/* * QLogic FCoE Offload Driver * Copyright (c) 2016 Cavium Inc. * * This software is available under the terms of the GNU General Public License * (GPL) Version 2, available from the file COPYING in the main directory of * this source tree. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/device.h> #include <linux/highmem.h> #include <linux/crc32.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/kthread.h> #include <scsi/libfc.h> #include <scsi/scsi_host.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/cpu.h> #include "qedf.h" const struct qed_fcoe_ops *qed_ops; static int qedf_probe(struct pci_dev *pdev, const struct pci_device_id *id); static void qedf_remove(struct pci_dev *pdev); extern struct qedf_debugfs_ops qedf_debugfs_ops; extern struct file_operations qedf_dbg_fops; /* * Driver module parameters. */ static unsigned int qedf_dev_loss_tmo = 60; module_param_named(dev_loss_tmo, qedf_dev_loss_tmo, int, S_IRUGO); MODULE_PARM_DESC(dev_loss_tmo, " dev_loss_tmo setting for attached " "remote ports (default 60)"); uint qedf_debug = QEDF_LOG_INFO; module_param_named(debug, qedf_debug, uint, S_IRUGO); MODULE_PARM_DESC(qedf_debug, " Debug mask. Pass '1' to enable default debugging" " mask"); static uint qedf_fipvlan_retries = 30; module_param_named(fipvlan_retries, qedf_fipvlan_retries, int, S_IRUGO); MODULE_PARM_DESC(fipvlan_retries, " Number of FIP VLAN requests to attempt " "before giving up (default 30)"); static uint qedf_fallback_vlan = QEDF_FALLBACK_VLAN; module_param_named(fallback_vlan, qedf_fallback_vlan, int, S_IRUGO); MODULE_PARM_DESC(fallback_vlan, " VLAN ID to try if fip vlan request fails " "(default 1002)."); static uint qedf_default_prio = QEDF_DEFAULT_PRIO; module_param_named(default_prio, qedf_default_prio, int, S_IRUGO); MODULE_PARM_DESC(default_prio, " Default 802.1q priority for FIP and FCoE" " traffic (default 3)."); uint qedf_dump_frames; module_param_named(dump_frames, qedf_dump_frames, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(dump_frames, " Print the skb data of FIP and FCoE frames " "(default off)"); static uint qedf_queue_depth; module_param_named(queue_depth, qedf_queue_depth, int, S_IRUGO); MODULE_PARM_DESC(queue_depth, " Sets the queue depth for all LUNs discovered " "by the qedf driver. Default is 0 (use OS default)."); uint qedf_io_tracing; module_param_named(io_tracing, qedf_io_tracing, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(io_tracing, " Enable logging of SCSI requests/completions " "into trace buffer. (default off)."); static uint qedf_max_lun = MAX_FIBRE_LUNS; module_param_named(max_lun, qedf_max_lun, int, S_IRUGO); MODULE_PARM_DESC(max_lun, " Sets the maximum luns per target that the driver " "supports. (default 0xffffffff)"); uint qedf_link_down_tmo; module_param_named(link_down_tmo, qedf_link_down_tmo, int, S_IRUGO); MODULE_PARM_DESC(link_down_tmo, " Delays informing the fcoe transport that the " "link is down by N seconds."); bool qedf_retry_delay; module_param_named(retry_delay, qedf_retry_delay, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(retry_delay, " Enable/disable handling of FCP_RSP IU retry " "delay handling (default off)."); static uint qedf_dp_module; module_param_named(dp_module, qedf_dp_module, uint, S_IRUGO); MODULE_PARM_DESC(dp_module, " bit flags control for verbose printk passed " "qed module during probe."); static uint qedf_dp_level; module_param_named(dp_level, qedf_dp_level, uint, S_IRUGO); MODULE_PARM_DESC(dp_level, " printk verbosity control passed to qed module " "during probe (0-3: 0 more verbose)."); struct workqueue_struct *qedf_io_wq; static struct fcoe_percpu_s qedf_global; static DEFINE_SPINLOCK(qedf_global_lock); static struct kmem_cache *qedf_io_work_cache; void qedf_set_vlan_id(struct qedf_ctx *qedf, int vlan_id) { qedf->vlan_id = vlan_id; qedf->vlan_id |= qedf_default_prio << VLAN_PRIO_SHIFT; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Setting vlan_id=%04x " "prio=%d.\n", vlan_id, qedf_default_prio); } /* Returns true if we have a valid vlan, false otherwise */ static bool qedf_initiate_fipvlan_req(struct qedf_ctx *qedf) { int rc; if (atomic_read(&qedf->link_state) != QEDF_LINK_UP) { QEDF_ERR(&(qedf->dbg_ctx), "Link not up.\n"); return false; } while (qedf->fipvlan_retries--) { if (qedf->vlan_id > 0) return true; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Retry %d.\n", qedf->fipvlan_retries); init_completion(&qedf->fipvlan_compl); qedf_fcoe_send_vlan_req(qedf); rc = wait_for_completion_timeout(&qedf->fipvlan_compl, 1 * HZ); if (rc > 0) { fcoe_ctlr_link_up(&qedf->ctlr); return true; } } return false; } static void qedf_handle_link_update(struct work_struct *work) { struct qedf_ctx *qedf = container_of(work, struct qedf_ctx, link_update.work); int rc; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Entered.\n"); if (atomic_read(&qedf->link_state) == QEDF_LINK_UP) { rc = qedf_initiate_fipvlan_req(qedf); if (rc) return; /* * If we get here then we never received a repsonse to our * fip vlan request so set the vlan_id to the default and * tell FCoE that the link is up */ QEDF_WARN(&(qedf->dbg_ctx), "Did not receive FIP VLAN " "response, falling back to default VLAN %d.\n", qedf_fallback_vlan); qedf_set_vlan_id(qedf, QEDF_FALLBACK_VLAN); /* * Zero out data_src_addr so we'll update it with the new * lport port_id */ eth_zero_addr(qedf->data_src_addr); fcoe_ctlr_link_up(&qedf->ctlr); } else if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN) { /* * If we hit here and link_down_tmo_valid is still 1 it means * that link_down_tmo timed out so set it to 0 to make sure any * other readers have accurate state. */ atomic_set(&qedf->link_down_tmo_valid, 0); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Calling fcoe_ctlr_link_down().\n"); fcoe_ctlr_link_down(&qedf->ctlr); qedf_wait_for_upload(qedf); /* Reset the number of FIP VLAN retries */ qedf->fipvlan_retries = qedf_fipvlan_retries; } } static void qedf_flogi_resp(struct fc_seq *seq, struct fc_frame *fp, void *arg) { struct fc_exch *exch = fc_seq_exch(seq); struct fc_lport *lport = exch->lp; struct qedf_ctx *qedf = lport_priv(lport); if (!qedf) { QEDF_ERR(NULL, "qedf is NULL.\n"); return; } /* * If ERR_PTR is set then don't try to stat anything as it will cause * a crash when we access fp. */ if (IS_ERR(fp)) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_ELS, "fp has IS_ERR() set.\n"); goto skip_stat; } /* Log stats for FLOGI reject */ if (fc_frame_payload_op(fp) == ELS_LS_RJT) qedf->flogi_failed++; /* Complete flogi_compl so we can proceed to sending ADISCs */ complete(&qedf->flogi_compl); skip_stat: /* Report response to libfc */ fc_lport_flogi_resp(seq, fp, lport); } static struct fc_seq *qedf_elsct_send(struct fc_lport *lport, u32 did, struct fc_frame *fp, unsigned int op, void (*resp)(struct fc_seq *, struct fc_frame *, void *), void *arg, u32 timeout) { struct qedf_ctx *qedf = lport_priv(lport); /* * Intercept FLOGI for statistic purposes. Note we use the resp * callback to tell if this is really a flogi. */ if (resp == fc_lport_flogi_resp) { qedf->flogi_cnt++; return fc_elsct_send(lport, did, fp, op, qedf_flogi_resp, arg, timeout); } return fc_elsct_send(lport, did, fp, op, resp, arg, timeout); } int qedf_send_flogi(struct qedf_ctx *qedf) { struct fc_lport *lport; struct fc_frame *fp; lport = qedf->lport; if (!lport->tt.elsct_send) return -EINVAL; fp = fc_frame_alloc(lport, sizeof(struct fc_els_flogi)); if (!fp) { QEDF_ERR(&(qedf->dbg_ctx), "fc_frame_alloc failed.\n"); return -ENOMEM; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_ELS, "Sending FLOGI to reestablish session with switch.\n"); lport->tt.elsct_send(lport, FC_FID_FLOGI, fp, ELS_FLOGI, qedf_flogi_resp, lport, lport->r_a_tov); init_completion(&qedf->flogi_compl); return 0; } struct qedf_tmp_rdata_item { struct fc_rport_priv *rdata; struct list_head list; }; /* * This function is called if link_down_tmo is in use. If we get a link up and * link_down_tmo has not expired then use just FLOGI/ADISC to recover our * sessions with targets. Otherwise, just call fcoe_ctlr_link_up(). */ static void qedf_link_recovery(struct work_struct *work) { struct qedf_ctx *qedf = container_of(work, struct qedf_ctx, link_recovery.work); struct qedf_rport *fcport; struct fc_rport_priv *rdata; struct qedf_tmp_rdata_item *rdata_item, *tmp_rdata_item; bool rc; int retries = 30; int rval, i; struct list_head rdata_login_list; INIT_LIST_HEAD(&rdata_login_list); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Link down tmo did not expire.\n"); /* * Essentially reset the fcoe_ctlr here without affecting the state * of the libfc structs. */ qedf->ctlr.state = FIP_ST_LINK_WAIT; fcoe_ctlr_link_down(&qedf->ctlr); /* * Bring the link up before we send the fipvlan request so libfcoe * can select a new fcf in parallel */ fcoe_ctlr_link_up(&qedf->ctlr); /* Since the link when down and up to verify which vlan we're on */ qedf->fipvlan_retries = qedf_fipvlan_retries; rc = qedf_initiate_fipvlan_req(qedf); if (!rc) return; /* * We need to wait for an FCF to be selected due to the * fcoe_ctlr_link_up other the FLOGI will be rejected. */ while (retries > 0) { if (qedf->ctlr.sel_fcf) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "FCF reselected, proceeding with FLOGI.\n"); break; } msleep(500); retries--; } if (retries < 1) { QEDF_ERR(&(qedf->dbg_ctx), "Exhausted retries waiting for " "FCF selection.\n"); return; } rval = qedf_send_flogi(qedf); if (rval) return; /* Wait for FLOGI completion before proceeding with sending ADISCs */ i = wait_for_completion_timeout(&qedf->flogi_compl, qedf->lport->r_a_tov); if (i == 0) { QEDF_ERR(&(qedf->dbg_ctx), "FLOGI timed out.