow table entry handling to improve dealing with hash
  collisions and competing flows
- support creating offload entries from user space
- support creating offload entries with just source/destination mac address,
  vlan and output device information
- add driver changes for supporting the Wireless Ethernet Dispatch core,
  which can be used to offload flows from ethernet to MT7915 PCIe WLAN
  devices

Changes in v2:
- add missing dt-bindings patches
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 44ec5f71 33fc42de
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/arm/mediatek/mediatek,mt7622-pcie-mirror.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: MediaTek PCIE Mirror Controller for MT7622
maintainers:
- Lorenzo Bianconi <lorenzo@kernel.org>
- Felix Fietkau <nbd@nbd.name>
description:
The mediatek PCIE mirror provides a configuration interface for PCIE
controller on MT7622 soc.
properties:
compatible:
items:
- enum:
- mediatek,mt7622-pcie-mirror
- const: syscon
reg:
maxItems: 1
required:
- compatible
- reg
additionalProperties: false
examples:
- |
soc {
#address-cells = <2>;
#size-cells = <2>;
pcie_mirror: pcie-mirror@10000400 {
compatible = "mediatek,mt7622-pcie-mirror", "syscon";
reg = <0 0x10000400 0 0x10>;
};
};
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/arm/mediatek/mediatek,mt7622-wed.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: MediaTek Wireless Ethernet Dispatch Controller for MT7622
maintainers:
- Lorenzo Bianconi <lorenzo@kernel.org>
- Felix Fietkau <nbd@nbd.name>
description:
The mediatek wireless ethernet dispatch controller can be configured to
intercept and handle access to the WLAN DMA queues and PCIe interrupts
and implement hardware flow offloading from ethernet to WLAN.
properties:
compatible:
items:
- enum:
- mediatek,mt7622-wed
- const: syscon
reg:
maxItems: 1
interrupts:
maxItems: 1
required:
- compatible
- reg
- interrupts
additionalProperties: false
examples:
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/interrupt-controller/irq.h>
soc {
#address-cells = <2>;
#size-cells = <2>;
wed0: wed@1020a000 {
compatible = "mediatek,mt7622-wed","syscon";
reg = <0 0x1020a000 0 0x1000>;
interrupts = <GIC_SPI 214 IRQ_TYPE_LEVEL_LOW>;
};
};
......@@ -41,6 +41,16 @@ Required properties:
- mediatek,pctl: phandle to the syscon node that handles the ports slew rate
and driver current: only for MT2701 and MT7623 SoC
Optional properties:
- dma-coherent: present if dma operations are coherent
- mediatek,cci-control: phandle to the cache coherent interconnect node
- mediatek,hifsys: phandle to the mediatek hifsys controller used to provide
various clocks and reset to the system.
- mediatek,wed: a list of phandles to wireless ethernet dispatch nodes for
MT7622 SoC.
- mediatek,pcie-mirror: phandle to the mediatek pcie-mirror controller for
MT7622 SoC.
* Ethernet MAC node
Required properties:
......
......@@ -357,7 +357,7 @@ cci_control1: slave-if@4000 {
};
cci_control2: slave-if@5000 {
compatible = "arm,cci-400-ctrl-if";
compatible = "arm,cci-400-ctrl-if", "syscon";
interface-type = "ace";
reg = <0x5000 0x1000>;
};
......@@ -901,6 +901,11 @@ sata_port: sata-phy@1a243000 {
};
};
hifsys: syscon@1af00000 {
compatible = "mediatek,mt7622-hifsys", "syscon";
reg = <0 0x1af00000 0 0x70>;
};
ethsys: syscon@1b000000 {
compatible = "mediatek,mt7622-ethsys",
"syscon";
......@@ -919,6 +924,26 @@ hsdma: dma-controller@1b007000 {
#dma-cells = <1>;
};
pcie_mirror: pcie-mirror@10000400 {
compatible = "mediatek,mt7622-pcie-mirror",
"syscon";
reg = <0 0x10000400 0 0x10>;
};
wed0: wed@1020a000 {
compatible = "mediatek,mt7622-wed",
"syscon";
reg = <0 0x1020a000 0 0x1000>;
interrupts = <GIC_SPI 214 IRQ_TYPE_LEVEL_LOW>;
};
wed1: wed@1020b000 {
compatible = "mediatek,mt7622-wed",
"syscon";
reg = <0 0x1020b000 0 0x1000>;
interrupts = <GIC_SPI 215 IRQ_TYPE_LEVEL_LOW>;
};
eth: ethernet@1b100000 {
compatible = "mediatek,mt7622-eth",
"mediatek,mt2701-eth",
......@@ -945,6 +970,11 @@ eth: ethernet@1b100000 {
power-domains = <&scpsys MT7622_POWER_DOMAIN_ETHSYS>;
mediatek,ethsys = <&ethsys>;
mediatek,sgmiisys = <&sgmiisys>;
mediatek,cci-control = <&cci_control2>;
mediatek,wed = <&wed0>, <&wed1>;
mediatek,pcie-mirror = <&pcie_mirror>;
mediatek,hifsys = <&hifsys>;
dma-coherent;
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
......
......@@ -7,6 +7,10 @@ config NET_VENDOR_MEDIATEK
if NET_VENDOR_MEDIATEK
config NET_MEDIATEK_SOC_WED
depends on ARCH_MEDIATEK || COMPILE_TEST
def_bool NET_MEDIATEK_SOC != n
config NET_MEDIATEK_SOC
tristate "MediaTek SoC Gigabit Ethernet support"
depends on NET_DSA || !NET_DSA
......
......@@ -5,4 +5,9 @@
obj-$(CONFIG_NET_MEDIATEK_SOC) += mtk_eth.o
mtk_eth-y := mtk_eth_soc.o mtk_sgmii.o mtk_eth_path.o mtk_ppe.o mtk_ppe_debugfs.o mtk_ppe_offload.o
mtk_eth-$(CONFIG_NET_MEDIATEK_SOC_WED) += mtk_wed.o
ifdef CONFIG_DEBUG_FS
mtk_eth-$(CONFIG_NET_MEDIATEK_SOC_WED) += mtk_wed_debugfs.o
endif
obj-$(CONFIG_NET_MEDIATEK_SOC_WED) += mtk_wed_ops.o
obj-$(CONFIG_NET_MEDIATEK_STAR_EMAC) += mtk_star_emac.o
......@@ -9,6 +9,7 @@
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clk.h>
......@@ -20,9 +21,11 @@
#include <linux/pinctrl/devinfo.h>
#include <linux/phylink.h>
#include <linux/jhash.h>
#include <linux/bitfield.h>
#include <net/dsa.h>
#include "mtk_eth_soc.h"
#include "mtk_wed.h"
static int mtk_msg_level = -1;
module_param_named(msg_level, mtk_msg_level, int, 0);
......@@ -786,7 +789,7 @@ static int mtk_init_fq_dma(struct mtk_eth *eth)
dma_addr_t dma_addr;
int i;
eth->scratch_ring = dma_alloc_coherent(eth->dev,
eth->scratch_ring = dma_alloc_coherent(eth->dma_dev,
cnt * sizeof(struct mtk_tx_dma),
&eth->phy_scratch_ring,
GFP_ATOMIC);
......@@ -798,10 +801,10 @@ static int mtk_init_fq_dma(struct mtk_eth *eth)
if (unlikely(!eth->scratch_head))
return -ENOMEM;
dma_addr = dma_map_single(eth->dev,
dma_addr = dma_map_single(eth->dma_dev,
eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr)))
return -ENOMEM;
phy_ring_tail = eth->phy_scratch_ring +
......@@ -855,26 +858,26 @@ static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf,
{
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(eth->dev,
dma_unmap_single(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(eth->dev,
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
} else {
if (dma_unmap_len(tx_buf, dma_len0)) {
dma_unmap_page(eth->dev,
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
if (dma_unmap_len(tx_buf, dma_len1)) {
dma_unmap_page(eth->dev,
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE);
......@@ -952,9 +955,9 @@ static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
if (skb_vlan_tag_present(skb))
txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb);
mapped_addr = dma_map_single(eth->dev, skb->data,
mapped_addr = dma_map_single(eth->dma_dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, mapped_addr)))
if (unlikely(dma_mapping_error(eth->dma_dev, mapped_addr)))
return -ENOMEM;
WRITE_ONCE(itxd->txd1, mapped_addr);
......@@ -993,10 +996,10 @@ static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(eth->dev, frag, offset,
mapped_addr = skb_frag_dma_map(eth->dma_dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, mapped_addr)))
if (unlikely(dma_mapping_error(eth->dma_dev, mapped_addr)))
goto err_dma;
if (i == nr_frags - 1 &&
......@@ -1237,7 +1240,7 @@ static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct net_device *netdev;
unsigned int pktlen;
dma_addr_t dma_addr;
u32 hash;
u32 hash, reason;
int mac;
ring = mtk_get_rx_ring(eth);
......@@ -1274,18 +1277,18 @@ static int mtk_poll_rx(struct napi_struct *napi, int budget,
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(eth->dev,
dma_addr = dma_map_single(eth->dma_dev,
new_data + NET_SKB_PAD +
eth->ip_align,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr))) {
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr))) {
skb_free_frag(new_data);
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_unmap_single(eth->dev, trxd.rxd1,
dma_unmap_single(eth->dma_dev, trxd.rxd1,
ring->buf_size, DMA_FROM_DEVICE);
/* receive data */
......@@ -1313,6 +1316,11 @@ static int mtk_poll_rx(struct napi_struct *napi, int budget,
skb_set_hash(skb, hash, PKT_HASH_TYPE_L4);
}
reason = FIELD_GET(MTK_RXD4_PPE_CPU_REASON, trxd.rxd4);
if (reason == MTK_PPE_CPU_REASON_HIT_UNBIND_RATE_REACHED)
mtk_ppe_check_skb(eth->ppe, skb,
trxd.rxd4 & MTK_RXD4_FOE_ENTRY);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
(trxd.rxd2 & RX_DMA_VTAG))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
......@@ -1558,7 +1566,7 @@ static int mtk_tx_alloc(struct mtk_eth *eth)
if (!ring->buf)
goto no_tx_mem;
ring->dma = dma_alloc_coherent(eth->dev, MTK_DMA_SIZE * sz,
ring->dma = dma_alloc_coherent(eth->dma_dev, MTK_DMA_SIZE * sz,
&ring->phys, GFP_ATOMIC);
if (!ring->dma)
goto no_tx_mem;
......@@ -1576,7 +1584,7 @@ static int mtk_tx_alloc(struct mtk_eth *eth)
* descriptors in ring->dma_pdma.
*/
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
ring->dma_pdma = dma_alloc_coherent(eth->dev, MTK_DMA_SIZE * sz,
ring->dma_pdma = dma_alloc_coherent(eth->dma_dev, MTK_DMA_SIZE * sz,
&ring->phys_pdma,
GFP_ATOMIC);
if (!ring->dma_pdma)
......@@ -1635,7 +1643,7 @@ static void mtk_tx_clean(struct mtk_eth *eth)
}
if (ring->dma) {
dma_free_coherent(eth->dev,
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
ring->dma,
ring->phys);
......@@ -1643,7 +1651,7 @@ static void mtk_tx_clean(struct mtk_eth *eth)
}
if (ring->dma_pdma) {
dma_free_coherent(eth->dev,
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * sizeof(*ring->dma_pdma),
ring->dma_pdma,
ring->phys_pdma);
......@@ -1688,18 +1696,18 @@ static int mtk_rx_alloc(struct mtk_eth *eth, int ring_no, int rx_flag)
return -ENOMEM;
}
ring->dma = dma_alloc_coherent(eth->dev,
ring->dma = dma_alloc_coherent(eth->dma_dev,
rx_dma_size * sizeof(*ring->dma),
&ring->phys, GFP_ATOMIC);
if (!ring->dma)
return -ENOMEM;
for (i = 0; i < rx_dma_size; i++) {
dma_addr_t dma_addr = dma_map_single(eth->dev,
dma_addr_t dma_addr = dma_map_single(eth->dma_dev,
ring->data[i] + NET_SKB_PAD + eth->ip_align,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr)))
return -ENOMEM;
ring->dma[i].rxd1 = (unsigned int)dma_addr;
......@@ -1735,7 +1743,7 @@ static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring)
continue;
if (!ring->dma[i].rxd1)
continue;
dma_unmap_single(eth->dev,
dma_unmap_single(eth->dma_dev,
ring->dma[i].rxd1,
ring->buf_size,
DMA_FROM_DEVICE);
......@@ -1746,7 +1754,7 @@ static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring)
}
if (ring->dma) {
dma_free_coherent(eth->dev,
dma_free_coherent(eth->dma_dev,
ring->dma_size * sizeof(*ring->dma),
ring->dma,
ring->phys);
......@@ -2099,7 +2107,7 @@ static void mtk_dma_free(struct mtk_eth *eth)
if (eth->netdev[i])
netdev_reset_queue(eth->netdev[i]);
if (eth->scratch_ring) {
dma_free_coherent(eth->dev,
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * sizeof(struct mtk_tx_dma),
eth->scratch_ring,
eth->phy_scratch_ring);
......@@ -2267,7 +2275,7 @@ static int mtk_open(struct net_device *dev)
if (err)
return err;
if (eth->soc->offload_version && mtk_ppe_start(&eth->ppe) == 0)
if (eth->soc->offload_version && mtk_ppe_start(eth->ppe) == 0)
gdm_config = MTK_GDMA_TO_PPE;
mtk_gdm_config(eth, gdm_config);
......@@ -2341,7 +2349,7 @@ static int mtk_stop(struct net_device *dev)
mtk_dma_free(eth);
if (eth->soc->offload_version)
mtk_ppe_stop(&eth->ppe);
mtk_ppe_stop(eth->ppe);
return 0;
}
......@@ -2448,6 +2456,8 @@ static void mtk_dim_tx(struct work_struct *work)
static int mtk_hw_init(struct mtk_eth *eth)
{
u32 dma_mask = ETHSYS_DMA_AG_MAP_PDMA | ETHSYS_DMA_AG_MAP_QDMA |
ETHSYS_DMA_AG_MAP_PPE;
int i, val, ret;
if (test_and_set_bit(MTK_HW_INIT, &eth->state))
......@@ -2460,6 +2470,10 @@ static int mtk_hw_init(struct mtk_eth *eth)
if (ret)
goto err_disable_pm;
if (eth->ethsys)
regmap_update_bits(eth->ethsys, ETHSYS_DMA_AG_MAP, dma_mask,
of_dma_is_coherent(eth->dma_dev->of_node) * dma_mask);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
ret = device_reset(eth->dev);
if (ret) {
......@@ -3040,6 +3054,35 @@ static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
return err;
}
void mtk_eth_set_dma_device(struct mtk_eth *eth, struct device *dma_dev)
{
struct net_device *dev, *tmp;
LIST_HEAD(dev_list);
int i;
rtnl_lock();
for (i = 0; i < MTK_MAC_COUNT; i++) {
dev = eth->netdev[i];
if (!dev || !(dev->flags & IFF_UP))
continue;
list_add_tail(&dev->close_list, &dev_list);
}
dev_close_many(&dev_list, false);
eth->dma_dev = dma_dev;
list_for_each_entry_safe(dev, tmp, &dev_list, close_list) {
list_del_init(&dev->close_list);
dev_open(dev, NULL);
}
rtnl_unlock();
}
static int mtk_probe(struct platform_device *pdev)
{
struct device_node *mac_np;
......@@ -3053,6 +3096,7 @@ static int mtk_probe(struct platform_device *pdev)
eth->soc = of_device_get_match_data(&pdev->dev);
eth->dev = &pdev->dev;
eth->dma_dev = &pdev->dev;
eth->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(eth->base))
return PTR_ERR(eth->base);
......@@ -3101,6 +3145,16 @@ static int mtk_probe(struct platform_device *pdev)
}
}
if (of_dma_is_coherent(pdev->dev.of_node)) {
struct regmap *cci;
cci = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,cci-control");
/* enable CPU/bus coherency */
if (!IS_ERR(cci))
regmap_write(cci, 0, 3);
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) {
eth->sgmii = devm_kzalloc(eth->dev, sizeof(*eth->sgmii),
GFP_KERNEL);
......@@ -3123,6 +3177,22 @@ static int mtk_probe(struct platform_device *pdev)
}
}
for (i = 0;; i++) {
struct device_node *np = of_parse_phandle(pdev->dev.of_node,
"mediatek,wed", i);
static const u32 wdma_regs[] = {
MTK_WDMA0_BASE,
MTK_WDMA1_BASE
};
void __iomem *wdma;
if (!np || i >= ARRAY_SIZE(wdma_regs))
break;
wdma = eth->base + wdma_regs[i];
mtk_wed_add_hw(np, eth, wdma, i);
}
for (i = 0; i < 3; i++) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT) && i > 0)
eth->irq[i] = eth->irq[0];
......@@ -3198,10 +3268,11 @@ static int mtk_probe(struct platform_device *pdev)
}
if (eth->soc->offload_version) {
err = mtk_ppe_init(&eth->ppe, eth->dev,
eth->base + MTK_ETH_PPE_BASE, 2);
if (err)
eth->ppe = mtk_ppe_init(eth, eth->base + MTK_ETH_PPE_BASE, 2);
if (!eth->ppe) {
err = -ENOMEM;
goto err_free_dev;
}
err = mtk_eth_offload_init(eth);
if (err)
......