\n"); return; } /* * Call lport->tt.rport_login which will cause libfc to send an * ADISC since the rport is in state ready. */ rcu_read_lock(); list_for_each_entry_rcu(fcport, &qedf->fcports, peers) { rdata = fcport->rdata; if (rdata == NULL) continue; rdata_item = kzalloc(sizeof(struct qedf_tmp_rdata_item), GFP_ATOMIC); if (!rdata_item) continue; if (kref_get_unless_zero(&rdata->kref)) { rdata_item->rdata = rdata; list_add(&rdata_item->list, &rdata_login_list); } else kfree(rdata_item); } rcu_read_unlock(); /* * Do the fc_rport_login outside of the rcu lock so we don't take a * mutex in an atomic context. */ list_for_each_entry_safe(rdata_item, tmp_rdata_item, &rdata_login_list, list) { list_del(&rdata_item->list); fc_rport_login(rdata_item->rdata); kref_put(&rdata_item->rdata->kref, fc_rport_destroy); kfree(rdata_item); } } static void qedf_update_link_speed(struct qedf_ctx *qedf, struct qed_link_output *link) { struct fc_lport *lport = qedf->lport; lport->link_speed = FC_PORTSPEED_UNKNOWN; lport->link_supported_speeds = FC_PORTSPEED_UNKNOWN; /* Set fc_host link speed */ switch (link->speed) { case 10000: lport->link_speed = FC_PORTSPEED_10GBIT; break; case 25000: lport->link_speed = FC_PORTSPEED_25GBIT; break; case 40000: lport->link_speed = FC_PORTSPEED_40GBIT; break; case 50000: lport->link_speed = FC_PORTSPEED_50GBIT; break; case 100000: lport->link_speed = FC_PORTSPEED_100GBIT; break; default: lport->link_speed = FC_PORTSPEED_UNKNOWN; break; } /* * Set supported link speed by querying the supported * capabilities of the link. */ if (link->supported_caps & SUPPORTED_10000baseKR_Full) lport->link_supported_speeds |= FC_PORTSPEED_10GBIT; if (link->supported_caps & SUPPORTED_25000baseKR_Full) lport->link_supported_speeds |= FC_PORTSPEED_25GBIT; if (link->supported_caps & SUPPORTED_40000baseLR4_Full) lport->link_supported_speeds |= FC_PORTSPEED_40GBIT; if (link->supported_caps & SUPPORTED_50000baseKR2_Full) lport->link_supported_speeds |= FC_PORTSPEED_50GBIT; if (link->supported_caps & SUPPORTED_100000baseKR4_Full) lport->link_supported_speeds |= FC_PORTSPEED_100GBIT; fc_host_supported_speeds(lport->host) = lport->link_supported_speeds; } static void qedf_link_update(void *dev, struct qed_link_output *link) { struct qedf_ctx *qedf = (struct qedf_ctx *)dev; if (link->link_up) { QEDF_ERR(&(qedf->dbg_ctx), "LINK UP (%d GB/s).\n", link->speed / 1000); /* Cancel any pending link down work */ cancel_delayed_work(&qedf->link_update); atomic_set(&qedf->link_state, QEDF_LINK_UP); qedf_update_link_speed(qedf, link); if (atomic_read(&qedf->dcbx) == QEDF_DCBX_DONE) { QEDF_ERR(&(qedf->dbg_ctx), "DCBx done.\n"); if (atomic_read(&qedf->link_down_tmo_valid) > 0) queue_delayed_work(qedf->link_update_wq, &qedf->link_recovery, 0); else queue_delayed_work(qedf->link_update_wq, &qedf->link_update, 0); atomic_set(&qedf->link_down_tmo_valid, 0); } } else { QEDF_ERR(&(qedf->dbg_ctx), "LINK DOWN.\n"); atomic_set(&qedf->link_state, QEDF_LINK_DOWN); atomic_set(&qedf->dcbx, QEDF_DCBX_PENDING); /* * Flag that we're waiting for the link to come back up before * informing the fcoe layer of the event. */ if (qedf_link_down_tmo > 0) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Starting link down tmo.\n"); atomic_set(&qedf->link_down_tmo_valid, 1); } qedf->vlan_id = 0; qedf_update_link_speed(qedf, link); queue_delayed_work(qedf->link_update_wq, &qedf->link_update, qedf_link_down_tmo * HZ); } } static void qedf_dcbx_handler(void *dev, struct qed_dcbx_get *get, u32 mib_type) { struct qedf_ctx *qedf = (struct qedf_ctx *)dev; QEDF_ERR(&(qedf->dbg_ctx), "DCBx event valid=%d enabled=%d fcoe " "prio=%d.\n", get->operational.valid, get->operational.enabled, get->operational.app_prio.fcoe); if (get->operational.enabled && get->operational.valid) { /* If DCBX was already negotiated on link up then just exit */ if (atomic_read(&qedf->dcbx) == QEDF_DCBX_DONE) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "DCBX already set on link up.\n"); return; } atomic_set(&qedf->dcbx, QEDF_DCBX_DONE); if (atomic_read(&qedf->link_state) == QEDF_LINK_UP) { if (atomic_read(&qedf->link_down_tmo_valid) > 0) queue_delayed_work(qedf->link_update_wq, &qedf->link_recovery, 0); else queue_delayed_work(qedf->link_update_wq, &qedf->link_update, 0); atomic_set(&qedf->link_down_tmo_valid, 0); } } } static u32 qedf_get_login_failures(void *cookie) { struct qedf_ctx *qedf; qedf = (struct qedf_ctx *)cookie; return qedf->flogi_failed; } static struct qed_fcoe_cb_ops qedf_cb_ops = { { .link_update = qedf_link_update, .dcbx_aen = qedf_dcbx_handler, } }; /* * Various transport templates. */ static struct scsi_transport_template *qedf_fc_transport_template; static struct scsi_transport_template *qedf_fc_vport_transport_template; /* * SCSI EH handlers */ static int qedf_eh_abort(struct scsi_cmnd *sc_cmd) { struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device)); struct fc_rport_libfc_priv *rp = rport->dd_data; struct qedf_rport *fcport; struct fc_lport *lport; struct qedf_ctx *qedf; struct qedf_ioreq *io_req; int rc = FAILED; int rval; if (fc_remote_port_chkready(rport)) { QEDF_ERR(NULL, "rport not ready\n"); goto out; } lport = shost_priv(sc_cmd->device->host); qedf = (struct qedf_ctx *)lport_priv(lport); if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) { QEDF_ERR(&(qedf->dbg_ctx), "link not ready.\n"); goto out; } fcport = (struct qedf_rport *)&rp[1]; io_req = (struct qedf_ioreq *)sc_cmd->SCp.ptr; if (!io_req) { QEDF_ERR(&(qedf->dbg_ctx), "io_req is NULL.\n"); rc = SUCCESS; goto out; } if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) || test_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags) || test_bit(QEDF_CMD_IN_ABORT, &io_req->flags)) { QEDF_ERR(&(qedf->dbg_ctx), "io_req xid=0x%x already in " "cleanup or abort processing or already " "completed.\n", io_req->xid); rc = SUCCESS; goto out; } QEDF_ERR(&(qedf->dbg_ctx), "Aborting io_req sc_cmd=%p xid=0x%x " "fp_idx=%d.\n", sc_cmd, io_req->xid, io_req->fp_idx); if (qedf->stop_io_on_error) { qedf_stop_all_io(qedf); rc = SUCCESS; goto out; } init_completion(&io_req->abts_done); rval = qedf_initiate_abts(io_req, true); if (rval) { QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n"); goto out; } wait_for_completion(&io_req->abts_done); if (io_req->event == QEDF_IOREQ_EV_ABORT_SUCCESS || io_req->event == QEDF_IOREQ_EV_ABORT_FAILED || io_req->event == QEDF_IOREQ_EV_CLEANUP_SUCCESS) { /* * If we get a reponse to the abort this is success from * the perspective that all references to the command have * been removed from the driver and firmware */ rc = SUCCESS; } else { /* If the abort and cleanup failed then return a failure */ rc = FAILED; } if (rc == SUCCESS) QEDF_ERR(&(qedf->dbg_ctx), "ABTS succeeded, xid=0x%x.\n", io_req->xid); else QEDF_ERR(&(qedf->dbg_ctx), "ABTS failed, xid=0x%x.\n", io_req->xid); out: return rc; } static int qedf_eh_target_reset(struct scsi_cmnd *sc_cmd) { QEDF_ERR(NULL, "TARGET RESET Issued..."); return qedf_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET); } static int qedf_eh_device_reset(struct scsi_cmnd *sc_cmd) { QEDF_ERR(NULL, "LUN RESET Issued...\n"); return qedf_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET); } void qedf_wait_for_upload(struct qedf_ctx *qedf) { while (1) { if (atomic_read(&qedf->num_offloads)) QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Waiting for all uploads to complete.\n"); else break; msleep(500); } } /* Reset the host by gracefully logging out and then logging back in */ static int qedf_eh_host_reset(struct scsi_cmnd *sc_cmd) { struct fc_lport *lport; struct qedf_ctx *qedf; lport = shost_priv(sc_cmd->device->host); if (lport->vport) { QEDF_ERR(NULL, "Cannot issue host reset on NPIV port.\n"); return SUCCESS; } qedf = (struct qedf_ctx *)lport_priv(lport); if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN || test_bit(QEDF_UNLOADING, &qedf->flags) || test_bit(QEDF_DBG_STOP_IO, &qedf->flags)) return FAILED; QEDF_ERR(&(qedf->dbg_ctx), "HOST RESET Issued..."); /* For host reset, essentially do a soft link up/down */ atomic_set(&qedf->link_state, QEDF_LINK_DOWN); atomic_set(&qedf->dcbx, QEDF_DCBX_PENDING); queue_delayed_work(qedf->link_update_wq, &qedf->link_update, 0); qedf_wait_for_upload(qedf); atomic_set(&qedf->link_state, QEDF_LINK_UP); qedf->vlan_id = 0; queue_delayed_work(qedf->link_update_wq, &qedf->link_update, 0); return SUCCESS; } static int qedf_slave_configure(struct scsi_device *sdev) { if (qedf_queue_depth) { scsi_change_queue_depth(sdev, qedf_queue_depth); } return 0; } static struct scsi_host_template qedf_host_template = { .module = THIS_MODULE, .name = QEDF_MODULE_NAME, .this_id = -1, .cmd_per_lun = 3, .use_clustering = ENABLE_CLUSTERING, .max_sectors = 0xffff, .queuecommand = qedf_queuecommand, .shost_attrs = qedf_host_attrs, .eh_abort_handler = qedf_eh_abort, .eh_device_reset_handler = qedf_eh_device_reset, /* lun reset */ .eh_target_reset_handler = qedf_eh_target_reset, /* target reset */ .eh_host_reset_handler = qedf_eh_host_reset, .slave_configure = qedf_slave_configure, .dma_boundary = QED_HW_DMA_BOUNDARY, .sg_tablesize = QEDF_MAX_BDS_PER_CMD, .can_queue = FCOE_PARAMS_NUM_TASKS, }; static int qedf_get_paged_crc_eof(struct sk_buff *skb, int tlen) { int rc; spin_lock(&qedf_global_lock); rc = fcoe_get_paged_crc_eof(skb, tlen, &qedf_global); spin_unlock(&qedf_global_lock); return rc; } static struct qedf_rport *qedf_fcport_lookup(struct qedf_ctx *qedf, u32 port_id) { struct qedf_rport *fcport; struct fc_rport_priv *rdata; rcu_read_lock(); list_for_each_entry_rcu(fcport, &qedf->fcports, peers) { rdata = fcport->rdata; if (rdata == NULL) continue; if (rdata->ids.port_id == port_id) { rcu_read_unlock(); return fcport; } } rcu_read_unlock(); /* Return NULL to caller to let them know fcport was not found */ return NULL; } /* Transmits an ELS frame over an offloaded session */ static int qedf_xmit_l2_frame(struct qedf_rport *fcport, struct fc_frame *fp) { struct fc_frame_header *fh; int rc = 0; fh = fc_frame_header_get(fp); if ((fh->fh_type == FC_TYPE_ELS) && (fh->fh_r_ctl == FC_RCTL_ELS_REQ)) { switch (fc_frame_payload_op(fp)) { case ELS_ADISC: qedf_send_adisc(fcport, fp); rc = 1; break; } } return rc; } /** * qedf_xmit - qedf FCoE frame transmit function * */ static int qedf_xmit(struct fc_lport *lport, struct fc_frame *fp) { struct fc_lport *base_lport; struct qedf_ctx *qedf; struct ethhdr *eh; struct fcoe_crc_eof *cp; struct sk_buff *skb; struct fc_frame_header *fh; struct fcoe_hdr *hp; u8 sof, eof; u32 crc; unsigned int hlen, tlen, elen; int wlen; struct fc_stats *stats; struct fc_lport *tmp_lport; struct fc_lport *vn_port = NULL; struct qedf_rport *fcport; int rc; u16 vlan_tci = 0; qedf = (struct qedf_ctx *)lport_priv(lport); fh = fc_frame_header_get(fp); skb = fp_skb(fp); /* Filter out traffic to other NPIV ports on the same host */ if (lport->vport) base_lport = shost_priv(vport_to_shost(lport->vport)); else base_lport = lport; /* Flag if the destination is the base port */ if (base_lport->port_id == ntoh24(fh->fh_d_id)) { vn_port = base_lport; } else { /* Got through the list of vports attached to the base_lport * and see if we have a match with the destination address. */ list_for_each_entry(tmp_lport, &base_lport->vports, list) { if (tmp_lport->port_id == ntoh24(fh->fh_d_id)) { vn_port = tmp_lport; break; } } } if (vn_port && ntoh24(fh->fh_d_id) != FC_FID_FLOGI) { struct fc_rport_priv *rdata = NULL; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "Dropping FCoE frame to %06x.