......@@ -295,6 +295,9 @@
#define MTK_GDM1_TX_GPCNT 0x2438
#define MTK_STAT_OFFSET 0x40
#define MTK_WDMA0_BASE 0x2800
#define MTK_WDMA1_BASE 0x2c00
/* QDMA descriptor txd4 */
#define TX_DMA_CHKSUM (0x7 << 29)
#define TX_DMA_TSO BIT(28)
......@@ -465,6 +468,12 @@
#define RSTCTRL_FE BIT(6)
#define RSTCTRL_PPE BIT(31)
/* ethernet dma channel agent map */
#define ETHSYS_DMA_AG_MAP 0x408
#define ETHSYS_DMA_AG_MAP_PDMA BIT(0)
#define ETHSYS_DMA_AG_MAP_QDMA BIT(1)
#define ETHSYS_DMA_AG_MAP_PPE BIT(2)
/* SGMII subsystem config registers */
/* Register to auto-negotiation restart */
#define SGMSYS_PCS_CONTROL_1 0x0
......@@ -882,6 +891,7 @@ struct mtk_sgmii {
/* struct mtk_eth - This is the main datasructure for holding the state
* of the driver
* @dev: The device pointer
* @dev: The device pointer used for dma mapping/alloc
* @base: The mapped register i/o base
* @page_lock: Make sure that register operations are atomic
* @tx_irq__lock: Make sure that IRQ register operations are atomic
......@@ -925,6 +935,7 @@ struct mtk_sgmii {
struct mtk_eth {
struct device *dev;
struct device *dma_dev;
void __iomem *base;
spinlock_t page_lock;
spinlock_t tx_irq_lock;
......@@ -974,7 +985,7 @@ struct mtk_eth {
u32 rx_dma_l4_valid;
int ip_align;
struct mtk_ppe ppe;
struct mtk_ppe *ppe;
struct rhashtable flow_table;
};
......@@ -1023,6 +1034,7 @@ int mtk_gmac_rgmii_path_setup(struct mtk_eth *eth, int mac_id);
int mtk_eth_offload_init(struct mtk_eth *eth);
int mtk_eth_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data);
void mtk_eth_set_dma_device(struct mtk_eth *eth, struct device *dma_dev);
#endif /* MTK_ETH_H */
......@@ -6,9 +6,22 @@
#include <linux/iopoll.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/dsa.h>
#include "mtk_eth_soc.h"
#include "mtk_ppe.h"
#include "mtk_ppe_regs.h"
static DEFINE_SPINLOCK(ppe_lock);
static const struct rhashtable_params mtk_flow_l2_ht_params = {
.head_offset = offsetof(struct mtk_flow_entry, l2_node),
.key_offset = offsetof(struct mtk_flow_entry, data.bridge),
.key_len = offsetof(struct mtk_foe_bridge, key_end),
.automatic_shrinking = true,
};
static void ppe_w32(struct mtk_ppe *ppe, u32 reg, u32 val)
{
writel(val, ppe->base + reg);
......@@ -41,6 +54,11 @@ static u32 ppe_clear(struct mtk_ppe *ppe, u32 reg, u32 val)
return ppe_m32(ppe, reg, val, 0);
}
static u32 mtk_eth_timestamp(struct mtk_eth *eth)
{
return mtk_r32(eth, 0x0010) & MTK_FOE_IB1_BIND_TIMESTAMP;
}
static int mtk_ppe_wait_busy(struct mtk_ppe *ppe)
{
int ret;
......@@ -76,13 +94,6 @@ static u32 mtk_ppe_hash_entry(struct mtk_foe_entry *e)
u32 hash;
switch (FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, e->ib1)) {
case MTK_PPE_PKT_TYPE_BRIDGE:
hv1 = e->bridge.src_mac_lo;
hv1 ^= ((e->bridge.src_mac_hi & 0xffff) << 16);
hv2 = e->bridge.src_mac_hi >> 16;
hv2 ^= e->bridge.dest_mac_lo;
hv3 = e->bridge.dest_mac_hi;
break;
case MTK_PPE_PKT_TYPE_IPV4_ROUTE:
case MTK_PPE_PKT_TYPE_IPV4_HNAPT:
hv1 = e->ipv4.orig.ports;
......@@ -122,6 +133,9 @@ mtk_foe_entry_l2(struct mtk_foe_entry *entry)
{
int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
if (type == MTK_PPE_PKT_TYPE_BRIDGE)
return &entry->bridge.l2;
if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE)
return &entry->ipv6.l2;
......@@ -133,6 +147,9 @@ mtk_foe_entry_ib2(struct mtk_foe_entry *entry)
{
int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->ib1);
if (type == MTK_PPE_PKT_TYPE_BRIDGE)
return &entry->bridge.ib2;
if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE)
return &entry->ipv6.ib2;
......@@ -167,7 +184,12 @@ int mtk_foe_entry_prepare(struct mtk_foe_entry *entry, int type, int l4proto,
if (type == MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T)
entry->ipv6.ports = ports_pad;
if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE) {
if (type == MTK_PPE_PKT_TYPE_BRIDGE) {
ether_addr_copy(entry->bridge.src_mac, src_mac);
ether_addr_copy(entry->bridge.dest_mac, dest_mac);
entry->bridge.ib2 = val;
l2 = &entry->bridge.l2;
} else if (type >= MTK_PPE_PKT_TYPE_IPV4_DSLITE) {
entry->ipv6.ib2 = val;
l2 = &entry->ipv6.l2;
} else {
......@@ -329,32 +351,167 @@ int mtk_foe_entry_set_pppoe(struct mtk_foe_entry *entry, int sid)
return 0;
}
int mtk_foe_entry_set_wdma(struct mtk_foe_entry *entry, int wdma_idx, int txq,
int bss, int wcid)
{
struct mtk_foe_mac_info *l2 = mtk_foe_entry_l2(entry);
u32 *ib2 = mtk_foe_entry_ib2(entry);
*ib2 &= ~MTK_FOE_IB2_PORT_MG;
*ib2 |= MTK_FOE_IB2_WDMA_WINFO;
if (wdma_idx)
*ib2 |= MTK_FOE_IB2_WDMA_DEVIDX;
l2->vlan2 = FIELD_PREP(MTK_FOE_VLAN2_WINFO_BSS, bss) |
FIELD_PREP(MTK_FOE_VLAN2_WINFO_WCID, wcid) |
FIELD_PREP(MTK_FOE_VLAN2_WINFO_RING, txq);
return 0;
}
static inline bool mtk_foe_entry_usable(struct mtk_foe_entry *entry)
{
return !(entry->ib1 & MTK_FOE_IB1_STATIC) &&
FIELD_GET(MTK_FOE_IB1_STATE, entry->ib1) != MTK_FOE_STATE_BIND;
}
int mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_foe_entry *entry,
u16 timestamp)
static bool
mtk_flow_entry_match(struct mtk_flow_entry *entry, struct mtk_foe_entry *data)
{
int type, len;
if ((data->ib1 ^ entry->data.ib1) & MTK_FOE_IB1_UDP)
return false;
type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->data.ib1);
if (type > MTK_PPE_PKT_TYPE_IPV4_DSLITE)
len = offsetof(struct mtk_foe_entry, ipv6._rsv);
else
len = offsetof(struct mtk_foe_entry, ipv4.ib2);
return !memcmp(&entry->data.data, &data->data, len - 4);
}
static void
__mtk_foe_entry_clear(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
struct hlist_head *head;
struct hlist_node *tmp;
if (entry->type == MTK_FLOW_TYPE_L2) {
rhashtable_remove_fast(&ppe->l2_flows, &entry->l2_node,
mtk_flow_l2_ht_params);
head = &entry->l2_flows;
hlist_for_each_entry_safe(entry, tmp, head, l2_data.list)
__mtk_foe_entry_clear(ppe, entry);
return;
}
hlist_del_init(&entry->list);
if (entry->hash != 0xffff) {
ppe->foe_table[entry->hash].ib1 &= ~MTK_FOE_IB1_STATE;
ppe->foe_table[entry->hash].ib1 |= FIELD_PREP(MTK_FOE_IB1_STATE,
MTK_FOE_STATE_BIND);
dma_wmb();
}
entry->hash = 0xffff;
if (entry->type != MTK_FLOW_TYPE_L2_SUBFLOW)
return;
hlist_del_init(&entry->l2_data.list);
kfree(entry);
}
static int __mtk_foe_entry_idle_time(struct mtk_ppe *ppe, u32 ib1)
{
u16 timestamp;
u16 now;
now = mtk_eth_timestamp(ppe->eth) & MTK_FOE_IB1_BIND_TIMESTAMP;
timestamp = ib1 & MTK_FOE_IB1_BIND_TIMESTAMP;
if (timestamp > now)
return MTK_FOE_IB1_BIND_TIMESTAMP + 1 - timestamp + now;
else
return now - timestamp;
}
static void
mtk_flow_entry_update_l2(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
struct mtk_flow_entry *cur;
struct mtk_foe_entry *hwe;
u32 hash;
struct hlist_node *tmp;
int idle;
idle = __mtk_foe_entry_idle_time(ppe, entry->data.ib1);
hlist_for_each_entry_safe(cur, tmp, &entry->l2_flows, l2_data.list) {
int cur_idle;
u32 ib1;
hwe = &ppe->foe_table[cur->hash];
ib1 = READ_ONCE(hwe->ib1);
if (FIELD_GET(MTK_FOE_IB1_STATE, ib1) != MTK_FOE_STATE_BIND) {
cur->hash = 0xffff;
__mtk_foe_entry_clear(ppe, cur);
continue;
}
cur_idle = __mtk_foe_entry_idle_time(ppe, ib1);
if (cur_idle >= idle)
continue;
idle = cur_idle;
entry->data.ib1 &= ~MTK_FOE_IB1_BIND_TIMESTAMP;
entry->data.ib1 |= hwe->ib1 & MTK_FOE_IB1_BIND_TIMESTAMP;
}
}
static void
mtk_flow_entry_update(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
struct mtk_foe_entry *hwe;
struct mtk_foe_entry foe;
spin_lock_bh(&ppe_lock);
if (entry->type == MTK_FLOW_TYPE_L2) {
mtk_flow_entry_update_l2(ppe, entry);
goto out;
}
if (entry->hash == 0xffff)
goto out;
hwe = &ppe->foe_table[entry->hash];
memcpy(&foe, hwe, sizeof(foe));
if (!mtk_flow_entry_match(entry, &foe)) {
entry->hash = 0xffff;
goto out;
}
entry->data.ib1 = foe.ib1;
out:
spin_unlock_bh(&ppe_lock);
}
static void
__mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_foe_entry *entry,
u16 hash)
{
struct mtk_foe_entry *hwe;
u16 timestamp;
timestamp = mtk_eth_timestamp(ppe->eth);
timestamp &= MTK_FOE_IB1_BIND_TIMESTAMP;
entry->ib1 &= ~MTK_FOE_IB1_BIND_TIMESTAMP;
entry->ib1 |= FIELD_PREP(MTK_FOE_IB1_BIND_TIMESTAMP, timestamp);
hash = mtk_ppe_hash_entry(entry);
hwe = &ppe->foe_table[hash];
if (!mtk_foe_entry_usable(hwe)) {
hwe++;
hash++;
if (!mtk_foe_entry_usable(hwe))
return -ENOSPC;
}
memcpy(&hwe->data, &entry->data, sizeof(hwe->data));
wmb();
hwe->ib1 = entry->ib1;
......@@ -362,32 +519,194 @@ int mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_foe_entry *entry,
dma_wmb();
mtk_ppe_cache_clear(ppe);
}
return hash;
void mtk_foe_entry_clear(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
spin_lock_bh(&ppe_lock);
__mtk_foe_entry_clear(ppe, entry);
spin_unlock_bh(&ppe_lock);
}
static int
mtk_foe_entry_commit_l2(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
entry->type = MTK_FLOW_TYPE_L2;
return rhashtable_insert_fast(&ppe->l2_flows, &entry->l2_node,
mtk_flow_l2_ht_params);
}
int mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
int type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, entry->data.ib1);
u32 hash;
if (type == MTK_PPE_PKT_TYPE_BRIDGE)
return mtk_foe_entry_commit_l2(ppe, entry);
hash = mtk_ppe_hash_entry(&entry->data);
entry->hash = 0xffff;
spin_lock_bh(&ppe_lock);
hlist_add_head(&entry->list, &ppe->foe_flow[hash / 2]);
spin_unlock_bh(&ppe_lock);
return 0;
}
static void
mtk_foe_entry_commit_subflow(struct mtk_ppe *ppe, struct mtk_flow_entry *entry,
u16 hash)
{
struct mtk_flow_entry *flow_info;
struct mtk_foe_entry foe, *hwe;
struct mtk_foe_mac_info *l2;
u32 ib1_mask = MTK_FOE_IB1_PACKET_TYPE | MTK_FOE_IB1_UDP;
int type;
flow_info = kzalloc(offsetof(struct mtk_flow_entry, l2_data.end),
GFP_ATOMIC);
if (!flow_info)
return;
flow_info->l2_data.base_flow = entry;
flow_info->type = MTK_FLOW_TYPE_L2_SUBFLOW;
flow_info->hash = hash;
hlist_add_head(&flow_info->list, &ppe->foe_flow[hash / 2]);
hlist_add_head(&flow_info->l2_data.list, &entry->l2_flows);
hwe = &ppe->foe_table[hash];
memcpy(&foe, hwe, sizeof(foe));
foe.ib1 &= ib1_mask;
foe.ib1 |= entry->data.ib1 & ~ib1_mask;
l2 = mtk_foe_entry_l2(&foe);
memcpy(l2, &entry->data.bridge.l2, sizeof(*l2));
type = FIELD_GET(MTK_FOE_IB1_PACKET_TYPE, foe.ib1);
if (type == MTK_PPE_PKT_TYPE_IPV4_HNAPT)
memcpy(&foe.ipv4.new, &foe.ipv4.orig, sizeof(foe.ipv4.new));
else if (type >= MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T && l2->etype == ETH_P_IP)
l2->etype = ETH_P_IPV6;
*mtk_foe_entry_ib2(&foe) = entry->data.bridge.ib2;
__mtk_foe_entry_commit(ppe, &foe, hash);
}
int mtk_ppe_init(struct mtk_ppe *ppe, struct device *dev, void __iomem *base,
void __mtk_ppe_check_skb(struct mtk_ppe *ppe, struct sk_buff *skb, u16 hash)
{
struct hlist_head *head = &ppe->foe_flow[hash / 2];
struct mtk_foe_entry *hwe = &ppe->foe_table[hash];
struct mtk_flow_entry *entry;
struct mtk_foe_bridge key = {};
struct ethhdr *eh;
bool found = false;
u8 *tag;
spin_lock_bh(&ppe_lock);
if (FIELD_GET(MTK_FOE_IB1_STATE, hwe->ib1) == MTK_FOE_STATE_BIND)
goto out;
hlist_for_each_entry(entry, head, list) {
if (entry->type == MTK_FLOW_TYPE_L2_SUBFLOW) {
if (unlikely(FIELD_GET(MTK_FOE_IB1_STATE, hwe->ib1) ==
MTK_FOE_STATE_BIND))
continue;
entry->hash = 0xffff;
__mtk_foe_entry_clear(ppe, entry);
continue;
}
if (found || !mtk_flow_entry_match(entry, hwe)) {
if (entry->hash != 0xffff)
entry->hash = 0xffff;
continue;
}
entry->hash = hash;
__mtk_foe_entry_commit(ppe, &entry->data, hash);
found = true;
}
if (found)
goto out;
eh = eth_hdr(skb);
ether_addr_copy(key.dest_mac, eh->h_dest);
ether_addr_copy(key.src_mac, eh->h_source);
tag = skb->data - 2;
key.vlan = 0;
switch (skb->protocol) {
#if IS_ENABLED(CONFIG_NET_DSA)
case htons(ETH_P_XDSA):
if (!netdev_uses_dsa(skb->dev) ||
skb->dev->dsa_ptr->tag_ops->proto != DSA_TAG_PROTO_MTK)
goto out;
tag += 4;
if (get_unaligned_be16(tag) != ETH_P_8021Q)
break;
fallthrough;
#endif
case htons(ETH_P_8021Q):
key.vlan = get_unaligned_be16(tag + 2) & VLAN_VID_MASK;
break;
default:
break;
}
entry = rhashtable_lookup_fast(&ppe->l2_flows, &key, mtk_flow_l2_ht_params);
if (!entry)
goto out;
mtk_foe_entry_commit_subflow(ppe, entry, hash);
out:
spin_unlock_bh(&ppe_lock);
}
int mtk_foe_entry_idle_time(struct mtk_ppe *ppe, struct mtk_flow_entry *entry)
{
mtk_flow_entry_update(ppe, entry);
return __mtk_foe_entry_idle_time(ppe, entry->data.ib1);
}
struct mtk_ppe *mtk_ppe_init(struct mtk_eth *eth, void __iomem *base,
int version)
{
struct device *dev = eth->dev;
struct mtk_foe_entry *foe;
struct mtk_ppe *ppe;
ppe = devm_kzalloc(dev, sizeof(*ppe), GFP_KERNEL);
if (!ppe)
return NULL;
rhashtable_init(&ppe->l2_flows, &mtk_flow_l2_ht_params);
/* need to allocate a separate device, since it PPE DMA access is
* not coherent.
*/
ppe->base = base;
ppe->eth = eth;
ppe->dev = dev;
ppe->version = version;
foe = dmam_alloc_coherent(ppe->dev, MTK_PPE_ENTRIES * sizeof(*foe),
&ppe->foe_phys, GFP_KERNEL);
if (!foe)
return -ENOMEM;
return NULL;
ppe->foe_table = foe;
mtk_ppe_debugfs_init(ppe);
return 0;
return ppe;
}
static void mtk_ppe_init_foe_table(struct mtk_ppe *ppe)
......@@ -443,7 +762,6 @@ int mtk_ppe_start(struct mtk_ppe *ppe)
MTK_PPE_FLOW_CFG_IP4_NAT |
MTK_PPE_FLOW_CFG_IP4_NAPT |
MTK_PPE_FLOW_CFG_IP4_DSLITE |
MTK_PPE_FLOW_CFG_L2_BRIDGE |
MTK_PPE_FLOW_CFG_IP4_NAT_FRAG;
ppe_w32(ppe, MTK_PPE_FLOW_CFG, val);
......
......@@ -6,6 +6,7 @@
#include <linux/kernel.h>
#include <linux/bitfield.h>
#include <linux/rhashtable.h>
#define MTK_ETH_PPE_BASE 0xc00
......@@ -48,9 +49,9 @@ enum {
#define MTK_FOE_IB2_DEST_PORT GENMASK(7, 5)
#define MTK_FOE_IB2_MULTICAST BIT(8)
#define MTK_FOE_IB2_WHNAT_QID2 GENMASK(13, 12)
#define MTK_FOE_IB2_WHNAT_DEVIDX BIT(16)
#define MTK_FOE_IB2_WHNAT_NAT BIT(17)
#define MTK_FOE_IB2_WDMA_QID2 GENMASK(13, 12)
#define MTK_FOE_IB2_WDMA_DEVIDX BIT(16)
#define MTK_FOE_IB2_WDMA_WINFO BIT(17)
#define MTK_FOE_IB2_PORT_MG GENMASK(17, 12)
......@@ -58,9 +59,9 @@ enum {
#define MTK_FOE_IB2_DSCP GENMASK(31, 24)
#define MTK_FOE_VLAN2_WHNAT_BSS GEMMASK(5, 0)
#define MTK_FOE_VLAN2_WHNAT_WCID GENMASK(13, 6)
#define MTK_FOE_VLAN2_WHNAT_RING GENMASK(15, 14)
#define MTK_FOE_VLAN2_WINFO_BSS GENMASK(5, 0)
#define MTK_FOE_VLAN2_WINFO_WCID GENMASK(13, 6)
#define MTK_FOE_VLAN2_WINFO_RING GENMASK(15, 14)
enum {
MTK_FOE_STATE_INVALID,
......@@ -84,19 +85,16 @@ struct mtk_foe_mac_info {
u16 src_mac_lo;
};
/* software-only entry type */
struct mtk_foe_bridge {
u32 dest_mac_hi;
u8 dest_mac[ETH_ALEN];
u8 src_mac[ETH_ALEN];
u16 vlan;
u16 src_mac_lo;
u16 dest_mac_lo;
u32 src_mac_hi;
struct {} key_end;
u32 ib2;
u32 _rsv[5];
u32 udf_tsid;
struct mtk_foe_mac_info l2;
};
......@@ -235,7 +233,37 @@ enum {
MTK_PPE_CPU_REASON_INVALID = 0x1f,
};
enum {
MTK_FLOW_TYPE_L4,
MTK_FLOW_TYPE_L2,
MTK_FLOW_TYPE_L2_SUBFLOW,
};
struct mtk_flow_entry {
union {
struct hlist_node list;
struct {
struct rhash_head l2_node;
struct hlist_head l2_flows;
};
};
u8 type;
s8 wed_index;
u16 hash;
union {
struct mtk_foe_entry data;
struct {
struct mtk_flow_entry *base_flow;
struct hlist_node list;
struct {} end;
} l2_data;
};
struct rhash_head node;
unsigned long cookie;
};
struct mtk_ppe {
struct mtk_eth *eth;
struct device *dev;
void __iomem *base;
int version;
......@@ -243,19 +271,35 @@ struct mtk_ppe {
struct mtk_foe_entry *foe_table;
dma_addr_t foe_phys;
u16 foe_check_time[MTK_PPE_ENTRIES];
struct hlist_head foe_flow[MTK_PPE_ENTRIES / 2];
struct rhashtable l2_flows;
void *acct_table;
};
int mtk_ppe_init(struct mtk_ppe *ppe, struct device *dev, void __iomem *base,
int version);
struct mtk_ppe *mtk_ppe_init(struct mtk_eth *eth, void __iomem *base, int version);
int mtk_ppe_start(struct mtk_ppe *ppe);
int mtk_ppe_stop(struct mtk_ppe *ppe);
void __mtk_ppe_check_skb(struct mtk_ppe *ppe, struct sk_buff *skb, u16 hash);
static inline void
mtk_foe_entry_clear(struct mtk_ppe *ppe, u16 hash)
mtk_ppe_check_skb(struct mtk_ppe *ppe, struct sk_buff *skb, u16 hash)
{
ppe->foe_table[hash].ib1 = 0;
dma_wmb();
u16 now, diff;
if (!ppe)
return;
now = (u16)jiffies;
diff = now - ppe->foe_check_time[hash];
if (diff < HZ / 10)
return;
ppe->foe_check_time[hash] = now;
__mtk_ppe_check_skb(ppe, skb, hash);
}
static inline int
......@@ -281,8 +325,11 @@ int mtk_foe_entry_set_ipv6_tuple(struct mtk_foe_entry *entry,
int mtk_foe_entry_set_dsa(struct mtk_foe_entry *entry, int port);
int mtk_foe_entry_set_vlan(struct mtk_foe_entry *entry, int vid);
int mtk_foe_entry_set_pppoe(struct mtk_foe_entry *entry, int sid);
int mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_foe_entry *entry,
u16 timestamp);
int mtk_foe_entry_set_wdma(struct mtk_foe_entry *entry, int wdma_idx, int txq,
int bss, int wcid);
int mtk_foe_entry_commit(struct mtk_ppe *ppe, struct mtk_flow_entry *entry);
void mtk_foe_entry_clear(struct mtk_ppe *ppe, struct mtk_flow_entry *entry);
int mtk_foe_entry_idle_time(struct mtk_ppe *ppe, struct mtk_flow_entry *entry);
int mtk_ppe_debugfs_init(struct mtk_ppe *ppe);
#endif
......@@ -32,7 +32,6 @@ static const char *mtk_foe_pkt_type_str(int type)
static const char * const type_str[] = {
[MTK_PPE_PKT_TYPE_IPV4_HNAPT] = "IPv4 5T",
[MTK_PPE_PKT_TYPE_IPV4_ROUTE] = "IPv4 3T",
[MTK_PPE_PKT_TYPE_BRIDGE] = "L2",
[MTK_PPE_PKT_TYPE_IPV4_DSLITE] = "DS-LITE",
[MTK_PPE_PKT_TYPE_IPV6_ROUTE_3T] = "IPv6 3T",
[MTK_PPE_PKT_TYPE_IPV6_ROUTE_5T] = "IPv6 5T",
......