\n", ntoh24(fh->fh_d_id)); kfree_skb(skb); rdata = fc_rport_lookup(lport, ntoh24(fh->fh_d_id)); if (rdata) rdata->retries = lport->max_rport_retry_count; return -EINVAL; } /* End NPIV filtering */ if (!qedf->ctlr.sel_fcf) { kfree_skb(skb); return 0; } if (!test_bit(QEDF_LL2_STARTED, &qedf->flags)) { QEDF_WARN(&(qedf->dbg_ctx), "LL2 not started\n"); kfree_skb(skb); return 0; } if (atomic_read(&qedf->link_state) != QEDF_LINK_UP) { QEDF_WARN(&(qedf->dbg_ctx), "qedf link down\n"); kfree_skb(skb); return 0; } if (unlikely(fh->fh_r_ctl == FC_RCTL_ELS_REQ)) { if (fcoe_ctlr_els_send(&qedf->ctlr, lport, skb)) return 0; } /* Check to see if this needs to be sent on an offloaded session */ fcport = qedf_fcport_lookup(qedf, ntoh24(fh->fh_d_id)); if (fcport && test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { rc = qedf_xmit_l2_frame(fcport, fp); /* * If the frame was successfully sent over the middle path * then do not try to also send it over the LL2 path */ if (rc) return 0; } sof = fr_sof(fp); eof = fr_eof(fp); elen = sizeof(struct ethhdr); hlen = sizeof(struct fcoe_hdr); tlen = sizeof(struct fcoe_crc_eof); wlen = (skb->len - tlen + sizeof(crc)) / FCOE_WORD_TO_BYTE; skb->ip_summed = CHECKSUM_NONE; crc = fcoe_fc_crc(fp); /* copy port crc and eof to the skb buff */ if (skb_is_nonlinear(skb)) { skb_frag_t *frag; if (qedf_get_paged_crc_eof(skb, tlen)) { kfree_skb(skb); return -ENOMEM; } frag = &skb_shinfo(skb)->frags[skb_shinfo(skb)->nr_frags - 1]; cp = kmap_atomic(skb_frag_page(frag)) + frag->page_offset; } else { cp = (struct fcoe_crc_eof *)skb_put(skb, tlen); } memset(cp, 0, sizeof(*cp)); cp->fcoe_eof = eof; cp->fcoe_crc32 = cpu_to_le32(~crc); if (skb_is_nonlinear(skb)) { kunmap_atomic(cp); cp = NULL; } /* adjust skb network/transport offsets to match mac/fcoe/port */ skb_push(skb, elen + hlen); skb_reset_mac_header(skb); skb_reset_network_header(skb); skb->mac_len = elen; skb->protocol = htons(ETH_P_FCOE); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), qedf->vlan_id); /* fill up mac and fcoe headers */ eh = eth_hdr(skb); eh->h_proto = htons(ETH_P_FCOE); if (qedf->ctlr.map_dest) fc_fcoe_set_mac(eh->h_dest, fh->fh_d_id); else /* insert GW address */ ether_addr_copy(eh->h_dest, qedf->ctlr.dest_addr); /* Set the source MAC address */ fc_fcoe_set_mac(eh->h_source, fh->fh_s_id); hp = (struct fcoe_hdr *)(eh + 1); memset(hp, 0, sizeof(*hp)); if (FC_FCOE_VER) FC_FCOE_ENCAPS_VER(hp, FC_FCOE_VER); hp->fcoe_sof = sof; /*update tx stats */ stats = per_cpu_ptr(lport->stats, get_cpu()); stats->TxFrames++; stats->TxWords += wlen; put_cpu(); /* Get VLAN ID from skb for printing purposes */ __vlan_hwaccel_get_tag(skb, &vlan_tci); /* send down to lld */ fr_dev(fp) = lport; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "FCoE frame send: " "src=%06x dest=%06x r_ctl=%x type=%x vlan=%04x.\n", ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id), fh->fh_r_ctl, fh->fh_type, vlan_tci); if (qedf_dump_frames) print_hex_dump(KERN_WARNING, "fcoe: ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb->len, false); qed_ops->ll2->start_xmit(qedf->cdev, skb); return 0; } static int qedf_alloc_sq(struct qedf_ctx *qedf, struct qedf_rport *fcport) { int rval = 0; u32 *pbl; dma_addr_t page; int num_pages; /* Calculate appropriate queue and PBL sizes */ fcport->sq_mem_size = SQ_NUM_ENTRIES * sizeof(struct fcoe_wqe); fcport->sq_mem_size = ALIGN(fcport->sq_mem_size, QEDF_PAGE_SIZE); fcport->sq_pbl_size = (fcport->sq_mem_size / QEDF_PAGE_SIZE) * sizeof(void *); fcport->sq_pbl_size = fcport->sq_pbl_size + QEDF_PAGE_SIZE; fcport->sq = dma_alloc_coherent(&qedf->pdev->dev, fcport->sq_mem_size, &fcport->sq_dma, GFP_KERNEL); if (!fcport->sq) { QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate send " "queue.\n"); rval = 1; goto out; } memset(fcport->sq, 0, fcport->sq_mem_size); fcport->sq_pbl = dma_alloc_coherent(&qedf->pdev->dev, fcport->sq_pbl_size, &fcport->sq_pbl_dma, GFP_KERNEL); if (!fcport->sq_pbl) { QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate send " "queue PBL.\n"); rval = 1; goto out_free_sq; } memset(fcport->sq_pbl, 0, fcport->sq_pbl_size); /* Create PBL */ num_pages = fcport->sq_mem_size / QEDF_PAGE_SIZE; page = fcport->sq_dma; pbl = (u32 *)fcport->sq_pbl; while (num_pages--) { *pbl = U64_LO(page); pbl++; *pbl = U64_HI(page); pbl++; page += QEDF_PAGE_SIZE; } return rval; out_free_sq: dma_free_coherent(&qedf->pdev->dev, fcport->sq_mem_size, fcport->sq, fcport->sq_dma); out: return rval; } static void qedf_free_sq(struct qedf_ctx *qedf, struct qedf_rport *fcport) { if (fcport->sq_pbl) dma_free_coherent(&qedf->pdev->dev, fcport->sq_pbl_size, fcport->sq_pbl, fcport->sq_pbl_dma); if (fcport->sq) dma_free_coherent(&qedf->pdev->dev, fcport->sq_mem_size, fcport->sq, fcport->sq_dma); } static int qedf_offload_connection(struct qedf_ctx *qedf, struct qedf_rport *fcport) { struct qed_fcoe_params_offload conn_info; u32 port_id; u8 lport_src_id[3]; int rval; uint16_t total_sqe = (fcport->sq_mem_size / sizeof(struct fcoe_wqe)); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Offloading connection " "portid=%06x.\n", fcport->rdata->ids.port_id); rval = qed_ops->acquire_conn(qedf->cdev, &fcport->handle, &fcport->fw_cid, &fcport->p_doorbell); if (rval) { QEDF_WARN(&(qedf->dbg_ctx), "Could not acquire connection " "for portid=%06x.\n", fcport->rdata->ids.port_id); rval = 1; /* For some reason qed returns 0 on failure here */ goto out; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "portid=%06x " "fw_cid=%08x handle=%d.\n", fcport->rdata->ids.port_id, fcport->fw_cid, fcport->handle); memset(&conn_info, 0, sizeof(struct qed_fcoe_params_offload)); /* Fill in the offload connection info */ conn_info.sq_pbl_addr = fcport->sq_pbl_dma; conn_info.sq_curr_page_addr = (dma_addr_t)(*(u64 *)fcport->sq_pbl); conn_info.sq_next_page_addr = (dma_addr_t)(*(u64 *)(fcport->sq_pbl + 8)); /* Need to use our FCoE MAC for the offload session */ port_id = fc_host_port_id(qedf->lport->host); lport_src_id[2] = (port_id & 0x000000FF); lport_src_id[1] = (port_id & 0x0000FF00) >> 8; lport_src_id[0] = (port_id & 0x00FF0000) >> 16; fc_fcoe_set_mac(conn_info.src_mac, lport_src_id); ether_addr_copy(conn_info.dst_mac, qedf->ctlr.dest_addr); conn_info.tx_max_fc_pay_len = fcport->rdata->maxframe_size; conn_info.e_d_tov_timer_val = qedf->lport->e_d_tov / 20; conn_info.rec_tov_timer_val = 3; /* I think this is what E3 was */ conn_info.rx_max_fc_pay_len = fcport->rdata->maxframe_size; /* Set VLAN data */ conn_info.vlan_tag = qedf->vlan_id << FCOE_CONN_OFFLOAD_RAMROD_DATA_VLAN_ID_SHIFT; conn_info.vlan_tag |= qedf_default_prio << FCOE_CONN_OFFLOAD_RAMROD_DATA_PRIORITY_SHIFT; conn_info.flags |= (FCOE_CONN_OFFLOAD_RAMROD_DATA_B_VLAN_FLAG_MASK << FCOE_CONN_OFFLOAD_RAMROD_DATA_B_VLAN_FLAG_SHIFT); /* Set host port source id */ port_id = fc_host_port_id(qedf->lport->host); fcport->sid = port_id; conn_info.s_id.addr_hi = (port_id & 0x000000FF); conn_info.s_id.addr_mid = (port_id & 0x0000FF00) >> 8; conn_info.s_id.addr_lo = (port_id & 0x00FF0000) >> 16; conn_info.max_conc_seqs_c3 = fcport->rdata->max_seq; /* Set remote port destination id */ port_id = fcport->rdata->rport->port_id; conn_info.d_id.addr_hi = (port_id & 0x000000FF); conn_info.d_id.addr_mid = (port_id & 0x0000FF00) >> 8; conn_info.d_id.addr_lo = (port_id & 0x00FF0000) >> 16; conn_info.def_q_idx = 0; /* Default index for send queue? */ /* Set FC-TAPE specific flags if needed */ if (fcport->dev_type == QEDF_RPORT_TYPE_TAPE) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Enable CONF, REC for portid=%06x.\n", fcport->rdata->ids.port_id); conn_info.flags |= 1 << FCOE_CONN_OFFLOAD_RAMROD_DATA_B_CONF_REQ_SHIFT; conn_info.flags |= ((fcport->rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) << FCOE_CONN_OFFLOAD_RAMROD_DATA_B_REC_VALID_SHIFT; } rval = qed_ops->offload_conn(qedf->cdev, fcport->handle, &conn_info); if (rval) { QEDF_WARN(&(qedf->dbg_ctx), "Could not offload connection " "for portid=%06x.\n", fcport->rdata->ids.port_id); goto out_free_conn; } else QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Offload " "succeeded portid=%06x total_sqe=%d.\n", fcport->rdata->ids.port_id, total_sqe); spin_lock_init(&fcport->rport_lock); atomic_set(&fcport->free_sqes, total_sqe); return 0; out_free_conn: qed_ops->release_conn(qedf->cdev, fcport->handle); out: return rval; } #define QEDF_TERM_BUFF_SIZE 10 static void qedf_upload_connection(struct qedf_ctx *qedf, struct qedf_rport *fcport) { void *term_params; dma_addr_t term_params_dma; /* Term params needs to be a DMA coherent buffer as qed shared the * physical DMA address with the firmware. The buffer may be used in * the receive path so we may eventually have to move this. */ term_params = dma_alloc_coherent(&qedf->pdev->dev, QEDF_TERM_BUFF_SIZE, &term_params_dma, GFP_KERNEL); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Uploading connection " "port_id=%06x.\n", fcport->rdata->ids.port_id); qed_ops->destroy_conn(qedf->cdev, fcport->handle, term_params_dma); qed_ops->release_conn(qedf->cdev, fcport->handle); dma_free_coherent(&qedf->pdev->dev, QEDF_TERM_BUFF_SIZE, term_params, term_params_dma); } static void qedf_cleanup_fcport(struct qedf_ctx *qedf, struct qedf_rport *fcport) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Cleaning up portid=%06x.\n", fcport->rdata->ids.port_id); /* Flush any remaining i/o's before we upload the connection */ qedf_flush_active_ios(fcport, -1); if (test_and_clear_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) qedf_upload_connection(qedf, fcport); qedf_free_sq(qedf, fcport); fcport->rdata = NULL; fcport->qedf = NULL; } /** * This event_callback is called after successful completion of libfc * initiated target login. qedf can proceed with initiating the session * establishment. */ static void qedf_rport_event_handler(struct fc_lport *lport, struct fc_rport_priv *rdata, enum fc_rport_event event) { struct qedf_ctx *qedf = lport_priv(lport); struct fc_rport *rport = rdata->rport; struct fc_rport_libfc_priv *rp; struct qedf_rport *fcport; u32 port_id; int rval; unsigned long flags; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "event = %d, " "port_id = 0x%x\n", event, rdata->ids.port_id); switch (event) { case RPORT_EV_READY: if (!rport) { QEDF_WARN(&(qedf->dbg_ctx), "rport is NULL.\n"); break; } rp = rport->dd_data; fcport = (struct qedf_rport *)&rp[1]; fcport->qedf = qedf; if (atomic_read(&qedf->num_offloads) >= QEDF_MAX_SESSIONS) { QEDF_ERR(&(qedf->dbg_ctx), "Not offloading " "portid=0x%x as max number of offloaded sessions " "reached.\n", rdata->ids.port_id); return; } /* * Don't try to offload the session again. Can happen when we * get an ADISC */ if (test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { QEDF_WARN(&(qedf->dbg_ctx), "Session already " "offloaded, portid=0x%x.\n", rdata->ids.port_id); return; } if (rport->port_id == FC_FID_DIR_SERV) { /* * qedf_rport structure doesn't exist for * directory server. * We should not come here, as lport will * take care of fabric login */ QEDF_WARN(&(qedf->dbg_ctx), "rport struct does not " "exist for dir server port_id=%x\n", rdata->ids.port_id); break; } if (rdata->spp_type != FC_TYPE_FCP) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Not offlading since since spp type isn't FCP\n"); break; } if (!(rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET)) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Not FCP target so not offloading\n"); break; } fcport->rdata = rdata; fcport->rport = rport; rval = qedf_alloc_sq(qedf, fcport); if (rval) { qedf_cleanup_fcport(qedf, fcport); break; } /* Set device type */ if (rdata->flags & FC_RP_FLAGS_RETRY && rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET && !(rdata->ids.roles & FC_RPORT_ROLE_FCP_INITIATOR)) { fcport->dev_type = QEDF_RPORT_TYPE_TAPE; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "portid=%06x is a TAPE device.\n", rdata->ids.port_id); } else { fcport->dev_type = QEDF_RPORT_TYPE_DISK; } rval = qedf_offload_connection(qedf, fcport); if (rval) { qedf_cleanup_fcport(qedf, fcport); break; } /* Add fcport to list of qedf_ctx list of offloaded ports */ spin_lock_irqsave(&qedf->hba_lock, flags); list_add_rcu(&fcport->peers, &qedf->fcports); spin_unlock_irqrestore(&qedf->hba_lock, flags); /* * Set the session ready bit to let everyone know that this * connection is ready for I/O */ set_bit(QEDF_RPORT_SESSION_READY, &fcport->flags); atomic_inc(&qedf->num_offloads); break; case RPORT_EV_LOGO: case RPORT_EV_FAILED: case RPORT_EV_STOP: port_id = rdata->ids.port_id; if (port_id == FC_FID_DIR_SERV) break; if (!rport) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "port_id=%x - rport notcreated Yet!!\n", port_id); break; } rp = rport->dd_data; /* * Perform session upload. Note that rdata->peers is already * removed from disc->rports list before we get this event. */ fcport = (struct qedf_rport *)&rp[1]; /* Only free this fcport if it is offloaded already */ if (test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { set_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags); qedf_cleanup_fcport(qedf, fcport); /* * Remove fcport to list of qedf_ctx list of offloaded * ports */ spin_lock_irqsave(&qedf->hba_lock, flags); list_del_rcu(&fcport->peers); spin_unlock_irqrestore(&qedf->hba_lock, flags); clear_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags); atomic_dec(&qedf->num_offloads); } break; case RPORT_EV_NONE: break; } } static void qedf_abort_io(struct fc_lport *lport) { /* NO-OP but need to fill in the template */ } static void qedf_fcp_cleanup(struct fc_lport *lport) { /* * NO-OP but need to fill in template to prevent a NULL * function pointer dereference during link down. I/Os * will be flushed when port is uploaded. */ } static struct libfc_function_template qedf_lport_template = { .frame_send = qedf_xmit, .fcp_abort_io = qedf_abort_io, .fcp_cleanup = qedf_fcp_cleanup, .rport_event_callback = qedf_rport_event_handler, .elsct_send = qedf_elsct_send, }; static void qedf_fcoe_ctlr_setup(struct qedf_ctx *qedf) { fcoe_ctlr_init(&qedf->ctlr, FIP_ST_AUTO); qedf->ctlr.send = qedf_fip_send; qedf->ctlr.update_mac = qedf_update_src_mac; qedf->ctlr.get_src_addr = qedf_get_src_mac; ether_addr_copy(qedf->ctlr.ctl_src_addr, qedf->mac); } static int qedf_lport_setup(struct qedf_ctx *qedf) { struct fc_lport *lport = qedf->lport; lport->link_up = 0; lport->max_retry_count = QEDF_FLOGI_RETRY_CNT; lport->max_rport_retry_count = QEDF_RPORT_RETRY_CNT; lport->service_params = (FCP_SPPF_INIT_FCN | FCP_SPPF_RD_XRDY_DIS | FCP_SPPF_RETRY | FCP_SPPF_CONF_COMPL); lport->boot_time = jiffies; lport->e_d_tov = 2 * 1000; lport->r_a_tov = 10 * 1000; /* Set NPIV support */ lport->does_npiv = 1; fc_host_max_npiv_vports(lport->host) = QEDF_MAX_NPIV; fc_set_wwnn(lport, qedf->wwnn); fc_set_wwpn(lport, qedf->wwpn); fcoe_libfc_config(lport, &qedf->ctlr, &qedf_lport_template, 0); /* Allocate the exchange manager */ fc_exch_mgr_alloc(lport, FC_CLASS_3, qedf->max_scsi_xid + 1, qedf->max_els_xid, NULL); if (fc_lport_init_stats(lport)) return -ENOMEM; /* Finish lport config */ fc_lport_config(lport); /* Set max frame size */ fc_set_mfs(lport, QEDF_MFS); fc_host_maxframe_size(lport->host) = lport->mfs; /* Set default dev_loss_tmo based on module parameter */ fc_host_dev_loss_tmo(lport->host) = qedf_dev_loss_tmo; /* Set symbolic node name */ snprintf(fc_host_symbolic_name(lport->host), 256, "QLogic %s v%s", QEDF_MODULE_NAME, QEDF_VERSION); return 0; } /* * NPIV functions */ static int qedf_vport_libfc_config(struct fc_vport *vport, struct fc_lport *lport) { lport->link_up = 0; lport->qfull = 0; lport->max_retry_count = QEDF_FLOGI_RETRY_CNT; lport->max_rport_retry_count = QEDF_RPORT_RETRY_CNT; lport->service_params = (FCP_SPPF_INIT_FCN | FCP_SPPF_RD_XRDY_DIS | FCP_SPPF_RETRY | FCP_SPPF_CONF_COMPL); lport->boot_time = jiffies; lport->e_d_tov = 2 * 1000; lport->r_a_tov = 10 * 1000; lport->does_npiv = 1; /* Temporary until we add NPIV support */ /* Allocate stats for vport */ if (fc_lport_init_stats(lport)) return -ENOMEM; /* Finish lport config */ fc_lport_config(lport); /* offload related configuration */ lport->crc_offload = 0; lport->seq_offload = 0; lport->lro_enabled = 0; lport->lro_xid = 0; lport->lso_max = 0; return 0; } static int qedf_vport_create(struct fc_vport *vport, bool disabled) { struct Scsi_Host *shost = vport_to_shost(vport); struct fc_lport *n_port = shost_priv(shost); struct fc_lport *vn_port; struct qedf_ctx *base_qedf = lport_priv(n_port); struct qedf_ctx *vport_qedf; char buf[32]; int rc = 0; rc = fcoe_validate_vport_create(vport); if (rc) { fcoe_wwn_to_str(vport->port_name, buf, sizeof(buf)); QEDF_WARN(&(base_qedf->dbg_ctx), "Failed to create vport, " "WWPN (0x%s) already exists.\n", buf); goto err1; } if (atomic_read(&base_qedf->link_state) != QEDF_LINK_UP) { QEDF_WARN(&(base_qedf->dbg_ctx), "Cannot create vport " "because link is not up.\n"); rc = -EIO; goto err1; } vn_port = libfc_vport_create(vport, sizeof(struct qedf_ctx)); if (!vn_port) { QEDF_WARN(&(base_qedf->dbg_ctx), "Could not create lport " "for vport.\n"); rc = -ENOMEM; goto err1; } fcoe_wwn_to_str(vport->port_name, buf, sizeof(buf)); QEDF_ERR(&(base_qedf->dbg_ctx), "Creating NPIV port, WWPN=%s.\n", buf); /* Copy some fields from base_qedf */ vport_qedf = lport_priv(vn_port); memcpy(vport_qedf, base_qedf, sizeof(struct qedf_ctx)); /* Set qedf data specific to this vport */ vport_qedf->lport = vn_port; /* Use same hba_lock as base_qedf */ vport_qedf->hba_lock = base_qedf->hba_lock; vport_qedf->pdev = base_qedf->pdev; vport_qedf->cmd_mgr = base_qedf->cmd_mgr; init_completion(&vport_qedf->flogi_compl); INIT_LIST_HEAD(&vport_qedf->fcports); rc = qedf_vport_libfc_config(vport, vn_port); if (rc) { QEDF_ERR(&(base_qedf->dbg_ctx), "Could not allocate memory " "for lport stats.\n"); goto err2; } fc_set_wwnn(vn_port, vport->node_name); fc_set_wwpn(vn_port, vport->port_name); vport_qedf->wwnn = vn_port->wwnn; vport_qedf->wwpn = vn_port->wwpn; vn_port->host->transportt = qedf_fc_vport_transport_template; vn_port->host->can_queue = QEDF_MAX_ELS_XID; vn_port->host->max_lun = qedf_max_lun; vn_port->host->sg_tablesize = QEDF_MAX_BDS_PER_CMD; vn_port->host->max_cmd_len = QEDF_MAX_CDB_LEN; rc = scsi_add_host(vn_port->host, &vport->dev); if (rc) { QEDF_WARN(&(base_qedf->dbg_ctx), "Error adding Scsi_Host.\n"); goto err2; } /* Set default dev_loss_tmo based on module parameter */ fc_host_dev_loss_tmo(vn_port->host) = qedf_dev_loss_tmo; /* Init libfc stuffs */ memcpy(&vn_port->tt, &qedf_lport_template, sizeof(qedf_lport_template)); fc_exch_init(vn_port); fc_elsct_init(vn_port); fc_lport_init(vn_port); fc_disc_init(vn_port); fc_disc_config(vn_port, vn_port); /* Allocate the exchange manager */ shost = vport_to_shost(vport); n_port = shost_priv(shost); fc_exch_mgr_list_clone(n_port, vn_port); /* Set max frame size */ fc_set_mfs(vn_port, QEDF_MFS); fc_host_port_type(vn_port->host) = FC_PORTTYPE_UNKNOWN; if (disabled) { fc_vport_set_state(vport, FC_VPORT_DISABLED); } else { vn_port->boot_time = jiffies; fc_fabric_login(vn_port); fc_vport_setlink(vn_port); } QEDF_INFO(&(base_qedf->dbg_ctx), QEDF_LOG_NPIV, "vn_port=%p.\n", vn_port); /* Set up debug context for vport */ vport_qedf->dbg_ctx.host_no = vn_port->host->host_no; vport_qedf->dbg_ctx.pdev = base_qedf->pdev; err2: scsi_host_put(vn_port->host); err1: return rc; } static int qedf_vport_destroy(struct fc_vport *vport) { struct Scsi_Host *shost = vport_to_shost(vport); struct fc_lport *n_port = shost_priv(shost); struct fc_lport *vn_port = vport->dd_data; mutex_lock(&n_port->lp_mutex); list_del(&vn_port->list); mutex_unlock(&n_port->lp_mutex); fc_fabric_logoff(vn_port); fc_lport_destroy(vn_port); /* Detach from scsi-ml */ fc_remove_host(vn_port->host); scsi_remove_host(vn_port->host); /* * Only try to release the exchange manager if the vn_port * configuration is complete. */ if (vn_port->state == LPORT_ST_READY) fc_exch_mgr_free(vn_port); /* Free memory used by statistical counters */ fc_lport_free_stats(vn_port); /* Release Scsi_Host */ if (vn_port->host) scsi_host_put(vn_port->host); return 0; } static int qedf_vport_disable(struct fc_vport *vport, bool disable) { struct fc_lport *lport = vport->dd_data; if (disable) { fc_vport_set_state(vport, FC_VPORT_DISABLED); fc_fabric_logoff(lport); } else { lport->boot_time = jiffies; fc_fabric_login(lport); fc_vport_setlink(lport); } return 0; } /* * During removal we need to wait for all the vports associated with a port * to be destroyed so we avoid a race condition where libfc is still trying * to reap vports while the driver remove function has already reaped the * driver contexts associated with the physical port. */ static void qedf_wait_for_vport_destroy(struct qedf_ctx *qedf) { struct fc_host_attrs *fc_host = shost_to_fc_host(qedf->lport->host); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_NPIV, "Entered.\n"); while (fc_host->npiv_vports_inuse > 0) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_NPIV, "Waiting for all vports to be reaped.\n"); msleep(1000); } } /** * qedf_fcoe_reset - Resets the fcoe * * @shost: shost the reset is from * * Returns: always 0 */ static int qedf_fcoe_reset(struct Scsi_Host *shost) { struct fc_lport *lport = shost_priv(shost); fc_fabric_logoff(lport); fc_fabric_login(lport); return 0; } static struct fc_host_statistics *qedf_fc_get_host_stats(struct Scsi_Host *shost) { struct fc_host_statistics *qedf_stats; struct fc_lport *lport = shost_priv(shost); struct qedf_ctx *qedf = lport_priv(lport); struct qed_fcoe_stats *fw_fcoe_stats; qedf_stats = fc_get_host_stats(shost); /* We don't collect offload stats for specific NPIV ports */ if (lport->vport) goto out; fw_fcoe_stats = kmalloc(sizeof(struct qed_fcoe_stats), GFP_KERNEL); if (!fw_fcoe_stats) { QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate memory for " "fw_fcoe_stats.