......@@ -6,10 +6,12 @@
#include <linux/if_ether.h>
#include <linux/rhashtable.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/flow_offload.h>
#include <net/pkt_cls.h>
#include <net/dsa.h>
#include "mtk_eth_soc.h"
#include "mtk_wed.h"
struct mtk_flow_data {
struct ethhdr eth;
......@@ -19,11 +21,18 @@ struct mtk_flow_data {
__be32 src_addr;
__be32 dst_addr;
} v4;
struct {
struct in6_addr src_addr;
struct in6_addr dst_addr;
} v6;
};
__be16 src_port;
__be16 dst_port;
u16 vlan_in;
struct {
u16 id;
__be16 proto;
......@@ -35,12 +44,6 @@ struct mtk_flow_data {
} pppoe;
};
struct mtk_flow_entry {
struct rhash_head node;
unsigned long cookie;
u16 hash;
};
static const struct rhashtable_params mtk_flow_ht_params = {
.head_offset = offsetof(struct mtk_flow_entry, node),
.key_offset = offsetof(struct mtk_flow_entry, cookie),
......@@ -48,12 +51,6 @@ static const struct rhashtable_params mtk_flow_ht_params = {
.automatic_shrinking = true,
};
static u32
mtk_eth_timestamp(struct mtk_eth *eth)
{
return mtk_r32(eth, 0x0010) & MTK_FOE_IB1_BIND_TIMESTAMP;
}
static int
mtk_flow_set_ipv4_addr(struct mtk_foe_entry *foe, struct mtk_flow_data *data,
bool egress)
......@@ -63,6 +60,14 @@ mtk_flow_set_ipv4_addr(struct mtk_foe_entry *foe, struct mtk_flow_data *data,
data->v4.dst_addr, data->dst_port);
}
static int
mtk_flow_set_ipv6_addr(struct mtk_foe_entry *foe, struct mtk_flow_data *data)
{
return mtk_foe_entry_set_ipv6_tuple(foe,
data->v6.src_addr.s6_addr32, data->src_port,
data->v6.dst_addr.s6_addr32, data->dst_port);
}
static void
mtk_flow_offload_mangle_eth(const struct flow_action_entry *act, void *eth)
{
......@@ -80,6 +85,35 @@ mtk_flow_offload_mangle_eth(const struct flow_action_entry *act, void *eth)
memcpy(dest, src, act->mangle.mask ? 2 : 4);
}
static int
mtk_flow_get_wdma_info(struct net_device *dev, const u8 *addr, struct mtk_wdma_info *info)
{
struct net_device_path_ctx ctx = {
.dev = dev,
.daddr = addr,
};
struct net_device_path path = {};
if (!IS_ENABLED(CONFIG_NET_MEDIATEK_SOC_WED))
return -1;
if (!dev->netdev_ops->ndo_fill_forward_path)
return -1;
if (dev->netdev_ops->ndo_fill_forward_path(&ctx, &path))
return -1;
if (path.type != DEV_PATH_MTK_WDMA)
return -1;
info->wdma_idx = path.mtk_wdma.wdma_idx;
info->queue = path.mtk_wdma.queue;
info->bss = path.mtk_wdma.bss;
info->wcid = path.mtk_wdma.wcid;
return 0;
}
static int
mtk_flow_mangle_ports(const struct flow_action_entry *act,
......@@ -149,10 +183,20 @@ mtk_flow_get_dsa_port(struct net_device **dev)
static int
mtk_flow_set_output_device(struct mtk_eth *eth, struct mtk_foe_entry *foe,
struct net_device *dev)
struct net_device *dev, const u8 *dest_mac,
int *wed_index)
{
struct mtk_wdma_info info = {};
int pse_port, dsa_port;
if (mtk_flow_get_wdma_info(dev, dest_mac, &info) == 0) {
mtk_foe_entry_set_wdma(foe, info.wdma_idx, info.queue, info.bss,
info.wcid);
pse_port = 3;
*wed_index = info.wdma_idx;
goto out;
}
dsa_port = mtk_flow_get_dsa_port(&dev);
if (dsa_port >= 0)
mtk_foe_entry_set_dsa(foe, dsa_port);
......@@ -164,6 +208,7 @@ mtk_flow_set_output_device(struct mtk_eth *eth, struct mtk_foe_entry *foe,
else
return -EOPNOTSUPP;
out:
mtk_foe_entry_set_pse_port(foe, pse_port);
return 0;
......@@ -179,11 +224,10 @@ mtk_flow_offload_replace(struct mtk_eth *eth, struct flow_cls_offload *f)
struct net_device *odev = NULL;
struct mtk_flow_entry *entry;
int offload_type = 0;
int wed_index = -1;
u16 addr_type = 0;
u32 timestamp;
u8 l4proto = 0;
int err = 0;
int hash;
int i;
if (rhashtable_lookup(&eth->flow_table, &f->cookie, mtk_flow_ht_params))
......@@ -215,9 +259,45 @@ mtk_flow_offload_replace(struct mtk_eth *eth, struct flow_cls_offload *f)
return -EOPNOTSUPP;
}
switch (addr_type) {
case 0:
offload_type = MTK_PPE_PKT_TYPE_BRIDGE;
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
memcpy(data.eth.h_dest, match.key->dst, ETH_ALEN);
memcpy(data.eth.h_source, match.key->src, ETH_ALEN);
} else {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
if (match.key->vlan_tpid != cpu_to_be16(ETH_P_8021Q))
return -EOPNOTSUPP;
data.vlan_in = match.key->vlan_id;
}
break;
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
offload_type = MTK_PPE_PKT_TYPE_IPV4_HNAPT;
break;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
offload_type = MTK_PPE_PKT_TYPE_IPV6_ROUTE_5T;
break;
default:
return -EOPNOTSUPP;
}
flow_action_for_each(i, act, &rule->action) {
switch (act->id) {
case FLOW_ACTION_MANGLE:
if (offload_type == MTK_PPE_PKT_TYPE_BRIDGE)
return -EOPNOTSUPP;
if (act->mangle.htype == FLOW_ACT_MANGLE_HDR_TYPE_ETH)
mtk_flow_offload_mangle_eth(act, &data.eth);
break;
......@@ -249,14 +329,6 @@ mtk_flow_offload_replace(struct mtk_eth *eth, struct flow_cls_offload *f)
}
}
switch (addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
offload_type = MTK_PPE_PKT_TYPE_IPV4_HNAPT;
break;
default:
return -EOPNOTSUPP;
}
if (!is_valid_ether_addr(data.eth.h_source) ||
!is_valid_ether_addr(data.eth.h_dest))
return -EINVAL;
......@@ -270,10 +342,13 @@ mtk_flow_offload_replace(struct mtk_eth *eth, struct flow_cls_offload *f)
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports ports;
if (offload_type == MTK_PPE_PKT_TYPE_BRIDGE)
return -EOPNOTSUPP;
flow_rule_match_ports(rule, &ports);
data.src_port = ports.key->src;
data.dst_port = ports.key->dst;
} else {
} else if (offload_type != MTK_PPE_PKT_TYPE_BRIDGE) {
return -EOPNOTSUPP;
}
......@@ -288,10 +363,24 @@ mtk_flow_offload_replace(struct mtk_eth *eth, struct flow_cls_offload *f)
mtk_flow_set_ipv4_addr(&foe, &data, false);
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_match_ipv6_addrs addrs;
flow_rule_match_ipv6_addrs(rule, &addrs);
data.v6.src_addr = addrs.key->src;
data.v6.dst_addr = addrs.key->dst;
mtk_flow_set_ipv6_addr(&foe, &data);
}
flow_action_for_each(i, act, &rule->action) {
if (act->id != FLOW_ACTION_MANGLE)
continue;
if (offload_type == MTK_PPE_PKT_TYPE_BRIDGE)
return -EOPNOTSUPP;
switch (act->mangle.htype) {
case FLOW_ACT_MANGLE_HDR_TYPE_TCP:
case FLOW_ACT_MANGLE_HDR_TYPE_UDP:
......@@ -317,6 +406,9 @@ mtk_flow_offload_replace(struct mtk_eth *eth, struct flow_cls_offload *f)
return err;
}
if (offload_type == MTK_PPE_PKT_TYPE_BRIDGE)
foe.bridge.vlan = data.vlan_in;
if (data.vlan.num == 1) {
if (data.vlan.proto != htons(ETH_P_8021Q))
return -EOPNOTSUPP;
......@@ -326,33 +418,38 @@ mtk_flow_offload_replace(struct mtk_eth *eth, struct flow_cls_offload *f)
if (data.pppoe.num == 1)
mtk_foe_entry_set_pppoe(&foe, data.pppoe.sid);
err = mtk_flow_set_output_device(eth, &foe, odev);
err = mtk_flow_set_output_device(eth, &foe, odev, data.eth.h_dest,
&wed_index);
if (err)
return err;
if (wed_index >= 0 && (err = mtk_wed_flow_add(wed_index)) < 0)
return err;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->cookie = f->cookie;
timestamp = mtk_eth_timestamp(eth);
hash = mtk_foe_entry_commit(&eth->ppe, &foe, timestamp);
if (hash < 0) {
err = hash;
memcpy(&entry->data, &foe, sizeof(entry->data));
entry->wed_index = wed_index;
if (mtk_foe_entry_commit(eth->ppe, entry) < 0)
goto free;
}
entry->hash = hash;
err = rhashtable_insert_fast(&eth->flow_table, &entry->node,
mtk_flow_ht_params);
if (err < 0)
goto clear_flow;
goto clear;
return 0;
clear_flow:
mtk_foe_entry_clear(&eth->ppe, hash);
clear:
mtk_foe_entry_clear(eth->ppe, entry);
free:
kfree(entry);
if (wed_index >= 0)
mtk_wed_flow_remove(wed_index);
return err;
}
......@@ -366,9 +463,11 @@ mtk_flow_offload_destroy(struct mtk_eth *eth, struct flow_cls_offload *f)
if (!entry)
return -ENOENT;
mtk_foe_entry_clear(&eth->ppe, entry->hash);
mtk_foe_entry_clear(eth->ppe, entry);
rhashtable_remove_fast(&eth->flow_table, &entry->node,
mtk_flow_ht_params);
if (entry->wed_index >= 0)
mtk_wed_flow_remove(entry->wed_index);
kfree(entry);
return 0;
......@@ -378,7 +477,6 @@ static int
mtk_flow_offload_stats(struct mtk_eth *eth, struct flow_cls_offload *f)
{
struct mtk_flow_entry *entry;
int timestamp;
u32 idle;
entry = rhashtable_lookup(&eth->flow_table, &f->cookie,
......@@ -386,11 +484,7 @@ mtk_flow_offload_stats(struct mtk_eth *eth, struct flow_cls_offload *f)
if (!entry)
return -ENOENT;
timestamp = mtk_foe_entry_timestamp(&eth->ppe, entry->hash);
if (timestamp < 0)
return -ETIMEDOUT;
idle = mtk_eth_timestamp(eth) - timestamp;
idle = mtk_foe_entry_idle_time(eth->ppe, entry);
f->stats.lastused = jiffies - idle * HZ;
return 0;
......@@ -442,7 +536,7 @@ mtk_eth_setup_tc_block(struct net_device *dev, struct flow_block_offload *f)
struct flow_block_cb *block_cb;
flow_setup_cb_t *cb;
if (!eth->ppe.foe_table)
if (!eth->ppe || !eth->ppe->foe_table)
return -EOPNOTSUPP;
if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
......@@ -483,15 +577,18 @@ mtk_eth_setup_tc_block(struct net_device *dev, struct flow_block_offload *f)
int mtk_eth_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
if (type == TC_SETUP_FT)
switch (type) {
case TC_SETUP_BLOCK:
case TC_SETUP_FT:
return mtk_eth_setup_tc_block(dev, type_data);
return -EOPNOTSUPP;
default:
return -EOPNOTSUPP;
}
}
int mtk_eth_offload_init(struct mtk_eth *eth)
{
if (!eth->ppe.foe_table)
if (!eth->ppe || !eth->ppe->foe_table)
return 0;
return rhashtable_init(&eth->flow_table, &mtk_flow_ht_params);
......