\n"); goto out; } /* Query firmware for offload stats */ qed_ops->get_stats(qedf->cdev, fw_fcoe_stats); /* * The expectation is that we add our offload stats to the stats * being maintained by libfc each time the fc_get_host_status callback * is invoked. The additions are not carried over for each call to * the fc_get_host_stats callback. */ qedf_stats->tx_frames += fw_fcoe_stats->fcoe_tx_data_pkt_cnt + fw_fcoe_stats->fcoe_tx_xfer_pkt_cnt + fw_fcoe_stats->fcoe_tx_other_pkt_cnt; qedf_stats->rx_frames += fw_fcoe_stats->fcoe_rx_data_pkt_cnt + fw_fcoe_stats->fcoe_rx_xfer_pkt_cnt + fw_fcoe_stats->fcoe_rx_other_pkt_cnt; qedf_stats->fcp_input_megabytes += do_div(fw_fcoe_stats->fcoe_rx_byte_cnt, 1000000); qedf_stats->fcp_output_megabytes += do_div(fw_fcoe_stats->fcoe_tx_byte_cnt, 1000000); qedf_stats->rx_words += fw_fcoe_stats->fcoe_rx_byte_cnt / 4; qedf_stats->tx_words += fw_fcoe_stats->fcoe_tx_byte_cnt / 4; qedf_stats->invalid_crc_count += fw_fcoe_stats->fcoe_silent_drop_pkt_crc_error_cnt; qedf_stats->dumped_frames = fw_fcoe_stats->fcoe_silent_drop_total_pkt_cnt; qedf_stats->error_frames += fw_fcoe_stats->fcoe_silent_drop_total_pkt_cnt; qedf_stats->fcp_input_requests += qedf->input_requests; qedf_stats->fcp_output_requests += qedf->output_requests; qedf_stats->fcp_control_requests += qedf->control_requests; qedf_stats->fcp_packet_aborts += qedf->packet_aborts; qedf_stats->fcp_frame_alloc_failures += qedf->alloc_failures; kfree(fw_fcoe_stats); out: return qedf_stats; } static struct fc_function_template qedf_fc_transport_fn = { .show_host_node_name = 1, .show_host_port_name = 1, .show_host_supported_classes = 1, .show_host_supported_fc4s = 1, .show_host_active_fc4s = 1, .show_host_maxframe_size = 1, .show_host_port_id = 1, .show_host_supported_speeds = 1, .get_host_speed = fc_get_host_speed, .show_host_speed = 1, .show_host_port_type = 1, .get_host_port_state = fc_get_host_port_state, .show_host_port_state = 1, .show_host_symbolic_name = 1, /* * Tell FC transport to allocate enough space to store the backpointer * for the associate qedf_rport struct. */ .dd_fcrport_size = (sizeof(struct fc_rport_libfc_priv) + sizeof(struct qedf_rport)), .show_rport_maxframe_size = 1, .show_rport_supported_classes = 1, .show_host_fabric_name = 1, .show_starget_node_name = 1, .show_starget_port_name = 1, .show_starget_port_id = 1, .set_rport_dev_loss_tmo = fc_set_rport_loss_tmo, .show_rport_dev_loss_tmo = 1, .get_fc_host_stats = qedf_fc_get_host_stats, .issue_fc_host_lip = qedf_fcoe_reset, .vport_create = qedf_vport_create, .vport_delete = qedf_vport_destroy, .vport_disable = qedf_vport_disable, .bsg_request = fc_lport_bsg_request, }; static struct fc_function_template qedf_fc_vport_transport_fn = { .show_host_node_name = 1, .show_host_port_name = 1, .show_host_supported_classes = 1, .show_host_supported_fc4s = 1, .show_host_active_fc4s = 1, .show_host_maxframe_size = 1, .show_host_port_id = 1, .show_host_supported_speeds = 1, .get_host_speed = fc_get_host_speed, .show_host_speed = 1, .show_host_port_type = 1, .get_host_port_state = fc_get_host_port_state, .show_host_port_state = 1, .show_host_symbolic_name = 1, .dd_fcrport_size = (sizeof(struct fc_rport_libfc_priv) + sizeof(struct qedf_rport)), .show_rport_maxframe_size = 1, .show_rport_supported_classes = 1, .show_host_fabric_name = 1, .show_starget_node_name = 1, .show_starget_port_name = 1, .show_starget_port_id = 1, .set_rport_dev_loss_tmo = fc_set_rport_loss_tmo, .show_rport_dev_loss_tmo = 1, .get_fc_host_stats = fc_get_host_stats, .issue_fc_host_lip = qedf_fcoe_reset, .bsg_request = fc_lport_bsg_request, }; static bool qedf_fp_has_work(struct qedf_fastpath *fp) { struct qedf_ctx *qedf = fp->qedf; struct global_queue *que; struct qed_sb_info *sb_info = fp->sb_info; struct status_block *sb = sb_info->sb_virt; u16 prod_idx; /* Get the pointer to the global CQ this completion is on */ que = qedf->global_queues[fp->sb_id]; /* Be sure all responses have been written to PI */ rmb(); /* Get the current firmware producer index */ prod_idx = sb->pi_array[QEDF_FCOE_PARAMS_GL_RQ_PI]; return (que->cq_prod_idx != prod_idx); } /* * Interrupt handler code. */ /* Process completion queue and copy CQE contents for deferred processesing * * Return true if we should wake the I/O thread, false if not. */ static bool qedf_process_completions(struct qedf_fastpath *fp) { struct qedf_ctx *qedf = fp->qedf; struct qed_sb_info *sb_info = fp->sb_info; struct status_block *sb = sb_info->sb_virt; struct global_queue *que; u16 prod_idx; struct fcoe_cqe *cqe; struct qedf_io_work *io_work; int num_handled = 0; unsigned int cpu; struct qedf_ioreq *io_req = NULL; u16 xid; u16 new_cqes; u32 comp_type; /* Get the current firmware producer index */ prod_idx = sb->pi_array[QEDF_FCOE_PARAMS_GL_RQ_PI]; /* Get the pointer to the global CQ this completion is on */ que = qedf->global_queues[fp->sb_id]; /* Calculate the amount of new elements since last processing */ new_cqes = (prod_idx >= que->cq_prod_idx) ? (prod_idx - que->cq_prod_idx) : 0x10000 - que->cq_prod_idx + prod_idx; /* Save producer index */ que->cq_prod_idx = prod_idx; while (new_cqes) { fp->completions++; num_handled++; cqe = &que->cq[que->cq_cons_idx]; comp_type = (cqe->cqe_data >> FCOE_CQE_CQE_TYPE_SHIFT) & FCOE_CQE_CQE_TYPE_MASK; /* * Process unsolicited CQEs directly in the interrupt handler * sine we need the fastpath ID */ if (comp_type == FCOE_UNSOLIC_CQE_TYPE) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL, "Unsolicated CQE.\n"); qedf_process_unsol_compl(qedf, fp->sb_id, cqe); /* * Don't add a work list item. Increment consumer * consumer index and move on. */ goto inc_idx; } xid = cqe->cqe_data & FCOE_CQE_TASK_ID_MASK; io_req = &qedf->cmd_mgr->cmds[xid]; /* * Figure out which percpu thread we should queue this I/O * on. */ if (!io_req) /* If there is not io_req assocated with this CQE * just queue it on CPU 0 */ cpu = 0; else { cpu = io_req->cpu; io_req->int_cpu = smp_processor_id(); } io_work = mempool_alloc(qedf->io_mempool, GFP_ATOMIC); if (!io_work) { QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate " "work for I/O completion.\n"); continue; } memset(io_work, 0, sizeof(struct qedf_io_work)); INIT_WORK(&io_work->work, qedf_fp_io_handler); /* Copy contents of CQE for deferred processing */ memcpy(&io_work->cqe, cqe, sizeof(struct fcoe_cqe)); io_work->qedf = fp->qedf; io_work->fp = NULL; /* Only used for unsolicited frames */ queue_work_on(cpu, qedf_io_wq, &io_work->work); inc_idx: que->cq_cons_idx++; if (que->cq_cons_idx == fp->cq_num_entries) que->cq_cons_idx = 0; new_cqes--; } return true; } /* MSI-X fastpath handler code */ static irqreturn_t qedf_msix_handler(int irq, void *dev_id) { struct qedf_fastpath *fp = dev_id; if (!fp) { QEDF_ERR(NULL, "fp is null.\n"); return IRQ_HANDLED; } if (!fp->sb_info) { QEDF_ERR(NULL, "fp->sb_info in null."); return IRQ_HANDLED; } /* * Disable interrupts for this status block while we process new * completions */ qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); while (1) { qedf_process_completions(fp); if (qedf_fp_has_work(fp) == 0) { /* Update the sb information */ qed_sb_update_sb_idx(fp->sb_info); /* Check for more work */ rmb(); if (qedf_fp_has_work(fp) == 0) { /* Re-enable interrupts */ qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1); return IRQ_HANDLED; } } } /* Do we ever want to break out of above loop? */ return IRQ_HANDLED; } /* simd handler for MSI/INTa */ static void qedf_simd_int_handler(void *cookie) { /* Cookie is qedf_ctx struct */ struct qedf_ctx *qedf = (struct qedf_ctx *)cookie; QEDF_WARN(&(qedf->dbg_ctx), "qedf=%p.\n", qedf); } #define QEDF_SIMD_HANDLER_NUM 0 static void qedf_sync_free_irqs(struct qedf_ctx *qedf) { int i; if (qedf->int_info.msix_cnt) { for (i = 0; i < qedf->int_info.used_cnt; i++) { synchronize_irq(qedf->int_info.msix[i].vector); irq_set_affinity_hint(qedf->int_info.msix[i].vector, NULL); irq_set_affinity_notifier(qedf->int_info.msix[i].vector, NULL); free_irq(qedf->int_info.msix[i].vector, &qedf->fp_array[i]); } } else qed_ops->common->simd_handler_clean(qedf->cdev, QEDF_SIMD_HANDLER_NUM); qedf->int_info.used_cnt = 0; qed_ops->common->set_fp_int(qedf->cdev, 0); } static int qedf_request_msix_irq(struct qedf_ctx *qedf) { int i, rc, cpu; cpu = cpumask_first(cpu_online_mask); for (i = 0; i < qedf->num_queues; i++) { rc = request_irq(qedf->int_info.msix[i].vector, qedf_msix_handler, 0, "qedf", &qedf->fp_array[i]); if (rc) { QEDF_WARN(&(qedf->dbg_ctx), "request_irq failed.\n"); qedf_sync_free_irqs(qedf); return rc; } qedf->int_info.used_cnt++; rc = irq_set_affinity_hint(qedf->int_info.msix[i].vector, get_cpu_mask(cpu)); cpu = cpumask_next(cpu, cpu_online_mask); } return 0; } static int qedf_setup_int(struct qedf_ctx *qedf) { int rc = 0; /* * Learn interrupt configuration */ rc = qed_ops->common->set_fp_int(qedf->cdev, num_online_cpus()); rc = qed_ops->common->get_fp_int(qedf->cdev, &qedf->int_info); if (rc) return 0; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Number of msix_cnt = " "0x%x num of cpus = 0x%x\n", qedf->int_info.msix_cnt, num_online_cpus()); if (qedf->int_info.msix_cnt) return qedf_request_msix_irq(qedf); qed_ops->common->simd_handler_config(qedf->cdev, &qedf, QEDF_SIMD_HANDLER_NUM, qedf_simd_int_handler); qedf->int_info.used_cnt = 1; return 0; } /* Main function for libfc frame reception */ static void qedf_recv_frame(struct qedf_ctx *qedf, struct sk_buff *skb) { u32 fr_len; struct fc_lport *lport; struct fc_frame_header *fh; struct fcoe_crc_eof crc_eof; struct fc_frame *fp; u8 *mac = NULL; u8 *dest_mac = NULL; struct fcoe_hdr *hp; struct qedf_rport *fcport; lport = qedf->lport; if (lport == NULL || lport->state == LPORT_ST_DISABLED) { QEDF_WARN(NULL, "Invalid lport struct or lport disabled.\n"); kfree_skb(skb); return; } if (skb_is_nonlinear(skb)) skb_linearize(skb); mac = eth_hdr(skb)->h_source; dest_mac = eth_hdr(skb)->h_dest; /* Pull the header */ hp = (struct fcoe_hdr *)skb->data; fh = (struct fc_frame_header *) skb_transport_header(skb); skb_pull(skb, sizeof(struct fcoe_hdr)); fr_len = skb->len - sizeof(struct fcoe_crc_eof); fp = (struct fc_frame *)skb; fc_frame_init(fp); fr_dev(fp) = lport; fr_sof(fp) = hp->fcoe_sof; if (skb_copy_bits(skb, fr_len, &crc_eof, sizeof(crc_eof))) { kfree_skb(skb); return; } fr_eof(fp) = crc_eof.fcoe_eof; fr_crc(fp) = crc_eof.fcoe_crc32; if (pskb_trim(skb, fr_len)) { kfree_skb(skb); return; } fh = fc_frame_header_get(fp); if (fh->fh_r_ctl == FC_RCTL_DD_SOL_DATA && fh->fh_type == FC_TYPE_FCP) { /* Drop FCP data. We dont this in L2 path */ kfree_skb(skb); return; } if (fh->fh_r_ctl == FC_RCTL_ELS_REQ && fh->fh_type == FC_TYPE_ELS) { switch (fc_frame_payload_op(fp)) { case ELS_LOGO: if (ntoh24(fh->fh_s_id) == FC_FID_FLOGI) { /* drop non-FIP LOGO */ kfree_skb(skb); return; } break; } } if (fh->fh_r_ctl == FC_RCTL_BA_ABTS) { /* Drop incoming ABTS */ kfree_skb(skb); return; } /* * If a connection is uploading, drop incoming FCoE frames as there * is a small window where we could try to return a frame while libfc * is trying to clean things up. */ /* Get fcport associated with d_id if it exists */ fcport = qedf_fcport_lookup(qedf, ntoh24(fh->fh_d_id)); if (fcport && test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "Connection uploading, dropping fp=%p.\n", fp); kfree_skb(skb); return; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "FCoE frame receive: " "skb=%p fp=%p src=%06x dest=%06x r_ctl=%x fh_type=%x.\n", skb, fp, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id), fh->fh_r_ctl, fh->fh_type); if (qedf_dump_frames) print_hex_dump(KERN_WARNING, "fcoe: ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb->len, false); fc_exch_recv(lport, fp); } static void qedf_ll2_process_skb(struct work_struct *work) { struct qedf_skb_work *skb_work = container_of(work, struct qedf_skb_work, work); struct qedf_ctx *qedf = skb_work->qedf; struct sk_buff *skb = skb_work->skb; struct ethhdr *eh; if (!qedf) { QEDF_ERR(NULL, "qedf is NULL\n"); goto err_out; } eh = (struct ethhdr *)skb->data; /* Undo VLAN encapsulation */ if (eh->h_proto == htons(ETH_P_8021Q)) { memmove((u8 *)eh + VLAN_HLEN, eh, ETH_ALEN * 2); eh = (struct ethhdr *)skb_pull(skb, VLAN_HLEN); skb_reset_mac_header(skb); } /* * Process either a FIP frame or FCoE frame based on the * protocol value. If it's not either just drop the * frame. */ if (eh->h_proto == htons(ETH_P_FIP)) { qedf_fip_recv(qedf, skb); goto out; } else if (eh->h_proto == htons(ETH_P_FCOE)) { __skb_pull(skb, ETH_HLEN); qedf_recv_frame(qedf, skb); goto out; } else goto err_out; err_out: kfree_skb(skb); out: kfree(skb_work); return; } static int qedf_ll2_rx(void *cookie, struct sk_buff *skb, u32 arg1, u32 arg2) { struct qedf_ctx *qedf = (struct qedf_ctx *)cookie; struct qedf_skb_work *skb_work; skb_work = kzalloc(sizeof(struct qedf_skb_work), GFP_ATOMIC); if (!skb_work) { QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate skb_work so " "dropping frame.\n"); kfree_skb(skb); return 0; } INIT_WORK(&skb_work->work, qedf_ll2_process_skb); skb_work->skb = skb; skb_work->qedf = qedf; queue_work(qedf->ll2_recv_wq, &skb_work->work); return 0; } static struct qed_ll2_cb_ops qedf_ll2_cb_ops = { .rx_cb = qedf_ll2_rx, .tx_cb = NULL, }; /* Main thread to process I/O completions */ void qedf_fp_io_handler(struct work_struct *work) { struct qedf_io_work *io_work = container_of(work, struct qedf_io_work, work); u32 comp_type; /* * Deferred part of unsolicited CQE sends * frame to libfc. */ comp_type = (io_work->cqe.cqe_data >> FCOE_CQE_CQE_TYPE_SHIFT) & FCOE_CQE_CQE_TYPE_MASK; if (comp_type == FCOE_UNSOLIC_CQE_TYPE && io_work->fp) fc_exch_recv(io_work->qedf->lport, io_work->fp); else qedf_process_cqe(io_work->qedf, &io_work->cqe); kfree(io_work); } static int qedf_alloc_and_init_sb(struct qedf_ctx *qedf, struct qed_sb_info *sb_info, u16 sb_id) { struct status_block *sb_virt; dma_addr_t sb_phys; int ret; sb_virt = dma_alloc_coherent(&qedf->pdev->dev, sizeof(struct status_block), &sb_phys, GFP_KERNEL); if (!sb_virt) { QEDF_ERR(&(qedf->dbg_ctx), "Status block allocation failed " "for id = %d.\n", sb_id); return -ENOMEM; } ret = qed_ops->common->sb_init(qedf->cdev, sb_info, sb_virt, sb_phys, sb_id, QED_SB_TYPE_STORAGE); if (ret) { QEDF_ERR(&(qedf->dbg_ctx), "Status block initialization " "failed for id = %d.\n", sb_id); return ret; } return 0; } static void qedf_free_sb(struct qedf_ctx *qedf, struct qed_sb_info *sb_info) { if (sb_info->sb_virt) dma_free_coherent(&qedf->pdev->dev, sizeof(*sb_info->sb_virt), (void *)sb_info->sb_virt, sb_info->sb_phys); } static void qedf_destroy_sb(struct qedf_ctx *qedf) { int id; struct qedf_fastpath *fp = NULL; for (id = 0; id < qedf->num_queues; id++) { fp = &(qedf->fp_array[id]); if (fp->sb_id == QEDF_SB_ID_NULL) break; qedf_free_sb(qedf, fp->sb_info); kfree(fp->sb_info); } kfree(qedf->fp_array); } static int qedf_prepare_sb(struct qedf_ctx *qedf) { int id; struct qedf_fastpath *fp; int ret; qedf->fp_array = kcalloc(qedf->num_queues, sizeof(struct qedf_fastpath), GFP_KERNEL); if (!qedf->fp_array) { QEDF_ERR(&(qedf->dbg_ctx), "fastpath array allocation " "failed.\n"); return -ENOMEM; } for (id = 0; id < qedf->num_queues; id++) { fp = &(qedf->fp_array[id]); fp->sb_id = QEDF_SB_ID_NULL; fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL); if (!fp->sb_info) { QEDF_ERR(&(qedf->dbg_ctx), "SB info struct " "allocation failed.\n"); goto err; } ret = qedf_alloc_and_init_sb(qedf, fp->sb_info, id); if (ret) { QEDF_ERR(&(qedf->dbg_ctx), "SB allocation and " "initialization failed.\n"); goto err; } fp->sb_id = id; fp->qedf = qedf; fp->cq_num_entries = qedf->global_queues[id]->cq_mem_size / sizeof(struct fcoe_cqe); } err: return 0; } void qedf_process_cqe(struct qedf_ctx *qedf, struct fcoe_cqe *cqe) { u16 xid; struct qedf_ioreq *io_req; struct qedf_rport *fcport; u32 comp_type; comp_type = (cqe->cqe_data >> FCOE_CQE_CQE_TYPE_SHIFT) & FCOE_CQE_CQE_TYPE_MASK; xid = cqe->cqe_data & FCOE_CQE_TASK_ID_MASK; io_req = &qedf->cmd_mgr->cmds[xid]; /* Completion not for a valid I/O anymore so just return */ if (!io_req) return; fcport = io_req->fcport; if (fcport == NULL) { QEDF_ERR(&(qedf->dbg_ctx), "fcport is NULL.\n"); return; } /* * Check that fcport is offloaded. If it isn't then the spinlock * isn't valid and shouldn't be taken. We should just return. */ if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { QEDF_ERR(&(qedf->dbg_ctx), "Session not offloaded yet.\n"); return; } switch (comp_type) { case FCOE_GOOD_COMPLETION_CQE_TYPE: atomic_inc(&fcport->free_sqes); switch (io_req->cmd_type) { case QEDF_SCSI_CMD: qedf_scsi_completion(qedf, cqe, io_req); break; case QEDF_ELS: qedf_process_els_compl(qedf, cqe, io_req); break; case QEDF_TASK_MGMT_CMD: qedf_process_tmf_compl(qedf, cqe, io_req); break; case QEDF_SEQ_CLEANUP: qedf_process_seq_cleanup_compl(qedf, cqe, io_req); break; } break; case FCOE_ERROR_DETECTION_CQE_TYPE: atomic_inc(&fcport->free_sqes); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Error detect CQE.\n"); qedf_process_error_detect(qedf, cqe, io_req); break; case FCOE_EXCH_CLEANUP_CQE_TYPE: atomic_inc(&fcport->free_sqes); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Cleanup CQE.\n"); qedf_process_cleanup_compl(qedf, cqe, io_req); break; case FCOE_ABTS_CQE_TYPE: atomic_inc(&fcport->free_sqes); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Abort CQE.\n"); qedf_process_abts_compl(qedf, cqe, io_req); break; case FCOE_DUMMY_CQE_TYPE: atomic_inc(&fcport->free_sqes); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Dummy CQE.\n"); break; case FCOE_LOCAL_COMP_CQE_TYPE: atomic_inc(&fcport->free_sqes); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Local completion CQE.\n"); break; case FCOE_WARNING_CQE_TYPE: atomic_inc(&fcport->free_sqes); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Warning CQE.\n"); qedf_process_warning_compl(qedf, cqe, io_req); break; case MAX_FCOE_CQE_TYPE: atomic_inc(&fcport->free_sqes); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Max FCoE CQE.\n"); break; default: QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Default CQE.\n"); break; } } static void qedf_free_bdq(struct qedf_ctx *qedf) { int i; if (qedf->bdq_pbl_list) dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE, qedf->bdq_pbl_list, qedf->bdq_pbl_list_dma); if (qedf->bdq_pbl) dma_free_coherent(&qedf->pdev->dev, qedf->bdq_pbl_mem_size, qedf->bdq_pbl, qedf->bdq_pbl_dma); for (i = 0; i < QEDF_BDQ_SIZE; i++) { if (qedf->bdq[i].buf_addr) { dma_free_coherent(&qedf->pdev->dev, QEDF_BDQ_BUF_SIZE, qedf->bdq[i].buf_addr, qedf->bdq[i].buf_dma); } } } static void qedf_free_global_queues(struct qedf_ctx *qedf) { int i; struct global_queue **gl = qedf->global_queues; for (i = 0; i < qedf->num_queues; i++) { if (!gl[i]) continue; if (gl[i]->cq) dma_free_coherent(&qedf->pdev->dev, gl[i]->cq_mem_size, gl[i]->cq, gl[i]->cq_dma); if (gl[i]->cq_pbl) dma_free_coherent(&qedf->pdev->dev, gl[i]->cq_pbl_size, gl[i]->cq_pbl, gl[i]->cq_pbl_dma); kfree(gl[i]); } qedf_free_bdq(qedf); } static int qedf_alloc_bdq(struct qedf_ctx *qedf) { int i; struct scsi_bd *pbl; u64 *list; dma_addr_t page; /* Alloc dma memory for BDQ buffers */ for (i = 0; i < QEDF_BDQ_SIZE; i++) { qedf->bdq[i].buf_addr = dma_alloc_coherent(&qedf->pdev->dev, QEDF_BDQ_BUF_SIZE, &qedf->bdq[i].buf_dma, GFP_KERNEL); if (!qedf->bdq[i].buf_addr) { QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate BDQ " "buffer %d.\n", i); return -ENOMEM; } } /* Alloc dma memory for BDQ page buffer list */ qedf->bdq_pbl_mem_size = QEDF_BDQ_SIZE * sizeof(struct scsi_bd); qedf->bdq_pbl_mem_size = ALIGN(qedf->bdq_pbl_mem_size, QEDF_PAGE_SIZE); qedf->bdq_pbl = dma_alloc_coherent(&qedf->pdev->dev, qedf->bdq_pbl_mem_size, &qedf->bdq_pbl_dma, GFP_KERNEL); if (!qedf->bdq_pbl) { QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate BDQ PBL.\n"); return -ENOMEM; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "BDQ PBL addr=0x%p dma=%pad\n", qedf->bdq_pbl, &qedf->bdq_pbl_dma); /* * Populate BDQ PBL with physical and virtual address of individual * BDQ buffers */ pbl = (struct scsi_bd *)qedf->bdq_pbl; for (i = 0; i < QEDF_BDQ_SIZE; i++) { pbl->address.hi = cpu_to_le32(U64_HI(qedf->bdq[i].buf_dma)); pbl->address.lo = cpu_to_le32(U64_LO(qedf->bdq[i].buf_dma)); pbl->opaque.hi = 0; /* Opaque lo data is an index into the BDQ array */ pbl->opaque.lo = cpu_to_le32(i); pbl++; } /* Allocate list of PBL pages */ qedf->bdq_pbl_list = dma_alloc_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE, &qedf->bdq_pbl_list_dma, GFP_KERNEL); if (!qedf->bdq_pbl_list) { QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate list of PBL " "pages.\n"); return -ENOMEM; } memset(qedf->bdq_pbl_list, 0, QEDF_PAGE_SIZE); /* * Now populate PBL list with pages that contain pointers to the * individual buffers. */ qedf->bdq_pbl_list_num_entries = qedf->bdq_pbl_mem_size / QEDF_PAGE_SIZE; list = (u64 *)qedf->bdq_pbl_list; page = qedf->bdq_pbl_list_dma; for (i = 0; i < qedf->bdq_pbl_list_num_entries; i++) { *list = qedf->bdq_pbl_dma; list++; page += QEDF_PAGE_SIZE; } return 0; } static int qedf_alloc_global_queues(struct qedf_ctx *qedf) { u32 *list; int i; int status = 0, rc; u32 *pbl; dma_addr_t page; int num_pages; /* Allocate and map CQs, RQs */ /* * Number of global queues (CQ / RQ). This should * be <= number of available MSIX vectors for the PF */ if (!qedf->num_queues) { QEDF_ERR(&(qedf->dbg_ctx), "No MSI-X vectors available!