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2021 Felix Fietkau <nbd@nbd.name> */
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/bitfield.h>
#include <linux/dma-mapping.h>
#include <linux/skbuff.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/debugfs.h>
#include <linux/soc/mediatek/mtk_wed.h>
#include "mtk_eth_soc.h"
#include "mtk_wed_regs.h"
#include "mtk_wed.h"
#include "mtk_ppe.h"
#define MTK_PCIE_BASE(n) (0x1a143000 + (n) * 0x2000)
#define MTK_WED_PKT_SIZE 1900
#define MTK_WED_BUF_SIZE 2048
#define MTK_WED_BUF_PER_PAGE (PAGE_SIZE / 2048)
#define MTK_WED_TX_RING_SIZE 2048
#define MTK_WED_WDMA_RING_SIZE 1024
static struct mtk_wed_hw *hw_list[2];
static DEFINE_MUTEX(hw_lock);
static void
wed_m32(struct mtk_wed_device *dev, u32 reg, u32 mask, u32 val)
{
regmap_update_bits(dev->hw->regs, reg, mask | val, val);
}
static void
wed_set(struct mtk_wed_device *dev, u32 reg, u32 mask)
{
return wed_m32(dev, reg, 0, mask);
}
static void
wed_clr(struct mtk_wed_device *dev, u32 reg, u32 mask)
{
return wed_m32(dev, reg, mask, 0);
}
static void
wdma_m32(struct mtk_wed_device *dev, u32 reg, u32 mask, u32 val)
{
wdma_w32(dev, reg, (wdma_r32(dev, reg) & ~mask) | val);
}
static void
wdma_set(struct mtk_wed_device *dev, u32 reg, u32 mask)
{
wdma_m32(dev, reg, 0, mask);
}
static u32
mtk_wed_read_reset(struct mtk_wed_device *dev)
{
return wed_r32(dev, MTK_WED_RESET);
}
static void
mtk_wed_reset(struct mtk_wed_device *dev, u32 mask)
{
u32 status;
wed_w32(dev, MTK_WED_RESET, mask);
if (readx_poll_timeout(mtk_wed_read_reset, dev, status,
!(status & mask), 0, 1000))
WARN_ON_ONCE(1);
}
static struct mtk_wed_hw *
mtk_wed_assign(struct mtk_wed_device *dev)
{
struct mtk_wed_hw *hw;
hw = hw_list[pci_domain_nr(dev->wlan.pci_dev->bus)];
if (!hw || hw->wed_dev)
return NULL;
hw->wed_dev = dev;
return hw;
}
static int
mtk_wed_buffer_alloc(struct mtk_wed_device *dev)
{
struct mtk_wdma_desc *desc;
dma_addr_t desc_phys;
void **page_list;
int token = dev->wlan.token_start;
int ring_size;
int n_pages;
int i, page_idx;
ring_size = dev->wlan.nbuf & ~(MTK_WED_BUF_PER_PAGE - 1);
n_pages = ring_size / MTK_WED_BUF_PER_PAGE;
page_list = kcalloc(n_pages, sizeof(*page_list), GFP_KERNEL);
if (!page_list)
return -ENOMEM;
dev->buf_ring.size = ring_size;
dev->buf_ring.pages = page_list;
desc = dma_alloc_coherent(dev->hw->dev, ring_size * sizeof(*desc),
&desc_phys, GFP_KERNEL);
if (!desc)
return -ENOMEM;
dev->buf_ring.desc = desc;
dev->buf_ring.desc_phys = desc_phys;
for (i = 0, page_idx = 0; i < ring_size; i += MTK_WED_BUF_PER_PAGE) {
dma_addr_t page_phys, buf_phys;
struct page *page;
void *buf;
int s;
page = __dev_alloc_pages(GFP_KERNEL, 0);
if (!page)
return -ENOMEM;
page_phys = dma_map_page(dev->hw->dev, page, 0, PAGE_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev->hw->dev, page_phys)) {
__free_page(page);
return -ENOMEM;
}
page_list[page_idx++] = page;
dma_sync_single_for_cpu(dev->hw->dev, page_phys, PAGE_SIZE,
DMA_BIDIRECTIONAL);
buf = page_to_virt(page);
buf_phys = page_phys;
for (s = 0; s < MTK_WED_BUF_PER_PAGE; s++) {
u32 txd_size;
txd_size = dev->wlan.init_buf(buf, buf_phys, token++);
desc->buf0 = buf_phys;
desc->buf1 = buf_phys + txd_size;
desc->ctrl = FIELD_PREP(MTK_WDMA_DESC_CTRL_LEN0,
txd_size) |
FIELD_PREP(MTK_WDMA_DESC_CTRL_LEN1,
MTK_WED_BUF_SIZE - txd_size) |
MTK_WDMA_DESC_CTRL_LAST_SEG1;
desc->info = 0;
desc++;
buf += MTK_WED_BUF_SIZE;
buf_phys += MTK_WED_BUF_SIZE;
}
dma_sync_single_for_device(dev->hw->dev, page_phys, PAGE_SIZE,
DMA_BIDIRECTIONAL);
}
return 0;
}
static void
mtk_wed_free_buffer(struct mtk_wed_device *dev)
{
struct mtk_wdma_desc *desc = dev->buf_ring.desc;
void **page_list = dev->buf_ring.pages;
int page_idx;
int i;
if (!page_list)
return;
if (!desc)
goto free_pagelist;
for (i = 0, page_idx = 0; i < dev->buf_ring.size; i += MTK_WED_BUF_PER_PAGE) {
void *page = page_list[page_idx++];
if (!page)
break;
dma_unmap_page(dev->hw->dev, desc[i].buf0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
__free_page(page);
}
dma_free_coherent(dev->hw->dev, dev->buf_ring.size * sizeof(*desc),
desc, dev->buf_ring.desc_phys);
free_pagelist:
kfree(page_list);
}
static void
mtk_wed_free_ring(struct mtk_wed_device *dev, struct mtk_wed_ring *ring)
{
if (!ring->desc)
return;
dma_free_coherent(dev->hw->dev, ring->size * sizeof(*ring->desc),
ring->desc, ring->desc_phys);
}
static void
mtk_wed_free_tx_rings(struct mtk_wed_device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(dev->tx_ring); i++)
mtk_wed_free_ring(dev, &dev->tx_ring[i]);
for (i = 0; i < ARRAY_SIZE(dev->tx_wdma); i++)
mtk_wed_free_ring(dev, &dev->tx_wdma[i]);
}
static void
mtk_wed_set_ext_int(struct mtk_wed_device *dev, bool en)
{
u32 mask = MTK_WED_EXT_INT_STATUS_ERROR_MASK;
if (!dev->hw->num_flows)
mask &= ~MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD;
wed_w32(dev, MTK_WED_EXT_INT_MASK, en ? mask : 0);
wed_r32(dev, MTK_WED_EXT_INT_MASK);
}
static void
mtk_wed_stop(struct mtk_wed_device *dev)
{
regmap_write(dev->hw->mirror, dev->hw->index * 4, 0);
mtk_wed_set_ext_int(dev, false);
wed_clr(dev, MTK_WED_CTRL,
MTK_WED_CTRL_WDMA_INT_AGENT_EN |
MTK_WED_CTRL_WPDMA_INT_AGENT_EN |
MTK_WED_CTRL_WED_TX_BM_EN |
MTK_WED_CTRL_WED_TX_FREE_AGENT_EN);
wed_w32(dev, MTK_WED_WPDMA_INT_TRIGGER, 0);
wed_w32(dev, MTK_WED_WDMA_INT_TRIGGER, 0);
wdma_w32(dev, MTK_WDMA_INT_MASK, 0);
wdma_w32(dev, MTK_WDMA_INT_GRP2, 0);
wed_w32(dev, MTK_WED_WPDMA_INT_MASK, 0);
wed_clr(dev, MTK_WED_GLO_CFG,
MTK_WED_GLO_CFG_TX_DMA_EN |
MTK_WED_GLO_CFG_RX_DMA_EN);
wed_clr(dev, MTK_WED_WPDMA_GLO_CFG,
MTK_WED_WPDMA_GLO_CFG_TX_DRV_EN |
MTK_WED_WPDMA_GLO_CFG_RX_DRV_EN);
wed_clr(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RX_DRV_EN);
}
static void
mtk_wed_detach(struct mtk_wed_device *dev)
{
struct device_node *wlan_node = dev->wlan.pci_dev->dev.of_node;
struct mtk_wed_hw *hw = dev->hw;
mutex_lock(&hw_lock);
mtk_wed_stop(dev);
wdma_w32(dev, MTK_WDMA_RESET_IDX, MTK_WDMA_RESET_IDX_RX);
wdma_w32(dev, MTK_WDMA_RESET_IDX, 0);
mtk_wed_reset(dev, MTK_WED_RESET_WED);
mtk_wed_free_buffer(dev);
mtk_wed_free_tx_rings(dev);
if (of_dma_is_coherent(wlan_node))
regmap_update_bits(hw->hifsys, HIFSYS_DMA_AG_MAP,
BIT(hw->index), BIT(hw->index));
if (!hw_list[!hw->index]->wed_dev &&
hw->eth->dma_dev != hw->eth->dev)
mtk_eth_set_dma_device(hw->eth, hw->eth->dev);
memset(dev, 0, sizeof(*dev));
module_put(THIS_MODULE);
hw->wed_dev = NULL;
mutex_unlock(&hw_lock);
}
static void
mtk_wed_hw_init_early(struct mtk_wed_device *dev)
{
u32 mask, set;
u32 offset;
mtk_wed_stop(dev);
mtk_wed_reset(dev, MTK_WED_RESET_WED);
mask = MTK_WED_WDMA_GLO_CFG_BT_SIZE |
MTK_WED_WDMA_GLO_CFG_DYNAMIC_DMAD_RECYCLE |
MTK_WED_WDMA_GLO_CFG_RX_DIS_FSM_AUTO_IDLE;
set = FIELD_PREP(MTK_WED_WDMA_GLO_CFG_BT_SIZE, 2) |
MTK_WED_WDMA_GLO_CFG_DYNAMIC_SKIP_DMAD_PREP |
MTK_WED_WDMA_GLO_CFG_IDLE_DMAD_SUPPLY;
wed_m32(dev, MTK_WED_WDMA_GLO_CFG, mask, set);
wdma_set(dev, MTK_WDMA_GLO_CFG, MTK_WDMA_GLO_CFG_RX_INFO_PRERES);
offset = dev->hw->index ? 0x04000400 : 0;
wed_w32(dev, MTK_WED_WDMA_OFFSET0, 0x2a042a20 + offset);
wed_w32(dev, MTK_WED_WDMA_OFFSET1, 0x29002800 + offset);
wed_w32(dev, MTK_WED_PCIE_CFG_BASE, MTK_PCIE_BASE(dev->hw->index));
wed_w32(dev, MTK_WED_WPDMA_CFG_BASE, dev->wlan.wpdma_phys);
}
static void
mtk_wed_hw_init(struct mtk_wed_device *dev)
{
if (dev->init_done)
return;
dev->init_done = true;
mtk_wed_set_ext_int(dev, false);
wed_w32(dev, MTK_WED_TX_BM_CTRL,
MTK_WED_TX_BM_CTRL_PAUSE |
FIELD_PREP(MTK_WED_TX_BM_CTRL_VLD_GRP_NUM,
dev->buf_ring.size / 128) |
FIELD_PREP(MTK_WED_TX_BM_CTRL_RSV_GRP_NUM,
MTK_WED_TX_RING_SIZE / 256));
wed_w32(dev, MTK_WED_TX_BM_BASE, dev->buf_ring.desc_phys);
wed_w32(dev, MTK_WED_TX_BM_TKID,
FIELD_PREP(MTK_WED_TX_BM_TKID_START,
dev->wlan.token_start) |
FIELD_PREP(MTK_WED_TX_BM_TKID_END,
dev->wlan.token_start + dev->wlan.nbuf - 1));
wed_w32(dev, MTK_WED_TX_BM_BUF_LEN, MTK_WED_PKT_SIZE);
wed_w32(dev, MTK_WED_TX_BM_DYN_THR,
FIELD_PREP(MTK_WED_TX_BM_DYN_THR_LO, 1) |
MTK_WED_TX_BM_DYN_THR_HI);
mtk_wed_reset(dev, MTK_WED_RESET_TX_BM);
wed_set(dev, MTK_WED_CTRL,
MTK_WED_CTRL_WED_TX_BM_EN |
MTK_WED_CTRL_WED_TX_FREE_AGENT_EN);
wed_clr(dev, MTK_WED_TX_BM_CTRL, MTK_WED_TX_BM_CTRL_PAUSE);
}
static void
mtk_wed_ring_reset(struct mtk_wdma_desc *desc, int size)
{
int i;
for (i = 0; i < size; i++) {
desc[i].buf0 = 0;
desc[i].ctrl = cpu_to_le32(MTK_WDMA_DESC_CTRL_DMA_DONE);
desc[i].buf1 = 0;
desc[i].info = 0;
}
}
static u32
mtk_wed_check_busy(struct mtk_wed_device *dev)
{
if (wed_r32(dev, MTK_WED_GLO_CFG) & MTK_WED_GLO_CFG_TX_DMA_BUSY)
return true;
if (wed_r32(dev, MTK_WED_WPDMA_GLO_CFG) &
MTK_WED_WPDMA_GLO_CFG_TX_DRV_BUSY)
return true;
if (wed_r32(dev, MTK_WED_CTRL) & MTK_WED_CTRL_WDMA_INT_AGENT_BUSY)
return true;
if (wed_r32(dev, MTK_WED_WDMA_GLO_CFG) &
MTK_WED_WDMA_GLO_CFG_RX_DRV_BUSY)
return true;
if (wdma_r32(dev, MTK_WDMA_GLO_CFG) &
MTK_WED_WDMA_GLO_CFG_RX_DRV_BUSY)
return true;
if (wed_r32(dev, MTK_WED_CTRL) &
(MTK_WED_CTRL_WED_TX_BM_BUSY | MTK_WED_CTRL_WED_TX_FREE_AGENT_BUSY))
return true;
return false;
}
static int
mtk_wed_poll_busy(struct mtk_wed_device *dev)
{
int sleep = 15000;
int timeout = 100 * sleep;
u32 val;
return read_poll_timeout(mtk_wed_check_busy, val, !val, sleep,
timeout, false, dev);
}
static void
mtk_wed_reset_dma(struct mtk_wed_device *dev)
{
bool busy = false;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(dev->tx_ring); i++) {
struct mtk_wdma_desc *desc = dev->tx_ring[i].desc;
if (!desc)
continue;
mtk_wed_ring_reset(desc, MTK_WED_TX_RING_SIZE);
}
if (mtk_wed_poll_busy(dev))
busy = mtk_wed_check_busy(dev);
if (busy) {
mtk_wed_reset(dev, MTK_WED_RESET_WED_TX_DMA);
} else {
wed_w32(dev, MTK_WED_RESET_IDX,
MTK_WED_RESET_IDX_TX |
MTK_WED_RESET_IDX_RX);
wed_w32(dev, MTK_WED_RESET_IDX, 0);
}
wdma_w32(dev, MTK_WDMA_RESET_IDX, MTK_WDMA_RESET_IDX_RX);
wdma_w32(dev, MTK_WDMA_RESET_IDX, 0);