\n"); return 1; } /* * Make sure we allocated the PBL that will contain the physical * addresses of our queues */ if (!qedf->p_cpuq) { status = 1; goto mem_alloc_failure; } qedf->global_queues = kzalloc((sizeof(struct global_queue *) * qedf->num_queues), GFP_KERNEL); if (!qedf->global_queues) { QEDF_ERR(&(qedf->dbg_ctx), "Unable to allocate global " "queues array ptr memory\n"); return -ENOMEM; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "qedf->global_queues=%p.\n", qedf->global_queues); /* Allocate DMA coherent buffers for BDQ */ rc = qedf_alloc_bdq(qedf); if (rc) goto mem_alloc_failure; /* Allocate a CQ and an associated PBL for each MSI-X vector */ for (i = 0; i < qedf->num_queues; i++) { qedf->global_queues[i] = kzalloc(sizeof(struct global_queue), GFP_KERNEL); if (!qedf->global_queues[i]) { QEDF_WARN(&(qedf->dbg_ctx), "Unable to allocation " "global queue %d.\n", i); goto mem_alloc_failure; } qedf->global_queues[i]->cq_mem_size = FCOE_PARAMS_CQ_NUM_ENTRIES * sizeof(struct fcoe_cqe); qedf->global_queues[i]->cq_mem_size = ALIGN(qedf->global_queues[i]->cq_mem_size, QEDF_PAGE_SIZE); qedf->global_queues[i]->cq_pbl_size = (qedf->global_queues[i]->cq_mem_size / PAGE_SIZE) * sizeof(void *); qedf->global_queues[i]->cq_pbl_size = ALIGN(qedf->global_queues[i]->cq_pbl_size, QEDF_PAGE_SIZE); qedf->global_queues[i]->cq = dma_alloc_coherent(&qedf->pdev->dev, qedf->global_queues[i]->cq_mem_size, &qedf->global_queues[i]->cq_dma, GFP_KERNEL); if (!qedf->global_queues[i]->cq) { QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate " "cq.\n"); status = -ENOMEM; goto mem_alloc_failure; } memset(qedf->global_queues[i]->cq, 0, qedf->global_queues[i]->cq_mem_size); qedf->global_queues[i]->cq_pbl = dma_alloc_coherent(&qedf->pdev->dev, qedf->global_queues[i]->cq_pbl_size, &qedf->global_queues[i]->cq_pbl_dma, GFP_KERNEL); if (!qedf->global_queues[i]->cq_pbl) { QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate " "cq PBL.\n"); status = -ENOMEM; goto mem_alloc_failure; } memset(qedf->global_queues[i]->cq_pbl, 0, qedf->global_queues[i]->cq_pbl_size); /* Create PBL */ num_pages = qedf->global_queues[i]->cq_mem_size / QEDF_PAGE_SIZE; page = qedf->global_queues[i]->cq_dma; pbl = (u32 *)qedf->global_queues[i]->cq_pbl; while (num_pages--) { *pbl = U64_LO(page); pbl++; *pbl = U64_HI(page); pbl++; page += QEDF_PAGE_SIZE; } /* Set the initial consumer index for cq */ qedf->global_queues[i]->cq_cons_idx = 0; } list = (u32 *)qedf->p_cpuq; /* * The list is built as follows: CQ#0 PBL pointer, RQ#0 PBL pointer, * CQ#1 PBL pointer, RQ#1 PBL pointer, etc. Each PBL pointer points * to the physical address which contains an array of pointers to * the physical addresses of the specific queue pages. */ for (i = 0; i < qedf->num_queues; i++) { *list = U64_LO(qedf->global_queues[i]->cq_pbl_dma); list++; *list = U64_HI(qedf->global_queues[i]->cq_pbl_dma); list++; *list = U64_LO(0); list++; *list = U64_HI(0); list++; } return 0; mem_alloc_failure: qedf_free_global_queues(qedf); return status; } static int qedf_set_fcoe_pf_param(struct qedf_ctx *qedf) { u8 sq_num_pbl_pages; u32 sq_mem_size; u32 cq_mem_size; u32 cq_num_entries; int rval; /* * The number of completion queues/fastpath interrupts/status blocks * we allocation is the minimum off: * * Number of CPUs * Number of MSI-X vectors * Max number allocated in hardware (QEDF_MAX_NUM_CQS) */ qedf->num_queues = min((unsigned int)QEDF_MAX_NUM_CQS, num_online_cpus()); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Number of CQs is %d.\n", qedf->num_queues); qedf->p_cpuq = pci_alloc_consistent(qedf->pdev, qedf->num_queues * sizeof(struct qedf_glbl_q_params), &qedf->hw_p_cpuq); if (!qedf->p_cpuq) { QEDF_ERR(&(qedf->dbg_ctx), "pci_alloc_consistent failed.\n"); return 1; } rval = qedf_alloc_global_queues(qedf); if (rval) { QEDF_ERR(&(qedf->dbg_ctx), "Global queue allocation " "failed.\n"); return 1; } /* Calculate SQ PBL size in the same manner as in qedf_sq_alloc() */ sq_mem_size = SQ_NUM_ENTRIES * sizeof(struct fcoe_wqe); sq_mem_size = ALIGN(sq_mem_size, QEDF_PAGE_SIZE); sq_num_pbl_pages = (sq_mem_size / QEDF_PAGE_SIZE); /* Calculate CQ num entries */ cq_mem_size = FCOE_PARAMS_CQ_NUM_ENTRIES * sizeof(struct fcoe_cqe); cq_mem_size = ALIGN(cq_mem_size, QEDF_PAGE_SIZE); cq_num_entries = cq_mem_size / sizeof(struct fcoe_cqe); memset(&(qedf->pf_params), 0, sizeof(qedf->pf_params)); /* Setup the value for fcoe PF */ qedf->pf_params.fcoe_pf_params.num_cons = QEDF_MAX_SESSIONS; qedf->pf_params.fcoe_pf_params.num_tasks = FCOE_PARAMS_NUM_TASKS; qedf->pf_params.fcoe_pf_params.glbl_q_params_addr = (u64)qedf->hw_p_cpuq; qedf->pf_params.fcoe_pf_params.sq_num_pbl_pages = sq_num_pbl_pages; qedf->pf_params.fcoe_pf_params.rq_buffer_log_size = 0; qedf->pf_params.fcoe_pf_params.cq_num_entries = cq_num_entries; qedf->pf_params.fcoe_pf_params.num_cqs = qedf->num_queues; /* log_page_size: 12 for 4KB pages */ qedf->pf_params.fcoe_pf_params.log_page_size = ilog2(QEDF_PAGE_SIZE); qedf->pf_params.fcoe_pf_params.mtu = 9000; qedf->pf_params.fcoe_pf_params.gl_rq_pi = QEDF_FCOE_PARAMS_GL_RQ_PI; qedf->pf_params.fcoe_pf_params.gl_cmd_pi = QEDF_FCOE_PARAMS_GL_CMD_PI; /* BDQ address and size */ qedf->pf_params.fcoe_pf_params.bdq_pbl_base_addr[0] = qedf->bdq_pbl_list_dma; qedf->pf_params.fcoe_pf_params.bdq_pbl_num_entries[0] = qedf->bdq_pbl_list_num_entries; qedf->pf_params.fcoe_pf_params.rq_buffer_size = QEDF_BDQ_BUF_SIZE; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "bdq_list=%p bdq_pbl_list_dma=%llx bdq_pbl_list_entries=%d.\n", qedf->bdq_pbl_list, qedf->pf_params.fcoe_pf_params.bdq_pbl_base_addr[0], qedf->pf_params.fcoe_pf_params.bdq_pbl_num_entries[0]); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "cq_num_entries=%d.\n", qedf->pf_params.fcoe_pf_params.cq_num_entries); return 0; } /* Free DMA coherent memory for array of queue pointers we pass to qed */ static void qedf_free_fcoe_pf_param(struct qedf_ctx *qedf) { size_t size = 0; if (qedf->p_cpuq) { size = qedf->num_queues * sizeof(struct qedf_glbl_q_params); pci_free_consistent(qedf->pdev, size, qedf->p_cpuq, qedf->hw_p_cpuq); } qedf_free_global_queues(qedf); if (qedf->global_queues) kfree(qedf->global_queues); } /* * PCI driver functions */ static const struct pci_device_id qedf_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, 0x165c) }, { PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, 0x8080) }, {0} }; MODULE_DEVICE_TABLE(pci, qedf_pci_tbl); static struct pci_driver qedf_pci_driver = { .name = QEDF_MODULE_NAME, .id_table = qedf_pci_tbl, .probe = qedf_probe, .remove = qedf_remove, }; static int __qedf_probe(struct pci_dev *pdev, int mode) { int rc = -EINVAL; struct fc_lport *lport; struct qedf_ctx *qedf; struct Scsi_Host *host; bool is_vf = false; struct qed_ll2_params params; char host_buf[20]; struct qed_link_params link_params; int status; void *task_start, *task_end; struct qed_slowpath_params slowpath_params; struct qed_probe_params qed_params; u16 tmp; /* * When doing error recovery we didn't reap the lport so don't try * to reallocate it. */ if (mode != QEDF_MODE_RECOVERY) { lport = libfc_host_alloc(&qedf_host_template, sizeof(struct qedf_ctx)); if (!lport) { QEDF_ERR(NULL, "Could not allocate lport.\n"); rc = -ENOMEM; goto err0; } /* Initialize qedf_ctx */ qedf = lport_priv(lport); qedf->lport = lport; qedf->ctlr.lp = lport; qedf->pdev = pdev; qedf->dbg_ctx.pdev = pdev; qedf->dbg_ctx.host_no = lport->host->host_no; spin_lock_init(&qedf->hba_lock); INIT_LIST_HEAD(&qedf->fcports); qedf->curr_conn_id = QEDF_MAX_SESSIONS - 1; atomic_set(&qedf->num_offloads, 0); qedf->stop_io_on_error = false; pci_set_drvdata(pdev, qedf); init_completion(&qedf->fipvlan_compl); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_INFO, "QLogic FastLinQ FCoE Module qedf %s, " "FW %d.%d.%d.%d\n", QEDF_VERSION, FW_MAJOR_VERSION, FW_MINOR_VERSION, FW_REVISION_VERSION, FW_ENGINEERING_VERSION); } else { /* Init pointers during recovery */ qedf = pci_get_drvdata(pdev); lport = qedf->lport; } host = lport->host; /* Allocate mempool for qedf_io_work structs */ qedf->io_mempool = mempool_create_slab_pool(QEDF_IO_WORK_MIN, qedf_io_work_cache); if (qedf->io_mempool == NULL) { QEDF_ERR(&(qedf->dbg_ctx), "qedf->io_mempool is NULL.\n"); goto err1; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_INFO, "qedf->io_mempool=%p.\n", qedf->io_mempool); sprintf(host_buf, "qedf_%u_link", qedf->lport->host->host_no); qedf->link_update_wq = create_singlethread_workqueue(host_buf); INIT_DELAYED_WORK(&qedf->link_update, qedf_handle_link_update); INIT_DELAYED_WORK(&qedf->link_recovery, qedf_link_recovery); qedf->fipvlan_retries = qedf_fipvlan_retries; /* * Common probe. Takes care of basic hardware init and pci_* * functions. */ memset(&qed_params, 0, sizeof(qed_params)); qed_params.protocol = QED_PROTOCOL_FCOE; qed_params.dp_module = qedf_dp_module; qed_params.dp_level = qedf_dp_level; qed_params.is_vf = is_vf; qedf->cdev = qed_ops->common->probe(pdev, &qed_params); if (!qedf->cdev) { rc = -ENODEV; goto err1; } /* queue allocation code should come here * order should be * slowpath_start * status block allocation * interrupt registration (to get min number of queues) * set_fcoe_pf_param * qed_sp_fcoe_func_start */ rc = qedf_set_fcoe_pf_param(qedf); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "Cannot set fcoe pf param.\n"); goto err2; } qed_ops->common->update_pf_params(qedf->cdev, &qedf->pf_params); /* Learn information crucial for qedf to progress */ rc = qed_ops->fill_dev_info(qedf->cdev, &qedf->dev_info); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "Failed to dev info.\n"); goto err1; } /* Record BDQ producer doorbell addresses */ qedf->bdq_primary_prod = qedf->dev_info.primary_dbq_rq_addr; qedf->bdq_secondary_prod = qedf->dev_info.secondary_bdq_rq_addr; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "BDQ primary_prod=%p secondary_prod=%p.\n", qedf->bdq_primary_prod, qedf->bdq_secondary_prod); qed_ops->register_ops(qedf->cdev, &qedf_cb_ops, qedf); rc = qedf_prepare_sb(qedf); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "Cannot start slowpath.\n"); goto err2; } /* Start the Slowpath-process */ slowpath_params.int_mode = QED_INT_MODE_MSIX; slowpath_params.drv_major = QEDF_DRIVER_MAJOR_VER; slowpath_params.drv_minor = QEDF_DRIVER_MINOR_VER; slowpath_params.drv_rev = QEDF_DRIVER_REV_VER; slowpath_params.drv_eng = QEDF_DRIVER_ENG_VER; strncpy(slowpath_params.name, "qedf", QED_DRV_VER_STR_SIZE); rc = qed_ops->common->slowpath_start(qedf->cdev, &slowpath_params); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "Cannot start slowpath.