if (busy) {
mtk_wed_reset(dev, MTK_WED_RESET_WDMA_INT_AGENT);
mtk_wed_reset(dev, MTK_WED_RESET_WDMA_RX_DRV);
} else {
wed_w32(dev, MTK_WED_WDMA_RESET_IDX,
MTK_WED_WDMA_RESET_IDX_RX | MTK_WED_WDMA_RESET_IDX_DRV);
wed_w32(dev, MTK_WED_WDMA_RESET_IDX, 0);
wed_set(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RST_INIT_COMPLETE);
wed_clr(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RST_INIT_COMPLETE);
}
for (i = 0; i < 100; i++) {
val = wed_r32(dev, MTK_WED_TX_BM_INTF);
if (FIELD_GET(MTK_WED_TX_BM_INTF_TKFIFO_FDEP, val) == 0x40)
break;
}
mtk_wed_reset(dev, MTK_WED_RESET_TX_FREE_AGENT);
mtk_wed_reset(dev, MTK_WED_RESET_TX_BM);
if (busy) {
mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_INT_AGENT);
mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_TX_DRV);
mtk_wed_reset(dev, MTK_WED_RESET_WPDMA_RX_DRV);
} else {
wed_w32(dev, MTK_WED_WPDMA_RESET_IDX,
MTK_WED_WPDMA_RESET_IDX_TX |
MTK_WED_WPDMA_RESET_IDX_RX);
wed_w32(dev, MTK_WED_WPDMA_RESET_IDX, 0);
}
}
static int
mtk_wed_ring_alloc(struct mtk_wed_device *dev, struct mtk_wed_ring *ring,
int size)
{
ring->desc = dma_alloc_coherent(dev->hw->dev,
size * sizeof(*ring->desc),
&ring->desc_phys, GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
ring->size = size;
mtk_wed_ring_reset(ring->desc, size);
return 0;
}
static int
mtk_wed_wdma_ring_setup(struct mtk_wed_device *dev, int idx, int size)
{
struct mtk_wed_ring *wdma = &dev->tx_wdma[idx];
if (mtk_wed_ring_alloc(dev, wdma, MTK_WED_WDMA_RING_SIZE))
return -ENOMEM;
wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_BASE,
wdma->desc_phys);
wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_COUNT,
size);
wdma_w32(dev, MTK_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_CPU_IDX, 0);
wed_w32(dev, MTK_WED_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_BASE,
wdma->desc_phys);
wed_w32(dev, MTK_WED_WDMA_RING_RX(idx) + MTK_WED_RING_OFS_COUNT,
size);
return 0;
}
static void
mtk_wed_start(struct mtk_wed_device *dev, u32 irq_mask)
{
u32 wdma_mask;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(dev->tx_wdma); i++)
if (!dev->tx_wdma[i].desc)
mtk_wed_wdma_ring_setup(dev, i, 16);
wdma_mask = FIELD_PREP(MTK_WDMA_INT_MASK_RX_DONE, GENMASK(1, 0));
mtk_wed_hw_init(dev);
wed_set(dev, MTK_WED_CTRL,
MTK_WED_CTRL_WDMA_INT_AGENT_EN |
MTK_WED_CTRL_WPDMA_INT_AGENT_EN |
MTK_WED_CTRL_WED_TX_BM_EN |
MTK_WED_CTRL_WED_TX_FREE_AGENT_EN);
wed_w32(dev, MTK_WED_PCIE_INT_TRIGGER, MTK_WED_PCIE_INT_TRIGGER_STATUS);
wed_w32(dev, MTK_WED_WPDMA_INT_TRIGGER,
MTK_WED_WPDMA_INT_TRIGGER_RX_DONE |
MTK_WED_WPDMA_INT_TRIGGER_TX_DONE);
wed_set(dev, MTK_WED_WPDMA_INT_CTRL,
MTK_WED_WPDMA_INT_CTRL_SUBRT_ADV);
wed_w32(dev, MTK_WED_WDMA_INT_TRIGGER, wdma_mask);
wed_clr(dev, MTK_WED_WDMA_INT_CTRL, wdma_mask);
wdma_w32(dev, MTK_WDMA_INT_MASK, wdma_mask);
wdma_w32(dev, MTK_WDMA_INT_GRP2, wdma_mask);
wed_w32(dev, MTK_WED_WPDMA_INT_MASK, irq_mask);
wed_w32(dev, MTK_WED_INT_MASK, irq_mask);
wed_set(dev, MTK_WED_GLO_CFG,
MTK_WED_GLO_CFG_TX_DMA_EN |
MTK_WED_GLO_CFG_RX_DMA_EN);
wed_set(dev, MTK_WED_WPDMA_GLO_CFG,
MTK_WED_WPDMA_GLO_CFG_TX_DRV_EN |
MTK_WED_WPDMA_GLO_CFG_RX_DRV_EN);
wed_set(dev, MTK_WED_WDMA_GLO_CFG,
MTK_WED_WDMA_GLO_CFG_RX_DRV_EN);
mtk_wed_set_ext_int(dev, true);
val = dev->wlan.wpdma_phys |
MTK_PCIE_MIRROR_MAP_EN |
FIELD_PREP(MTK_PCIE_MIRROR_MAP_WED_ID, dev->hw->index);
if (dev->hw->index)
val |= BIT(1);
val |= BIT(0);
regmap_write(dev->hw->mirror, dev->hw->index * 4, val);
dev->running = true;
}
static int
mtk_wed_attach(struct mtk_wed_device *dev)
__releases(RCU)
{
struct mtk_wed_hw *hw;
int ret = 0;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
"mtk_wed_attach without holding the RCU read lock");
if (pci_domain_nr(dev->wlan.pci_dev->bus) > 1 ||
!try_module_get(THIS_MODULE))
ret = -ENODEV;
rcu_read_unlock();
if (ret)
return ret;
mutex_lock(&hw_lock);
hw = mtk_wed_assign(dev);
if (!hw) {
module_put(THIS_MODULE);
ret = -ENODEV;
goto out;
}
dev_info(&dev->wlan.pci_dev->dev, "attaching wed device %d\n", hw->index);
dev->hw = hw;
dev->dev = hw->dev;
dev->irq = hw->irq;
dev->wdma_idx = hw->index;
if (hw->eth->dma_dev == hw->eth->dev &&
of_dma_is_coherent(hw->eth->dev->of_node))
mtk_eth_set_dma_device(hw->eth, hw->dev);
ret = mtk_wed_buffer_alloc(dev);
if (ret) {
mtk_wed_detach(dev);
goto out;
}
mtk_wed_hw_init_early(dev);
regmap_update_bits(hw->hifsys, HIFSYS_DMA_AG_MAP, BIT(hw->index), 0);
out:
mutex_unlock(&hw_lock);
return ret;
}
static int
mtk_wed_tx_ring_setup(struct mtk_wed_device *dev, int idx, void __iomem *regs)
{
struct mtk_wed_ring *ring = &dev->tx_ring[idx];
/*
* Tx ring redirection:
* Instead of configuring the WLAN PDMA TX ring directly, the WLAN
* driver allocated DMA ring gets configured into WED MTK_WED_RING_TX(n)
* registers.
*
* WED driver posts its own DMA ring as WLAN PDMA TX and configures it
* into MTK_WED_WPDMA_RING_TX(n) registers.
* It gets filled with packets picked up from WED TX ring and from
* WDMA RX.
*/
BUG_ON(idx > ARRAY_SIZE(dev->tx_ring));
if (mtk_wed_ring_alloc(dev, ring, MTK_WED_TX_RING_SIZE))
return -ENOMEM;
if (mtk_wed_wdma_ring_setup(dev, idx, MTK_WED_WDMA_RING_SIZE))
return -ENOMEM;
ring->reg_base = MTK_WED_RING_TX(idx);
ring->wpdma = regs;
/* WED -> WPDMA */
wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_BASE, ring->desc_phys);
wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_COUNT, MTK_WED_TX_RING_SIZE);
wpdma_tx_w32(dev, idx, MTK_WED_RING_OFS_CPU_IDX, 0);
wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_BASE,
ring->desc_phys);
wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_COUNT,
MTK_WED_TX_RING_SIZE);
wed_w32(dev, MTK_WED_WPDMA_RING_TX(idx) + MTK_WED_RING_OFS_CPU_IDX, 0);
return 0;
}
static int
mtk_wed_txfree_ring_setup(struct mtk_wed_device *dev, void __iomem *regs)
{
struct mtk_wed_ring *ring = &dev->txfree_ring;
int i;
/*
* For txfree event handling, the same DMA ring is shared between WED
* and WLAN. The WLAN driver accesses the ring index registers through
* WED
*/
ring->reg_base = MTK_WED_RING_RX(1);
ring->wpdma = regs;
for (i = 0; i < 12; i += 4) {
u32 val = readl(regs + i);
wed_w32(dev, MTK_WED_RING_RX(1) + i, val);
wed_w32(dev, MTK_WED_WPDMA_RING_RX(1) + i, val);
}
return 0;
}
static u32
mtk_wed_irq_get(struct mtk_wed_device *dev, u32 mask)
{
u32 val;
val = wed_r32(dev, MTK_WED_EXT_INT_STATUS);
wed_w32(dev, MTK_WED_EXT_INT_STATUS, val);
val &= MTK_WED_EXT_INT_STATUS_ERROR_MASK;
if (!dev->hw->num_flows)
val &= ~MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD;
if (val && net_ratelimit())
pr_err("mtk_wed%d: error status=%08x\n", dev->hw->index, val);
val = wed_r32(dev, MTK_WED_INT_STATUS);
val &= mask;
wed_w32(dev, MTK_WED_INT_STATUS, val); /* ACK */
return val;
}
static void
mtk_wed_irq_set_mask(struct mtk_wed_device *dev, u32 mask)
{
if (!dev->running)
return;
mtk_wed_set_ext_int(dev, !!mask);
wed_w32(dev, MTK_WED_INT_MASK, mask);
}
int mtk_wed_flow_add(int index)
{
struct mtk_wed_hw *hw = hw_list[index];
int ret;
if (!hw || !hw->wed_dev)
return -ENODEV;
if (hw->num_flows) {
hw->num_flows++;
return 0;
}
mutex_lock(&hw_lock);
if (!hw->wed_dev) {
ret = -ENODEV;
goto out;
}
ret = hw->wed_dev->wlan.offload_enable(hw->wed_dev);
if (!ret)
hw->num_flows++;
mtk_wed_set_ext_int(hw->wed_dev, true);
out:
mutex_unlock(&hw_lock);
return ret;
}
void mtk_wed_flow_remove(int index)
{
struct mtk_wed_hw *hw = hw_list[index];
if (!hw)
return;
if (--hw->num_flows)
return;
mutex_lock(&hw_lock);
if (!hw->wed_dev)
goto out;
hw->wed_dev->wlan.offload_disable(hw->wed_dev);
mtk_wed_set_ext_int(hw->wed_dev, true);
out:
mutex_unlock(&hw_lock);
}
void mtk_wed_add_hw(struct device_node *np, struct mtk_eth *eth,
void __iomem *wdma, int index)
{
static const struct mtk_wed_ops wed_ops = {
.attach = mtk_wed_attach,
.tx_ring_setup = mtk_wed_tx_ring_setup,
.txfree_ring_setup = mtk_wed_txfree_ring_setup,
.start = mtk_wed_start,
.stop = mtk_wed_stop,
.reset_dma = mtk_wed_reset_dma,
.reg_read = wed_r32,
.reg_write = wed_w32,
.irq_get = mtk_wed_irq_get,
.irq_set_mask = mtk_wed_irq_set_mask,
.detach = mtk_wed_detach,
};
struct device_node *eth_np = eth->dev->of_node;
struct platform_device *pdev;
struct mtk_wed_hw *hw;
struct regmap *regs;
int irq;
if (!np)
return;
pdev = of_find_device_by_node(np);
if (!pdev)
return;
get_device(&pdev->dev);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return;
regs = syscon_regmap_lookup_by_phandle(np, NULL);
if (!regs)
return;
rcu_assign_pointer(mtk_soc_wed_ops, &wed_ops);
mutex_lock(&hw_lock);
if (WARN_ON(hw_list[index]))
goto unlock;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
hw->node = np;
hw->regs = regs;
hw->eth = eth;
hw->dev = &pdev->dev;
hw->wdma = wdma;
hw->index = index;
hw->irq = irq;
hw->mirror = syscon_regmap_lookup_by_phandle(eth_np,
"mediatek,pcie-mirror");
hw->hifsys = syscon_regmap_lookup_by_phandle(eth_np,
"mediatek,hifsys");
if (IS_ERR(hw->mirror) || IS_ERR(hw->hifsys)) {
kfree(hw);
goto unlock;
}
if (!index) {
regmap_write(hw->mirror, 0, 0);
regmap_write(hw->mirror, 4, 0);
}
mtk_wed_hw_add_debugfs(hw);
hw_list[index] = hw;
unlock:
mutex_unlock(&hw_lock);
}
void mtk_wed_exit(void)
{
int i;
rcu_assign_pointer(mtk_soc_wed_ops, NULL);
synchronize_rcu();
for (i = 0; i < ARRAY_SIZE(hw_list); i++) {
struct mtk_wed_hw *hw;
hw = hw_list[i];
if (!hw)
continue;
hw_list[i] = NULL;
debugfs_remove(hw->debugfs_dir);
put_device(hw->dev);
kfree(hw);
}
}
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2021 Felix Fietkau <nbd@nbd.name> */
#ifndef __MTK_WED_PRIV_H
#define __MTK_WED_PRIV_H
#include <linux/soc/mediatek/mtk_wed.h>
#include <linux/debugfs.h>
#include <linux/regmap.h>
#include <linux/netdevice.h>
struct mtk_eth;
struct mtk_wed_hw {
struct device_node *node;
struct mtk_eth *eth;
struct regmap *regs;
struct regmap *hifsys;
struct device *dev;
void __iomem *wdma;
struct regmap *mirror;
struct dentry *debugfs_dir;
struct mtk_wed_device *wed_dev;
u32 debugfs_reg;
u32 num_flows;
char dirname[5];
int irq;
int index;
};
struct mtk_wdma_info {
u8 wdma_idx;
u8 queue;
u16 wcid;
u8 bss;
};
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
static inline void
wed_w32(struct mtk_wed_device *dev, u32 reg, u32 val)
{
regmap_write(dev->hw->regs, reg, val);
}
static inline u32
wed_r32(struct mtk_wed_device *dev, u32 reg)
{
unsigned int val;
regmap_read(dev->hw->regs, reg, &val);
return val;
}
static inline void
wdma_w32(struct mtk_wed_device *dev, u32 reg, u32 val)
{
writel(val, dev->hw->wdma + reg);
}
static inline u32
wdma_r32(struct mtk_wed_device *dev, u32 reg)
{
return readl(dev->hw->wdma + reg);
}
static inline u32
wpdma_tx_r32(struct mtk_wed_device *dev, int ring, u32 reg)
{
if (!dev->tx_ring[ring].wpdma)
return 0;
return readl(dev->tx_ring[ring].wpdma + reg);
}
static inline void
wpdma_tx_w32(struct mtk_wed_device *dev, int ring, u32 reg, u32 val)
{
if (!dev->tx_ring[ring].wpdma)
return;
writel(val, dev->tx_ring[ring].wpdma + reg);
}
static inline u32
wpdma_txfree_r32(struct mtk_wed_device *dev, u32 reg)
{
if (!dev->txfree_ring.wpdma)
return 0;
return readl(dev->txfree_ring.wpdma + reg);
}
static inline void
wpdma_txfree_w32(struct mtk_wed_device *dev, u32 reg, u32 val)
{
if (!dev->txfree_ring.wpdma)
return;
writel(val, dev->txfree_ring.wpdma + reg);
}
void mtk_wed_add_hw(struct device_node *np, struct mtk_eth *eth,
void __iomem *wdma, int index);
void mtk_wed_exit(void);
int mtk_wed_flow_add(int index);
void mtk_wed_flow_remove(int index);
#else
static inline void
mtk_wed_add_hw(struct device_node *np, struct mtk_eth *eth,
void __iomem *wdma, int index)
{
}
static inline void
mtk_wed_exit(void)
{
}
static inline int mtk_wed_flow_add(int index)
{
return -EINVAL;
}
static inline void mtk_wed_flow_remove(int index)
{
}
#endif
#ifdef CONFIG_DEBUG_FS
void mtk_wed_hw_add_debugfs(struct mtk_wed_hw *hw);
#else
static inline void mtk_wed_hw_add_debugfs(struct mtk_wed_hw *hw)
{
}
#endif
#endif
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2021 Felix Fietkau <nbd@nbd.name> */
#include <linux/seq_file.h>
#include "mtk_wed.h"
#include "mtk_wed_regs.h"
struct reg_dump {
const char *name;
u16 offset;
u8 type;
u8 base;
};
enum {
DUMP_TYPE_STRING,
DUMP_TYPE_WED,
DUMP_TYPE_WDMA,
DUMP_TYPE_WPDMA_TX,
DUMP_TYPE_WPDMA_TXFREE,
};
#define DUMP_STR(_str) { _str, 0, DUMP_TYPE_STRING }
#define DUMP_REG(_reg, ...) { #_reg, MTK_##_reg, __VA_ARGS__ }
#define DUMP_RING(_prefix, _base, ...) \
{ _prefix " BASE", _base, __VA_ARGS__ }, \
{ _prefix " CNT", _base + 0x4, __VA_ARGS__ }, \
{ _prefix " CIDX", _base + 0x8, __VA_ARGS__ }, \
{ _prefix " DIDX", _base + 0xc, __VA_ARGS__ }
#define DUMP_WED(_reg) DUMP_REG(_reg, DUMP_TYPE_WED)
#define DUMP_WED_RING(_base) DUMP_RING(#_base, MTK_##_base, DUMP_TYPE_WED)
#define DUMP_WDMA(_reg) DUMP_REG(_reg, DUMP_TYPE_WDMA)
#define DUMP_WDMA_RING(_base) DUMP_RING(#_base, MTK_##_base, DUMP_TYPE_WDMA)
#define DUMP_WPDMA_TX_RING(_n) DUMP_RING("WPDMA_TX" #_n, 0, DUMP_TYPE_WPDMA_TX, _n)
#define DUMP_WPDMA_TXFREE_RING DUMP_RING("WPDMA_RX1", 0, DUMP_TYPE_WPDMA_TXFREE)
static void
print_reg_val(struct seq_file *s, const char *name, u32 val)
{
seq_printf(s, "%-32s %08x\n", name, val);
}
static void
dump_wed_regs(struct seq_file *s, struct mtk_wed_device *dev,
const struct reg_dump *regs, int n_regs)
{
const struct reg_dump *cur;
u32 val;
for (cur = regs; cur < &regs[n_regs]; cur++) {
switch (cur->type) {
case DUMP_TYPE_STRING:
seq_printf(s, "%s======== %s:\n",
cur > regs ? "\n" : "",
cur->name);
continue;
case DUMP_TYPE_WED:
val = wed_r32(dev, cur->offset);
break;
case DUMP_TYPE_WDMA:
val = wdma_r32(dev, cur->offset);
break;
case DUMP_TYPE_WPDMA_TX:
val = wpdma_tx_r32(dev, cur->base, cur->offset);
break;
case DUMP_TYPE_WPDMA_TXFREE:
val = wpdma_txfree_r32(dev, cur->offset);
break;
}
print_reg_val(s, cur->name, val);
}
}
static int
wed_txinfo_show(struct seq_file *s, void *data)
{
static const struct reg_dump regs[] = {
DUMP_STR("WED TX"),
DUMP_WED(WED_TX_MIB(0)),
DUMP_WED_RING(WED_RING_TX(0)),
DUMP_WED(WED_TX_MIB(1)),
DUMP_WED_RING(WED_RING_TX(1)),
DUMP_STR("WPDMA TX"),
DUMP_WED(WED_WPDMA_TX_MIB(0)),
DUMP_WED_RING(WED_WPDMA_RING_TX(0)),
DUMP_WED(WED_WPDMA_TX_COHERENT_MIB(0)),
DUMP_WED(WED_WPDMA_TX_MIB(1)),
DUMP_WED_RING(WED_WPDMA_RING_TX(1)),
DUMP_WED(WED_WPDMA_TX_COHERENT_MIB(1)),
DUMP_STR("WPDMA TX"),
DUMP_WPDMA_TX_RING(0),
DUMP_WPDMA_TX_RING(1),
DUMP_STR("WED WDMA RX"),
DUMP_WED(WED_WDMA_RX_MIB(0)),
DUMP_WED_RING(WED_WDMA_RING_RX(0)),
DUMP_WED(WED_WDMA_RX_THRES(0)),
DUMP_WED(WED_WDMA_RX_RECYCLE_MIB(0)),
DUMP_WED(WED_WDMA_RX_PROCESSED_MIB(0)),
DUMP_WED(WED_WDMA_RX_MIB(1)),
DUMP_WED_RING(WED_WDMA_RING_RX(1)),
DUMP_WED(WED_WDMA_RX_THRES(1)),
DUMP_WED(WED_WDMA_RX_RECYCLE_MIB(1)),
DUMP_WED(WED_WDMA_RX_PROCESSED_MIB(1)),
DUMP_STR("WDMA RX"),
DUMP_WDMA(WDMA_GLO_CFG),
DUMP_WDMA_RING(WDMA_RING_RX(0)),
DUMP_WDMA_RING(WDMA_RING_RX(1)),
};
struct mtk_wed_hw *hw = s->private;
struct mtk_wed_device *dev = hw->wed_dev;
if (!dev)
return 0;
dump_wed_regs(s, dev, regs, ARRAY_SIZE(regs));
return 0;
}
DEFINE_SHOW_ATTRIBUTE(wed_txinfo);
static int
mtk_wed_reg_set(void *data, u64 val)
{
struct mtk_wed_hw *hw = data;
regmap_write(hw->regs, hw->debugfs_reg, val);
return 0;
}
static int
mtk_wed_reg_get(void *data, u64 *val)
{
struct mtk_wed_hw *hw = data;
unsigned int regval;
int ret;
ret = regmap_read(hw->regs, hw->debugfs_reg, &regval);
if (ret)
return ret;
*val = regval;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_regval, mtk_wed_reg_get, mtk_wed_reg_set,
"0x%08llx\n");
void mtk_wed_hw_add_debugfs(struct mtk_wed_hw *hw)
{
struct dentry *dir;
snprintf(hw->dirname, sizeof(hw->dirname), "wed%d", hw->index);
dir = debugfs_create_dir(hw->dirname, NULL);
if (!dir)
return;
hw->debugfs_dir = dir;
debugfs_create_u32("regidx", 0600, dir, &hw->debugfs_reg);
debugfs_create_file_unsafe("regval", 0600, dir, hw, &fops_regval);
debugfs_create_file_unsafe("txinfo", 0400, dir, hw, &wed_txinfo_fops);
}
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2020 Felix Fietkau <nbd@nbd.name> */
#include <linux/kernel.h>
#include <linux/soc/mediatek/mtk_wed.h>
const struct mtk_wed_ops __rcu *mtk_soc_wed_ops;
EXPORT_SYMBOL_GPL(mtk_soc_wed_ops);
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2020 Felix Fietkau <nbd@nbd.name> */
#ifndef __MTK_WED_REGS_H
#define __MTK_WED_REGS_H
#define MTK_WDMA_DESC_CTRL_LEN1 GENMASK(14, 0)
#define MTK_WDMA_DESC_CTRL_LAST_SEG1 BIT(15)
#define MTK_WDMA_DESC_CTRL_BURST BIT(16)
#define MTK_WDMA_DESC_CTRL_LEN0 GENMASK(29, 16)
#define MTK_WDMA_DESC_CTRL_LAST_SEG0 BIT(30)
#define MTK_WDMA_DESC_CTRL_DMA_DONE BIT(31)
struct mtk_wdma_desc {
__le32 buf0;
__le32 ctrl;
__le32 buf1;
__le32 info;
} __packed __aligned(4);
#define MTK_WED_RESET 0x008
#define MTK_WED_RESET_TX_BM BIT(0)
#define MTK_WED_RESET_TX_FREE_AGENT BIT(4)
#define MTK_WED_RESET_WPDMA_TX_DRV BIT(8)
#define MTK_WED_RESET_WPDMA_RX_DRV BIT(9)
#define MTK_WED_RESET_WPDMA_INT_AGENT BIT(11)
#define MTK_WED_RESET_WED_TX_DMA BIT(12)
#define MTK_WED_RESET_WDMA_RX_DRV BIT(17)
#define MTK_WED_RESET_WDMA_INT_AGENT BIT(19)
#define MTK_WED_RESET_WED BIT(31)
#define MTK_WED_CTRL 0x00c
#define MTK_WED_CTRL_WPDMA_INT_AGENT_EN BIT(0)
#define MTK_WED_CTRL_WPDMA_INT_AGENT_BUSY BIT(1)
#define MTK_WED_CTRL_WDMA_INT_AGENT_EN BIT(2)
#define MTK_WED_CTRL_WDMA_INT_AGENT_BUSY BIT(3)
#define MTK_WED_CTRL_WED_TX_BM_EN BIT(8)
#define MTK_WED_CTRL_WED_TX_BM_BUSY BIT(9)
#define MTK_WED_CTRL_WED_TX_FREE_AGENT_EN BIT(10)
#define MTK_WED_CTRL_WED_TX_FREE_AGENT_BUSY BIT(11)
#define MTK_WED_CTRL_RESERVE_EN BIT(12)
#define MTK_WED_CTRL_RESERVE_BUSY BIT(13)
#define MTK_WED_CTRL_FINAL_DIDX_READ BIT(24)
#define MTK_WED_CTRL_MIB_READ_CLEAR BIT(28)
#define MTK_WED_EXT_INT_STATUS 0x020
#define MTK_WED_EXT_INT_STATUS_TF_LEN_ERR BIT(0)
#define MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD BIT(1)
#define MTK_WED_EXT_INT_STATUS_TKID_TITO_INVALID BIT(4)
#define MTK_WED_EXT_INT_STATUS_TX_FBUF_LO_TH BIT(8)
#define MTK_WED_EXT_INT_STATUS_TX_FBUF_HI_TH BIT(9)
#define MTK_WED_EXT_INT_STATUS_RX_FBUF_LO_TH BIT(12)
#define MTK_WED_EXT_INT_STATUS_RX_FBUF_HI_TH BIT(13)
#define MTK_WED_EXT_INT_STATUS_RX_DRV_R_RESP_ERR BIT(16)
#define MTK_WED_EXT_INT_STATUS_RX_DRV_W_RESP_ERR BIT(17)
#define MTK_WED_EXT_INT_STATUS_RX_DRV_COHERENT BIT(18)
#define MTK_WED_EXT_INT_STATUS_RX_DRV_INIT_WDMA_EN BIT(19)
#define MTK_WED_EXT_INT_STATUS_RX_DRV_BM_DMAD_COHERENT BIT(20)
#define MTK_WED_EXT_INT_STATUS_TX_DRV_R_RESP_ERR BIT(21)
#define MTK_WED_EXT_INT_STATUS_TX_DRV_W_RESP_ERR BIT(22)
#define MTK_WED_EXT_INT_STATUS_RX_DRV_DMA_RECYCLE BIT(24)
#define MTK_WED_EXT_INT_STATUS_ERROR_MASK (MTK_WED_EXT_INT_STATUS_TF_LEN_ERR | \
MTK_WED_EXT_INT_STATUS_TKID_WO_PYLD | \
MTK_WED_EXT_INT_STATUS_TKID_TITO_INVALID | \
MTK_WED_EXT_INT_STATUS_RX_DRV_R_RESP_ERR | \
MTK_WED_EXT_INT_STATUS_RX_DRV_W_RESP_ERR | \
MTK_WED_EXT_INT_STATUS_RX_DRV_INIT_WDMA_EN | \
MTK_WED_EXT_INT_STATUS_TX_DRV_R_RESP_ERR | \
MTK_WED_EXT_INT_STATUS_TX_DRV_W_RESP_ERR)
#define MTK_WED_EXT_INT_MASK 0x028
#define MTK_WED_STATUS 0x060
#define MTK_WED_STATUS_TX GENMASK(15, 8)
#define MTK_WED_TX_BM_CTRL 0x080
#define MTK_WED_TX_BM_CTRL_VLD_GRP_NUM GENMASK(6, 0)
#define MTK_WED_TX_BM_CTRL_RSV_GRP_NUM GENMASK(22, 16)
#define MTK_WED_TX_BM_CTRL_PAUSE BIT(28)
#define MTK_WED_TX_BM_BASE 0x084
#define MTK_WED_TX_BM_TKID 0x088
#define MTK_WED_TX_BM_TKID_START GENMASK(15, 0)
#define MTK_WED_TX_BM_TKID_END GENMASK(31, 16)
#define MTK_WED_TX_BM_BUF_LEN 0x08c
#define MTK_WED_TX_BM_INTF 0x09c
#define MTK_WED_TX_BM_INTF_TKID GENMASK(15, 0)
#define MTK_WED_TX_BM_INTF_TKFIFO_FDEP GENMASK(23, 16)
#define MTK_WED_TX_BM_INTF_TKID_VALID BIT(28)
#define MTK_WED_TX_BM_INTF_TKID_READ BIT(29)
#define MTK_WED_TX_BM_DYN_THR 0x0a0