\n"); goto err2; } /* * update_pf_params needs to be called before and after slowpath * start */ qed_ops->common->update_pf_params(qedf->cdev, &qedf->pf_params); /* Setup interrupts */ rc = qedf_setup_int(qedf); if (rc) goto err3; rc = qed_ops->start(qedf->cdev, &qedf->tasks); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "Cannot start FCoE function.\n"); goto err4; } task_start = qedf_get_task_mem(&qedf->tasks, 0); task_end = qedf_get_task_mem(&qedf->tasks, MAX_TID_BLOCKS_FCOE - 1); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Task context start=%p, " "end=%p block_size=%u.\n", task_start, task_end, qedf->tasks.size); /* * We need to write the number of BDs in the BDQ we've preallocated so * the f/w will do a prefetch and we'll get an unsolicited CQE when a * packet arrives. */ qedf->bdq_prod_idx = QEDF_BDQ_SIZE; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Writing %d to primary and secondary BDQ doorbell registers.\n", qedf->bdq_prod_idx); writew(qedf->bdq_prod_idx, qedf->bdq_primary_prod); tmp = readw(qedf->bdq_primary_prod); writew(qedf->bdq_prod_idx, qedf->bdq_secondary_prod); tmp = readw(qedf->bdq_secondary_prod); qed_ops->common->set_power_state(qedf->cdev, PCI_D0); /* Now that the dev_info struct has been filled in set the MAC * address */ ether_addr_copy(qedf->mac, qedf->dev_info.common.hw_mac); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "MAC address is %pM.\n", qedf->mac); /* Set the WWNN and WWPN based on the MAC address */ qedf->wwnn = fcoe_wwn_from_mac(qedf->mac, 1, 0); qedf->wwpn = fcoe_wwn_from_mac(qedf->mac, 2, 0); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "WWNN=%016llx " "WWPN=%016llx.\n", qedf->wwnn, qedf->wwpn); sprintf(host_buf, "host_%d", host->host_no); qed_ops->common->set_name(qedf->cdev, host_buf); /* Set xid max values */ qedf->max_scsi_xid = QEDF_MAX_SCSI_XID; qedf->max_els_xid = QEDF_MAX_ELS_XID; /* Allocate cmd mgr */ qedf->cmd_mgr = qedf_cmd_mgr_alloc(qedf); if (!qedf->cmd_mgr) { QEDF_ERR(&(qedf->dbg_ctx), "Failed to allocate cmd mgr.\n"); goto err5; } if (mode != QEDF_MODE_RECOVERY) { host->transportt = qedf_fc_transport_template; host->can_queue = QEDF_MAX_ELS_XID; host->max_lun = qedf_max_lun; host->max_cmd_len = QEDF_MAX_CDB_LEN; rc = scsi_add_host(host, &pdev->dev); if (rc) goto err6; } memset(¶ms, 0, sizeof(params)); params.mtu = 9000; ether_addr_copy(params.ll2_mac_address, qedf->mac); /* Start LL2 processing thread */ snprintf(host_buf, 20, "qedf_%d_ll2", host->host_no); qedf->ll2_recv_wq = create_singlethread_workqueue(host_buf); if (!qedf->ll2_recv_wq) { QEDF_ERR(&(qedf->dbg_ctx), "Failed to LL2 workqueue.\n"); goto err7; } #ifdef CONFIG_DEBUG_FS qedf_dbg_host_init(&(qedf->dbg_ctx), &qedf_debugfs_ops, &qedf_dbg_fops); #endif /* Start LL2 */ qed_ops->ll2->register_cb_ops(qedf->cdev, &qedf_ll2_cb_ops, qedf); rc = qed_ops->ll2->start(qedf->cdev, ¶ms); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "Could not start Light L2.\n"); goto err7; } set_bit(QEDF_LL2_STARTED, &qedf->flags); /* hw will be insterting vlan tag*/ qedf->vlan_hw_insert = 1; qedf->vlan_id = 0; /* * No need to setup fcoe_ctlr or fc_lport objects during recovery since * they were not reaped during the unload process. */ if (mode != QEDF_MODE_RECOVERY) { /* Setup imbedded fcoe controller */ qedf_fcoe_ctlr_setup(qedf); /* Setup lport */ rc = qedf_lport_setup(qedf); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "qedf_lport_setup failed.\n"); goto err7; } } sprintf(host_buf, "qedf_%u_timer", qedf->lport->host->host_no); qedf->timer_work_queue = create_singlethread_workqueue(host_buf); if (!qedf->timer_work_queue) { QEDF_ERR(&(qedf->dbg_ctx), "Failed to start timer " "workqueue.\n"); goto err7; } /* DPC workqueue is not reaped during recovery unload */ if (mode != QEDF_MODE_RECOVERY) { sprintf(host_buf, "qedf_%u_dpc", qedf->lport->host->host_no); qedf->dpc_wq = create_singlethread_workqueue(host_buf); } /* * GRC dump and sysfs parameters are not reaped during the recovery * unload process. */ if (mode != QEDF_MODE_RECOVERY) { qedf->grcdump_size = qed_ops->common->dbg_grc_size(qedf->cdev); if (qedf->grcdump_size) { rc = qedf_alloc_grc_dump_buf(&qedf->grcdump, qedf->grcdump_size); if (rc) { QEDF_ERR(&(qedf->dbg_ctx), "GRC Dump buffer alloc failed.\n"); qedf->grcdump = NULL; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "grcdump: addr=%p, size=%u.\n", qedf->grcdump, qedf->grcdump_size); } qedf_create_sysfs_ctx_attr(qedf); /* Initialize I/O tracing for this adapter */ spin_lock_init(&qedf->io_trace_lock); qedf->io_trace_idx = 0; } init_completion(&qedf->flogi_compl); memset(&link_params, 0, sizeof(struct qed_link_params)); link_params.link_up = true; status = qed_ops->common->set_link(qedf->cdev, &link_params); if (status) QEDF_WARN(&(qedf->dbg_ctx), "set_link failed.\n"); /* Start/restart discovery */ if (mode == QEDF_MODE_RECOVERY) fcoe_ctlr_link_up(&qedf->ctlr); else fc_fabric_login(lport); /* All good */ return 0; err7: if (qedf->ll2_recv_wq) destroy_workqueue(qedf->ll2_recv_wq); fc_remove_host(qedf->lport->host); scsi_remove_host(qedf->lport->host); #ifdef CONFIG_DEBUG_FS qedf_dbg_host_exit(&(qedf->dbg_ctx)); #endif err6: qedf_cmd_mgr_free(qedf->cmd_mgr); err5: qed_ops->stop(qedf->cdev); err4: qedf_free_fcoe_pf_param(qedf); qedf_sync_free_irqs(qedf); err3: qed_ops->common->slowpath_stop(qedf->cdev); err2: qed_ops->common->remove(qedf->cdev); err1: scsi_host_put(lport->host); err0: return rc; } static int qedf_probe(struct pci_dev *pdev, const struct pci_device_id *id) { return __qedf_probe(pdev, QEDF_MODE_NORMAL); } static void __qedf_remove(struct pci_dev *pdev, int mode) { struct qedf_ctx *qedf; if (!pdev) { QEDF_ERR(NULL, "pdev is NULL.\n"); return; } qedf = pci_get_drvdata(pdev); /* * Prevent race where we're in board disable work and then try to * rmmod the module. */ if (test_bit(QEDF_UNLOADING, &qedf->flags)) { QEDF_ERR(&qedf->dbg_ctx, "Already removing PCI function.\n"); return; } if (mode != QEDF_MODE_RECOVERY) set_bit(QEDF_UNLOADING, &qedf->flags); /* Logoff the fabric to upload all connections */ if (mode == QEDF_MODE_RECOVERY) fcoe_ctlr_link_down(&qedf->ctlr); else fc_fabric_logoff(qedf->lport); qedf_wait_for_upload(qedf); #ifdef CONFIG_DEBUG_FS qedf_dbg_host_exit(&(qedf->dbg_ctx)); #endif /* Stop any link update handling */ cancel_delayed_work_sync(&qedf->link_update); destroy_workqueue(qedf->link_update_wq); qedf->link_update_wq = NULL; if (qedf->timer_work_queue) destroy_workqueue(qedf->timer_work_queue); /* Stop Light L2 */ clear_bit(QEDF_LL2_STARTED, &qedf->flags); qed_ops->ll2->stop(qedf->cdev); if (qedf->ll2_recv_wq) destroy_workqueue(qedf->ll2_recv_wq); /* Stop fastpath */ qedf_sync_free_irqs(qedf); qedf_destroy_sb(qedf); /* * During recovery don't destroy OS constructs that represent the * physical port. */ if (mode != QEDF_MODE_RECOVERY) { qedf_free_grc_dump_buf(&qedf->grcdump); qedf_remove_sysfs_ctx_attr(qedf); /* Remove all SCSI/libfc/libfcoe structures */ fcoe_ctlr_destroy(&qedf->ctlr); fc_lport_destroy(qedf->lport); fc_remove_host(qedf->lport->host); scsi_remove_host(qedf->lport->host); } qedf_cmd_mgr_free(qedf->cmd_mgr); if (mode != QEDF_MODE_RECOVERY) { fc_exch_mgr_free(qedf->lport); fc_lport_free_stats(qedf->lport); /* Wait for all vports to be reaped */ qedf_wait_for_vport_destroy(qedf); } /* * Now that all connections have been uploaded we can stop the * rest of the qed operations */ qed_ops->stop(qedf->cdev); if (mode != QEDF_MODE_RECOVERY) { if (qedf->dpc_wq) { /* Stop general DPC handling */ destroy_workqueue(qedf->dpc_wq); qedf->dpc_wq = NULL; } } /* Final shutdown for the board */ qedf_free_fcoe_pf_param(qedf); if (mode != QEDF_MODE_RECOVERY) { qed_ops->common->set_power_state(qedf->cdev, PCI_D0); pci_set_drvdata(pdev, NULL); } qed_ops->common->slowpath_stop(qedf->cdev); qed_ops->common->remove(qedf->cdev); mempool_destroy(qedf->io_mempool); /* Only reap the Scsi_host on a real removal */ if (mode != QEDF_MODE_RECOVERY) scsi_host_put(qedf->lport->host); } static void qedf_remove(struct pci_dev *pdev) { /* Check to make sure this function wasn't already disabled */ if (!atomic_read(&pdev->enable_cnt)) return; __qedf_remove(pdev, QEDF_MODE_NORMAL); } /* * Module Init/Remove */ static int __init qedf_init(void) { int ret; /* If debug=1 passed, set the default log mask */ if (qedf_debug == QEDF_LOG_DEFAULT) qedf_debug = QEDF_DEFAULT_LOG_MASK; /* Print driver banner */ QEDF_INFO(NULL, QEDF_LOG_INFO, "%s v%s.\n", QEDF_DESCR, QEDF_VERSION); /* Create kmem_cache for qedf_io_work structs */ qedf_io_work_cache = kmem_cache_create("qedf_io_work_cache", sizeof(struct qedf_io_work), 0, SLAB_HWCACHE_ALIGN, NULL); if (qedf_io_work_cache == NULL) { QEDF_ERR(NULL, "qedf_io_work_cache is NULL.\n"); goto err1; } QEDF_INFO(NULL, QEDF_LOG_DISC, "qedf_io_work_cache=%p.\n", qedf_io_work_cache); qed_ops = qed_get_fcoe_ops(); if (!qed_ops) { QEDF_ERR(NULL, "Failed to get qed fcoe operations\n"); goto err1; } #ifdef CONFIG_DEBUG_FS qedf_dbg_init("qedf"); #endif qedf_fc_transport_template = fc_attach_transport(&qedf_fc_transport_fn); if (!qedf_fc_transport_template) { QEDF_ERR(NULL, "Could not register with FC transport\n"); goto err2; } qedf_fc_vport_transport_template = fc_attach_transport(&qedf_fc_vport_transport_fn); if (!qedf_fc_vport_transport_template) { QEDF_ERR(NULL, "Could not register vport template with FC " "transport\n"); goto err3; } qedf_io_wq = create_workqueue("qedf_io_wq"); if (!qedf_io_wq) { QEDF_ERR(NULL, "Could not create qedf_io_wq.\n"); goto err4; } qedf_cb_ops.get_login_failures = qedf_get_login_failures; ret = pci_register_driver(&qedf_pci_driver); if (ret) { QEDF_ERR(NULL, "Failed to register driver\n"); goto err5; } return 0; err5: destroy_workqueue(qedf_io_wq); err4: fc_release_transport(qedf_fc_vport_transport_template); err3: fc_release_transport(qedf_fc_transport_template); err2: #ifdef CONFIG_DEBUG_FS qedf_dbg_exit(); #endif qed_put_fcoe_ops(); err1: return -EINVAL; } static void __exit qedf_cleanup(void) { pci_unregister_driver(&qedf_pci_driver); destroy_workqueue(qedf_io_wq); fc_release_transport(qedf_fc_vport_transport_template); fc_release_transport(qedf_fc_transport_template); #ifdef CONFIG_DEBUG_FS qedf_dbg_exit(); #endif qed_put_fcoe_ops(); kmem_cache_destroy(qedf_io_work_cache); } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("QLogic QEDF 25/40/50/100Gb FCoE Driver"); MODULE_AUTHOR("QLogic Corporation"); MODULE_VERSION(QEDF_VERSION); module_init(qedf_init); module_exit(qedf_cleanup);