#define MTK_WED_TX_BM_DYN_THR_LO GENMASK(6, 0)
#define MTK_WED_TX_BM_DYN_THR_HI GENMASK(22, 16)
#define MTK_WED_INT_STATUS 0x200
#define MTK_WED_INT_MASK 0x204
#define MTK_WED_GLO_CFG 0x208
#define MTK_WED_GLO_CFG_TX_DMA_EN BIT(0)
#define MTK_WED_GLO_CFG_TX_DMA_BUSY BIT(1)
#define MTK_WED_GLO_CFG_RX_DMA_EN BIT(2)
#define MTK_WED_GLO_CFG_RX_DMA_BUSY BIT(3)
#define MTK_WED_GLO_CFG_RX_BT_SIZE GENMASK(5, 4)
#define MTK_WED_GLO_CFG_TX_WB_DDONE BIT(6)
#define MTK_WED_GLO_CFG_BIG_ENDIAN BIT(7)
#define MTK_WED_GLO_CFG_DIS_BT_SIZE_ALIGN BIT(8)
#define MTK_WED_GLO_CFG_TX_BT_SIZE_LO BIT(9)
#define MTK_WED_GLO_CFG_MULTI_DMA_EN GENMASK(11, 10)
#define MTK_WED_GLO_CFG_FIFO_LITTLE_ENDIAN BIT(12)
#define MTK_WED_GLO_CFG_MI_DEPTH_RD GENMASK(21, 13)
#define MTK_WED_GLO_CFG_TX_BT_SIZE_HI GENMASK(23, 22)
#define MTK_WED_GLO_CFG_SW_RESET BIT(24)
#define MTK_WED_GLO_CFG_FIRST_TOKEN_ONLY BIT(26)
#define MTK_WED_GLO_CFG_OMIT_RX_INFO BIT(27)
#define MTK_WED_GLO_CFG_OMIT_TX_INFO BIT(28)
#define MTK_WED_GLO_CFG_BYTE_SWAP BIT(29)
#define MTK_WED_GLO_CFG_RX_2B_OFFSET BIT(31)
#define MTK_WED_RESET_IDX 0x20c
#define MTK_WED_RESET_IDX_TX GENMASK(3, 0)
#define MTK_WED_RESET_IDX_RX GENMASK(17, 16)
#define MTK_WED_TX_MIB(_n) (0x2a0 + (_n) * 4)
#define MTK_WED_RING_TX(_n) (0x300 + (_n) * 0x10)
#define MTK_WED_RING_RX(_n) (0x400 + (_n) * 0x10)
#define MTK_WED_WPDMA_INT_TRIGGER 0x504
#define MTK_WED_WPDMA_INT_TRIGGER_RX_DONE BIT(1)
#define MTK_WED_WPDMA_INT_TRIGGER_TX_DONE GENMASK(5, 4)
#define MTK_WED_WPDMA_GLO_CFG 0x508
#define MTK_WED_WPDMA_GLO_CFG_TX_DRV_EN BIT(0)
#define MTK_WED_WPDMA_GLO_CFG_TX_DRV_BUSY BIT(1)
#define MTK_WED_WPDMA_GLO_CFG_RX_DRV_EN BIT(2)
#define MTK_WED_WPDMA_GLO_CFG_RX_DRV_BUSY BIT(3)
#define MTK_WED_WPDMA_GLO_CFG_RX_BT_SIZE GENMASK(5, 4)
#define MTK_WED_WPDMA_GLO_CFG_TX_WB_DDONE BIT(6)
#define MTK_WED_WPDMA_GLO_CFG_BIG_ENDIAN BIT(7)
#define MTK_WED_WPDMA_GLO_CFG_DIS_BT_SIZE_ALIGN BIT(8)
#define MTK_WED_WPDMA_GLO_CFG_TX_BT_SIZE_LO BIT(9)
#define MTK_WED_WPDMA_GLO_CFG_MULTI_DMA_EN GENMASK(11, 10)
#define MTK_WED_WPDMA_GLO_CFG_FIFO_LITTLE_ENDIAN BIT(12)
#define MTK_WED_WPDMA_GLO_CFG_MI_DEPTH_RD GENMASK(21, 13)
#define MTK_WED_WPDMA_GLO_CFG_TX_BT_SIZE_HI GENMASK(23, 22)
#define MTK_WED_WPDMA_GLO_CFG_SW_RESET BIT(24)
#define MTK_WED_WPDMA_GLO_CFG_FIRST_TOKEN_ONLY BIT(26)
#define MTK_WED_WPDMA_GLO_CFG_OMIT_RX_INFO BIT(27)
#define MTK_WED_WPDMA_GLO_CFG_OMIT_TX_INFO BIT(28)
#define MTK_WED_WPDMA_GLO_CFG_BYTE_SWAP BIT(29)
#define MTK_WED_WPDMA_GLO_CFG_RX_2B_OFFSET BIT(31)
#define MTK_WED_WPDMA_RESET_IDX 0x50c
#define MTK_WED_WPDMA_RESET_IDX_TX GENMASK(3, 0)
#define MTK_WED_WPDMA_RESET_IDX_RX GENMASK(17, 16)
#define MTK_WED_WPDMA_INT_CTRL 0x520
#define MTK_WED_WPDMA_INT_CTRL_SUBRT_ADV BIT(21)
#define MTK_WED_WPDMA_INT_MASK 0x524
#define MTK_WED_PCIE_CFG_BASE 0x560
#define MTK_WED_PCIE_INT_TRIGGER 0x570
#define MTK_WED_PCIE_INT_TRIGGER_STATUS BIT(16)
#define MTK_WED_WPDMA_CFG_BASE 0x580
#define MTK_WED_WPDMA_TX_MIB(_n) (0x5a0 + (_n) * 4)
#define MTK_WED_WPDMA_TX_COHERENT_MIB(_n) (0x5d0 + (_n) * 4)
#define MTK_WED_WPDMA_RING_TX(_n) (0x600 + (_n) * 0x10)
#define MTK_WED_WPDMA_RING_RX(_n) (0x700 + (_n) * 0x10)
#define MTK_WED_WDMA_RING_RX(_n) (0x900 + (_n) * 0x10)
#define MTK_WED_WDMA_RX_THRES(_n) (0x940 + (_n) * 0x4)
#define MTK_WED_WDMA_GLO_CFG 0xa04
#define MTK_WED_WDMA_GLO_CFG_TX_DRV_EN BIT(0)
#define MTK_WED_WDMA_GLO_CFG_RX_DRV_EN BIT(2)
#define MTK_WED_WDMA_GLO_CFG_RX_DRV_BUSY BIT(3)
#define MTK_WED_WDMA_GLO_CFG_BT_SIZE GENMASK(5, 4)
#define MTK_WED_WDMA_GLO_CFG_TX_WB_DDONE BIT(6)
#define MTK_WED_WDMA_GLO_CFG_RX_DIS_FSM_AUTO_IDLE BIT(13)
#define MTK_WED_WDMA_GLO_CFG_WCOMPLETE_SEL BIT(16)
#define MTK_WED_WDMA_GLO_CFG_INIT_PHASE_RXDMA_BYPASS BIT(17)
#define MTK_WED_WDMA_GLO_CFG_INIT_PHASE_BYPASS BIT(18)
#define MTK_WED_WDMA_GLO_CFG_FSM_RETURN_IDLE BIT(19)
#define MTK_WED_WDMA_GLO_CFG_WAIT_COHERENT BIT(20)
#define MTK_WED_WDMA_GLO_CFG_AXI_W_AFTER_AW BIT(21)
#define MTK_WED_WDMA_GLO_CFG_IDLE_DMAD_SUPPLY_SINGLE_W BIT(22)
#define MTK_WED_WDMA_GLO_CFG_IDLE_DMAD_SUPPLY BIT(23)
#define MTK_WED_WDMA_GLO_CFG_DYNAMIC_SKIP_DMAD_PREP BIT(24)
#define MTK_WED_WDMA_GLO_CFG_DYNAMIC_DMAD_RECYCLE BIT(25)
#define MTK_WED_WDMA_GLO_CFG_RST_INIT_COMPLETE BIT(26)
#define MTK_WED_WDMA_GLO_CFG_RXDRV_CLKGATE_BYPASS BIT(30)
#define MTK_WED_WDMA_RESET_IDX 0xa08
#define MTK_WED_WDMA_RESET_IDX_RX GENMASK(17, 16)
#define MTK_WED_WDMA_RESET_IDX_DRV GENMASK(25, 24)
#define MTK_WED_WDMA_INT_TRIGGER 0xa28
#define MTK_WED_WDMA_INT_TRIGGER_RX_DONE GENMASK(17, 16)
#define MTK_WED_WDMA_INT_CTRL 0xa2c
#define MTK_WED_WDMA_INT_CTRL_POLL_SRC_SEL GENMASK(17, 16)
#define MTK_WED_WDMA_OFFSET0 0xaa4
#define MTK_WED_WDMA_OFFSET1 0xaa8
#define MTK_WED_WDMA_RX_MIB(_n) (0xae0 + (_n) * 4)
#define MTK_WED_WDMA_RX_RECYCLE_MIB(_n) (0xae8 + (_n) * 4)
#define MTK_WED_WDMA_RX_PROCESSED_MIB(_n) (0xaf0 + (_n) * 4)
#define MTK_WED_RING_OFS_BASE 0x00
#define MTK_WED_RING_OFS_COUNT 0x04
#define MTK_WED_RING_OFS_CPU_IDX 0x08
#define MTK_WED_RING_OFS_DMA_IDX 0x0c
#define MTK_WDMA_RING_RX(_n) (0x100 + (_n) * 0x10)
#define MTK_WDMA_GLO_CFG 0x204
#define MTK_WDMA_GLO_CFG_RX_INFO_PRERES GENMASK(28, 26)
#define MTK_WDMA_RESET_IDX 0x208
#define MTK_WDMA_RESET_IDX_TX GENMASK(3, 0)
#define MTK_WDMA_RESET_IDX_RX GENMASK(17, 16)
#define MTK_WDMA_INT_MASK 0x228
#define MTK_WDMA_INT_MASK_TX_DONE GENMASK(3, 0)
#define MTK_WDMA_INT_MASK_RX_DONE GENMASK(17, 16)
#define MTK_WDMA_INT_MASK_TX_DELAY BIT(28)
#define MTK_WDMA_INT_MASK_TX_COHERENT BIT(29)
#define MTK_WDMA_INT_MASK_RX_DELAY BIT(30)
#define MTK_WDMA_INT_MASK_RX_COHERENT BIT(31)
#define MTK_WDMA_INT_GRP1 0x250
#define MTK_WDMA_INT_GRP2 0x254
#define MTK_PCIE_MIRROR_MAP(n) ((n) ? 0x4 : 0x0)
#define MTK_PCIE_MIRROR_MAP_EN BIT(0)
#define MTK_PCIE_MIRROR_MAP_WED_ID BIT(1)
/* DMA channel mapping */
#define HIFSYS_DMA_AG_MAP 0x008
#endif
......@@ -862,6 +862,7 @@ enum net_device_path_type {
DEV_PATH_BRIDGE,
DEV_PATH_PPPOE,
DEV_PATH_DSA,
DEV_PATH_MTK_WDMA,
};
struct net_device_path {
......@@ -887,6 +888,12 @@ struct net_device_path {
int port;
u16 proto;
} dsa;
struct {
u8 wdma_idx;
u8 queue;
u16 wcid;
u8 bss;
} mtk_wdma;
};
};
......
#ifndef __MTK_WED_H
#define __MTK_WED_H
#include <linux/kernel.h>
#include <linux/rcupdate.h>
#include <linux/regmap.h>
#include <linux/pci.h>
#define MTK_WED_TX_QUEUES 2
struct mtk_wed_hw;
struct mtk_wdma_desc;
struct mtk_wed_ring {
struct mtk_wdma_desc *desc;
dma_addr_t desc_phys;
int size;
u32 reg_base;
void __iomem *wpdma;
};
struct mtk_wed_device {
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
const struct mtk_wed_ops *ops;
struct device *dev;
struct mtk_wed_hw *hw;
bool init_done, running;
int wdma_idx;
int irq;
struct mtk_wed_ring tx_ring[MTK_WED_TX_QUEUES];
struct mtk_wed_ring txfree_ring;
struct mtk_wed_ring tx_wdma[MTK_WED_TX_QUEUES];
struct {
int size;
void **pages;
struct mtk_wdma_desc *desc;
dma_addr_t desc_phys;
} buf_ring;
/* filled by driver: */
struct {
struct pci_dev *pci_dev;
u32 wpdma_phys;
u16 token_start;
unsigned int nbuf;
u32 (*init_buf)(void *ptr, dma_addr_t phys, int token_id);
int (*offload_enable)(struct mtk_wed_device *wed);
void (*offload_disable)(struct mtk_wed_device *wed);
} wlan;
#endif
};
struct mtk_wed_ops {
int (*attach)(struct mtk_wed_device *dev);
int (*tx_ring_setup)(struct mtk_wed_device *dev, int ring,
void __iomem *regs);
int (*txfree_ring_setup)(struct mtk_wed_device *dev,
void __iomem *regs);
void (*detach)(struct mtk_wed_device *dev);
void (*stop)(struct mtk_wed_device *dev);
void (*start)(struct mtk_wed_device *dev, u32 irq_mask);
void (*reset_dma)(struct mtk_wed_device *dev);
u32 (*reg_read)(struct mtk_wed_device *dev, u32 reg);
void (*reg_write)(struct mtk_wed_device *dev, u32 reg, u32 val);
u32 (*irq_get)(struct mtk_wed_device *dev, u32 mask);
void (*irq_set_mask)(struct mtk_wed_device *dev, u32 mask);
};
extern const struct mtk_wed_ops __rcu *mtk_soc_wed_ops;
static inline int
mtk_wed_device_attach(struct mtk_wed_device *dev)
{
int ret = -ENODEV;
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
rcu_read_lock();
dev->ops = rcu_dereference(mtk_soc_wed_ops);
if (dev->ops)
ret = dev->ops->attach(dev);
else
rcu_read_unlock();
if (ret)
dev->ops = NULL;
#endif
return ret;
}
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
#define mtk_wed_device_active(_dev) !!(_dev)->ops
#define mtk_wed_device_detach(_dev) (_dev)->ops->detach(_dev)
#define mtk_wed_device_start(_dev, _mask) (_dev)->ops->start(_dev, _mask)
#define mtk_wed_device_tx_ring_setup(_dev, _ring, _regs) \
(_dev)->ops->tx_ring_setup(_dev, _ring, _regs)
#define mtk_wed_device_txfree_ring_setup(_dev, _regs) \
(_dev)->ops->txfree_ring_setup(_dev, _regs)
#define mtk_wed_device_reg_read(_dev, _reg) \
(_dev)->ops->reg_read(_dev, _reg)
#define mtk_wed_device_reg_write(_dev, _reg, _val) \
(_dev)->ops->reg_write(_dev, _reg, _val)
#define mtk_wed_device_irq_get(_dev, _mask) \
(_dev)->ops->irq_get(_dev, _mask)
#define mtk_wed_device_irq_set_mask(_dev, _mask) \
(_dev)->ops->irq_set_mask(_dev, _mask)
#else
static inline bool mtk_wed_device_active(struct mtk_wed_device *dev)
{
return false;
}
#define mtk_wed_device_detach(_dev) do {} while (0)
#define mtk_wed_device_start(_dev, _mask) do {} while (0)
#define mtk_wed_device_tx_ring_setup(_dev, _ring, _regs) -ENODEV
#define mtk_wed_device_txfree_ring_setup(_dev, _ring, _regs) -ENODEV
#define mtk_wed_device_reg_read(_dev, _reg) 0
#define mtk_wed_device_reg_write(_dev, _reg, _val) do {} while (0)
#define mtk_wed_device_irq_get(_dev, _mask) 0
#define mtk_wed_device_irq_set_mask(_dev, _mask) do {} while (0)
#endif
#endif
......@@ -701,6 +701,10 @@ int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
if (WARN_ON_ONCE(last_dev == ctx.dev))
return -1;
}
if (!ctx.dev)
return ret;
path = dev_fwd_path(stack);
if (!path)
return -1;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment