/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ /* The caprices of the preprocessor require that this be declared right here */ #define CREATE_TRACE_POINTS #include "dm_services_types.h" #include "dc.h" #include "dc_link_dp.h" #include "link_enc_cfg.h" #include "dc/inc/core_types.h" #include "dal_asic_id.h" #include "dmub/dmub_srv.h" #include "dc/inc/hw/dmcu.h" #include "dc/inc/hw/abm.h" #include "dc/dc_dmub_srv.h" #include "dc/dc_edid_parser.h" #include "dc/dc_stat.h" #include "amdgpu_dm_trace.h" #include "vid.h" #include "amdgpu.h" #include "amdgpu_display.h" #include "amdgpu_ucode.h" #include "atom.h" #include "amdgpu_dm.h" #ifdef CONFIG_DRM_AMD_DC_HDCP #include "amdgpu_dm_hdcp.h" #include <drm/drm_hdcp.h> #endif #include "amdgpu_pm.h" #include "amd_shared.h" #include "amdgpu_dm_irq.h" #include "dm_helpers.h" #include "amdgpu_dm_mst_types.h" #if defined(CONFIG_DEBUG_FS) #include "amdgpu_dm_debugfs.h" #endif #include "amdgpu_dm_psr.h" #include "ivsrcid/ivsrcid_vislands30.h" #include "i2caux_interface.h" #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/pm_runtime.h> #include <linux/pci.h> #include <linux/firmware.h> #include <linux/component.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_uapi.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_dp_mst_helper.h> #include <drm/drm_fb_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_edid.h> #include <drm/drm_vblank.h> #include <drm/drm_audio_component.h> #if defined(CONFIG_DRM_AMD_DC_DCN) #include "ivsrcid/dcn/irqsrcs_dcn_1_0.h" #include "dcn/dcn_1_0_offset.h" #include "dcn/dcn_1_0_sh_mask.h" #include "soc15_hw_ip.h" #include "vega10_ip_offset.h" #include "soc15_common.h" #endif #include "modules/inc/mod_freesync.h" #include "modules/power/power_helpers.h" #include "modules/inc/mod_info_packet.h" #define FIRMWARE_RENOIR_DMUB "amdgpu/renoir_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_RENOIR_DMUB); #define FIRMWARE_SIENNA_CICHLID_DMUB "amdgpu/sienna_cichlid_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_SIENNA_CICHLID_DMUB); #define FIRMWARE_NAVY_FLOUNDER_DMUB "amdgpu/navy_flounder_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_NAVY_FLOUNDER_DMUB); #define FIRMWARE_GREEN_SARDINE_DMUB "amdgpu/green_sardine_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_GREEN_SARDINE_DMUB); #define FIRMWARE_VANGOGH_DMUB "amdgpu/vangogh_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_VANGOGH_DMUB); #define FIRMWARE_DIMGREY_CAVEFISH_DMUB "amdgpu/dimgrey_cavefish_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_DIMGREY_CAVEFISH_DMUB); #define FIRMWARE_BEIGE_GOBY_DMUB "amdgpu/beige_goby_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_BEIGE_GOBY_DMUB); #define FIRMWARE_YELLOW_CARP_DMUB "amdgpu/yellow_carp_dmcub.bin" MODULE_FIRMWARE(FIRMWARE_YELLOW_CARP_DMUB); #define FIRMWARE_RAVEN_DMCU "amdgpu/raven_dmcu.bin" MODULE_FIRMWARE(FIRMWARE_RAVEN_DMCU); #define FIRMWARE_NAVI12_DMCU "amdgpu/navi12_dmcu.bin" MODULE_FIRMWARE(FIRMWARE_NAVI12_DMCU); /* Number of bytes in PSP header for firmware. */ #define PSP_HEADER_BYTES 0x100 /* Number of bytes in PSP footer for firmware. */ #define PSP_FOOTER_BYTES 0x100 /** * DOC: overview * * The AMDgpu display manager, **amdgpu_dm** (or even simpler, * **dm**) sits between DRM and DC. It acts as a liaison, converting DRM * requests into DC requests, and DC responses into DRM responses. * * The root control structure is &struct amdgpu_display_manager. */ /* basic init/fini API */ static int amdgpu_dm_init(struct amdgpu_device *adev); static void amdgpu_dm_fini(struct amdgpu_device *adev); static bool is_freesync_video_mode(const struct drm_display_mode *mode, struct amdgpu_dm_connector *aconnector); static enum drm_mode_subconnector get_subconnector_type(struct dc_link *link) { switch (link->dpcd_caps.dongle_type) { case DISPLAY_DONGLE_NONE: return DRM_MODE_SUBCONNECTOR_Native; case DISPLAY_DONGLE_DP_VGA_CONVERTER: return DRM_MODE_SUBCONNECTOR_VGA; case DISPLAY_DONGLE_DP_DVI_CONVERTER: case DISPLAY_DONGLE_DP_DVI_DONGLE: return DRM_MODE_SUBCONNECTOR_DVID; case DISPLAY_DONGLE_DP_HDMI_CONVERTER: case DISPLAY_DONGLE_DP_HDMI_DONGLE: return DRM_MODE_SUBCONNECTOR_HDMIA; case DISPLAY_DONGLE_DP_HDMI_MISMATCHED_DONGLE: default: return DRM_MODE_SUBCONNECTOR_Unknown; } } static void update_subconnector_property(struct amdgpu_dm_connector *aconnector) { struct dc_link *link = aconnector->dc_link; struct drm_connector *connector = &aconnector->base; enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown; if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) return; if (aconnector->dc_sink) subconnector = get_subconnector_type(link); drm_object_property_set_value(&connector->base, connector->dev->mode_config.dp_subconnector_property, subconnector); } /* * initializes drm_device display related structures, based on the information * provided by DAL. The drm strcutures are: drm_crtc, drm_connector, * drm_encoder, drm_mode_config * * Returns 0 on success */ static int amdgpu_dm_initialize_drm_device(struct amdgpu_device *adev); /* removes and deallocates the drm structures, created by the above function */ static void amdgpu_dm_destroy_drm_device(struct amdgpu_display_manager *dm); static int amdgpu_dm_plane_init(struct amdgpu_display_manager *dm, struct drm_plane *plane, unsigned long possible_crtcs, const struct dc_plane_cap *plane_cap); static int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm, struct drm_plane *plane, uint32_t link_index); static int amdgpu_dm_connector_init(struct amdgpu_display_manager *dm, struct amdgpu_dm_connector *amdgpu_dm_connector, uint32_t link_index, struct amdgpu_encoder *amdgpu_encoder); static int amdgpu_dm_encoder_init(struct drm_device *dev, struct amdgpu_encoder *aencoder, uint32_t link_index); static int amdgpu_dm_connector_get_modes(struct drm_connector *connector); static void amdgpu_dm_atomic_commit_tail(struct drm_atomic_state *state); static int amdgpu_dm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state); static void handle_cursor_update(struct drm_plane *plane, struct drm_plane_state *old_plane_state); static const struct drm_format_info * amd_get_format_info(const struct drm_mode_fb_cmd2 *cmd); static void handle_hpd_irq_helper(struct amdgpu_dm_connector *aconnector); static void handle_hpd_rx_irq(void *param); static bool is_timing_unchanged_for_freesync(struct drm_crtc_state *old_crtc_state, struct drm_crtc_state *new_crtc_state); /* * dm_vblank_get_counter * * @brief * Get counter for number of vertical blanks * * @param * struct amdgpu_device *adev - [in] desired amdgpu device * int disp_idx - [in] which CRTC to get the counter from * * @return * Counter for vertical blanks */ static u32 dm_vblank_get_counter(struct amdgpu_device *adev, int crtc) { if (crtc >= adev->mode_info.num_crtc) return 0; else { struct amdgpu_crtc *acrtc = adev->mode_info.crtcs[crtc]; if (acrtc->dm_irq_params.stream == NULL) { DRM_ERROR("dc_stream_state is NULL for crtc '%d'!\n", crtc); return 0; } return dc_stream_get_vblank_counter(acrtc->dm_irq_params.stream); } } static int dm_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc, u32 *vbl, u32 *position) { uint32_t v_blank_start, v_blank_end, h_position, v_position; if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc)) return -EINVAL; else { struct amdgpu_crtc *acrtc = adev->mode_info.crtcs[crtc]; if (acrtc->dm_irq_params.stream == NULL) { DRM_ERROR("dc_stream_state is NULL for crtc '%d'!\n", crtc); return 0; } /* * TODO rework base driver to use values directly. * for now parse it back into reg-format */ dc_stream_get_scanoutpos(acrtc->dm_irq_params.stream, &v_blank_start, &v_blank_end, &h_position, &v_position); *position = v_position | (h_position << 16); *vbl = v_blank_start | (v_blank_end << 16); } return 0; } static bool dm_is_idle(void *handle) { /* XXX todo */ return true; } static int dm_wait_for_idle(void *handle) { /* XXX todo */ return 0; } static bool dm_check_soft_reset(void *handle) { return false; } static int dm_soft_reset(void *handle) { /* XXX todo */ return 0; } static struct amdgpu_crtc * get_crtc_by_otg_inst(struct amdgpu_device *adev, int otg_inst) { struct drm_device *dev = adev_to_drm(adev); struct drm_crtc *crtc; struct amdgpu_crtc *amdgpu_crtc; if (WARN_ON(otg_inst == -1)) return adev->mode_info.crtcs[0]; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { amdgpu_crtc = to_amdgpu_crtc(crtc); if (amdgpu_crtc->otg_inst == otg_inst) return amdgpu_crtc; } return NULL; } static inline bool amdgpu_dm_vrr_active_irq(struct amdgpu_crtc *acrtc) { return acrtc->dm_irq_params.freesync_config.state == VRR_STATE_ACTIVE_VARIABLE || acrtc->dm_irq_params.freesync_config.state == VRR_STATE_ACTIVE_FIXED; } static inline bool amdgpu_dm_vrr_active(struct dm_crtc_state *dm_state) { return dm_state->freesync_config.state == VRR_STATE_ACTIVE_VARIABLE || dm_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED; } static inline bool is_dc_timing_adjust_needed(struct dm_crtc_state *old_state, struct dm_crtc_state *new_state) { if (new_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED) return true; else if (amdgpu_dm_vrr_active(old_state) != amdgpu_dm_vrr_active(new_state)) return true; else return false; } /** * dm_pflip_high_irq() - Handle pageflip interrupt * @interrupt_params: ignored * * Handles the pageflip interrupt by notifying all interested parties * that the pageflip has been completed. */ static void dm_pflip_high_irq(void *interrupt_params) { struct amdgpu_crtc *amdgpu_crtc; struct common_irq_params *irq_params = interrupt_params; struct amdgpu_device *adev = irq_params->adev; unsigned long flags; struct drm_pending_vblank_event *e; uint32_t vpos, hpos, v_blank_start, v_blank_end; bool vrr_active; amdgpu_crtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_PFLIP); /* IRQ could occur when in initial stage */ /* TODO work and BO cleanup */ if (amdgpu_crtc == NULL) { DC_LOG_PFLIP("CRTC is null, returning.\n"); return; } spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){ DC_LOG_PFLIP("amdgpu_crtc->pflip_status = %d !=AMDGPU_FLIP_SUBMITTED(%d) on crtc:%d[%p] \n", amdgpu_crtc->pflip_status, AMDGPU_FLIP_SUBMITTED, amdgpu_crtc->crtc_id, amdgpu_crtc); spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); return; } /* page flip completed. */ e = amdgpu_crtc->event; amdgpu_crtc->event = NULL; WARN_ON(!e); vrr_active = amdgpu_dm_vrr_active_irq(amdgpu_crtc); /* Fixed refresh rate, or VRR scanout position outside front-porch? */ if (!vrr_active || !dc_stream_get_scanoutpos(amdgpu_crtc->dm_irq_params.stream, &v_blank_start, &v_blank_end, &hpos, &vpos) || (vpos < v_blank_start)) { /* Update to correct count and vblank timestamp if racing with * vblank irq. This also updates to the correct vblank timestamp * even in VRR mode, as scanout is past the front-porch atm. */ drm_crtc_accurate_vblank_count(&amdgpu_crtc->base); /* Wake up userspace by sending the pageflip event with proper * count and timestamp of vblank of flip completion. */ if (e) { drm_crtc_send_vblank_event(&amdgpu_crtc->base, e); /* Event sent, so done with vblank for this flip */ drm_crtc_vblank_put(&amdgpu_crtc->base); } } else if (e) { /* VRR active and inside front-porch: vblank count and * timestamp for pageflip event will only be up to date after * drm_crtc_handle_vblank() has been executed from late vblank * irq handler after start of back-porch (vline 0). We queue the * pageflip event for send-out by drm_crtc_handle_vblank() with * updated timestamp and count, once it runs after us. * * We need to open-code this instead of using the helper * drm_crtc_arm_vblank_event(), as that helper would * call drm_crtc_accurate_vblank_count(), which we must * not call in VRR mode while we are in front-porch! */ /* sequence will be replaced by real count during send-out. */ e->sequence = drm_crtc_vblank_count(&amdgpu_crtc->base); e->pipe = amdgpu_crtc->crtc_id; list_add_tail(&e->base.link, &adev_to_drm(adev)->vblank_event_list); e = NULL; } /* Keep track of vblank of this flip for flip throttling. We use the * cooked hw counter, as that one incremented at start of this vblank * of pageflip completion, so last_flip_vblank is the forbidden count * for queueing new pageflips if vsync + VRR is enabled. */ amdgpu_crtc->dm_irq_params.last_flip_vblank = amdgpu_get_vblank_counter_kms(&amdgpu_crtc->base); amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE; spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); DC_LOG_PFLIP("crtc:%d[%p], pflip_stat:AMDGPU_FLIP_NONE, vrr[%d]-fp %d\n", amdgpu_crtc->crtc_id, amdgpu_crtc, vrr_active, (int) !e); } static void dm_vupdate_high_irq(void *interrupt_params) { struct common_irq_params *irq_params = interrupt_params; struct amdgpu_device *adev = irq_params->adev; struct amdgpu_crtc *acrtc; struct drm_device *drm_dev; struct drm_vblank_crtc *vblank; ktime_t frame_duration_ns, previous_timestamp; unsigned long flags; int vrr_active; acrtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_VUPDATE); if (acrtc) { vrr_active = amdgpu_dm_vrr_active_irq(acrtc); drm_dev = acrtc->base.dev; vblank = &drm_dev->vblank[acrtc->base.index]; previous_timestamp = atomic64_read(&irq_params->previous_timestamp); frame_duration_ns = vblank->time - previous_timestamp; if (frame_duration_ns > 0) { trace_amdgpu_refresh_rate_track(acrtc->base.index, frame_duration_ns, ktime_divns(NSEC_PER_SEC, frame_duration_ns)); atomic64_set(&irq_params->previous_timestamp, vblank->time); } DC_LOG_VBLANK("crtc:%d, vupdate-vrr:%d\n", acrtc->crtc_id, vrr_active); /* Core vblank handling is done here after end of front-porch in * vrr mode, as vblank timestamping will give valid results * while now done after front-porch. This will also deliver * page-flip completion events that have been queued to us * if a pageflip happened inside front-porch. */ if (vrr_active) { drm_crtc_handle_vblank(&acrtc->base); /* BTR processing for pre-DCE12 ASICs */ if (acrtc->dm_irq_params.stream && adev->family < AMDGPU_FAMILY_AI) { spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); mod_freesync_handle_v_update( adev->dm.freesync_module, acrtc->dm_irq_params.stream, &acrtc->dm_irq_params.vrr_params); dc_stream_adjust_vmin_vmax( adev->dm.dc, acrtc->dm_irq_params.stream, &acrtc->dm_irq_params.vrr_params.adjust); spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); } } } } /** * dm_crtc_high_irq() - Handles CRTC interrupt * @interrupt_params: used for determining the CRTC instance * * Handles the CRTC/VSYNC interrupt by notfying DRM's VBLANK * event handler. */ static void dm_crtc_high_irq(void *interrupt_params) { struct common_irq_params *irq_params = interrupt_params; struct amdgpu_device *adev = irq_params->adev; struct amdgpu_crtc *acrtc; unsigned long flags; int vrr_active; acrtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_VBLANK); if (!acrtc) return; vrr_active = amdgpu_dm_vrr_active_irq(acrtc); DC_LOG_VBLANK("crtc:%d, vupdate-vrr:%d, planes:%d\n", acrtc->crtc_id, vrr_active, acrtc->dm_irq_params.active_planes); /** * Core vblank handling at start of front-porch is only possible * in non-vrr mode, as only there vblank timestamping will give * valid results while done in front-porch. Otherwise defer it * to dm_vupdate_high_irq after end of front-porch. */ if (!vrr_active) drm_crtc_handle_vblank(&acrtc->base); /** * Following stuff must happen at start of vblank, for crc * computation and below-the-range btr support in vrr mode. */ amdgpu_dm_crtc_handle_crc_irq(&acrtc->base); /* BTR updates need to happen before VUPDATE on Vega and above. */ if (adev->family < AMDGPU_FAMILY_AI) return; spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); if (acrtc->dm_irq_params.stream && acrtc->dm_irq_params.vrr_params.supported && acrtc->dm_irq_params.freesync_config.state == VRR_STATE_ACTIVE_VARIABLE) { mod_freesync_handle_v_update(adev->dm.freesync_module, acrtc->dm_irq_params.stream, &acrtc->dm_irq_params.vrr_params); dc_stream_adjust_vmin_vmax(adev->dm.dc, acrtc->dm_irq_params.stream, &acrtc->dm_irq_params.vrr_params.adjust); } /* * If there aren't any active_planes then DCH HUBP may be clock-gated. * In that case, pageflip completion interrupts won't fire and pageflip * completion events won't get delivered. Prevent this by sending * pending pageflip events from here if a flip is still pending. * * If any planes are enabled, use dm_pflip_high_irq() instead, to * avoid race conditions between flip programming and completion, * which could cause too early flip completion events. */ if (adev->family >= AMDGPU_FAMILY_RV && acrtc->pflip_status == AMDGPU_FLIP_SUBMITTED && acrtc->dm_irq_params.active_planes == 0) { if (acrtc->event) { drm_crtc_send_vblank_event(&acrtc->base, acrtc->event); acrtc->event = NULL; drm_crtc_vblank_put(&acrtc->base); } acrtc->pflip_status = AMDGPU_FLIP_NONE; } spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); } #if defined(CONFIG_DRM_AMD_DC_DCN) #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) /** * dm_dcn_vertical_interrupt0_high_irq() - Handles OTG Vertical interrupt0 for * DCN generation ASICs * @interrupt_params: interrupt parameters * * Used to set crc window/read out crc value at vertical line 0 position */ static void dm_dcn_vertical_interrupt0_high_irq(void *interrupt_params) { struct common_irq_params *irq_params = interrupt_params; struct amdgpu_device *adev = irq_params->adev; struct amdgpu_crtc *acrtc; acrtc = get_crtc_by_otg_inst(adev, irq_params->irq_src - IRQ_TYPE_VLINE0); if (!acrtc) return; amdgpu_dm_crtc_handle_crc_window_irq(&acrtc->base); } #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */ /** * dmub_aux_setconfig_reply_callback - Callback for AUX or SET_CONFIG command. * @adev: amdgpu_device pointer * @notify: dmub notification structure * * Dmub AUX or SET_CONFIG command completion processing callback * Copies dmub notification to DM which is to be read by AUX command. * issuing thread and also signals the event to wake up the thread. */ void dmub_aux_setconfig_callback(struct amdgpu_device *adev, struct dmub_notification *notify) { if (adev->dm.dmub_notify) memcpy(adev->dm.dmub_notify, notify, sizeof(struct dmub_notification)); if (notify->type == DMUB_NOTIFICATION_AUX_REPLY) complete(&adev->dm.dmub_aux_transfer_done); } /** * dmub_hpd_callback - DMUB HPD interrupt processing callback. * @adev: amdgpu_device pointer * @notify: dmub notification structure * * Dmub Hpd interrupt processing callback. Gets displayindex through the * ink index and calls helper to do the processing. */ void dmub_hpd_callback(struct amdgpu_device *adev, struct dmub_notification *notify) { struct amdgpu_dm_connector *aconnector; struct amdgpu_dm_connector *hpd_aconnector = NULL; struct drm_connector *connector; struct drm_connector_list_iter iter; struct dc_link *link; uint8_t link_index = 0; struct drm_device *dev = adev->dm.ddev; if (adev == NULL) return; if (notify == NULL) { DRM_ERROR("DMUB HPD callback notification was NULL"); return; } if (notify->link_index > adev->dm.dc->link_count) { DRM_ERROR("DMUB HPD index (%u)is abnormal", notify->link_index); return; } link_index = notify->link_index; link = adev->dm.dc->links[link_index]; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { aconnector = to_amdgpu_dm_connector(connector); if (link && aconnector->dc_link == link) { DRM_INFO("DMUB HPD callback: link_index=%u\n", link_index); hpd_aconnector = aconnector; break; } } drm_connector_list_iter_end(&iter); if (hpd_aconnector) { if (notify->type == DMUB_NOTIFICATION_HPD) handle_hpd_irq_helper(hpd_aconnector); else if (notify->type == DMUB_NOTIFICATION_HPD_IRQ) handle_hpd_rx_irq(hpd_aconnector); } } /** * register_dmub_notify_callback - Sets callback for DMUB notify * @adev: amdgpu_device pointer * @type: Type of dmub notification * @callback: Dmub interrupt callback function * @dmub_int_thread_offload: offload indicator * * API to register a dmub callback handler for a dmub notification * Also sets indicator whether callback processing to be offloaded. * to dmub interrupt handling thread * Return: true if successfully registered, false if there is existing registration */ bool register_dmub_notify_callback(struct amdgpu_device *adev, enum dmub_notification_type type, dmub_notify_interrupt_callback_t callback, bool dmub_int_thread_offload) { if (callback != NULL && type < ARRAY_SIZE(adev->dm.dmub_thread_offload)) { adev->dm.dmub_callback[type] = callback; adev->dm.dmub_thread_offload[type] = dmub_int_thread_offload; } else return false; return true; } static void dm_handle_hpd_work(struct work_struct *work) { struct dmub_hpd_work *dmub_hpd_wrk; dmub_hpd_wrk = container_of(work, struct dmub_hpd_work, handle_hpd_work); if (!dmub_hpd_wrk->dmub_notify) { DRM_ERROR("dmub_hpd_wrk dmub_notify is NULL"); return; } if (dmub_hpd_wrk->dmub_notify->type < ARRAY_SIZE(dmub_hpd_wrk->adev->dm.dmub_callback)) { dmub_hpd_wrk->adev->dm.dmub_callback[dmub_hpd_wrk->dmub_notify->type](dmub_hpd_wrk->adev, dmub_hpd_wrk->dmub_notify); } kfree(dmub_hpd_wrk->dmub_notify); kfree(dmub_hpd_wrk); } #define DMUB_TRACE_MAX_READ 64 /** * dm_dmub_outbox1_low_irq() - Handles Outbox interrupt * @interrupt_params: used for determining the Outbox instance * * Handles the Outbox Interrupt * event handler. */ static void dm_dmub_outbox1_low_irq(void *interrupt_params) { struct dmub_notification notify; struct common_irq_params *irq_params = interrupt_params; struct amdgpu_device *adev = irq_params->adev; struct amdgpu_display_manager *dm = &adev->dm; struct dmcub_trace_buf_entry entry = { 0 }; uint32_t count = 0; struct dmub_hpd_work *dmub_hpd_wrk; struct dc_link *plink = NULL; if (dc_enable_dmub_notifications(adev->dm.dc) && irq_params->irq_src == DC_IRQ_SOURCE_DMCUB_OUTBOX) { do { dc_stat_get_dmub_notification(adev->dm.dc, ¬ify); if (notify.type > ARRAY_SIZE(dm->dmub_thread_offload)) { DRM_ERROR("DM: notify type %d invalid!", notify.type); continue; } if (!dm->dmub_callback[notify.type]) { DRM_DEBUG_DRIVER("DMUB notification skipped, no handler: type=%d\n", notify.type); continue; } if (dm->dmub_thread_offload[notify.type] == true) { dmub_hpd_wrk = kzalloc(sizeof(*dmub_hpd_wrk), GFP_ATOMIC); if (!dmub_hpd_wrk) { DRM_ERROR("Failed to allocate dmub_hpd_wrk"); return; } dmub_hpd_wrk->dmub_notify = kzalloc(sizeof(struct dmub_notification), GFP_ATOMIC); if (!dmub_hpd_wrk->dmub_notify) { kfree(dmub_hpd_wrk); DRM_ERROR("Failed to allocate dmub_hpd_wrk->dmub_notify"); return; } INIT_WORK(&dmub_hpd_wrk->handle_hpd_work, dm_handle_hpd_work); if (dmub_hpd_wrk->dmub_notify) memcpy(dmub_hpd_wrk->dmub_notify, ¬ify, sizeof(struct dmub_notification)); dmub_hpd_wrk->adev = adev; if (notify.type == DMUB_NOTIFICATION_HPD) { plink = adev->dm.dc->links[notify.link_index]; if (plink) { plink->hpd_status = notify.hpd_status == DP_HPD_PLUG; } } queue_work(adev->dm.delayed_hpd_wq, &dmub_hpd_wrk->handle_hpd_work); } else { dm->dmub_callback[notify.type](adev, ¬ify); } } while (notify.pending_notification); } do { if (dc_dmub_srv_get_dmub_outbox0_msg(dm->dc, &entry)) { trace_amdgpu_dmub_trace_high_irq(entry.trace_code, entry.tick_count, entry.param0, entry.param1); DRM_DEBUG_DRIVER("trace_code:%u, tick_count:%u, param0:%u, param1:%u\n", entry.trace_code, entry.tick_count, entry.param0, entry.param1); } else break; count++; } while (count <= DMUB_TRACE_MAX_READ); if (count > DMUB_TRACE_MAX_READ) DRM_DEBUG_DRIVER("Warning : count > DMUB_TRACE_MAX_READ"); } #endif /* CONFIG_DRM_AMD_DC_DCN */ static int dm_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int dm_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } /* Prototypes of private functions */ static int dm_early_init(void* handle); /* Allocate memory for FBC compressed data */ static void amdgpu_dm_fbc_init(struct drm_connector *connector) { struct drm_device *dev = connector->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct dm_compressor_info *compressor = &adev->dm.compressor; struct amdgpu_dm_connector *aconn = to_amdgpu_dm_connector(connector); struct drm_display_mode *mode; unsigned long max_size = 0; if (adev->dm.dc->fbc_compressor == NULL) return; if (aconn->dc_link->connector_signal != SIGNAL_TYPE_EDP) return; if (compressor->bo_ptr) return; list_for_each_entry(mode, &connector->modes, head) { if (max_size < mode->htotal * mode->vtotal) max_size = mode->htotal * mode->vtotal; } if (max_size) { int r = amdgpu_bo_create_kernel(adev, max_size * 4, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &compressor->bo_ptr, &compressor->gpu_addr, &compressor->cpu_addr); if (r) DRM_ERROR("DM: Failed to initialize FBC\n"); else { adev->dm.dc->ctx->fbc_gpu_addr = compressor->gpu_addr; DRM_INFO("DM: FBC alloc %lu\n", max_size*4); } } } static int amdgpu_dm_audio_component_get_eld(struct device *kdev, int port, int pipe, bool *enabled, unsigned char *buf, int max_bytes) { struct drm_device *dev = dev_get_drvdata(kdev); struct amdgpu_device *adev = drm_to_adev(dev); struct drm_connector *connector; struct drm_connector_list_iter conn_iter; struct amdgpu_dm_connector *aconnector; int ret = 0; *enabled = false; mutex_lock(&adev->dm.audio_lock); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { aconnector = to_amdgpu_dm_connector(connector); if (aconnector->audio_inst != port) continue; *enabled = true; ret = drm_eld_size(connector->eld); memcpy(buf, connector->eld, min(max_bytes, ret)); break; } drm_connector_list_iter_end(&conn_iter); mutex_unlock(&adev->dm.audio_lock); DRM_DEBUG_KMS("Get ELD : idx=%d ret=%d en=%d\n", port, ret, *enabled); return ret; } static const struct drm_audio_component_ops amdgpu_dm_audio_component_ops = { .get_eld = amdgpu_dm_audio_component_get_eld, }; static int amdgpu_dm_audio_component_bind(struct device *kdev, struct device *hda_kdev, void *data) { struct drm_device *dev = dev_get_drvdata(kdev); struct amdgpu_device *adev = drm_to_adev(dev); struct drm_audio_component *acomp = data; acomp->ops = &amdgpu_dm_audio_component_ops; acomp->dev = kdev; adev->dm.audio_component = acomp; return 0; } static void amdgpu_dm_audio_component_unbind(struct device *kdev, struct device *hda_kdev, void *data) { struct drm_device *dev = dev_get_drvdata(kdev); struct amdgpu_device *adev = drm_to_adev(dev); struct drm_audio_component *acomp = data; acomp->ops = NULL; acomp->dev = NULL; adev->dm.audio_component = NULL; } static const struct component_ops amdgpu_dm_audio_component_bind_ops = { .bind = amdgpu_dm_audio_component_bind, .unbind = amdgpu_dm_audio_component_unbind, }; static int amdgpu_dm_audio_init(struct amdgpu_device *adev) { int i, ret; if (!amdgpu_audio) return 0; adev->mode_info.audio.enabled = true; adev->mode_info.audio.num_pins = adev->dm.dc->res_pool->audio_count; for (i = 0; i < adev->mode_info.audio.num_pins; i++) { adev->mode_info.audio.pin[i].channels = -1; adev->mode_info.audio.pin[i].rate = -1; adev->mode_info.audio.pin[i].bits_per_sample = -1; adev->mode_info.audio.pin[i].status_bits = 0; adev->mode_info.audio.pin[i].category_code = 0; adev->mode_info.audio.pin[i].connected = false; adev->mode_info.audio.pin[i].id = adev->dm.dc->res_pool->audios[i]->inst; adev->mode_info.audio.pin[i].offset = 0; } ret = component_add(adev->dev, &amdgpu_dm_audio_component_bind_ops); if (ret < 0) return ret; adev->dm.audio_registered = true; return 0; } static void amdgpu_dm_audio_fini(struct amdgpu_device *adev) { if (!amdgpu_audio) return; if (!adev->mode_info.audio.enabled) return; if (adev->dm.audio_registered) { component_del(adev->dev, &amdgpu_dm_audio_component_bind_ops); adev->dm.audio_registered = false; } /* TODO: Disable audio? */ adev->mode_info.audio.enabled = false; } static void amdgpu_dm_audio_eld_notify(struct amdgpu_device *adev, int pin) { struct drm_audio_component *acomp = adev->dm.audio_component; if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) { DRM_DEBUG_KMS("Notify ELD: %d\n", pin); acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, pin, -1); } } static int dm_dmub_hw_init(struct amdgpu_device *adev) { const struct dmcub_firmware_header_v1_0 *hdr; struct dmub_srv *dmub_srv = adev->dm.dmub_srv; struct dmub_srv_fb_info *fb_info = adev->dm.dmub_fb_info; const struct firmware *dmub_fw = adev->dm.dmub_fw; struct dmcu *dmcu = adev->dm.dc->res_pool->dmcu; struct abm *abm = adev->dm.dc->res_pool->abm; struct dmub_srv_hw_params hw_params; enum dmub_status status; const unsigned char *fw_inst_const, *fw_bss_data; uint32_t i, fw_inst_const_size, fw_bss_data_size; bool has_hw_support; struct dc *dc = adev->dm.dc; if (!dmub_srv) /* DMUB isn't supported on the ASIC. */ return 0; if (!fb_info) { DRM_ERROR("No framebuffer info for DMUB service.\n"); return -EINVAL; } if (!dmub_fw) { /* Firmware required for DMUB support. */ DRM_ERROR("No firmware provided for DMUB.\n"); return -EINVAL; } status = dmub_srv_has_hw_support(dmub_srv, &has_hw_support); if (status != DMUB_STATUS_OK) { DRM_ERROR("Error checking HW support for DMUB: %d\n", status); return -EINVAL; } if (!has_hw_support) { DRM_INFO("DMUB unsupported on ASIC\n"); return 0; } hdr = (const struct dmcub_firmware_header_v1_0 *)dmub_fw->data; fw_inst_const = dmub_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes) + PSP_HEADER_BYTES; fw_bss_data = dmub_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes) + le32_to_cpu(hdr->inst_const_bytes); /* Copy firmware and bios info into FB memory. */ fw_inst_const_size = le32_to_cpu(hdr->inst_const_bytes) - PSP_HEADER_BYTES - PSP_FOOTER_BYTES; fw_bss_data_size = le32_to_cpu(hdr->bss_data_bytes); /* if adev->firmware.load_type == AMDGPU_FW_LOAD_PSP, * amdgpu_ucode_init_single_fw will load dmub firmware * fw_inst_const part to cw0; otherwise, the firmware back door load * will be done by dm_dmub_hw_init */ if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { memcpy(fb_info->fb[DMUB_WINDOW_0_INST_CONST].cpu_addr, fw_inst_const, fw_inst_const_size); } if (fw_bss_data_size) memcpy(fb_info->fb[DMUB_WINDOW_2_BSS_DATA].cpu_addr, fw_bss_data, fw_bss_data_size); /* Copy firmware bios info into FB memory. */ memcpy(fb_info->fb[DMUB_WINDOW_3_VBIOS].cpu_addr, adev->bios, adev->bios_size); /* Reset regions that need to be reset. */ memset(fb_info->fb[DMUB_WINDOW_4_MAILBOX].cpu_addr, 0, fb_info->fb[DMUB_WINDOW_4_MAILBOX].size); memset(fb_info->fb[DMUB_WINDOW_5_TRACEBUFF].cpu_addr, 0, fb_info->fb[DMUB_WINDOW_5_TRACEBUFF].size); memset(fb_info->fb[DMUB_WINDOW_6_FW_STATE].cpu_addr, 0, fb_info->fb[DMUB_WINDOW_6_FW_STATE].size); /* Initialize hardware. */ memset(&hw_params, 0, sizeof(hw_params)); hw_params.fb_base = adev->gmc.fb_start; hw_params.fb_offset = adev->gmc.aper_base; /* backdoor load firmware and trigger dmub running */ if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) hw_params.load_inst_const = true; if (dmcu) hw_params.psp_version = dmcu->psp_version; for (i = 0; i < fb_info->num_fb; ++i) hw_params.fb[i] = &fb_info->fb[i]; switch (adev->asic_type) { case CHIP_YELLOW_CARP: if (dc->ctx->asic_id.hw_internal_rev != YELLOW_CARP_A0) { hw_params.dpia_supported = true; #if defined(CONFIG_DRM_AMD_DC_DCN) hw_params.disable_dpia = dc->debug.dpia_debug.bits.disable_dpia; #endif } break; default: break; } status = dmub_srv_hw_init(dmub_srv, &hw_params); if (status != DMUB_STATUS_OK) { DRM_ERROR("Error initializing DMUB HW: %d\n", status); return -EINVAL; } /* Wait for firmware load to finish. */ status = dmub_srv_wait_for_auto_load(dmub_srv, 100000); if (status != DMUB_STATUS_OK) DRM_WARN("Wait for DMUB auto-load failed: %d\n", status); /* Init DMCU and ABM if available. */ if (dmcu && abm) { dmcu->funcs->dmcu_init(dmcu); abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu); } if (!adev->dm.dc->ctx->dmub_srv) adev->dm.dc->ctx->dmub_srv = dc_dmub_srv_create(adev->dm.dc, dmub_srv); if (!adev->dm.dc->ctx->dmub_srv) { DRM_ERROR("Couldn't allocate DC DMUB server!\n"); return -ENOMEM; } DRM_INFO("DMUB hardware initialized: version=0x%08X\n", adev->dm.dmcub_fw_version); return 0; } #if defined(CONFIG_DRM_AMD_DC_DCN) static void mmhub_read_system_context(struct amdgpu_device *adev, struct dc_phy_addr_space_config *pa_config) { uint64_t pt_base; uint32_t logical_addr_low; uint32_t logical_addr_high; uint32_t agp_base, agp_bot, agp_top; PHYSICAL_ADDRESS_LOC page_table_start, page_table_end, page_table_base; memset(pa_config, 0, sizeof(*pa_config)); logical_addr_low = min(adev->gmc.fb_start, adev->gmc.agp_start) >> 18; pt_base = amdgpu_gmc_pd_addr(adev->gart.bo); if (adev->apu_flags & AMD_APU_IS_RAVEN2) /* * Raven2 has a HW issue that it is unable to use the vram which * is out of MC_VM_SYSTEM_APERTURE_HIGH_ADDR. So here is the * workaround that increase system aperture high address (add 1) * to get rid of the VM fault and hardware hang. */ logical_addr_high = max((adev->gmc.fb_end >> 18) + 0x1, adev->gmc.agp_end >> 18); else logical_addr_high = max(adev->gmc.fb_end, adev->gmc.agp_end) >> 18; agp_base = 0; agp_bot = adev->gmc.agp_start >> 24; agp_top = adev->gmc.agp_end >> 24; page_table_start.high_part = (u32)(adev->gmc.gart_start >> 44) & 0xF; page_table_start.low_part = (u32)(adev->gmc.gart_start >> 12); page_table_end.high_part = (u32)(adev->gmc.gart_end >> 44) & 0xF; page_table_end.low_part = (u32)(adev->gmc.gart_end >> 12); page_table_base.high_part = upper_32_bits(pt_base) & 0xF; page_table_base.low_part = lower_32_bits(pt_base); pa_config->system_aperture.start_addr = (uint64_t)logical_addr_low << 18; pa_config->system_aperture.end_addr = (uint64_t)logical_addr_high << 18; pa_config->system_aperture.agp_base = (uint64_t)agp_base << 24 ; pa_config->system_aperture.agp_bot = (uint64_t)agp_bot << 24; pa_config->system_aperture.agp_top = (uint64_t)agp_top << 24; pa_config->system_aperture.fb_base = adev->gmc.fb_start; pa_config->system_aperture.fb_offset = adev->gmc.aper_base; pa_config->system_aperture.fb_top = adev->gmc.fb_end; pa_config->gart_config.page_table_start_addr = page_table_start.quad_part << 12; pa_config->gart_config.page_table_end_addr = page_table_end.quad_part << 12; pa_config->gart_config.page_table_base_addr = page_table_base.quad_part; pa_config->is_hvm_enabled = 0; } #endif #if defined(CONFIG_DRM_AMD_DC_DCN) static void vblank_control_worker(struct work_struct *work) { struct vblank_control_work *vblank_work = container_of(work, struct vblank_control_work, work); struct amdgpu_display_manager *dm = vblank_work->dm; mutex_lock(&dm->dc_lock); if (vblank_work->enable) dm->active_vblank_irq_count++; else if(dm->active_vblank_irq_count) dm->active_vblank_irq_count--; dc_allow_idle_optimizations(dm->dc, dm->active_vblank_irq_count == 0); DRM_DEBUG_KMS("Allow idle optimizations (MALL): %d\n", dm->active_vblank_irq_count == 0); /* Control PSR based on vblank requirements from OS */ if (vblank_work->stream && vblank_work->stream->link) { if (vblank_work->enable) { if (vblank_work->stream->link->psr_settings.psr_allow_active) amdgpu_dm_psr_disable(vblank_work->stream); } else if (vblank_work->stream->link->psr_settings.psr_feature_enabled && !vblank_work->stream->link->psr_settings.psr_allow_active && vblank_work->acrtc->dm_irq_params.allow_psr_entry) { amdgpu_dm_psr_enable(vblank_work->stream); } } mutex_unlock(&dm->dc_lock); dc_stream_release(vblank_work->stream); kfree(vblank_work); } #endif static void dm_handle_hpd_rx_offload_work(struct work_struct *work) { struct hpd_rx_irq_offload_work *offload_work; struct amdgpu_dm_connector *aconnector; struct dc_link *dc_link; struct amdgpu_device *adev; enum dc_connection_type new_connection_type = dc_connection_none; unsigned long flags; offload_work = container_of(work, struct hpd_rx_irq_offload_work, work); aconnector = offload_work->offload_wq->aconnector; if (!aconnector) { DRM_ERROR("Can't retrieve aconnector in hpd_rx_irq_offload_work"); goto skip; } adev = drm_to_adev(aconnector->base.dev); dc_link = aconnector->dc_link; mutex_lock(&aconnector->hpd_lock); if (!dc_link_detect_sink(dc_link, &new_connection_type)) DRM_ERROR("KMS: Failed to detect connector\n"); mutex_unlock(&aconnector->hpd_lock); if (new_connection_type == dc_connection_none) goto skip; if (amdgpu_in_reset(adev)) goto skip; mutex_lock(&adev->dm.dc_lock); if (offload_work->data.bytes.device_service_irq.bits.AUTOMATED_TEST) dc_link_dp_handle_automated_test(dc_link); else if ((dc_link->connector_signal != SIGNAL_TYPE_EDP) && hpd_rx_irq_check_link_loss_status(dc_link, &offload_work->data) && dc_link_dp_allow_hpd_rx_irq(dc_link)) { dc_link_dp_handle_link_loss(dc_link); spin_lock_irqsave(&offload_work->offload_wq->offload_lock, flags); offload_work->offload_wq->is_handling_link_loss = false; spin_unlock_irqrestore(&offload_work->offload_wq->offload_lock, flags); } mutex_unlock(&adev->dm.dc_lock); skip: kfree(offload_work); } static struct hpd_rx_irq_offload_work_queue *hpd_rx_irq_create_workqueue(struct dc *dc) { int max_caps = dc->caps.max_links; int i = 0; struct hpd_rx_irq_offload_work_queue *hpd_rx_offload_wq = NULL; hpd_rx_offload_wq = kcalloc(max_caps, sizeof(*hpd_rx_offload_wq), GFP_KERNEL); if (!hpd_rx_offload_wq) return NULL; for (i = 0; i < max_caps; i++) { hpd_rx_offload_wq[i].wq = create_singlethread_workqueue("amdgpu_dm_hpd_rx_offload_wq"); if (hpd_rx_offload_wq[i].wq == NULL) { DRM_ERROR("create amdgpu_dm_hpd_rx_offload_wq fail!"); return NULL; } spin_lock_init(&hpd_rx_offload_wq[i].offload_lock); } return hpd_rx_offload_wq; } struct amdgpu_stutter_quirk { u16 chip_vendor; u16 chip_device; u16 subsys_vendor; u16 subsys_device; u8 revision; }; static const struct amdgpu_stutter_quirk amdgpu_stutter_quirk_list[] = { /* https://bugzilla.kernel.org/show_bug.cgi?id=214417 */ { 0x1002, 0x15dd, 0x1002, 0x15dd, 0xc8 }, { 0, 0, 0, 0, 0 }, }; static bool dm_should_disable_stutter(struct pci_dev *pdev) { const struct amdgpu_stutter_quirk *p = amdgpu_stutter_quirk_list; while (p && p->chip_device != 0) { if (pdev->vendor == p->chip_vendor && pdev->device == p->chip_device && pdev->subsystem_vendor == p->subsys_vendor && pdev->subsystem_device == p->subsys_device && pdev->revision == p->revision) { return true; } ++p; } return false; } static int amdgpu_dm_init(struct amdgpu_device *adev) { struct dc_init_data init_data; #ifdef CONFIG_DRM_AMD_DC_HDCP struct dc_callback_init init_params; #endif int r; adev->dm.ddev = adev_to_drm(adev); adev->dm.adev = adev; /* Zero all the fields */ memset(&init_data, 0, sizeof(init_data)); #ifdef CONFIG_DRM_AMD_DC_HDCP memset(&init_params, 0, sizeof(init_params)); #endif mutex_init(&adev->dm.dc_lock); mutex_init(&adev->dm.audio_lock); #if defined(CONFIG_DRM_AMD_DC_DCN) spin_lock_init(&adev->dm.vblank_lock); #endif if(amdgpu_dm_irq_init(adev)) { DRM_ERROR("amdgpu: failed to initialize DM IRQ support.\n"); goto error; } init_data.asic_id.chip_family = adev->family; init_data.asic_id.pci_revision_id = adev->pdev->revision; init_data.asic_id.hw_internal_rev = adev->external_rev_id; init_data.asic_id.chip_id = adev->pdev->device; init_data.asic_id.vram_width = adev->gmc.vram_width; /* TODO: initialize init_data.asic_id.vram_type here!!!! */ init_data.asic_id.atombios_base_address = adev->mode_info.atom_context->bios; init_data.driver = adev; adev->dm.cgs_device = amdgpu_cgs_create_device(adev); if (!adev->dm.cgs_device) { DRM_ERROR("amdgpu: failed to create cgs device.\n"); goto error; } init_data.cgs_device = adev->dm.cgs_device; init_data.dce_environment = DCE_ENV_PRODUCTION_DRV; switch (adev->asic_type) { case CHIP_CARRIZO: case CHIP_STONEY: init_data.flags.gpu_vm_support = true; break; default: switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(2, 1, 0): init_data.flags.gpu_vm_support = true; switch (adev->dm.dmcub_fw_version) { case 0: /* development */ case 0x1: /* linux-firmware.git hash 6d9f399 */ case 0x01000000: /* linux-firmware.git hash 9a0b0f4 */ init_data.flags.disable_dmcu = false; break; default: init_data.flags.disable_dmcu = true; } break; case IP_VERSION(1, 0, 0): case IP_VERSION(1, 0, 1): case IP_VERSION(3, 0, 1): case IP_VERSION(3, 1, 2): case IP_VERSION(3, 1, 3): init_data.flags.gpu_vm_support = true; break; case IP_VERSION(2, 0, 3): init_data.flags.disable_dmcu = true; break; default: break; } break; } if (amdgpu_dc_feature_mask & DC_FBC_MASK) init_data.flags.fbc_support = true; if (amdgpu_dc_feature_mask & DC_MULTI_MON_PP_MCLK_SWITCH_MASK) init_data.flags.multi_mon_pp_mclk_switch = true; if (amdgpu_dc_feature_mask & DC_DISABLE_FRACTIONAL_PWM_MASK) init_data.flags.disable_fractional_pwm = true; if (amdgpu_dc_feature_mask & DC_EDP_NO_POWER_SEQUENCING) init_data.flags.edp_no_power_sequencing = true; init_data.flags.power_down_display_on_boot = true; INIT_LIST_HEAD(&adev->dm.da_list); /* Display Core create. */ adev->dm.dc = dc_create(&init_data); if (adev->dm.dc) { DRM_INFO("Display Core initialized with v%s!\n", DC_VER); } else { DRM_INFO("Display Core failed to initialize with v%s!\n", DC_VER); goto error; } if (amdgpu_dc_debug_mask & DC_DISABLE_PIPE_SPLIT) { adev->dm.dc->debug.force_single_disp_pipe_split = false; adev->dm.dc->debug.pipe_split_policy = MPC_SPLIT_AVOID; } if (adev->asic_type != CHIP_CARRIZO && adev->asic_type != CHIP_STONEY) adev->dm.dc->debug.disable_stutter = amdgpu_pp_feature_mask & PP_STUTTER_MODE ? false : true; if (dm_should_disable_stutter(adev->pdev)) adev->dm.dc->debug.disable_stutter = true; if (amdgpu_dc_debug_mask & DC_DISABLE_STUTTER) adev->dm.dc->debug.disable_stutter = true; if (amdgpu_dc_debug_mask & DC_DISABLE_DSC) { adev->dm.dc->debug.disable_dsc = true; adev->dm.dc->debug.disable_dsc_edp = true; } if (amdgpu_dc_debug_mask & DC_DISABLE_CLOCK_GATING) adev->dm.dc->debug.disable_clock_gate = true; r = dm_dmub_hw_init(adev); if (r) { DRM_ERROR("DMUB interface failed to initialize: status=%d\n", r); goto error; } dc_hardware_init(adev->dm.dc); adev->dm.hpd_rx_offload_wq = hpd_rx_irq_create_workqueue(adev->dm.dc); if (!adev->dm.hpd_rx_offload_wq) { DRM_ERROR("amdgpu: failed to create hpd rx offload workqueue.\n"); goto error; } #if defined(CONFIG_DRM_AMD_DC_DCN) if ((adev->flags & AMD_IS_APU) && (adev->asic_type >= CHIP_CARRIZO)) { struct dc_phy_addr_space_config pa_config; mmhub_read_system_context(adev, &pa_config); // Call the DC init_memory func dc_setup_system_context(adev->dm.dc, &pa_config); } #endif adev->dm.freesync_module = mod_freesync_create(adev->dm.dc); if (!adev->dm.freesync_module) { DRM_ERROR( "amdgpu: failed to initialize freesync_module.\n"); } else DRM_DEBUG_DRIVER("amdgpu: freesync_module init done %p.\n", adev->dm.freesync_module); amdgpu_dm_init_color_mod(); #if defined(CONFIG_DRM_AMD_DC_DCN) if (adev->dm.dc->caps.max_links > 0) { adev->dm.vblank_control_workqueue = create_singlethread_workqueue("dm_vblank_control_workqueue"); if (!adev->dm.vblank_control_workqueue) DRM_ERROR("amdgpu: failed to initialize vblank_workqueue.\n"); } #endif #ifdef CONFIG_DRM_AMD_DC_HDCP if (adev->dm.dc->caps.max_links > 0 && adev->family >= AMDGPU_FAMILY_RV) { adev->dm.hdcp_workqueue = hdcp_create_workqueue(adev, &init_params.cp_psp, adev->dm.dc); if (!adev->dm.hdcp_workqueue) DRM_ERROR("amdgpu: failed to initialize hdcp_workqueue.\n"); else DRM_DEBUG_DRIVER("amdgpu: hdcp_workqueue init done %p.\n", adev->dm.hdcp_workqueue); dc_init_callbacks(adev->dm.dc, &init_params); } #endif #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) adev->dm.crc_rd_wrk = amdgpu_dm_crtc_secure_display_create_work(); #endif if (dc_enable_dmub_notifications(adev->dm.dc)) { init_completion(&adev->dm.dmub_aux_transfer_done); adev->dm.dmub_notify = kzalloc(sizeof(struct dmub_notification), GFP_KERNEL); if (!adev->dm.dmub_notify) { DRM_INFO("amdgpu: fail to allocate adev->dm.dmub_notify"); goto error; } adev->dm.delayed_hpd_wq = create_singlethread_workqueue("amdgpu_dm_hpd_wq"); if (!adev->dm.delayed_hpd_wq) { DRM_ERROR("amdgpu: failed to create hpd offload workqueue.\n"); goto error; } amdgpu_dm_outbox_init(adev); #if defined(CONFIG_DRM_AMD_DC_DCN) if (!register_dmub_notify_callback(adev, DMUB_NOTIFICATION_AUX_REPLY, dmub_aux_setconfig_callback, false)) { DRM_ERROR("amdgpu: fail to register dmub aux callback"); goto error; } if (!register_dmub_notify_callback(adev, DMUB_NOTIFICATION_HPD, dmub_hpd_callback, true)) { DRM_ERROR("amdgpu: fail to register dmub hpd callback"); goto error; } if (!register_dmub_notify_callback(adev, DMUB_NOTIFICATION_HPD_IRQ, dmub_hpd_callback, true)) { DRM_ERROR("amdgpu: fail to register dmub hpd callback"); goto error; } #endif /* CONFIG_DRM_AMD_DC_DCN */ } if (amdgpu_dm_initialize_drm_device(adev)) { DRM_ERROR( "amdgpu: failed to initialize sw for display support.\n"); goto error; } /* create fake encoders for MST */ dm_dp_create_fake_mst_encoders(adev); /* TODO: Add_display_info? */ /* TODO use dynamic cursor width */ adev_to_drm(adev)->mode_config.cursor_width = adev->dm.dc->caps.max_cursor_size; adev_to_drm(adev)->mode_config.cursor_height = adev->dm.dc->caps.max_cursor_size; /* Disable vblank IRQs aggressively for power-saving */ adev_to_drm(adev)->vblank_disable_immediate = true; if (drm_vblank_init(adev_to_drm(adev), adev->dm.display_indexes_num)) { DRM_ERROR( "amdgpu: failed to initialize sw for display support.\n"); goto error; } DRM_DEBUG_DRIVER("KMS initialized.\n"); return 0; error: amdgpu_dm_fini(adev); return -EINVAL; } static int amdgpu_dm_early_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_dm_audio_fini(adev); return 0; } static void amdgpu_dm_fini(struct amdgpu_device *adev) { int i; #if defined(CONFIG_DRM_AMD_DC_DCN) if (adev->dm.vblank_control_workqueue) { destroy_workqueue(adev->dm.vblank_control_workqueue); adev->dm.vblank_control_workqueue = NULL; } #endif for (i = 0; i < adev->dm.display_indexes_num; i++) { drm_encoder_cleanup(&adev->dm.mst_encoders[i].base); } amdgpu_dm_destroy_drm_device(&adev->dm); #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) if (adev->dm.crc_rd_wrk) { flush_work(&adev->dm.crc_rd_wrk->notify_ta_work); kfree(adev->dm.crc_rd_wrk); adev->dm.crc_rd_wrk = NULL; } #endif #ifdef CONFIG_DRM_AMD_DC_HDCP if (adev->dm.hdcp_workqueue) { hdcp_destroy(&adev->dev->kobj, adev->dm.hdcp_workqueue); adev->dm.hdcp_workqueue = NULL; } if (adev->dm.dc) dc_deinit_callbacks(adev->dm.dc); #endif dc_dmub_srv_destroy(&adev->dm.dc->ctx->dmub_srv); if (dc_enable_dmub_notifications(adev->dm.dc)) { kfree(adev->dm.dmub_notify); adev->dm.dmub_notify = NULL; destroy_workqueue(adev->dm.delayed_hpd_wq); adev->dm.delayed_hpd_wq = NULL; } if (adev->dm.dmub_bo) amdgpu_bo_free_kernel(&adev->dm.dmub_bo, &adev->dm.dmub_bo_gpu_addr, &adev->dm.dmub_bo_cpu_addr); if (adev->dm.hpd_rx_offload_wq) { for (i = 0; i < adev->dm.dc->caps.max_links; i++) { if (adev->dm.hpd_rx_offload_wq[i].wq) { destroy_workqueue(adev->dm.hpd_rx_offload_wq[i].wq); adev->dm.hpd_rx_offload_wq[i].wq = NULL; } } kfree(adev->dm.hpd_rx_offload_wq); adev->dm.hpd_rx_offload_wq = NULL; } /* DC Destroy TODO: Replace destroy DAL */ if (adev->dm.dc) dc_destroy(&adev->dm.dc); /* * TODO: pageflip, vlank interrupt * * amdgpu_dm_irq_fini(adev); */ if (adev->dm.cgs_device) { amdgpu_cgs_destroy_device(adev->dm.cgs_device); adev->dm.cgs_device = NULL; } if (adev->dm.freesync_module) { mod_freesync_destroy(adev->dm.freesync_module); adev->dm.freesync_module = NULL; } mutex_destroy(&adev->dm.audio_lock); mutex_destroy(&adev->dm.dc_lock); return; } static int load_dmcu_fw(struct amdgpu_device *adev) { const char *fw_name_dmcu = NULL; int r; const struct dmcu_firmware_header_v1_0 *hdr; switch(adev->asic_type) { #if defined(CONFIG_DRM_AMD_DC_SI) case CHIP_TAHITI: case CHIP_PITCAIRN: case CHIP_VERDE: case CHIP_OLAND: #endif case CHIP_BONAIRE: case CHIP_HAWAII: case CHIP_KAVERI: case CHIP_KABINI: case CHIP_MULLINS: case CHIP_TONGA: case CHIP_FIJI: case CHIP_CARRIZO: case CHIP_STONEY: case CHIP_POLARIS11: case CHIP_POLARIS10: case CHIP_POLARIS12: case CHIP_VEGAM: case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: return 0; case CHIP_NAVI12: fw_name_dmcu = FIRMWARE_NAVI12_DMCU; break; case CHIP_RAVEN: if (ASICREV_IS_PICASSO(adev->external_rev_id)) fw_name_dmcu = FIRMWARE_RAVEN_DMCU; else if (ASICREV_IS_RAVEN2(adev->external_rev_id)) fw_name_dmcu = FIRMWARE_RAVEN_DMCU; else return 0; break; default: switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(2, 0, 2): case IP_VERSION(2, 0, 3): case IP_VERSION(2, 0, 0): case IP_VERSION(2, 1, 0): case IP_VERSION(3, 0, 0): case IP_VERSION(3, 0, 2): case IP_VERSION(3, 0, 3): case IP_VERSION(3, 0, 1): case IP_VERSION(3, 1, 2): case IP_VERSION(3, 1, 3): return 0; default: break; } DRM_ERROR("Unsupported ASIC type: 0x%X\n", adev->asic_type); return -EINVAL; } if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { DRM_DEBUG_KMS("dm: DMCU firmware not supported on direct or SMU loading\n"); return 0; } r = request_firmware_direct(&adev->dm.fw_dmcu, fw_name_dmcu, adev->dev); if (r == -ENOENT) { /* DMCU firmware is not necessary, so don't raise a fuss if it's missing */ DRM_DEBUG_KMS("dm: DMCU firmware not found\n"); adev->dm.fw_dmcu = NULL; return 0; } if (r) { dev_err(adev->dev, "amdgpu_dm: Can't load firmware \"%s\"\n", fw_name_dmcu); return r; } r = amdgpu_ucode_validate(adev->dm.fw_dmcu); if (r) { dev_err(adev->dev, "amdgpu_dm: Can't validate firmware \"%s\"\n", fw_name_dmcu); release_firmware(adev->dm.fw_dmcu); adev->dm.fw_dmcu = NULL; return r; } hdr = (const struct dmcu_firmware_header_v1_0 *)adev->dm.fw_dmcu->data; adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_ERAM].ucode_id = AMDGPU_UCODE_ID_DMCU_ERAM; adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_ERAM].fw = adev->dm.fw_dmcu; adev->firmware.fw_size += ALIGN(le32_to_cpu(hdr->header.ucode_size_bytes) - le32_to_cpu(hdr->intv_size_bytes), PAGE_SIZE); adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_INTV].ucode_id = AMDGPU_UCODE_ID_DMCU_INTV; adev->firmware.ucode[AMDGPU_UCODE_ID_DMCU_INTV].fw = adev->dm.fw_dmcu; adev->firmware.fw_size += ALIGN(le32_to_cpu(hdr->intv_size_bytes), PAGE_SIZE); adev->dm.dmcu_fw_version = le32_to_cpu(hdr->header.ucode_version); DRM_DEBUG_KMS("PSP loading DMCU firmware\n"); return 0; } static uint32_t amdgpu_dm_dmub_reg_read(void *ctx, uint32_t address) { struct amdgpu_device *adev = ctx; return dm_read_reg(adev->dm.dc->ctx, address); } static void amdgpu_dm_dmub_reg_write(void *ctx, uint32_t address, uint32_t value) { struct amdgpu_device *adev = ctx; return dm_write_reg(adev->dm.dc->ctx, address, value); } static int dm_dmub_sw_init(struct amdgpu_device *adev) { struct dmub_srv_create_params create_params; struct dmub_srv_region_params region_params; struct dmub_srv_region_info region_info; struct dmub_srv_fb_params fb_params; struct dmub_srv_fb_info *fb_info; struct dmub_srv *dmub_srv; const struct dmcub_firmware_header_v1_0 *hdr; const char *fw_name_dmub; enum dmub_asic dmub_asic; enum dmub_status status; int r; switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(2, 1, 0): dmub_asic = DMUB_ASIC_DCN21; fw_name_dmub = FIRMWARE_RENOIR_DMUB; if (ASICREV_IS_GREEN_SARDINE(adev->external_rev_id)) fw_name_dmub = FIRMWARE_GREEN_SARDINE_DMUB; break; case IP_VERSION(3, 0, 0): if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(10, 3, 0)) { dmub_asic = DMUB_ASIC_DCN30; fw_name_dmub = FIRMWARE_SIENNA_CICHLID_DMUB; } else { dmub_asic = DMUB_ASIC_DCN30; fw_name_dmub = FIRMWARE_NAVY_FLOUNDER_DMUB; } break; case IP_VERSION(3, 0, 1): dmub_asic = DMUB_ASIC_DCN301; fw_name_dmub = FIRMWARE_VANGOGH_DMUB; break; case IP_VERSION(3, 0, 2): dmub_asic = DMUB_ASIC_DCN302; fw_name_dmub = FIRMWARE_DIMGREY_CAVEFISH_DMUB; break; case IP_VERSION(3, 0, 3): dmub_asic = DMUB_ASIC_DCN303; fw_name_dmub = FIRMWARE_BEIGE_GOBY_DMUB; break; case IP_VERSION(3, 1, 2): case IP_VERSION(3, 1, 3): dmub_asic = (adev->external_rev_id == YELLOW_CARP_B0) ? DMUB_ASIC_DCN31B : DMUB_ASIC_DCN31; fw_name_dmub = FIRMWARE_YELLOW_CARP_DMUB; break; default: /* ASIC doesn't support DMUB. */ return 0; } r = request_firmware_direct(&adev->dm.dmub_fw, fw_name_dmub, adev->dev); if (r) { DRM_ERROR("DMUB firmware loading failed: %d\n", r); return 0; } r = amdgpu_ucode_validate(adev->dm.dmub_fw); if (r) { DRM_ERROR("Couldn't validate DMUB firmware: %d\n", r); return 0; } hdr = (const struct dmcub_firmware_header_v1_0 *)adev->dm.dmub_fw->data; adev->dm.dmcub_fw_version = le32_to_cpu(hdr->header.ucode_version); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { adev->firmware.ucode[AMDGPU_UCODE_ID_DMCUB].ucode_id = AMDGPU_UCODE_ID_DMCUB; adev->firmware.ucode[AMDGPU_UCODE_ID_DMCUB].fw = adev->dm.dmub_fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(hdr->inst_const_bytes), PAGE_SIZE); DRM_INFO("Loading DMUB firmware via PSP: version=0x%08X\n", adev->dm.dmcub_fw_version); } adev->dm.dmub_srv = kzalloc(sizeof(*adev->dm.dmub_srv), GFP_KERNEL); dmub_srv = adev->dm.dmub_srv; if (!dmub_srv) { DRM_ERROR("Failed to allocate DMUB service!\n"); return -ENOMEM; } memset(&create_params, 0, sizeof(create_params)); create_params.user_ctx = adev; create_params.funcs.reg_read = amdgpu_dm_dmub_reg_read; create_params.funcs.reg_write = amdgpu_dm_dmub_reg_write; create_params.asic = dmub_asic; /* Create the DMUB service. */ status = dmub_srv_create(dmub_srv, &create_params); if (status != DMUB_STATUS_OK) { DRM_ERROR("Error creating DMUB service: %d\n", status); return -EINVAL; } /* Calculate the size of all the regions for the DMUB service. */ memset(®ion_params, 0, sizeof(region_params)); region_params.inst_const_size = le32_to_cpu(hdr->inst_const_bytes) - PSP_HEADER_BYTES - PSP_FOOTER_BYTES; region_params.bss_data_size = le32_to_cpu(hdr->bss_data_bytes); region_params.vbios_size = adev->bios_size; region_params.fw_bss_data = region_params.bss_data_size ? adev->dm.dmub_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes) + le32_to_cpu(hdr->inst_const_bytes) : NULL; region_params.fw_inst_const = adev->dm.dmub_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes) + PSP_HEADER_BYTES; status = dmub_srv_calc_region_info(dmub_srv, ®ion_params, ®ion_info); if (status != DMUB_STATUS_OK) { DRM_ERROR("Error calculating DMUB region info: %d\n", status); return -EINVAL; } /* * Allocate a framebuffer based on the total size of all the regions. * TODO: Move this into GART. */ r = amdgpu_bo_create_kernel(adev, region_info.fb_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->dm.dmub_bo, &adev->dm.dmub_bo_gpu_addr, &adev->dm.dmub_bo_cpu_addr); if (r) return r; /* Rebase the regions on the framebuffer address. */ memset(&fb_params, 0, sizeof(fb_params)); fb_params.cpu_addr = adev->dm.dmub_bo_cpu_addr; fb_params.gpu_addr = adev->dm.dmub_bo_gpu_addr; fb_params.region_info = ®ion_info; adev->dm.dmub_fb_info = kzalloc(sizeof(*adev->dm.dmub_fb_info), GFP_KERNEL); fb_info = adev->dm.dmub_fb_info; if (!fb_info) { DRM_ERROR( "Failed to allocate framebuffer info for DMUB service!\n"); return -ENOMEM; } status = dmub_srv_calc_fb_info(dmub_srv, &fb_params, fb_info); if (status != DMUB_STATUS_OK) { DRM_ERROR("Error calculating DMUB FB info: %d\n", status); return -EINVAL; } return 0; } static int dm_sw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = dm_dmub_sw_init(adev); if (r) return r; return load_dmcu_fw(adev); } static int dm_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; kfree(adev->dm.dmub_fb_info); adev->dm.dmub_fb_info = NULL; if (adev->dm.dmub_srv) { dmub_srv_destroy(adev->dm.dmub_srv); adev->dm.dmub_srv = NULL; } release_firmware(adev->dm.dmub_fw); adev->dm.dmub_fw = NULL; release_firmware(adev->dm.fw_dmcu); adev->dm.fw_dmcu = NULL; return 0; } static int detect_mst_link_for_all_connectors(struct drm_device *dev) { struct amdgpu_dm_connector *aconnector; struct drm_connector *connector; struct drm_connector_list_iter iter; int ret = 0; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { aconnector = to_amdgpu_dm_connector(connector); if (aconnector->dc_link->type == dc_connection_mst_branch && aconnector->mst_mgr.aux) { DRM_DEBUG_DRIVER("DM_MST: starting TM on aconnector: %p [id: %d]\n", aconnector, aconnector->base.base.id); ret = drm_dp_mst_topology_mgr_set_mst(&aconnector->mst_mgr, true); if (ret < 0) { DRM_ERROR("DM_MST: Failed to start MST\n"); aconnector->dc_link->type = dc_connection_single; break; } } } drm_connector_list_iter_end(&iter); return ret; } static int dm_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct dmcu_iram_parameters params; unsigned int linear_lut[16]; int i; struct dmcu *dmcu = NULL; dmcu = adev->dm.dc->res_pool->dmcu; for (i = 0; i < 16; i++) linear_lut[i] = 0xFFFF * i / 15; params.set = 0; params.backlight_ramping_override = false; params.backlight_ramping_start = 0xCCCC; params.backlight_ramping_reduction = 0xCCCCCCCC; params.backlight_lut_array_size = 16; params.backlight_lut_array = linear_lut; /* Min backlight level after ABM reduction, Don't allow below 1% * 0xFFFF x 0.01 = 0x28F */ params.min_abm_backlight = 0x28F; /* In the case where abm is implemented on dmcub, * dmcu object will be null. * ABM 2.4 and up are implemented on dmcub. */ if (dmcu) { if (!dmcu_load_iram(dmcu, params)) return -EINVAL; } else if (adev->dm.dc->ctx->dmub_srv) { struct dc_link *edp_links[MAX_NUM_EDP]; int edp_num; get_edp_links(adev->dm.dc, edp_links, &edp_num); for (i = 0; i < edp_num; i++) { if (!dmub_init_abm_config(adev->dm.dc->res_pool, params, i)) return -EINVAL; } } return detect_mst_link_for_all_connectors(adev_to_drm(adev)); } static void s3_handle_mst(struct drm_device *dev, bool suspend) { struct amdgpu_dm_connector *aconnector; struct drm_connector *connector; struct drm_connector_list_iter iter; struct drm_dp_mst_topology_mgr *mgr; int ret; bool need_hotplug = false; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { aconnector = to_amdgpu_dm_connector(connector); if (aconnector->dc_link->type != dc_connection_mst_branch || aconnector->mst_port) continue; mgr = &aconnector->mst_mgr; if (suspend) { drm_dp_mst_topology_mgr_suspend(mgr); } else { ret = drm_dp_mst_topology_mgr_resume(mgr, true); if (ret < 0) { drm_dp_mst_topology_mgr_set_mst(mgr, false); need_hotplug = true; } } } drm_connector_list_iter_end(&iter); if (need_hotplug) drm_kms_helper_hotplug_event(dev); } static int amdgpu_dm_smu_write_watermarks_table(struct amdgpu_device *adev) { struct smu_context *smu = &adev->smu; int ret = 0; if (!is_support_sw_smu(adev)) return 0; /* This interface is for dGPU Navi1x.Linux dc-pplib interface depends * on window driver dc implementation. * For Navi1x, clock settings of dcn watermarks are fixed. the settings * should be passed to smu during boot up and resume from s3. * boot up: dc calculate dcn watermark clock settings within dc_create, * dcn20_resource_construct * then call pplib functions below to pass the settings to smu: * smu_set_watermarks_for_clock_ranges * smu_set_watermarks_table * navi10_set_watermarks_table * smu_write_watermarks_table * * For Renoir, clock settings of dcn watermark are also fixed values. * dc has implemented different flow for window driver: * dc_hardware_init / dc_set_power_state * dcn10_init_hw * notify_wm_ranges * set_wm_ranges * -- Linux * smu_set_watermarks_for_clock_ranges * renoir_set_watermarks_table * smu_write_watermarks_table * * For Linux, * dc_hardware_init -> amdgpu_dm_init * dc_set_power_state --> dm_resume * * therefore, this function apply to navi10/12/14 but not Renoir * * */ switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(2, 0, 2): case IP_VERSION(2, 0, 0): break; default: return 0; } ret = smu_write_watermarks_table(smu); if (ret) { DRM_ERROR("Failed to update WMTABLE!\n"); return ret; } return 0; } /** * dm_hw_init() - Initialize DC device * @handle: The base driver device containing the amdgpu_dm device. * * Initialize the &struct amdgpu_display_manager device. This involves calling * the initializers of each DM component, then populating the struct with them. * * Although the function implies hardware initialization, both hardware and * software are initialized here. Splitting them out to their relevant init * hooks is a future TODO item. * * Some notable things that are initialized here: * * - Display Core, both software and hardware * - DC modules that we need (freesync and color management) * - DRM software states * - Interrupt sources and handlers * - Vblank support * - Debug FS entries, if enabled */ static int dm_hw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* Create DAL display manager */ amdgpu_dm_init(adev); amdgpu_dm_hpd_init(adev); return 0; } /** * dm_hw_fini() - Teardown DC device * @handle: The base driver device containing the amdgpu_dm device. * * Teardown components within &struct amdgpu_display_manager that require * cleanup. This involves cleaning up the DRM device, DC, and any modules that * were loaded. Also flush IRQ workqueues and disable them. */ static int dm_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_dm_hpd_fini(adev); amdgpu_dm_irq_fini(adev); amdgpu_dm_fini(adev); return 0; } static int dm_enable_vblank(struct drm_crtc *crtc); static void dm_disable_vblank(struct drm_crtc *crtc); static void dm_gpureset_toggle_interrupts(struct amdgpu_device *adev, struct dc_state *state, bool enable) { enum dc_irq_source irq_source; struct amdgpu_crtc *acrtc; int rc = -EBUSY; int i = 0; for (i = 0; i < state->stream_count; i++) { acrtc = get_crtc_by_otg_inst( adev, state->stream_status[i].primary_otg_inst); if (acrtc && state->stream_status[i].plane_count != 0) { irq_source = IRQ_TYPE_PFLIP + acrtc->otg_inst; rc = dc_interrupt_set(adev->dm.dc, irq_source, enable) ? 0 : -EBUSY; DRM_DEBUG_VBL("crtc %d - vupdate irq %sabling: r=%d\n", acrtc->crtc_id, enable ? "en" : "dis", rc); if (rc) DRM_WARN("Failed to %s pflip interrupts\n", enable ? "enable" : "disable"); if (enable) { rc = dm_enable_vblank(&acrtc->base); if (rc) DRM_WARN("Failed to enable vblank interrupts\n"); } else { dm_disable_vblank(&acrtc->base); } } } } static enum dc_status amdgpu_dm_commit_zero_streams(struct dc *dc) { struct dc_state *context = NULL; enum dc_status res = DC_ERROR_UNEXPECTED; int i; struct dc_stream_state *del_streams[MAX_PIPES]; int del_streams_count = 0; memset(del_streams, 0, sizeof(del_streams)); context = dc_create_state(dc); if (context == NULL) goto context_alloc_fail; dc_resource_state_copy_construct_current(dc, context); /* First remove from context all streams */ for (i = 0; i < context->stream_count; i++) { struct dc_stream_state *stream = context->streams[i]; del_streams[del_streams_count++] = stream; } /* Remove all planes for removed streams and then remove the streams */ for (i = 0; i < del_streams_count; i++) { if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) { res = DC_FAIL_DETACH_SURFACES; goto fail; } res = dc_remove_stream_from_ctx(dc, context, del_streams[i]); if (res != DC_OK) goto fail; } res = dc_commit_state(dc, context); fail: dc_release_state(context); context_alloc_fail: return res; } static void hpd_rx_irq_work_suspend(struct amdgpu_display_manager *dm) { int i; if (dm->hpd_rx_offload_wq) { for (i = 0; i < dm->dc->caps.max_links; i++) flush_workqueue(dm->hpd_rx_offload_wq[i].wq); } } static int dm_suspend(void *handle) { struct amdgpu_device *adev = handle; struct amdgpu_display_manager *dm = &adev->dm; int ret = 0; if (amdgpu_in_reset(adev)) { mutex_lock(&dm->dc_lock); #if defined(CONFIG_DRM_AMD_DC_DCN) dc_allow_idle_optimizations(adev->dm.dc, false); #endif dm->cached_dc_state = dc_copy_state(dm->dc->current_state); dm_gpureset_toggle_interrupts(adev, dm->cached_dc_state, false); amdgpu_dm_commit_zero_streams(dm->dc); amdgpu_dm_irq_suspend(adev); hpd_rx_irq_work_suspend(dm); return ret; } WARN_ON(adev->dm.cached_state); adev->dm.cached_state = drm_atomic_helper_suspend(adev_to_drm(adev)); s3_handle_mst(adev_to_drm(adev), true); amdgpu_dm_irq_suspend(adev); hpd_rx_irq_work_suspend(dm); dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D3); return 0; } static struct amdgpu_dm_connector * amdgpu_dm_find_first_crtc_matching_connector(struct drm_atomic_state *state, struct drm_crtc *crtc) { uint32_t i; struct drm_connector_state *new_con_state; struct drm_connector *connector; struct drm_crtc *crtc_from_state; for_each_new_connector_in_state(state, connector, new_con_state, i) { crtc_from_state = new_con_state->crtc; if (crtc_from_state == crtc) return to_amdgpu_dm_connector(connector); } return NULL; } static void emulated_link_detect(struct dc_link *link) { struct dc_sink_init_data sink_init_data = { 0 }; struct display_sink_capability sink_caps = { 0 }; enum dc_edid_status edid_status; struct dc_context *dc_ctx = link->ctx; struct dc_sink *sink = NULL; struct dc_sink *prev_sink = NULL; link->type = dc_connection_none; prev_sink = link->local_sink; if (prev_sink) dc_sink_release(prev_sink); switch (link->connector_signal) { case SIGNAL_TYPE_HDMI_TYPE_A: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_HDMI_TYPE_A; break; } case SIGNAL_TYPE_DVI_SINGLE_LINK: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_DVI_SINGLE_LINK; break; } case SIGNAL_TYPE_DVI_DUAL_LINK: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_DVI_DUAL_LINK; break; } case SIGNAL_TYPE_LVDS: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C; sink_caps.signal = SIGNAL_TYPE_LVDS; break; } case SIGNAL_TYPE_EDP: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; sink_caps.signal = SIGNAL_TYPE_EDP; break; } case SIGNAL_TYPE_DISPLAY_PORT: { sink_caps.transaction_type = DDC_TRANSACTION_TYPE_I2C_OVER_AUX; sink_caps.signal = SIGNAL_TYPE_VIRTUAL; break; } default: DC_ERROR("Invalid connector type! signal:%d\n", link->connector_signal); return; } sink_init_data.link = link; sink_init_data.sink_signal = sink_caps.signal; sink = dc_sink_create(&sink_init_data); if (!sink) { DC_ERROR("Failed to create sink!\n"); return; } /* dc_sink_create returns a new reference */ link->local_sink = sink; edid_status = dm_helpers_read_local_edid( link->ctx, link, sink); if (edid_status != EDID_OK) DC_ERROR("Failed to read EDID"); } static void dm_gpureset_commit_state(struct dc_state *dc_state, struct amdgpu_display_manager *dm) { struct { struct dc_surface_update surface_updates[MAX_SURFACES]; struct dc_plane_info plane_infos[MAX_SURFACES]; struct dc_scaling_info scaling_infos[MAX_SURFACES]; struct dc_flip_addrs flip_addrs[MAX_SURFACES]; struct dc_stream_update stream_update; } * bundle; int k, m; bundle = kzalloc(sizeof(*bundle), GFP_KERNEL); if (!bundle) { dm_error("Failed to allocate update bundle\n"); goto cleanup; } for (k = 0; k < dc_state->stream_count; k++) { bundle->stream_update.stream = dc_state->streams[k]; for (m = 0; m < dc_state->stream_status->plane_count; m++) { bundle->surface_updates[m].surface = dc_state->stream_status->plane_states[m]; bundle->surface_updates[m].surface->force_full_update = true; } dc_commit_updates_for_stream( dm->dc, bundle->surface_updates, dc_state->stream_status->plane_count, dc_state->streams[k], &bundle->stream_update, dc_state); } cleanup: kfree(bundle); return; } static void dm_set_dpms_off(struct dc_link *link, struct dm_crtc_state *acrtc_state) { struct dc_stream_state *stream_state; struct amdgpu_dm_connector *aconnector = link->priv; struct amdgpu_device *adev = drm_to_adev(aconnector->base.dev); struct dc_stream_update stream_update; bool dpms_off = true; memset(&stream_update, 0, sizeof(stream_update)); stream_update.dpms_off = &dpms_off; mutex_lock(&adev->dm.dc_lock); stream_state = dc_stream_find_from_link(link); if (stream_state == NULL) { DRM_DEBUG_DRIVER("Error finding stream state associated with link!\n"); mutex_unlock(&adev->dm.dc_lock); return; } stream_update.stream = stream_state; acrtc_state->force_dpms_off = true; dc_commit_updates_for_stream(stream_state->ctx->dc, NULL, 0, stream_state, &stream_update, stream_state->ctx->dc->current_state); mutex_unlock(&adev->dm.dc_lock); } static int dm_resume(void *handle) { struct amdgpu_device *adev = handle; struct drm_device *ddev = adev_to_drm(adev); struct amdgpu_display_manager *dm = &adev->dm; struct amdgpu_dm_connector *aconnector; struct drm_connector *connector; struct drm_connector_list_iter iter; struct drm_crtc *crtc; struct drm_crtc_state *new_crtc_state; struct dm_crtc_state *dm_new_crtc_state; struct drm_plane *plane; struct drm_plane_state *new_plane_state; struct dm_plane_state *dm_new_plane_state; struct dm_atomic_state *dm_state = to_dm_atomic_state(dm->atomic_obj.state); enum dc_connection_type new_connection_type = dc_connection_none; struct dc_state *dc_state; int i, r, j; if (amdgpu_in_reset(adev)) { dc_state = dm->cached_dc_state; amdgpu_dm_outbox_init(adev); r = dm_dmub_hw_init(adev); if (r) DRM_ERROR("DMUB interface failed to initialize: status=%d\n", r); dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D0); dc_resume(dm->dc); amdgpu_dm_irq_resume_early(adev); for (i = 0; i < dc_state->stream_count; i++) { dc_state->streams[i]->mode_changed = true; for (j = 0; j < dc_state->stream_status->plane_count; j++) { dc_state->stream_status->plane_states[j]->update_flags.raw = 0xffffffff; } } WARN_ON(!dc_commit_state(dm->dc, dc_state)); dm_gpureset_commit_state(dm->cached_dc_state, dm); dm_gpureset_toggle_interrupts(adev, dm->cached_dc_state, true); dc_release_state(dm->cached_dc_state); dm->cached_dc_state = NULL; amdgpu_dm_irq_resume_late(adev); mutex_unlock(&dm->dc_lock); return 0; } /* Recreate dc_state - DC invalidates it when setting power state to S3. */ dc_release_state(dm_state->context); dm_state->context = dc_create_state(dm->dc); /* TODO: Remove dc_state->dccg, use dc->dccg directly. */ dc_resource_state_construct(dm->dc, dm_state->context); /* Before powering on DC we need to re-initialize DMUB. */ r = dm_dmub_hw_init(adev); if (r) DRM_ERROR("DMUB interface failed to initialize: status=%d\n", r); /* power on hardware */ dc_set_power_state(dm->dc, DC_ACPI_CM_POWER_STATE_D0); /* program HPD filter */ dc_resume(dm->dc); /* * early enable HPD Rx IRQ, should be done before set mode as short * pulse interrupts are used for MST */ amdgpu_dm_irq_resume_early(adev); /* On resume we need to rewrite the MSTM control bits to enable MST*/ s3_handle_mst(ddev, false); /* Do detection*/ drm_connector_list_iter_begin(ddev, &iter); drm_for_each_connector_iter(connector, &iter) { aconnector = to_amdgpu_dm_connector(connector); /* * this is the case when traversing through already created * MST connectors, should be skipped */ if (aconnector->mst_port) continue; mutex_lock(&aconnector->hpd_lock); if (!dc_link_detect_sink(aconnector->dc_link, &new_connection_type)) DRM_ERROR("KMS: Failed to detect connector\n"); if (aconnector->base.force && new_connection_type == dc_connection_none) emulated_link_detect(aconnector->dc_link); else dc_link_detect(aconnector->dc_link, DETECT_REASON_HPD); if (aconnector->fake_enable && aconnector->dc_link->local_sink) aconnector->fake_enable = false; if (aconnector->dc_sink) dc_sink_release(aconnector->dc_sink); aconnector->dc_sink = NULL; amdgpu_dm_update_connector_after_detect(aconnector); mutex_unlock(&aconnector->hpd_lock); } drm_connector_list_iter_end(&iter); /* Force mode set in atomic commit */ for_each_new_crtc_in_state(dm->cached_state, crtc, new_crtc_state, i) new_crtc_state->active_changed = true; /* * atomic_check is expected to create the dc states. We need to release * them here, since they were duplicated as part of the suspend * procedure. */ for_each_new_crtc_in_state(dm->cached_state, crtc, new_crtc_state, i) { dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); if (dm_new_crtc_state->stream) { WARN_ON(kref_read(&dm_new_crtc_state->stream->refcount) > 1); dc_stream_release(dm_new_crtc_state->stream); dm_new_crtc_state->stream = NULL; } } for_each_new_plane_in_state(dm->cached_state, plane, new_plane_state, i) { dm_new_plane_state = to_dm_plane_state(new_plane_state); if (dm_new_plane_state->dc_state) { WARN_ON(kref_read(&dm_new_plane_state->dc_state->refcount) > 1); dc_plane_state_release(dm_new_plane_state->dc_state); dm_new_plane_state->dc_state = NULL; } } drm_atomic_helper_resume(ddev, dm->cached_state); dm->cached_state = NULL; amdgpu_dm_irq_resume_late(adev); amdgpu_dm_smu_write_watermarks_table(adev); return 0; } /** * DOC: DM Lifecycle * * DM (and consequently DC) is registered in the amdgpu base driver as a IP * block. When CONFIG_DRM_AMD_DC is enabled, the DM device IP block is added to * the base driver's device list to be initialized and torn down accordingly. * * The functions to do so are provided as hooks in &struct amd_ip_funcs. */ static const struct amd_ip_funcs amdgpu_dm_funcs = { .name = "dm", .early_init = dm_early_init, .late_init = dm_late_init, .sw_init = dm_sw_init, .sw_fini = dm_sw_fini, .early_fini = amdgpu_dm_early_fini, .hw_init = dm_hw_init, .hw_fini = dm_hw_fini, .suspend = dm_suspend, .resume = dm_resume, .is_idle = dm_is_idle, .wait_for_idle = dm_wait_for_idle, .check_soft_reset = dm_check_soft_reset, .soft_reset = dm_soft_reset, .set_clockgating_state = dm_set_clockgating_state, .set_powergating_state = dm_set_powergating_state, }; const struct amdgpu_ip_block_version dm_ip_block = { .type = AMD_IP_BLOCK_TYPE_DCE, .major = 1, .minor = 0, .rev = 0, .funcs = &amdgpu_dm_funcs, }; /** * DOC: atomic * * *WIP* */ static const struct drm_mode_config_funcs amdgpu_dm_mode_funcs = { .fb_create = amdgpu_display_user_framebuffer_create, .get_format_info = amd_get_format_info, .output_poll_changed = drm_fb_helper_output_poll_changed, .atomic_check = amdgpu_dm_atomic_check, .atomic_commit = drm_atomic_helper_commit, }; static struct drm_mode_config_helper_funcs amdgpu_dm_mode_config_helperfuncs = { .atomic_commit_tail = amdgpu_dm_atomic_commit_tail }; static void update_connector_ext_caps(struct amdgpu_dm_connector *aconnector) { u32 max_cll, min_cll, max, min, q, r; struct amdgpu_dm_backlight_caps *caps; struct amdgpu_display_manager *dm; struct drm_connector *conn_base; struct amdgpu_device *adev; struct dc_link *link = NULL; static const u8 pre_computed_values[] = { 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98}; int i; if (!aconnector || !aconnector->dc_link) return; link = aconnector->dc_link; if (link->connector_signal != SIGNAL_TYPE_EDP) return; conn_base = &aconnector->base; adev = drm_to_adev(conn_base->dev); dm = &adev->dm; for (i = 0; i < dm->num_of_edps; i++) { if (link == dm->backlight_link[i]) break; } if (i >= dm->num_of_edps) return; caps = &dm->backlight_caps[i]; caps->ext_caps = &aconnector->dc_link->dpcd_sink_ext_caps; caps->aux_support = false; max_cll = conn_base->hdr_sink_metadata.hdmi_type1.max_cll; min_cll = conn_base->hdr_sink_metadata.hdmi_type1.min_cll; if (caps->ext_caps->bits.oled == 1 /*|| caps->ext_caps->bits.sdr_aux_backlight_control == 1 || caps->ext_caps->bits.hdr_aux_backlight_control == 1*/) caps->aux_support = true; if (amdgpu_backlight == 0) caps->aux_support = false; else if (amdgpu_backlight == 1) caps->aux_support = true; /* From the specification (CTA-861-G), for calculating the maximum * luminance we need to use: * Luminance = 50*2**(CV/32) * Where CV is a one-byte value. * For calculating this expression we may need float point precision; * to avoid this complexity level, we take advantage that CV is divided * by a constant. From the Euclids division algorithm, we know that CV * can be written as: CV = 32*q + r. Next, we replace CV in the * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just * need to pre-compute the value of r/32. For pre-computing the values * We just used the following Ruby line: * (0...32).each {|cv| puts (50*2**(cv/32.0)).round} * The results of the above expressions can be verified at * pre_computed_values. */ q = max_cll >> 5; r = max_cll % 32; max = (1 << q) * pre_computed_values[r]; // min luminance: maxLum * (CV/255)^2 / 100 q = DIV_ROUND_CLOSEST(min_cll, 255); min = max * DIV_ROUND_CLOSEST((q * q), 100); caps->aux_max_input_signal = max; caps->aux_min_input_signal = min; } void amdgpu_dm_update_connector_after_detect( struct amdgpu_dm_connector *aconnector) { struct drm_connector *connector = &aconnector->base; struct drm_device *dev = connector->dev; struct dc_sink *sink; /* MST handled by drm_mst framework */ if (aconnector->mst_mgr.mst_state == true) return; sink = aconnector->dc_link->local_sink; if (sink) dc_sink_retain(sink); /* * Edid mgmt connector gets first update only in mode_valid hook and then * the connector sink is set to either fake or physical sink depends on link status. * Skip if already done during boot. */ if (aconnector->base.force != DRM_FORCE_UNSPECIFIED && aconnector->dc_em_sink) { /* * For S3 resume with headless use eml_sink to fake stream * because on resume connector->sink is set to NULL */ mutex_lock(&dev->mode_config.mutex); if (sink) { if (aconnector->dc_sink) { amdgpu_dm_update_freesync_caps(connector, NULL); /* * retain and release below are used to * bump up refcount for sink because the link doesn't point * to it anymore after disconnect, so on next crtc to connector * reshuffle by UMD we will get into unwanted dc_sink release */ dc_sink_release(aconnector->dc_sink); } aconnector->dc_sink = sink; dc_sink_retain(aconnector->dc_sink); amdgpu_dm_update_freesync_caps(connector, aconnector->edid); } else { amdgpu_dm_update_freesync_caps(connector, NULL); if (!aconnector->dc_sink) { aconnector->dc_sink = aconnector->dc_em_sink; dc_sink_retain(aconnector->dc_sink); } } mutex_unlock(&dev->mode_config.mutex); if (sink) dc_sink_release(sink); return; } /* * TODO: temporary guard to look for proper fix * if this sink is MST sink, we should not do anything */ if (sink && sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT_MST) { dc_sink_release(sink); return; } if (aconnector->dc_sink == sink) { /* * We got a DP short pulse (Link Loss, DP CTS, etc...). * Do nothing!! */ DRM_DEBUG_DRIVER("DCHPD: connector_id=%d: dc_sink didn't change.\n", aconnector->connector_id); if (sink) dc_sink_release(sink); return; } DRM_DEBUG_DRIVER("DCHPD: connector_id=%d: Old sink=%p New sink=%p\n", aconnector->connector_id, aconnector->dc_sink, sink); mutex_lock(&dev->mode_config.mutex); /* * 1. Update status of the drm connector * 2. Send an event and let userspace tell us what to do */ if (sink) { /* * TODO: check if we still need the S3 mode update workaround. * If yes, put it here. */ if (aconnector->dc_sink) { amdgpu_dm_update_freesync_caps(connector, NULL); dc_sink_release(aconnector->dc_sink); } aconnector->dc_sink = sink; dc_sink_retain(aconnector->dc_sink); if (sink->dc_edid.length == 0) { aconnector->edid = NULL; if (aconnector->dc_link->aux_mode) { drm_dp_cec_unset_edid( &aconnector->dm_dp_aux.aux); } } else { aconnector->edid = (struct edid *)sink->dc_edid.raw_edid; drm_connector_update_edid_property(connector, aconnector->edid); if (aconnector->dc_link->aux_mode) drm_dp_cec_set_edid(&aconnector->dm_dp_aux.aux, aconnector->edid); } amdgpu_dm_update_freesync_caps(connector, aconnector->edid); update_connector_ext_caps(aconnector); } else { drm_dp_cec_unset_edid(&aconnector->dm_dp_aux.aux); amdgpu_dm_update_freesync_caps(connector, NULL); drm_connector_update_edid_property(connector, NULL); aconnector->num_modes = 0; dc_sink_release(aconnector->dc_sink); aconnector->dc_sink = NULL; aconnector->edid = NULL; #ifdef CONFIG_DRM_AMD_DC_HDCP /* Set CP to DESIRED if it was ENABLED, so we can re-enable it again on hotplug */ if (connector->state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED) connector->state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED; #endif } mutex_unlock(&dev->mode_config.mutex); update_subconnector_property(aconnector); if (sink) dc_sink_release(sink); } static void handle_hpd_irq_helper(struct amdgpu_dm_connector *aconnector) { struct drm_connector *connector = &aconnector->base; struct drm_device *dev = connector->dev; enum dc_connection_type new_connection_type = dc_connection_none; struct amdgpu_device *adev = drm_to_adev(dev); struct dm_connector_state *dm_con_state = to_dm_connector_state(connector->state); struct dm_crtc_state *dm_crtc_state = NULL; if (adev->dm.disable_hpd_irq) return; if (dm_con_state->base.state && dm_con_state->base.crtc) dm_crtc_state = to_dm_crtc_state(drm_atomic_get_crtc_state( dm_con_state->base.state, dm_con_state->base.crtc)); /* * In case of failure or MST no need to update connector status or notify the OS * since (for MST case) MST does this in its own context. */ mutex_lock(&aconnector->hpd_lock); #ifdef CONFIG_DRM_AMD_DC_HDCP if (adev->dm.hdcp_workqueue) { hdcp_reset_display(adev->dm.hdcp_workqueue, aconnector->dc_link->link_index); dm_con_state->update_hdcp = true; } #endif if (aconnector->fake_enable) aconnector->fake_enable = false; if (!dc_link_detect_sink(aconnector->dc_link, &new_connection_type)) DRM_ERROR("KMS: Failed to detect connector\n"); if (aconnector->base.force && new_connection_type == dc_connection_none) { emulated_link_detect(aconnector->dc_link); drm_modeset_lock_all(dev); dm_restore_drm_connector_state(dev, connector); drm_modeset_unlock_all(dev); if (aconnector->base.force == DRM_FORCE_UNSPECIFIED) drm_kms_helper_hotplug_event(dev); } else if (dc_link_detect(aconnector->dc_link, DETECT_REASON_HPD)) { if (new_connection_type == dc_connection_none && aconnector->dc_link->type == dc_connection_none && dm_crtc_state) dm_set_dpms_off(aconnector->dc_link, dm_crtc_state); amdgpu_dm_update_connector_after_detect(aconnector); drm_modeset_lock_all(dev); dm_restore_drm_connector_state(dev, connector); drm_modeset_unlock_all(dev); if (aconnector->base.force == DRM_FORCE_UNSPECIFIED) drm_kms_helper_hotplug_event(dev); } mutex_unlock(&aconnector->hpd_lock); } static void handle_hpd_irq(void *param) { struct amdgpu_dm_connector *aconnector = (struct amdgpu_dm_connector *)param; handle_hpd_irq_helper(aconnector); } static void dm_handle_mst_sideband_msg(struct amdgpu_dm_connector *aconnector) { uint8_t esi[DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI] = { 0 }; uint8_t dret; bool new_irq_handled = false; int dpcd_addr; int dpcd_bytes_to_read; const int max_process_count = 30; int process_count = 0; const struct dc_link_status *link_status = dc_link_get_status(aconnector->dc_link); if (link_status->dpcd_caps->dpcd_rev.raw < 0x12) { dpcd_bytes_to_read = DP_LANE0_1_STATUS - DP_SINK_COUNT; /* DPCD 0x200 - 0x201 for downstream IRQ */ dpcd_addr = DP_SINK_COUNT; } else { dpcd_bytes_to_read = DP_PSR_ERROR_STATUS - DP_SINK_COUNT_ESI; /* DPCD 0x2002 - 0x2005 for downstream IRQ */ dpcd_addr = DP_SINK_COUNT_ESI; } dret = drm_dp_dpcd_read( &aconnector->dm_dp_aux.aux, dpcd_addr, esi, dpcd_bytes_to_read); while (dret == dpcd_bytes_to_read && process_count < max_process_count) { uint8_t retry; dret = 0; process_count++; DRM_DEBUG_DRIVER("ESI %02x %02x %02x\n", esi[0], esi[1], esi[2]); /* handle HPD short pulse irq */ if (aconnector->mst_mgr.mst_state) drm_dp_mst_hpd_irq( &aconnector->mst_mgr, esi, &new_irq_handled); if (new_irq_handled) { /* ACK at DPCD to notify down stream */ const int ack_dpcd_bytes_to_write = dpcd_bytes_to_read - 1; for (retry = 0; retry < 3; retry++) { uint8_t wret; wret = drm_dp_dpcd_write( &aconnector->dm_dp_aux.aux, dpcd_addr + 1, &esi[1], ack_dpcd_bytes_to_write); if (wret == ack_dpcd_bytes_to_write) break; } /* check if there is new irq to be handled */ dret = drm_dp_dpcd_read( &aconnector->dm_dp_aux.aux, dpcd_addr, esi, dpcd_bytes_to_read); new_irq_handled = false; } else { break; } } if (process_count == max_process_count) DRM_DEBUG_DRIVER("Loop exceeded max iterations\n"); } static void schedule_hpd_rx_offload_work(struct hpd_rx_irq_offload_work_queue *offload_wq, union hpd_irq_data hpd_irq_data) { struct hpd_rx_irq_offload_work *offload_work = kzalloc(sizeof(*offload_work), GFP_KERNEL); if (!offload_work) { DRM_ERROR("Failed to allocate hpd_rx_irq_offload_work.\n"); return; } INIT_WORK(&offload_work->work, dm_handle_hpd_rx_offload_work); offload_work->data = hpd_irq_data; offload_work->offload_wq = offload_wq; queue_work(offload_wq->wq, &offload_work->work); DRM_DEBUG_KMS("queue work to handle hpd_rx offload work"); } static void handle_hpd_rx_irq(void *param) { struct amdgpu_dm_connector *aconnector = (struct amdgpu_dm_connector *)param; struct drm_connector *connector = &aconnector->base; struct drm_device *dev = connector->dev; struct dc_link *dc_link = aconnector->dc_link; bool is_mst_root_connector = aconnector->mst_mgr.mst_state; bool result = false; enum dc_connection_type new_connection_type = dc_connection_none; struct amdgpu_device *adev = drm_to_adev(dev); union hpd_irq_data hpd_irq_data; bool link_loss = false; bool has_left_work = false; int idx = aconnector->base.index; struct hpd_rx_irq_offload_work_queue *offload_wq = &adev->dm.hpd_rx_offload_wq[idx]; memset(&hpd_irq_data, 0, sizeof(hpd_irq_data)); if (adev->dm.disable_hpd_irq) return; /* * TODO:Temporary add mutex to protect hpd interrupt not have a gpio * conflict, after implement i2c helper, this mutex should be * retired. */ mutex_lock(&aconnector->hpd_lock); result = dc_link_handle_hpd_rx_irq(dc_link, &hpd_irq_data, &link_loss, true, &has_left_work); if (!has_left_work) goto out; if (hpd_irq_data.bytes.device_service_irq.bits.AUTOMATED_TEST) { schedule_hpd_rx_offload_work(offload_wq, hpd_irq_data); goto out; } if (dc_link_dp_allow_hpd_rx_irq(dc_link)) { if (hpd_irq_data.bytes.device_service_irq.bits.UP_REQ_MSG_RDY || hpd_irq_data.bytes.device_service_irq.bits.DOWN_REP_MSG_RDY) { dm_handle_mst_sideband_msg(aconnector); goto out; } if (link_loss) { bool skip = false; spin_lock(&offload_wq->offload_lock); skip = offload_wq->is_handling_link_loss; if (!skip) offload_wq->is_handling_link_loss = true; spin_unlock(&offload_wq->offload_lock); if (!skip) schedule_hpd_rx_offload_work(offload_wq, hpd_irq_data); goto out; } } out: if (result && !is_mst_root_connector) { /* Downstream Port status changed. */ if (!dc_link_detect_sink(dc_link, &new_connection_type)) DRM_ERROR("KMS: Failed to detect connector\n"); if (aconnector->base.force && new_connection_type == dc_connection_none) { emulated_link_detect(dc_link); if (aconnector->fake_enable) aconnector->fake_enable = false; amdgpu_dm_update_connector_after_detect(aconnector); drm_modeset_lock_all(dev); dm_restore_drm_connector_state(dev, connector); drm_modeset_unlock_all(dev); drm_kms_helper_hotplug_event(dev); } else if (dc_link_detect(dc_link, DETECT_REASON_HPDRX)) { if (aconnector->fake_enable) aconnector->fake_enable = false; amdgpu_dm_update_connector_after_detect(aconnector); drm_modeset_lock_all(dev); dm_restore_drm_connector_state(dev, connector); drm_modeset_unlock_all(dev); drm_kms_helper_hotplug_event(dev); } } #ifdef CONFIG_DRM_AMD_DC_HDCP if (hpd_irq_data.bytes.device_service_irq.bits.CP_IRQ) { if (adev->dm.hdcp_workqueue) hdcp_handle_cpirq(adev->dm.hdcp_workqueue, aconnector->base.index); } #endif if (dc_link->type != dc_connection_mst_branch) drm_dp_cec_irq(&aconnector->dm_dp_aux.aux); mutex_unlock(&aconnector->hpd_lock); } static void register_hpd_handlers(struct amdgpu_device *adev) { struct drm_device *dev = adev_to_drm(adev); struct drm_connector *connector; struct amdgpu_dm_connector *aconnector; const struct dc_link *dc_link; struct dc_interrupt_params int_params = {0}; int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT; int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { aconnector = to_amdgpu_dm_connector(connector); dc_link = aconnector->dc_link; if (DC_IRQ_SOURCE_INVALID != dc_link->irq_source_hpd) { int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT; int_params.irq_source = dc_link->irq_source_hpd; amdgpu_dm_irq_register_interrupt(adev, &int_params, handle_hpd_irq, (void *) aconnector); } if (DC_IRQ_SOURCE_INVALID != dc_link->irq_source_hpd_rx) { /* Also register for DP short pulse (hpd_rx). */ int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT; int_params.irq_source = dc_link->irq_source_hpd_rx; amdgpu_dm_irq_register_interrupt(adev, &int_params, handle_hpd_rx_irq, (void *) aconnector); if (adev->dm.hpd_rx_offload_wq) adev->dm.hpd_rx_offload_wq[connector->index].aconnector = aconnector; } } } #if defined(CONFIG_DRM_AMD_DC_SI) /* Register IRQ sources and initialize IRQ callbacks */ static int dce60_register_irq_handlers(struct amdgpu_device *adev) { struct dc *dc = adev->dm.dc; struct common_irq_params *c_irq_params; struct dc_interrupt_params int_params = {0}; int r; int i; unsigned client_id = AMDGPU_IRQ_CLIENTID_LEGACY; int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT; int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT; /* * Actions of amdgpu_irq_add_id(): * 1. Register a set() function with base driver. * Base driver will call set() function to enable/disable an * interrupt in DC hardware. * 2. Register amdgpu_dm_irq_handler(). * Base driver will call amdgpu_dm_irq_handler() for ALL interrupts * coming from DC hardware. * amdgpu_dm_irq_handler() will re-direct the interrupt to DC * for acknowledging and handling. */ /* Use VBLANK interrupt */ for (i = 0; i < adev->mode_info.num_crtc; i++) { r = amdgpu_irq_add_id(adev, client_id, i+1 , &adev->crtc_irq); if (r) { DRM_ERROR("Failed to add crtc irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i+1 , 0); c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_crtc_high_irq, c_irq_params); } /* Use GRPH_PFLIP interrupt */ for (i = VISLANDS30_IV_SRCID_D1_GRPH_PFLIP; i <= VISLANDS30_IV_SRCID_D6_GRPH_PFLIP; i += 2) { r = amdgpu_irq_add_id(adev, client_id, i, &adev->pageflip_irq); if (r) { DRM_ERROR("Failed to add page flip irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_pflip_high_irq, c_irq_params); } /* HPD */ r = amdgpu_irq_add_id(adev, client_id, VISLANDS30_IV_SRCID_HOTPLUG_DETECT_A, &adev->hpd_irq); if (r) { DRM_ERROR("Failed to add hpd irq id!\n"); return r; } register_hpd_handlers(adev); return 0; } #endif /* Register IRQ sources and initialize IRQ callbacks */ static int dce110_register_irq_handlers(struct amdgpu_device *adev) { struct dc *dc = adev->dm.dc; struct common_irq_params *c_irq_params; struct dc_interrupt_params int_params = {0}; int r; int i; unsigned client_id = AMDGPU_IRQ_CLIENTID_LEGACY; if (adev->family >= AMDGPU_FAMILY_AI) client_id = SOC15_IH_CLIENTID_DCE; int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT; int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT; /* * Actions of amdgpu_irq_add_id(): * 1. Register a set() function with base driver. * Base driver will call set() function to enable/disable an * interrupt in DC hardware. * 2. Register amdgpu_dm_irq_handler(). * Base driver will call amdgpu_dm_irq_handler() for ALL interrupts * coming from DC hardware. * amdgpu_dm_irq_handler() will re-direct the interrupt to DC * for acknowledging and handling. */ /* Use VBLANK interrupt */ for (i = VISLANDS30_IV_SRCID_D1_VERTICAL_INTERRUPT0; i <= VISLANDS30_IV_SRCID_D6_VERTICAL_INTERRUPT0; i++) { r = amdgpu_irq_add_id(adev, client_id, i, &adev->crtc_irq); if (r) { DRM_ERROR("Failed to add crtc irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_crtc_high_irq, c_irq_params); } /* Use VUPDATE interrupt */ for (i = VISLANDS30_IV_SRCID_D1_V_UPDATE_INT; i <= VISLANDS30_IV_SRCID_D6_V_UPDATE_INT; i += 2) { r = amdgpu_irq_add_id(adev, client_id, i, &adev->vupdate_irq); if (r) { DRM_ERROR("Failed to add vupdate irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.vupdate_params[int_params.irq_source - DC_IRQ_SOURCE_VUPDATE1]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_vupdate_high_irq, c_irq_params); } /* Use GRPH_PFLIP interrupt */ for (i = VISLANDS30_IV_SRCID_D1_GRPH_PFLIP; i <= VISLANDS30_IV_SRCID_D6_GRPH_PFLIP; i += 2) { r = amdgpu_irq_add_id(adev, client_id, i, &adev->pageflip_irq); if (r) { DRM_ERROR("Failed to add page flip irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_pflip_high_irq, c_irq_params); } /* HPD */ r = amdgpu_irq_add_id(adev, client_id, VISLANDS30_IV_SRCID_HOTPLUG_DETECT_A, &adev->hpd_irq); if (r) { DRM_ERROR("Failed to add hpd irq id!\n"); return r; } register_hpd_handlers(adev); return 0; } #if defined(CONFIG_DRM_AMD_DC_DCN) /* Register IRQ sources and initialize IRQ callbacks */ static int dcn10_register_irq_handlers(struct amdgpu_device *adev) { struct dc *dc = adev->dm.dc; struct common_irq_params *c_irq_params; struct dc_interrupt_params int_params = {0}; int r; int i; #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) static const unsigned int vrtl_int_srcid[] = { DCN_1_0__SRCID__OTG1_VERTICAL_INTERRUPT0_CONTROL, DCN_1_0__SRCID__OTG2_VERTICAL_INTERRUPT0_CONTROL, DCN_1_0__SRCID__OTG3_VERTICAL_INTERRUPT0_CONTROL, DCN_1_0__SRCID__OTG4_VERTICAL_INTERRUPT0_CONTROL, DCN_1_0__SRCID__OTG5_VERTICAL_INTERRUPT0_CONTROL, DCN_1_0__SRCID__OTG6_VERTICAL_INTERRUPT0_CONTROL }; #endif int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT; int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT; /* * Actions of amdgpu_irq_add_id(): * 1. Register a set() function with base driver. * Base driver will call set() function to enable/disable an * interrupt in DC hardware. * 2. Register amdgpu_dm_irq_handler(). * Base driver will call amdgpu_dm_irq_handler() for ALL interrupts * coming from DC hardware. * amdgpu_dm_irq_handler() will re-direct the interrupt to DC * for acknowledging and handling. */ /* Use VSTARTUP interrupt */ for (i = DCN_1_0__SRCID__DC_D1_OTG_VSTARTUP; i <= DCN_1_0__SRCID__DC_D1_OTG_VSTARTUP + adev->mode_info.num_crtc - 1; i++) { r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->crtc_irq); if (r) { DRM_ERROR("Failed to add crtc irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.vblank_params[int_params.irq_source - DC_IRQ_SOURCE_VBLANK1]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt( adev, &int_params, dm_crtc_high_irq, c_irq_params); } /* Use otg vertical line interrupt */ #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) for (i = 0; i <= adev->mode_info.num_crtc - 1; i++) { r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, vrtl_int_srcid[i], &adev->vline0_irq); if (r) { DRM_ERROR("Failed to add vline0 irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, vrtl_int_srcid[i], 0); if (int_params.irq_source == DC_IRQ_SOURCE_INVALID) { DRM_ERROR("Failed to register vline0 irq %d!\n", vrtl_int_srcid[i]); break; } c_irq_params = &adev->dm.vline0_params[int_params.irq_source - DC_IRQ_SOURCE_DC1_VLINE0]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_dcn_vertical_interrupt0_high_irq, c_irq_params); } #endif /* Use VUPDATE_NO_LOCK interrupt on DCN, which seems to correspond to * the regular VUPDATE interrupt on DCE. We want DC_IRQ_SOURCE_VUPDATEx * to trigger at end of each vblank, regardless of state of the lock, * matching DCE behaviour. */ for (i = DCN_1_0__SRCID__OTG0_IHC_V_UPDATE_NO_LOCK_INTERRUPT; i <= DCN_1_0__SRCID__OTG0_IHC_V_UPDATE_NO_LOCK_INTERRUPT + adev->mode_info.num_crtc - 1; i++) { r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->vupdate_irq); if (r) { DRM_ERROR("Failed to add vupdate irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.vupdate_params[int_params.irq_source - DC_IRQ_SOURCE_VUPDATE1]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_vupdate_high_irq, c_irq_params); } /* Use GRPH_PFLIP interrupt */ for (i = DCN_1_0__SRCID__HUBP0_FLIP_INTERRUPT; i <= DCN_1_0__SRCID__HUBP0_FLIP_INTERRUPT + adev->mode_info.num_crtc - 1; i++) { r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, i, &adev->pageflip_irq); if (r) { DRM_ERROR("Failed to add page flip irq id!\n"); return r; } int_params.int_context = INTERRUPT_HIGH_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.pflip_params[int_params.irq_source - DC_IRQ_SOURCE_PFLIP_FIRST]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_pflip_high_irq, c_irq_params); } /* HPD */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, DCN_1_0__SRCID__DC_HPD1_INT, &adev->hpd_irq); if (r) { DRM_ERROR("Failed to add hpd irq id!\n"); return r; } register_hpd_handlers(adev); return 0; } /* Register Outbox IRQ sources and initialize IRQ callbacks */ static int register_outbox_irq_handlers(struct amdgpu_device *adev) { struct dc *dc = adev->dm.dc; struct common_irq_params *c_irq_params; struct dc_interrupt_params int_params = {0}; int r, i; int_params.requested_polarity = INTERRUPT_POLARITY_DEFAULT; int_params.current_polarity = INTERRUPT_POLARITY_DEFAULT; r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_DCE, DCN_1_0__SRCID__DMCUB_OUTBOX_LOW_PRIORITY_READY_INT, &adev->dmub_outbox_irq); if (r) { DRM_ERROR("Failed to add outbox irq id!\n"); return r; } if (dc->ctx->dmub_srv) { i = DCN_1_0__SRCID__DMCUB_OUTBOX_LOW_PRIORITY_READY_INT; int_params.int_context = INTERRUPT_LOW_IRQ_CONTEXT; int_params.irq_source = dc_interrupt_to_irq_source(dc, i, 0); c_irq_params = &adev->dm.dmub_outbox_params[0]; c_irq_params->adev = adev; c_irq_params->irq_src = int_params.irq_source; amdgpu_dm_irq_register_interrupt(adev, &int_params, dm_dmub_outbox1_low_irq, c_irq_params); } return 0; } #endif /* * Acquires the lock for the atomic state object and returns * the new atomic state. * * This should only be called during atomic check. */ static int dm_atomic_get_state(struct drm_atomic_state *state, struct dm_atomic_state **dm_state) { struct drm_device *dev = state->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_display_manager *dm = &adev->dm; struct drm_private_state *priv_state; if (*dm_state) return 0; priv_state = drm_atomic_get_private_obj_state(state, &dm->atomic_obj); if (IS_ERR(priv_state)) return PTR_ERR(priv_state); *dm_state = to_dm_atomic_state(priv_state); return 0; } static struct dm_atomic_state * dm_atomic_get_new_state(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_display_manager *dm = &adev->dm; struct drm_private_obj *obj; struct drm_private_state *new_obj_state; int i; for_each_new_private_obj_in_state(state, obj, new_obj_state, i) { if (obj->funcs == dm->atomic_obj.funcs) return to_dm_atomic_state(new_obj_state); } return NULL; } static struct drm_private_state * dm_atomic_duplicate_state(struct drm_private_obj *obj) { struct dm_atomic_state *old_state, *new_state; new_state = kzalloc(sizeof(*new_state), GFP_KERNEL); if (!new_state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &new_state->base); old_state = to_dm_atomic_state(obj->state); if (old_state && old_state->context) new_state->context = dc_copy_state(old_state->context); if (!new_state->context) { kfree(new_state); return NULL; } return &new_state->base; } static void dm_atomic_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct dm_atomic_state *dm_state = to_dm_atomic_state(state); if (dm_state && dm_state->context) dc_release_state(dm_state->context); kfree(dm_state); } static struct drm_private_state_funcs dm_atomic_state_funcs = { .atomic_duplicate_state = dm_atomic_duplicate_state, .atomic_destroy_state = dm_atomic_destroy_state, }; static int amdgpu_dm_mode_config_init(struct amdgpu_device *adev) { struct dm_atomic_state *state; int r; adev->mode_info.mode_config_initialized = true; adev_to_drm(adev)->mode_config.funcs = (void *)&amdgpu_dm_mode_funcs; adev_to_drm(adev)->mode_config.helper_private = &amdgpu_dm_mode_config_helperfuncs; adev_to_drm(adev)->mode_config.max_width = 16384; adev_to_drm(adev)->mode_config.max_height = 16384; adev_to_drm(adev)->mode_config.preferred_depth = 24; adev_to_drm(adev)->mode_config.prefer_shadow = 1; /* indicates support for immediate flip */ adev_to_drm(adev)->mode_config.async_page_flip = true; adev_to_drm(adev)->mode_config.fb_base = adev->gmc.aper_base; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; state->context = dc_create_state(adev->dm.dc); if (!state->context) { kfree(state); return -ENOMEM; } dc_resource_state_copy_construct_current(adev->dm.dc, state->context); drm_atomic_private_obj_init(adev_to_drm(adev), &adev->dm.atomic_obj, &state->base, &dm_atomic_state_funcs); r = amdgpu_display_modeset_create_props(adev); if (r) { dc_release_state(state->context); kfree(state); return r; } r = amdgpu_dm_audio_init(adev); if (r) { dc_release_state(state->context); kfree(state); return r; } return 0; } #define AMDGPU_DM_DEFAULT_MIN_BACKLIGHT 12 #define AMDGPU_DM_DEFAULT_MAX_BACKLIGHT 255 #define AUX_BL_DEFAULT_TRANSITION_TIME_MS 50 #if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\ defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE) static void amdgpu_dm_update_backlight_caps(struct amdgpu_display_manager *dm, int bl_idx) { #if defined(CONFIG_ACPI) struct amdgpu_dm_backlight_caps caps; memset(&caps, 0, sizeof(caps)); if (dm->backlight_caps[bl_idx].caps_valid) return; amdgpu_acpi_get_backlight_caps(&caps); if (caps.caps_valid) { dm->backlight_caps[bl_idx].caps_valid = true; if (caps.aux_support) return; dm->backlight_caps[bl_idx].min_input_signal = caps.min_input_signal; dm->backlight_caps[bl_idx].max_input_signal = caps.max_input_signal; } else { dm->backlight_caps[bl_idx].min_input_signal = AMDGPU_DM_DEFAULT_MIN_BACKLIGHT; dm->backlight_caps[bl_idx].max_input_signal = AMDGPU_DM_DEFAULT_MAX_BACKLIGHT; } #else if (dm->backlight_caps[bl_idx].aux_support) return; dm->backlight_caps[bl_idx].min_input_signal = AMDGPU_DM_DEFAULT_MIN_BACKLIGHT; dm->backlight_caps[bl_idx].max_input_signal = AMDGPU_DM_DEFAULT_MAX_BACKLIGHT; #endif } static int get_brightness_range(const struct amdgpu_dm_backlight_caps *caps, unsigned *min, unsigned *max) { if (!caps) return 0; if (caps->aux_support) { // Firmware limits are in nits, DC API wants millinits. *max = 1000 * caps->aux_max_input_signal; *min = 1000 * caps->aux_min_input_signal; } else { // Firmware limits are 8-bit, PWM control is 16-bit. *max = 0x101 * caps->max_input_signal; *min = 0x101 * caps->min_input_signal; } return 1; } static u32 convert_brightness_from_user(const struct amdgpu_dm_backlight_caps *caps, uint32_t brightness) { unsigned min, max; if (!get_brightness_range(caps, &min, &max)) return brightness; // Rescale 0..255 to min..max return min + DIV_ROUND_CLOSEST((max - min) * brightness, AMDGPU_MAX_BL_LEVEL); } static u32 convert_brightness_to_user(const struct amdgpu_dm_backlight_caps *caps, uint32_t brightness) { unsigned min, max; if (!get_brightness_range(caps, &min, &max)) return brightness; if (brightness < min) return 0; // Rescale min..max to 0..255 return DIV_ROUND_CLOSEST(AMDGPU_MAX_BL_LEVEL * (brightness - min), max - min); } static int amdgpu_dm_backlight_set_level(struct amdgpu_display_manager *dm, int bl_idx, u32 user_brightness) { struct amdgpu_dm_backlight_caps caps; struct dc_link *link; u32 brightness; bool rc; amdgpu_dm_update_backlight_caps(dm, bl_idx); caps = dm->backlight_caps[bl_idx]; dm->brightness[bl_idx] = user_brightness; brightness = convert_brightness_from_user(&caps, dm->brightness[bl_idx]); link = (struct dc_link *)dm->backlight_link[bl_idx]; /* Change brightness based on AUX property */ if (caps.aux_support) { rc = dc_link_set_backlight_level_nits(link, true, brightness, AUX_BL_DEFAULT_TRANSITION_TIME_MS); if (!rc) DRM_DEBUG("DM: Failed to update backlight via AUX on eDP[%d]\n", bl_idx); } else { rc = dc_link_set_backlight_level(link, brightness, 0); if (!rc) DRM_DEBUG("DM: Failed to update backlight on eDP[%d]\n", bl_idx); } return rc ? 0 : 1; } static int amdgpu_dm_backlight_update_status(struct backlight_device *bd) { struct amdgpu_display_manager *dm = bl_get_data(bd); int i; for (i = 0; i < dm->num_of_edps; i++) { if (bd == dm->backlight_dev[i]) break; } if (i >= AMDGPU_DM_MAX_NUM_EDP) i = 0; amdgpu_dm_backlight_set_level(dm, i, bd->props.brightness); return 0; } static u32 amdgpu_dm_backlight_get_level(struct amdgpu_display_manager *dm, int bl_idx) { struct amdgpu_dm_backlight_caps caps; struct dc_link *link = (struct dc_link *)dm->backlight_link[bl_idx]; amdgpu_dm_update_backlight_caps(dm, bl_idx); caps = dm->backlight_caps[bl_idx]; if (caps.aux_support) { u32 avg, peak; bool rc; rc = dc_link_get_backlight_level_nits(link, &avg, &peak); if (!rc) return dm->brightness[bl_idx]; return convert_brightness_to_user(&caps, avg); } else { int ret = dc_link_get_backlight_level(link); if (ret == DC_ERROR_UNEXPECTED) return dm->brightness[bl_idx]; return convert_brightness_to_user(&caps, ret); } } static int amdgpu_dm_backlight_get_brightness(struct backlight_device *bd) { struct amdgpu_display_manager *dm = bl_get_data(bd); int i; for (i = 0; i < dm->num_of_edps; i++) { if (bd == dm->backlight_dev[i]) break; } if (i >= AMDGPU_DM_MAX_NUM_EDP) i = 0; return amdgpu_dm_backlight_get_level(dm, i); } static const struct backlight_ops amdgpu_dm_backlight_ops = { .options = BL_CORE_SUSPENDRESUME, .get_brightness = amdgpu_dm_backlight_get_brightness, .update_status = amdgpu_dm_backlight_update_status, }; static void amdgpu_dm_register_backlight_device(struct amdgpu_display_manager *dm) { char bl_name[16]; struct backlight_properties props = { 0 }; amdgpu_dm_update_backlight_caps(dm, dm->num_of_edps); dm->brightness[dm->num_of_edps] = AMDGPU_MAX_BL_LEVEL; props.max_brightness = AMDGPU_MAX_BL_LEVEL; props.brightness = AMDGPU_MAX_BL_LEVEL; props.type = BACKLIGHT_RAW; snprintf(bl_name, sizeof(bl_name), "amdgpu_bl%d", adev_to_drm(dm->adev)->primary->index + dm->num_of_edps); dm->backlight_dev[dm->num_of_edps] = backlight_device_register(bl_name, adev_to_drm(dm->adev)->dev, dm, &amdgpu_dm_backlight_ops, &props); if (IS_ERR(dm->backlight_dev[dm->num_of_edps])) DRM_ERROR("DM: Backlight registration failed!\n"); else DRM_DEBUG_DRIVER("DM: Registered Backlight device: %s\n", bl_name); } #endif static int initialize_plane(struct amdgpu_display_manager *dm, struct amdgpu_mode_info *mode_info, int plane_id, enum drm_plane_type plane_type, const struct dc_plane_cap *plane_cap) { struct drm_plane *plane; unsigned long possible_crtcs; int ret = 0; plane = kzalloc(sizeof(struct drm_plane), GFP_KERNEL); if (!plane) { DRM_ERROR("KMS: Failed to allocate plane\n"); return -ENOMEM; } plane->type = plane_type; /* * HACK: IGT tests expect that the primary plane for a CRTC * can only have one possible CRTC. Only expose support for * any CRTC if they're not going to be used as a primary plane * for a CRTC - like overlay or underlay planes. */ possible_crtcs = 1 << plane_id; if (plane_id >= dm->dc->caps.max_streams) possible_crtcs = 0xff; ret = amdgpu_dm_plane_init(dm, plane, possible_crtcs, plane_cap); if (ret) { DRM_ERROR("KMS: Failed to initialize plane\n"); kfree(plane); return ret; } if (mode_info) mode_info->planes[plane_id] = plane; return ret; } static void register_backlight_device(struct amdgpu_display_manager *dm, struct dc_link *link) { #if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\ defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE) if ((link->connector_signal & (SIGNAL_TYPE_EDP | SIGNAL_TYPE_LVDS)) && link->type != dc_connection_none) { /* * Event if registration failed, we should continue with * DM initialization because not having a backlight control * is better then a black screen. */ if (!dm->backlight_dev[dm->num_of_edps]) amdgpu_dm_register_backlight_device(dm); if (dm->backlight_dev[dm->num_of_edps]) { dm->backlight_link[dm->num_of_edps] = link; dm->num_of_edps++; } } #endif } /* * In this architecture, the association * connector -> encoder -> crtc * id not really requried. The crtc and connector will hold the * display_index as an abstraction to use with DAL component * * Returns 0 on success */ static int amdgpu_dm_initialize_drm_device(struct amdgpu_device *adev) { struct amdgpu_display_manager *dm = &adev->dm; int32_t i; struct amdgpu_dm_connector *aconnector = NULL; struct amdgpu_encoder *aencoder = NULL; struct amdgpu_mode_info *mode_info = &adev->mode_info; uint32_t link_cnt; int32_t primary_planes; enum dc_connection_type new_connection_type = dc_connection_none; const struct dc_plane_cap *plane; bool psr_feature_enabled = false; dm->display_indexes_num = dm->dc->caps.max_streams; /* Update the actual used number of crtc */ adev->mode_info.num_crtc = adev->dm.display_indexes_num; link_cnt = dm->dc->caps.max_links; if (amdgpu_dm_mode_config_init(dm->adev)) { DRM_ERROR("DM: Failed to initialize mode config\n"); return -EINVAL; } /* There is one primary plane per CRTC */ primary_planes = dm->dc->caps.max_streams; ASSERT(primary_planes <= AMDGPU_MAX_PLANES); /* * Initialize primary planes, implicit planes for legacy IOCTLS. * Order is reversed to match iteration order in atomic check. */ for (i = (primary_planes - 1); i >= 0; i--) { plane = &dm->dc->caps.planes[i]; if (initialize_plane(dm, mode_info, i, DRM_PLANE_TYPE_PRIMARY, plane)) { DRM_ERROR("KMS: Failed to initialize primary plane\n"); goto fail; } } /* * Initialize overlay planes, index starting after primary planes. * These planes have a higher DRM index than the primary planes since * they should be considered as having a higher z-order. * Order is reversed to match iteration order in atomic check. * * Only support DCN for now, and only expose one so we don't encourage * userspace to use up all the pipes. */ for (i = 0; i < dm->dc->caps.max_planes; ++i) { struct dc_plane_cap *plane = &dm->dc->caps.planes[i]; if (plane->type != DC_PLANE_TYPE_DCN_UNIVERSAL) continue; if (!plane->blends_with_above || !plane->blends_with_below) continue; if (!plane->pixel_format_support.argb8888) continue; if (initialize_plane(dm, NULL, primary_planes + i, DRM_PLANE_TYPE_OVERLAY, plane)) { DRM_ERROR("KMS: Failed to initialize overlay plane\n"); goto fail; } /* Only create one overlay plane. */ break; } for (i = 0; i < dm->dc->caps.max_streams; i++) if (amdgpu_dm_crtc_init(dm, mode_info->planes[i], i)) { DRM_ERROR("KMS: Failed to initialize crtc\n"); goto fail; } #if defined(CONFIG_DRM_AMD_DC_DCN) /* Use Outbox interrupt */ switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(3, 0, 0): case IP_VERSION(3, 1, 2): case IP_VERSION(3, 1, 3): case IP_VERSION(2, 1, 0): if (register_outbox_irq_handlers(dm->adev)) { DRM_ERROR("DM: Failed to initialize IRQ\n"); goto fail; } break; default: DRM_DEBUG_KMS("Unsupported DCN IP version for outbox: 0x%X\n", adev->ip_versions[DCE_HWIP][0]); } /* Determine whether to enable PSR support by default. */ if (!(amdgpu_dc_debug_mask & DC_DISABLE_PSR)) { switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(3, 1, 2): case IP_VERSION(3, 1, 3): psr_feature_enabled = true; break; default: psr_feature_enabled = amdgpu_dc_feature_mask & DC_PSR_MASK; break; } } #endif /* loops over all connectors on the board */ for (i = 0; i < link_cnt; i++) { struct dc_link *link = NULL; if (i > AMDGPU_DM_MAX_DISPLAY_INDEX) { DRM_ERROR( "KMS: Cannot support more than %d display indexes\n", AMDGPU_DM_MAX_DISPLAY_INDEX); continue; } aconnector = kzalloc(sizeof(*aconnector), GFP_KERNEL); if (!aconnector) goto fail; aencoder = kzalloc(sizeof(*aencoder), GFP_KERNEL); if (!aencoder) goto fail; if (amdgpu_dm_encoder_init(dm->ddev, aencoder, i)) { DRM_ERROR("KMS: Failed to initialize encoder\n"); goto fail; } if (amdgpu_dm_connector_init(dm, aconnector, i, aencoder)) { DRM_ERROR("KMS: Failed to initialize connector\n"); goto fail; } link = dc_get_link_at_index(dm->dc, i); if (!dc_link_detect_sink(link, &new_connection_type)) DRM_ERROR("KMS: Failed to detect connector\n"); if (aconnector->base.force && new_connection_type == dc_connection_none) { emulated_link_detect(link); amdgpu_dm_update_connector_after_detect(aconnector); } else if (dc_link_detect(link, DETECT_REASON_BOOT)) { amdgpu_dm_update_connector_after_detect(aconnector); register_backlight_device(dm, link); if (dm->num_of_edps) update_connector_ext_caps(aconnector); if (psr_feature_enabled) amdgpu_dm_set_psr_caps(link); } } /* Software is initialized. Now we can register interrupt handlers. */ switch (adev->asic_type) { #if defined(CONFIG_DRM_AMD_DC_SI) case CHIP_TAHITI: case CHIP_PITCAIRN: case CHIP_VERDE: case CHIP_OLAND: if (dce60_register_irq_handlers(dm->adev)) { DRM_ERROR("DM: Failed to initialize IRQ\n"); goto fail; } break; #endif case CHIP_BONAIRE: case CHIP_HAWAII: case CHIP_KAVERI: case CHIP_KABINI: case CHIP_MULLINS: case CHIP_TONGA: case CHIP_FIJI: case CHIP_CARRIZO: case CHIP_STONEY: case CHIP_POLARIS11: case CHIP_POLARIS10: case CHIP_POLARIS12: case CHIP_VEGAM: case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: if (dce110_register_irq_handlers(dm->adev)) { DRM_ERROR("DM: Failed to initialize IRQ\n"); goto fail; } break; default: #if defined(CONFIG_DRM_AMD_DC_DCN) switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(1, 0, 0): case IP_VERSION(1, 0, 1): case IP_VERSION(2, 0, 2): case IP_VERSION(2, 0, 3): case IP_VERSION(2, 0, 0): case IP_VERSION(2, 1, 0): case IP_VERSION(3, 0, 0): case IP_VERSION(3, 0, 2): case IP_VERSION(3, 0, 3): case IP_VERSION(3, 0, 1): case IP_VERSION(3, 1, 2): case IP_VERSION(3, 1, 3): if (dcn10_register_irq_handlers(dm->adev)) { DRM_ERROR("DM: Failed to initialize IRQ\n"); goto fail; } break; default: DRM_ERROR("Unsupported DCE IP versions: 0x%X\n", adev->ip_versions[DCE_HWIP][0]); goto fail; } #endif break; } return 0; fail: kfree(aencoder); kfree(aconnector); return -EINVAL; } static void amdgpu_dm_destroy_drm_device(struct amdgpu_display_manager *dm) { drm_atomic_private_obj_fini(&dm->atomic_obj); return; } /****************************************************************************** * amdgpu_display_funcs functions *****************************************************************************/ /* * dm_bandwidth_update - program display watermarks * * @adev: amdgpu_device pointer * * Calculate and program the display watermarks and line buffer allocation. */ static void dm_bandwidth_update(struct amdgpu_device *adev) { /* TODO: implement later */ } static const struct amdgpu_display_funcs dm_display_funcs = { .bandwidth_update = dm_bandwidth_update, /* called unconditionally */ .vblank_get_counter = dm_vblank_get_counter,/* called unconditionally */ .backlight_set_level = NULL, /* never called for DC */ .backlight_get_level = NULL, /* never called for DC */ .hpd_sense = NULL,/* called unconditionally */ .hpd_set_polarity = NULL, /* called unconditionally */ .hpd_get_gpio_reg = NULL, /* VBIOS parsing. DAL does it. */ .page_flip_get_scanoutpos = dm_crtc_get_scanoutpos,/* called unconditionally */ .add_encoder = NULL, /* VBIOS parsing. DAL does it. */ .add_connector = NULL, /* VBIOS parsing. DAL does it. */ }; #if defined(CONFIG_DEBUG_KERNEL_DC) static ssize_t s3_debug_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { int ret; int s3_state; struct drm_device *drm_dev = dev_get_drvdata(device); struct amdgpu_device *adev = drm_to_adev(drm_dev); ret = kstrtoint(buf, 0, &s3_state); if (ret == 0) { if (s3_state) { dm_resume(adev); drm_kms_helper_hotplug_event(adev_to_drm(adev)); } else dm_suspend(adev); } return ret == 0 ? count : 0; } DEVICE_ATTR_WO(s3_debug); #endif static int dm_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; switch (adev->asic_type) { #if defined(CONFIG_DRM_AMD_DC_SI) case CHIP_TAHITI: case CHIP_PITCAIRN: case CHIP_VERDE: adev->mode_info.num_crtc = 6; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; break; case CHIP_OLAND: adev->mode_info.num_crtc = 2; adev->mode_info.num_hpd = 2; adev->mode_info.num_dig = 2; break; #endif case CHIP_BONAIRE: case CHIP_HAWAII: adev->mode_info.num_crtc = 6; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; break; case CHIP_KAVERI: adev->mode_info.num_crtc = 4; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 7; break; case CHIP_KABINI: case CHIP_MULLINS: adev->mode_info.num_crtc = 2; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; break; case CHIP_FIJI: case CHIP_TONGA: adev->mode_info.num_crtc = 6; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 7; break; case CHIP_CARRIZO: adev->mode_info.num_crtc = 3; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 9; break; case CHIP_STONEY: adev->mode_info.num_crtc = 2; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 9; break; case CHIP_POLARIS11: case CHIP_POLARIS12: adev->mode_info.num_crtc = 5; adev->mode_info.num_hpd = 5; adev->mode_info.num_dig = 5; break; case CHIP_POLARIS10: case CHIP_VEGAM: adev->mode_info.num_crtc = 6; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: adev->mode_info.num_crtc = 6; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; break; default: #if defined(CONFIG_DRM_AMD_DC_DCN) switch (adev->ip_versions[DCE_HWIP][0]) { case IP_VERSION(2, 0, 2): case IP_VERSION(3, 0, 0): adev->mode_info.num_crtc = 6; adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; break; case IP_VERSION(2, 0, 0): case IP_VERSION(3, 0, 2): adev->mode_info.num_crtc = 5; adev->mode_info.num_hpd = 5; adev->mode_info.num_dig = 5; break; case IP_VERSION(2, 0, 3): case IP_VERSION(3, 0, 3): adev->mode_info.num_crtc = 2; adev->mode_info.num_hpd = 2; adev->mode_info.num_dig = 2; break; case IP_VERSION(1, 0, 0): case IP_VERSION(1, 0, 1): case IP_VERSION(3, 0, 1): case IP_VERSION(2, 1, 0): case IP_VERSION(3, 1, 2): case IP_VERSION(3, 1, 3): adev->mode_info.num_crtc = 4; adev->mode_info.num_hpd = 4; adev->mode_info.num_dig = 4; break; default: DRM_ERROR("Unsupported DCE IP versions: 0x%x\n", adev->ip_versions[DCE_HWIP][0]); return -EINVAL; } #endif break; } amdgpu_dm_set_irq_funcs(adev); if (adev->mode_info.funcs == NULL) adev->mode_info.funcs = &dm_display_funcs; /* * Note: Do NOT change adev->audio_endpt_rreg and * adev->audio_endpt_wreg because they are initialised in * amdgpu_device_init() */ #if defined(CONFIG_DEBUG_KERNEL_DC) device_create_file( adev_to_drm(adev)->dev, &dev_attr_s3_debug); #endif return 0; } static bool modeset_required(struct drm_crtc_state *crtc_state, struct dc_stream_state *new_stream, struct dc_stream_state *old_stream) { return crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state); } static bool modereset_required(struct drm_crtc_state *crtc_state) { return !crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state); } static void amdgpu_dm_encoder_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs amdgpu_dm_encoder_funcs = { .destroy = amdgpu_dm_encoder_destroy, }; static void get_min_max_dc_plane_scaling(struct drm_device *dev, struct drm_framebuffer *fb, int *min_downscale, int *max_upscale) { struct amdgpu_device *adev = drm_to_adev(dev); struct dc *dc = adev->dm.dc; /* Caps for all supported planes are the same on DCE and DCN 1 - 3 */ struct dc_plane_cap *plane_cap = &dc->caps.planes[0]; switch (fb->format->format) { case DRM_FORMAT_P010: case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: *max_upscale = plane_cap->max_upscale_factor.nv12; *min_downscale = plane_cap->max_downscale_factor.nv12; break; case DRM_FORMAT_XRGB16161616F: case DRM_FORMAT_ARGB16161616F: case DRM_FORMAT_XBGR16161616F: case DRM_FORMAT_ABGR16161616F: *max_upscale = plane_cap->max_upscale_factor.fp16; *min_downscale = plane_cap->max_downscale_factor.fp16; break; default: *max_upscale = plane_cap->max_upscale_factor.argb8888; *min_downscale = plane_cap->max_downscale_factor.argb8888; break; } /* * A factor of 1 in the plane_cap means to not allow scaling, ie. use a * scaling factor of 1.0 == 1000 units. */ if (*max_upscale == 1) *max_upscale = 1000; if (*min_downscale == 1) *min_downscale = 1000; } static int fill_dc_scaling_info(struct amdgpu_device *adev, const struct drm_plane_state *state, struct dc_scaling_info *scaling_info) { int scale_w, scale_h, min_downscale, max_upscale; memset(scaling_info, 0, sizeof(*scaling_info)); /* Source is fixed 16.16 but we ignore mantissa for now... */ scaling_info->src_rect.x = state->src_x >> 16; scaling_info->src_rect.y = state->src_y >> 16; /* * For reasons we don't (yet) fully understand a non-zero * src_y coordinate into an NV12 buffer can cause a * system hang on DCN1x. * To avoid hangs (and maybe be overly cautious) * let's reject both non-zero src_x and src_y. * * We currently know of only one use-case to reproduce a * scenario with non-zero src_x and src_y for NV12, which * is to gesture the YouTube Android app into full screen * on ChromeOS. */ if (((adev->ip_versions[DCE_HWIP][0] == IP_VERSION(1, 0, 0)) || (adev->ip_versions[DCE_HWIP][0] == IP_VERSION(1, 0, 1))) && (state->fb && state->fb->format->format == DRM_FORMAT_NV12 && (scaling_info->src_rect.x != 0 || scaling_info->src_rect.y != 0))) return -EINVAL; scaling_info->src_rect.width = state->src_w >> 16; if (scaling_info->src_rect.width == 0) return -EINVAL; scaling_info->src_rect.height = state->src_h >> 16; if (scaling_info->src_rect.height == 0) return -EINVAL; scaling_info->dst_rect.x = state->crtc_x; scaling_info->dst_rect.y = state->crtc_y; if (state->crtc_w == 0) return -EINVAL; scaling_info->dst_rect.width = state->crtc_w; if (state->crtc_h == 0) return -EINVAL; scaling_info->dst_rect.height = state->crtc_h; /* DRM doesn't specify clipping on destination output. */ scaling_info->clip_rect = scaling_info->dst_rect; /* Validate scaling per-format with DC plane caps */ if (state->plane && state->plane->dev && state->fb) { get_min_max_dc_plane_scaling(state->plane->dev, state->fb, &min_downscale, &max_upscale); } else { min_downscale = 250; max_upscale = 16000; } scale_w = scaling_info->dst_rect.width * 1000 / scaling_info->src_rect.width; if (scale_w < min_downscale || scale_w > max_upscale) return -EINVAL; scale_h = scaling_info->dst_rect.height * 1000 / scaling_info->src_rect.height; if (scale_h < min_downscale || scale_h > max_upscale) return -EINVAL; /* * The "scaling_quality" can be ignored for now, quality = 0 has DC * assume reasonable defaults based on the format. */ return 0; } static void fill_gfx8_tiling_info_from_flags(union dc_tiling_info *tiling_info, uint64_t tiling_flags) { /* Fill GFX8 params */ if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == DC_ARRAY_2D_TILED_THIN1) { unsigned int bankw, bankh, mtaspect, tile_split, num_banks; bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH); bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT); mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT); tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT); num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS); /* XXX fix me for VI */ tiling_info->gfx8.num_banks = num_banks; tiling_info->gfx8.array_mode = DC_ARRAY_2D_TILED_THIN1; tiling_info->gfx8.tile_split = tile_split; tiling_info->gfx8.bank_width = bankw; tiling_info->gfx8.bank_height = bankh; tiling_info->gfx8.tile_aspect = mtaspect; tiling_info->gfx8.tile_mode = DC_ADDR_SURF_MICRO_TILING_DISPLAY; } else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == DC_ARRAY_1D_TILED_THIN1) { tiling_info->gfx8.array_mode = DC_ARRAY_1D_TILED_THIN1; } tiling_info->gfx8.pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG); } static void fill_gfx9_tiling_info_from_device(const struct amdgpu_device *adev, union dc_tiling_info *tiling_info) { tiling_info->gfx9.num_pipes = adev->gfx.config.gb_addr_config_fields.num_pipes; tiling_info->gfx9.num_banks = adev->gfx.config.gb_addr_config_fields.num_banks; tiling_info->gfx9.pipe_interleave = adev->gfx.config.gb_addr_config_fields.pipe_interleave_size; tiling_info->gfx9.num_shader_engines = adev->gfx.config.gb_addr_config_fields.num_se; tiling_info->gfx9.max_compressed_frags = adev->gfx.config.gb_addr_config_fields.max_compress_frags; tiling_info->gfx9.num_rb_per_se = adev->gfx.config.gb_addr_config_fields.num_rb_per_se; tiling_info->gfx9.shaderEnable = 1; if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 3, 0)) tiling_info->gfx9.num_pkrs = adev->gfx.config.gb_addr_config_fields.num_pkrs; } static int validate_dcc(struct amdgpu_device *adev, const enum surface_pixel_format format, const enum dc_rotation_angle rotation, const union dc_tiling_info *tiling_info, const struct dc_plane_dcc_param *dcc, const struct dc_plane_address *address, const struct plane_size *plane_size) { struct dc *dc = adev->dm.dc; struct dc_dcc_surface_param input; struct dc_surface_dcc_cap output; memset(&input, 0, sizeof(input)); memset(&output, 0, sizeof(output)); if (!dcc->enable) return 0; if (format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || !dc->cap_funcs.get_dcc_compression_cap) return -EINVAL; input.format = format; input.surface_size.width = plane_size->surface_size.width; input.surface_size.height = plane_size->surface_size.height; input.swizzle_mode = tiling_info->gfx9.swizzle; if (rotation == ROTATION_ANGLE_0 || rotation == ROTATION_ANGLE_180) input.scan = SCAN_DIRECTION_HORIZONTAL; else if (rotation == ROTATION_ANGLE_90 || rotation == ROTATION_ANGLE_270) input.scan = SCAN_DIRECTION_VERTICAL; if (!dc->cap_funcs.get_dcc_compression_cap(dc, &input, &output)) return -EINVAL; if (!output.capable) return -EINVAL; if (dcc->independent_64b_blks == 0 && output.grph.rgb.independent_64b_blks != 0) return -EINVAL; return 0; } static bool modifier_has_dcc(uint64_t modifier) { return IS_AMD_FMT_MOD(modifier) && AMD_FMT_MOD_GET(DCC, modifier); } static unsigned modifier_gfx9_swizzle_mode(uint64_t modifier) { if (modifier == DRM_FORMAT_MOD_LINEAR) return 0; return AMD_FMT_MOD_GET(TILE, modifier); } static const struct drm_format_info * amd_get_format_info(const struct drm_mode_fb_cmd2 *cmd) { return amdgpu_lookup_format_info(cmd->pixel_format, cmd->modifier[0]); } static void fill_gfx9_tiling_info_from_modifier(const struct amdgpu_device *adev, union dc_tiling_info *tiling_info, uint64_t modifier) { unsigned int mod_bank_xor_bits = AMD_FMT_MOD_GET(BANK_XOR_BITS, modifier); unsigned int mod_pipe_xor_bits = AMD_FMT_MOD_GET(PIPE_XOR_BITS, modifier); unsigned int pkrs_log2 = AMD_FMT_MOD_GET(PACKERS, modifier); unsigned int pipes_log2 = min(4u, mod_pipe_xor_bits); fill_gfx9_tiling_info_from_device(adev, tiling_info); if (!IS_AMD_FMT_MOD(modifier)) return; tiling_info->gfx9.num_pipes = 1u << pipes_log2; tiling_info->gfx9.num_shader_engines = 1u << (mod_pipe_xor_bits - pipes_log2); if (adev->family >= AMDGPU_FAMILY_NV) { tiling_info->gfx9.num_pkrs = 1u << pkrs_log2; } else { tiling_info->gfx9.num_banks = 1u << mod_bank_xor_bits; /* for DCC we know it isn't rb aligned, so rb_per_se doesn't matter. */ } } enum dm_micro_swizzle { MICRO_SWIZZLE_Z = 0, MICRO_SWIZZLE_S = 1, MICRO_SWIZZLE_D = 2, MICRO_SWIZZLE_R = 3 }; static bool dm_plane_format_mod_supported(struct drm_plane *plane, uint32_t format, uint64_t modifier) { struct amdgpu_device *adev = drm_to_adev(plane->dev); const struct drm_format_info *info = drm_format_info(format); int i; enum dm_micro_swizzle microtile = modifier_gfx9_swizzle_mode(modifier) & 3; if (!info) return false; /* * We always have to allow these modifiers: * 1. Core DRM checks for LINEAR support if userspace does not provide modifiers. * 2. Not passing any modifiers is the same as explicitly passing INVALID. */ if (modifier == DRM_FORMAT_MOD_LINEAR || modifier == DRM_FORMAT_MOD_INVALID) { return true; } /* Check that the modifier is on the list of the plane's supported modifiers. */ for (i = 0; i < plane->modifier_count; i++) { if (modifier == plane->modifiers[i]) break; } if (i == plane->modifier_count) return false; /* * For D swizzle the canonical modifier depends on the bpp, so check * it here. */ if (AMD_FMT_MOD_GET(TILE_VERSION, modifier) == AMD_FMT_MOD_TILE_VER_GFX9 && adev->family >= AMDGPU_FAMILY_NV) { if (microtile == MICRO_SWIZZLE_D && info->cpp[0] == 4) return false; } if (adev->family >= AMDGPU_FAMILY_RV && microtile == MICRO_SWIZZLE_D && info->cpp[0] < 8) return false; if (modifier_has_dcc(modifier)) { /* Per radeonsi comments 16/64 bpp are more complicated. */ if (info->cpp[0] != 4) return false; /* We support multi-planar formats, but not when combined with * additional DCC metadata planes. */ if (info->num_planes > 1) return false; } return true; } static void add_modifier(uint64_t **mods, uint64_t *size, uint64_t *cap, uint64_t mod) { if (!*mods) return; if (*cap - *size < 1) { uint64_t new_cap = *cap * 2; uint64_t *new_mods = kmalloc(new_cap * sizeof(uint64_t), GFP_KERNEL); if (!new_mods) { kfree(*mods); *mods = NULL; return; } memcpy(new_mods, *mods, sizeof(uint64_t) * *size); kfree(*mods); *mods = new_mods; *cap = new_cap; } (*mods)[*size] = mod; *size += 1; } static void add_gfx9_modifiers(const struct amdgpu_device *adev, uint64_t **mods, uint64_t *size, uint64_t *capacity) { int pipes = ilog2(adev->gfx.config.gb_addr_config_fields.num_pipes); int pipe_xor_bits = min(8, pipes + ilog2(adev->gfx.config.gb_addr_config_fields.num_se)); int bank_xor_bits = min(8 - pipe_xor_bits, ilog2(adev->gfx.config.gb_addr_config_fields.num_banks)); int rb = ilog2(adev->gfx.config.gb_addr_config_fields.num_se) + ilog2(adev->gfx.config.gb_addr_config_fields.num_rb_per_se); if (adev->family == AMDGPU_FAMILY_RV) { /* Raven2 and later */ bool has_constant_encode = adev->asic_type > CHIP_RAVEN || adev->external_rev_id >= 0x81; /* * No _D DCC swizzles yet because we only allow 32bpp, which * doesn't support _D on DCN */ if (has_constant_encode) { add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1)); } add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 0)); if (has_constant_encode) { add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_RETILE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) | AMD_FMT_MOD_SET(RB, rb) | AMD_FMT_MOD_SET(PIPE, pipes)); } add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_RETILE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 0) | AMD_FMT_MOD_SET(RB, rb) | AMD_FMT_MOD_SET(PIPE, pipes)); } /* * Only supported for 64bpp on Raven, will be filtered on format in * dm_plane_format_mod_supported. */ add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits)); if (adev->family == AMDGPU_FAMILY_RV) { add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(BANK_XOR_BITS, bank_xor_bits)); } /* * Only supported for 64bpp on Raven, will be filtered on format in * dm_plane_format_mod_supported. */ add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9)); if (adev->family == AMDGPU_FAMILY_RV) { add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9)); } } static void add_gfx10_1_modifiers(const struct amdgpu_device *adev, uint64_t **mods, uint64_t *size, uint64_t *capacity) { int pipe_xor_bits = ilog2(adev->gfx.config.gb_addr_config_fields.num_pipes); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_RETILE, 1) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits)); /* Only supported for 64bpp, will be filtered in dm_plane_format_mod_supported */ add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9)); } static void add_gfx10_3_modifiers(const struct amdgpu_device *adev, uint64_t **mods, uint64_t *size, uint64_t *capacity) { int pipe_xor_bits = ilog2(adev->gfx.config.gb_addr_config_fields.num_pipes); int pkrs = ilog2(adev->gfx.config.gb_addr_config_fields.num_pkrs); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(PACKERS, pkrs) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_128B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(PACKERS, pkrs) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_128B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_128B)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(PACKERS, pkrs) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_RETILE, 1) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_64B, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_128B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_64B)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(PACKERS, pkrs) | AMD_FMT_MOD_SET(DCC, 1) | AMD_FMT_MOD_SET(DCC_RETILE, 1) | AMD_FMT_MOD_SET(DCC_CONSTANT_ENCODE, 1) | AMD_FMT_MOD_SET(DCC_INDEPENDENT_128B, 1) | AMD_FMT_MOD_SET(DCC_MAX_COMPRESSED_BLOCK, AMD_FMT_MOD_DCC_BLOCK_128B)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_R_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(PACKERS, pkrs)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S_X) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) | AMD_FMT_MOD_SET(PIPE_XOR_BITS, pipe_xor_bits) | AMD_FMT_MOD_SET(PACKERS, pkrs)); /* Only supported for 64bpp, will be filtered in dm_plane_format_mod_supported */ add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_D) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9)); add_modifier(mods, size, capacity, AMD_FMT_MOD | AMD_FMT_MOD_SET(TILE, AMD_FMT_MOD_TILE_GFX9_64K_S) | AMD_FMT_MOD_SET(TILE_VERSION, AMD_FMT_MOD_TILE_VER_GFX9)); } static int get_plane_modifiers(const struct amdgpu_device *adev, unsigned int plane_type, uint64_t **mods) { uint64_t size = 0, capacity = 128; *mods = NULL; /* We have not hooked up any pre-GFX9 modifiers. */ if (adev->family < AMDGPU_FAMILY_AI) return 0; *mods = kmalloc(capacity * sizeof(uint64_t), GFP_KERNEL); if (plane_type == DRM_PLANE_TYPE_CURSOR) { add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_LINEAR); add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_INVALID); return *mods ? 0 : -ENOMEM; } switch (adev->family) { case AMDGPU_FAMILY_AI: case AMDGPU_FAMILY_RV: add_gfx9_modifiers(adev, mods, &size, &capacity); break; case AMDGPU_FAMILY_NV: case AMDGPU_FAMILY_VGH: case AMDGPU_FAMILY_YC: if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 3, 0)) add_gfx10_3_modifiers(adev, mods, &size, &capacity); else add_gfx10_1_modifiers(adev, mods, &size, &capacity); break; } add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_LINEAR); /* INVALID marks the end of the list. */ add_modifier(mods, &size, &capacity, DRM_FORMAT_MOD_INVALID); if (!*mods) return -ENOMEM; return 0; } static int fill_gfx9_plane_attributes_from_modifiers(struct amdgpu_device *adev, const struct amdgpu_framebuffer *afb, const enum surface_pixel_format format, const enum dc_rotation_angle rotation, const struct plane_size *plane_size, union dc_tiling_info *tiling_info, struct dc_plane_dcc_param *dcc, struct dc_plane_address *address, const bool force_disable_dcc) { const uint64_t modifier = afb->base.modifier; int ret = 0; fill_gfx9_tiling_info_from_modifier(adev, tiling_info, modifier); tiling_info->gfx9.swizzle = modifier_gfx9_swizzle_mode(modifier); if (modifier_has_dcc(modifier) && !force_disable_dcc) { uint64_t dcc_address = afb->address + afb->base.offsets[1]; bool independent_64b_blks = AMD_FMT_MOD_GET(DCC_INDEPENDENT_64B, modifier); bool independent_128b_blks = AMD_FMT_MOD_GET(DCC_INDEPENDENT_128B, modifier); dcc->enable = 1; dcc->meta_pitch = afb->base.pitches[1]; dcc->independent_64b_blks = independent_64b_blks; if (AMD_FMT_MOD_GET(TILE_VERSION, modifier) == AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS) { if (independent_64b_blks && independent_128b_blks) dcc->dcc_ind_blk = hubp_ind_block_64b_no_128bcl; else if (independent_128b_blks) dcc->dcc_ind_blk = hubp_ind_block_128b; else if (independent_64b_blks && !independent_128b_blks) dcc->dcc_ind_blk = hubp_ind_block_64b; else dcc->dcc_ind_blk = hubp_ind_block_unconstrained; } else { if (independent_64b_blks) dcc->dcc_ind_blk = hubp_ind_block_64b; else dcc->dcc_ind_blk = hubp_ind_block_unconstrained; } address->grph.meta_addr.low_part = lower_32_bits(dcc_address); address->grph.meta_addr.high_part = upper_32_bits(dcc_address); } ret = validate_dcc(adev, format, rotation, tiling_info, dcc, address, plane_size); if (ret) drm_dbg_kms(adev_to_drm(adev), "validate_dcc: returned error: %d\n", ret); return ret; } static int fill_plane_buffer_attributes(struct amdgpu_device *adev, const struct amdgpu_framebuffer *afb, const enum surface_pixel_format format, const enum dc_rotation_angle rotation, const uint64_t tiling_flags, union dc_tiling_info *tiling_info, struct plane_size *plane_size, struct dc_plane_dcc_param *dcc, struct dc_plane_address *address, bool tmz_surface, bool force_disable_dcc) { const struct drm_framebuffer *fb = &afb->base; int ret; memset(tiling_info, 0, sizeof(*tiling_info)); memset(plane_size, 0, sizeof(*plane_size)); memset(dcc, 0, sizeof(*dcc)); memset(address, 0, sizeof(*address)); address->tmz_surface = tmz_surface; if (format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) { uint64_t addr = afb->address + fb->offsets[0]; plane_size->surface_size.x = 0; plane_size->surface_size.y = 0; plane_size->surface_size.width = fb->width; plane_size->surface_size.height = fb->height; plane_size->surface_pitch = fb->pitches[0] / fb->format->cpp[0]; address->type = PLN_ADDR_TYPE_GRAPHICS; address->grph.addr.low_part = lower_32_bits(addr); address->grph.addr.high_part = upper_32_bits(addr); } else if (format < SURFACE_PIXEL_FORMAT_INVALID) { uint64_t luma_addr = afb->address + fb->offsets[0]; uint64_t chroma_addr = afb->address + fb->offsets[1]; plane_size->surface_size.x = 0; plane_size->surface_size.y = 0; plane_size->surface_size.width = fb->width; plane_size->surface_size.height = fb->height; plane_size->surface_pitch = fb->pitches[0] / fb->format->cpp[0]; plane_size->chroma_size.x = 0; plane_size->chroma_size.y = 0; /* TODO: set these based on surface format */ plane_size->chroma_size.width = fb->width / 2; plane_size->chroma_size.height = fb->height / 2; plane_size->chroma_pitch = fb->pitches[1] / fb->format->cpp[1]; address->type = PLN_ADDR_TYPE_VIDEO_PROGRESSIVE; address->video_progressive.luma_addr.low_part = lower_32_bits(luma_addr); address->video_progressive.luma_addr.high_part = upper_32_bits(luma_addr); address->video_progressive.chroma_addr.low_part = lower_32_bits(chroma_addr); address->video_progressive.chroma_addr.high_part = upper_32_bits(chroma_addr); } if (adev->family >= AMDGPU_FAMILY_AI) { ret = fill_gfx9_plane_attributes_from_modifiers(adev, afb, format, rotation, plane_size, tiling_info, dcc, address, force_disable_dcc); if (ret) return ret; } else { fill_gfx8_tiling_info_from_flags(tiling_info, tiling_flags); } return 0; } static void fill_blending_from_plane_state(const struct drm_plane_state *plane_state, bool *per_pixel_alpha, bool *global_alpha, int *global_alpha_value) { *per_pixel_alpha = false; *global_alpha = false; *global_alpha_value = 0xff; if (plane_state->plane->type != DRM_PLANE_TYPE_OVERLAY) return; if (plane_state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) { static const uint32_t alpha_formats[] = { DRM_FORMAT_ARGB8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_ABGR8888, }; uint32_t format = plane_state->fb->format->format; unsigned int i; for (i = 0; i < ARRAY_SIZE(alpha_formats); ++i) { if (format == alpha_formats[i]) { *per_pixel_alpha = true; break; } } } if (plane_state->alpha < 0xffff) { *global_alpha = true; *global_alpha_value = plane_state->alpha >> 8; } } static int fill_plane_color_attributes(const struct drm_plane_state *plane_state, const enum surface_pixel_format format, enum dc_color_space *color_space) { bool full_range; *color_space = COLOR_SPACE_SRGB; /* DRM color properties only affect non-RGB formats. */ if (format < SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) return 0; full_range = (plane_state->color_range == DRM_COLOR_YCBCR_FULL_RANGE); switch (plane_state->color_encoding) { case DRM_COLOR_YCBCR_BT601: if (full_range) *color_space = COLOR_SPACE_YCBCR601; else *color_space = COLOR_SPACE_YCBCR601_LIMITED; break; case DRM_COLOR_YCBCR_BT709: if (full_range) *color_space = COLOR_SPACE_YCBCR709; else *color_space = COLOR_SPACE_YCBCR709_LIMITED; break; case DRM_COLOR_YCBCR_BT2020: if (full_range) *color_space = COLOR_SPACE_2020_YCBCR; else return -EINVAL; break; default: return -EINVAL; } return 0; } static int fill_dc_plane_info_and_addr(struct amdgpu_device *adev, const struct drm_plane_state *plane_state, const uint64_t tiling_flags, struct dc_plane_info *plane_info, struct dc_plane_address *address, bool tmz_surface, bool force_disable_dcc) { const struct drm_framebuffer *fb = plane_state->fb; const struct amdgpu_framebuffer *afb = to_amdgpu_framebuffer(plane_state->fb); int ret; memset(plane_info, 0, sizeof(*plane_info)); switch (fb->format->format) { case DRM_FORMAT_C8: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS; break; case DRM_FORMAT_RGB565: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_RGB565; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB8888; break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010; break; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR8888; break; case DRM_FORMAT_NV21: plane_info->format = SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr; break; case DRM_FORMAT_NV12: plane_info->format = SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb; break; case DRM_FORMAT_P010: plane_info->format = SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb; break; case DRM_FORMAT_XRGB16161616F: case DRM_FORMAT_ARGB16161616F: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F; break; case DRM_FORMAT_XBGR16161616F: case DRM_FORMAT_ABGR16161616F: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F; break; case DRM_FORMAT_XRGB16161616: case DRM_FORMAT_ARGB16161616: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616; break; case DRM_FORMAT_XBGR16161616: case DRM_FORMAT_ABGR16161616: plane_info->format = SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616; break; default: DRM_ERROR( "Unsupported screen format %p4cc\n", &fb->format->format); return -EINVAL; } switch (plane_state->rotation & DRM_MODE_ROTATE_MASK) { case DRM_MODE_ROTATE_0: plane_info->rotation = ROTATION_ANGLE_0; break; case DRM_MODE_ROTATE_90: plane_info->rotation = ROTATION_ANGLE_90; break; case DRM_MODE_ROTATE_180: plane_info->rotation = ROTATION_ANGLE_180; break; case DRM_MODE_ROTATE_270: plane_info->rotation = ROTATION_ANGLE_270; break; default: plane_info->rotation = ROTATION_ANGLE_0; break; } plane_info->visible = true; plane_info->stereo_format = PLANE_STEREO_FORMAT_NONE; plane_info->layer_index = 0; ret = fill_plane_color_attributes(plane_state, plane_info->format, &plane_info->color_space); if (ret) return ret; ret = fill_plane_buffer_attributes(adev, afb, plane_info->format, plane_info->rotation, tiling_flags, &plane_info->tiling_info, &plane_info->plane_size, &plane_info->dcc, address, tmz_surface, force_disable_dcc); if (ret) return ret; fill_blending_from_plane_state( plane_state, &plane_info->per_pixel_alpha, &plane_info->global_alpha, &plane_info->global_alpha_value); return 0; } static int fill_dc_plane_attributes(struct amdgpu_device *adev, struct dc_plane_state *dc_plane_state, struct drm_plane_state *plane_state, struct drm_crtc_state *crtc_state) { struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(crtc_state); struct amdgpu_framebuffer *afb = (struct amdgpu_framebuffer *)plane_state->fb; struct dc_scaling_info scaling_info; struct dc_plane_info plane_info; int ret; bool force_disable_dcc = false; ret = fill_dc_scaling_info(adev, plane_state, &scaling_info); if (ret) return ret; dc_plane_state->src_rect = scaling_info.src_rect; dc_plane_state->dst_rect = scaling_info.dst_rect; dc_plane_state->clip_rect = scaling_info.clip_rect; dc_plane_state->scaling_quality = scaling_info.scaling_quality; force_disable_dcc = adev->asic_type == CHIP_RAVEN && adev->in_suspend; ret = fill_dc_plane_info_and_addr(adev, plane_state, afb->tiling_flags, &plane_info, &dc_plane_state->address, afb->tmz_surface, force_disable_dcc); if (ret) return ret; dc_plane_state->format = plane_info.format; dc_plane_state->color_space = plane_info.color_space; dc_plane_state->format = plane_info.format; dc_plane_state->plane_size = plane_info.plane_size; dc_plane_state->rotation = plane_info.rotation; dc_plane_state->horizontal_mirror = plane_info.horizontal_mirror; dc_plane_state->stereo_format = plane_info.stereo_format; dc_plane_state->tiling_info = plane_info.tiling_info; dc_plane_state->visible = plane_info.visible; dc_plane_state->per_pixel_alpha = plane_info.per_pixel_alpha; dc_plane_state->global_alpha = plane_info.global_alpha; dc_plane_state->global_alpha_value = plane_info.global_alpha_value; dc_plane_state->dcc = plane_info.dcc; dc_plane_state->layer_index = plane_info.layer_index; // Always returns 0 dc_plane_state->flip_int_enabled = true; /* * Always set input transfer function, since plane state is refreshed * every time. */ ret = amdgpu_dm_update_plane_color_mgmt(dm_crtc_state, dc_plane_state); if (ret) return ret; return 0; } static void update_stream_scaling_settings(const struct drm_display_mode *mode, const struct dm_connector_state *dm_state, struct dc_stream_state *stream) { enum amdgpu_rmx_type rmx_type; struct rect src = { 0 }; /* viewport in composition space*/ struct rect dst = { 0 }; /* stream addressable area */ /* no mode. nothing to be done */ if (!mode) return; /* Full screen scaling by default */ src.width = mode->hdisplay; src.height = mode->vdisplay; dst.width = stream->timing.h_addressable; dst.height = stream->timing.v_addressable; if (dm_state) { rmx_type = dm_state->scaling; if (rmx_type == RMX_ASPECT || rmx_type == RMX_OFF) { if (src.width * dst.height < src.height * dst.width) { /* height needs less upscaling/more downscaling */ dst.width = src.width * dst.height / src.height; } else { /* width needs less upscaling/more downscaling */ dst.height = src.height * dst.width / src.width; } } else if (rmx_type == RMX_CENTER) { dst = src; } dst.x = (stream->timing.h_addressable - dst.width) / 2; dst.y = (stream->timing.v_addressable - dst.height) / 2; if (dm_state->underscan_enable) { dst.x += dm_state->underscan_hborder / 2; dst.y += dm_state->underscan_vborder / 2; dst.width -= dm_state->underscan_hborder; dst.height -= dm_state->underscan_vborder; } } stream->src = src; stream->dst = dst; DRM_DEBUG_KMS("Destination Rectangle x:%d y:%d width:%d height:%d\n", dst.x, dst.y, dst.width, dst.height); } static enum dc_color_depth convert_color_depth_from_display_info(const struct drm_connector *connector, bool is_y420, int requested_bpc) { uint8_t bpc; if (is_y420) { bpc = 8; /* Cap display bpc based on HDMI 2.0 HF-VSDB */ if (connector->display_info.hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_48) bpc = 16; else if (connector->display_info.hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_36) bpc = 12; else if (connector->display_info.hdmi.y420_dc_modes & DRM_EDID_YCBCR420_DC_30) bpc = 10; } else { bpc = (uint8_t)connector->display_info.bpc; /* Assume 8 bpc by default if no bpc is specified. */ bpc = bpc ? bpc : 8; } if (requested_bpc > 0) { /* * Cap display bpc based on the user requested value. * * The value for state->max_bpc may not correctly updated * depending on when the connector gets added to the state * or if this was called outside of atomic check, so it * can't be used directly. */ bpc = min_t(u8, bpc, requested_bpc); /* Round down to the nearest even number. */ bpc = bpc - (bpc & 1); } switch (bpc) { case 0: /* * Temporary Work around, DRM doesn't parse color depth for * EDID revision before 1.4 * TODO: Fix edid parsing */ return COLOR_DEPTH_888; case 6: return COLOR_DEPTH_666; case 8: return COLOR_DEPTH_888; case 10: return COLOR_DEPTH_101010; case 12: return COLOR_DEPTH_121212; case 14: return COLOR_DEPTH_141414; case 16: return COLOR_DEPTH_161616; default: return COLOR_DEPTH_UNDEFINED; } } static enum dc_aspect_ratio get_aspect_ratio(const struct drm_display_mode *mode_in) { /* 1-1 mapping, since both enums follow the HDMI spec. */ return (enum dc_aspect_ratio) mode_in->picture_aspect_ratio; } static enum dc_color_space get_output_color_space(const struct dc_crtc_timing *dc_crtc_timing) { enum dc_color_space color_space = COLOR_SPACE_SRGB; switch (dc_crtc_timing->pixel_encoding) { case PIXEL_ENCODING_YCBCR422: case PIXEL_ENCODING_YCBCR444: case PIXEL_ENCODING_YCBCR420: { /* * 27030khz is the separation point between HDTV and SDTV * according to HDMI spec, we use YCbCr709 and YCbCr601 * respectively */ if (dc_crtc_timing->pix_clk_100hz > 270300) { if (dc_crtc_timing->flags.Y_ONLY) color_space = COLOR_SPACE_YCBCR709_LIMITED; else color_space = COLOR_SPACE_YCBCR709; } else { if (dc_crtc_timing->flags.Y_ONLY) color_space = COLOR_SPACE_YCBCR601_LIMITED; else color_space = COLOR_SPACE_YCBCR601; } } break; case PIXEL_ENCODING_RGB: color_space = COLOR_SPACE_SRGB; break; default: WARN_ON(1); break; } return color_space; } static bool adjust_colour_depth_from_display_info( struct dc_crtc_timing *timing_out, const struct drm_display_info *info) { enum dc_color_depth depth = timing_out->display_color_depth; int normalized_clk; do { normalized_clk = timing_out->pix_clk_100hz / 10; /* YCbCr 4:2:0 requires additional adjustment of 1/2 */ if (timing_out->pixel_encoding == PIXEL_ENCODING_YCBCR420) normalized_clk /= 2; /* Adjusting pix clock following on HDMI spec based on colour depth */ switch (depth) { case COLOR_DEPTH_888: break; case COLOR_DEPTH_101010: normalized_clk = (normalized_clk * 30) / 24; break; case COLOR_DEPTH_121212: normalized_clk = (normalized_clk * 36) / 24; break; case COLOR_DEPTH_161616: normalized_clk = (normalized_clk * 48) / 24; break; default: /* The above depths are the only ones valid for HDMI. */ return false; } if (normalized_clk <= info->max_tmds_clock) { timing_out->display_color_depth = depth; return true; } } while (--depth > COLOR_DEPTH_666); return false; } static void fill_stream_properties_from_drm_display_mode( struct dc_stream_state *stream, const struct drm_display_mode *mode_in, const struct drm_connector *connector, const struct drm_connector_state *connector_state, const struct dc_stream_state *old_stream, int requested_bpc) { struct dc_crtc_timing *timing_out = &stream->timing; const struct drm_display_info *info = &connector->display_info; struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); struct hdmi_vendor_infoframe hv_frame; struct hdmi_avi_infoframe avi_frame; memset(&hv_frame, 0, sizeof(hv_frame)); memset(&avi_frame, 0, sizeof(avi_frame)); timing_out->h_border_left = 0; timing_out->h_border_right = 0; timing_out->v_border_top = 0; timing_out->v_border_bottom = 0; /* TODO: un-hardcode */ if (drm_mode_is_420_only(info, mode_in) && stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR420; else if (drm_mode_is_420_also(info, mode_in) && aconnector->force_yuv420_output) timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR420; else if ((connector->display_info.color_formats & DRM_COLOR_FORMAT_YCRCB444) && stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR444; else timing_out->pixel_encoding = PIXEL_ENCODING_RGB; timing_out->timing_3d_format = TIMING_3D_FORMAT_NONE; timing_out->display_color_depth = convert_color_depth_from_display_info( connector, (timing_out->pixel_encoding == PIXEL_ENCODING_YCBCR420), requested_bpc); timing_out->scan_type = SCANNING_TYPE_NODATA; timing_out->hdmi_vic = 0; if(old_stream) { timing_out->vic = old_stream->timing.vic; timing_out->flags.HSYNC_POSITIVE_POLARITY = old_stream->timing.flags.HSYNC_POSITIVE_POLARITY; timing_out->flags.VSYNC_POSITIVE_POLARITY = old_stream->timing.flags.VSYNC_POSITIVE_POLARITY; } else { timing_out->vic = drm_match_cea_mode(mode_in); if (mode_in->flags & DRM_MODE_FLAG_PHSYNC) timing_out->flags.HSYNC_POSITIVE_POLARITY = 1; if (mode_in->flags & DRM_MODE_FLAG_PVSYNC) timing_out->flags.VSYNC_POSITIVE_POLARITY = 1; } if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) { drm_hdmi_avi_infoframe_from_display_mode(&avi_frame, (struct drm_connector *)connector, mode_in); timing_out->vic = avi_frame.video_code; drm_hdmi_vendor_infoframe_from_display_mode(&hv_frame, (struct drm_connector *)connector, mode_in); timing_out->hdmi_vic = hv_frame.vic; } if (is_freesync_video_mode(mode_in, aconnector)) { timing_out->h_addressable = mode_in->hdisplay; timing_out->h_total = mode_in->htotal; timing_out->h_sync_width = mode_in->hsync_end - mode_in->hsync_start; timing_out->h_front_porch = mode_in->hsync_start - mode_in->hdisplay; timing_out->v_total = mode_in->vtotal; timing_out->v_addressable = mode_in->vdisplay; timing_out->v_front_porch = mode_in->vsync_start - mode_in->vdisplay; timing_out->v_sync_width = mode_in->vsync_end - mode_in->vsync_start; timing_out->pix_clk_100hz = mode_in->clock * 10; } else { timing_out->h_addressable = mode_in->crtc_hdisplay; timing_out->h_total = mode_in->crtc_htotal; timing_out->h_sync_width = mode_in->crtc_hsync_end - mode_in->crtc_hsync_start; timing_out->h_front_porch = mode_in->crtc_hsync_start - mode_in->crtc_hdisplay; timing_out->v_total = mode_in->crtc_vtotal; timing_out->v_addressable = mode_in->crtc_vdisplay; timing_out->v_front_porch = mode_in->crtc_vsync_start - mode_in->crtc_vdisplay; timing_out->v_sync_width = mode_in->crtc_vsync_end - mode_in->crtc_vsync_start; timing_out->pix_clk_100hz = mode_in->crtc_clock * 10; } timing_out->aspect_ratio = get_aspect_ratio(mode_in); stream->output_color_space = get_output_color_space(timing_out); stream->out_transfer_func->type = TF_TYPE_PREDEFINED; stream->out_transfer_func->tf = TRANSFER_FUNCTION_SRGB; if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) { if (!adjust_colour_depth_from_display_info(timing_out, info) && drm_mode_is_420_also(info, mode_in) && timing_out->pixel_encoding != PIXEL_ENCODING_YCBCR420) { timing_out->pixel_encoding = PIXEL_ENCODING_YCBCR420; adjust_colour_depth_from_display_info(timing_out, info); } } } static void fill_audio_info(struct audio_info *audio_info, const struct drm_connector *drm_connector, const struct dc_sink *dc_sink) { int i = 0; int cea_revision = 0; const struct dc_edid_caps *edid_caps = &dc_sink->edid_caps; audio_info->manufacture_id = edid_caps->manufacturer_id; audio_info->product_id = edid_caps->product_id; cea_revision = drm_connector->display_info.cea_rev; strscpy(audio_info->display_name, edid_caps->display_name, AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS); if (cea_revision >= 3) { audio_info->mode_count = edid_caps->audio_mode_count; for (i = 0; i < audio_info->mode_count; ++i) { audio_info->modes[i].format_code = (enum audio_format_code) (edid_caps->audio_modes[i].format_code); audio_info->modes[i].channel_count = edid_caps->audio_modes[i].channel_count; audio_info->modes[i].sample_rates.all = edid_caps->audio_modes[i].sample_rate; audio_info->modes[i].sample_size = edid_caps->audio_modes[i].sample_size; } } audio_info->flags.all = edid_caps->speaker_flags; /* TODO: We only check for the progressive mode, check for interlace mode too */ if (drm_connector->latency_present[0]) { audio_info->video_latency = drm_connector->video_latency[0]; audio_info->audio_latency = drm_connector->audio_latency[0]; } /* TODO: For DP, video and audio latency should be calculated from DPCD caps */ } static void copy_crtc_timing_for_drm_display_mode(const struct drm_display_mode *src_mode, struct drm_display_mode *dst_mode) { dst_mode->crtc_hdisplay = src_mode->crtc_hdisplay; dst_mode->crtc_vdisplay = src_mode->crtc_vdisplay; dst_mode->crtc_clock = src_mode->crtc_clock; dst_mode->crtc_hblank_start = src_mode->crtc_hblank_start; dst_mode->crtc_hblank_end = src_mode->crtc_hblank_end; dst_mode->crtc_hsync_start = src_mode->crtc_hsync_start; dst_mode->crtc_hsync_end = src_mode->crtc_hsync_end; dst_mode->crtc_htotal = src_mode->crtc_htotal; dst_mode->crtc_hskew = src_mode->crtc_hskew; dst_mode->crtc_vblank_start = src_mode->crtc_vblank_start; dst_mode->crtc_vblank_end = src_mode->crtc_vblank_end; dst_mode->crtc_vsync_start = src_mode->crtc_vsync_start; dst_mode->crtc_vsync_end = src_mode->crtc_vsync_end; dst_mode->crtc_vtotal = src_mode->crtc_vtotal; } static void decide_crtc_timing_for_drm_display_mode(struct drm_display_mode *drm_mode, const struct drm_display_mode *native_mode, bool scale_enabled) { if (scale_enabled) { copy_crtc_timing_for_drm_display_mode(native_mode, drm_mode); } else if (native_mode->clock == drm_mode->clock && native_mode->htotal == drm_mode->htotal && native_mode->vtotal == drm_mode->vtotal) { copy_crtc_timing_for_drm_display_mode(native_mode, drm_mode); } else { /* no scaling nor amdgpu inserted, no need to patch */ } } static struct dc_sink * create_fake_sink(struct amdgpu_dm_connector *aconnector) { struct dc_sink_init_data sink_init_data = { 0 }; struct dc_sink *sink = NULL; sink_init_data.link = aconnector->dc_link; sink_init_data.sink_signal = aconnector->dc_link->connector_signal; sink = dc_sink_create(&sink_init_data); if (!sink) { DRM_ERROR("Failed to create sink!\n"); return NULL; } sink->sink_signal = SIGNAL_TYPE_VIRTUAL; return sink; } static void set_multisync_trigger_params( struct dc_stream_state *stream) { struct dc_stream_state *master = NULL; if (stream->triggered_crtc_reset.enabled) { master = stream->triggered_crtc_reset.event_source; stream->triggered_crtc_reset.event = master->timing.flags.VSYNC_POSITIVE_POLARITY ? CRTC_EVENT_VSYNC_RISING : CRTC_EVENT_VSYNC_FALLING; stream->triggered_crtc_reset.delay = TRIGGER_DELAY_NEXT_PIXEL; } } static void set_master_stream(struct dc_stream_state *stream_set[], int stream_count) { int j, highest_rfr = 0, master_stream = 0; for (j = 0; j < stream_count; j++) { if (stream_set[j] && stream_set[j]->triggered_crtc_reset.enabled) { int refresh_rate = 0; refresh_rate = (stream_set[j]->timing.pix_clk_100hz*100)/ (stream_set[j]->timing.h_total*stream_set[j]->timing.v_total); if (refresh_rate > highest_rfr) { highest_rfr = refresh_rate; master_stream = j; } } } for (j = 0; j < stream_count; j++) { if (stream_set[j]) stream_set[j]->triggered_crtc_reset.event_source = stream_set[master_stream]; } } static void dm_enable_per_frame_crtc_master_sync(struct dc_state *context) { int i = 0; struct dc_stream_state *stream; if (context->stream_count < 2) return; for (i = 0; i < context->stream_count ; i++) { if (!context->streams[i]) continue; /* * TODO: add a function to read AMD VSDB bits and set * crtc_sync_master.multi_sync_enabled flag * For now it's set to false */ } set_master_stream(context->streams, context->stream_count); for (i = 0; i < context->stream_count ; i++) { stream = context->streams[i]; if (!stream) continue; set_multisync_trigger_params(stream); } } #if defined(CONFIG_DRM_AMD_DC_DCN) static void update_dsc_caps(struct amdgpu_dm_connector *aconnector, struct dc_sink *sink, struct dc_stream_state *stream, struct dsc_dec_dpcd_caps *dsc_caps) { stream->timing.flags.DSC = 0; if (aconnector->dc_link && (sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT || sink->sink_signal == SIGNAL_TYPE_EDP)) { dc_dsc_parse_dsc_dpcd(aconnector->dc_link->ctx->dc, aconnector->dc_link->dpcd_caps.dsc_caps.dsc_basic_caps.raw, aconnector->dc_link->dpcd_caps.dsc_caps.dsc_branch_decoder_caps.raw, dsc_caps); } } static void apply_dsc_policy_for_edp(struct amdgpu_dm_connector *aconnector, struct dc_sink *sink, struct dc_stream_state *stream, struct dsc_dec_dpcd_caps *dsc_caps, uint32_t max_dsc_target_bpp_limit_override) { const struct dc_link_settings *verified_link_cap = NULL; uint32_t link_bw_in_kbps; uint32_t edp_min_bpp_x16, edp_max_bpp_x16; struct dc *dc = sink->ctx->dc; struct dc_dsc_bw_range bw_range = {0}; struct dc_dsc_config dsc_cfg = {0}; verified_link_cap = dc_link_get_link_cap(stream->link); link_bw_in_kbps = dc_link_bandwidth_kbps(stream->link, verified_link_cap); edp_min_bpp_x16 = 8 * 16; edp_max_bpp_x16 = 8 * 16; if (edp_max_bpp_x16 > dsc_caps->edp_max_bits_per_pixel) edp_max_bpp_x16 = dsc_caps->edp_max_bits_per_pixel; if (edp_max_bpp_x16 < edp_min_bpp_x16) edp_min_bpp_x16 = edp_max_bpp_x16; if (dc_dsc_compute_bandwidth_range(dc->res_pool->dscs[0], dc->debug.dsc_min_slice_height_override, edp_min_bpp_x16, edp_max_bpp_x16, dsc_caps, &stream->timing, &bw_range)) { if (bw_range.max_kbps < link_bw_in_kbps) { if (dc_dsc_compute_config(dc->res_pool->dscs[0], dsc_caps, dc->debug.dsc_min_slice_height_override, max_dsc_target_bpp_limit_override, 0, &stream->timing, &dsc_cfg)) { stream->timing.dsc_cfg = dsc_cfg; stream->timing.flags.DSC = 1; stream->timing.dsc_cfg.bits_per_pixel = edp_max_bpp_x16; } return; } } if (dc_dsc_compute_config(dc->res_pool->dscs[0], dsc_caps, dc->debug.dsc_min_slice_height_override, max_dsc_target_bpp_limit_override, link_bw_in_kbps, &stream->timing, &dsc_cfg)) { stream->timing.dsc_cfg = dsc_cfg; stream->timing.flags.DSC = 1; } } static void apply_dsc_policy_for_stream(struct amdgpu_dm_connector *aconnector, struct dc_sink *sink, struct dc_stream_state *stream, struct dsc_dec_dpcd_caps *dsc_caps) { struct drm_connector *drm_connector = &aconnector->base; uint32_t link_bandwidth_kbps; uint32_t max_dsc_target_bpp_limit_override = 0; struct dc *dc = sink->ctx->dc; link_bandwidth_kbps = dc_link_bandwidth_kbps(aconnector->dc_link, dc_link_get_link_cap(aconnector->dc_link)); if (stream->link && stream->link->local_sink) max_dsc_target_bpp_limit_override = stream->link->local_sink->edid_caps.panel_patch.max_dsc_target_bpp_limit; /* Set DSC policy according to dsc_clock_en */ dc_dsc_policy_set_enable_dsc_when_not_needed( aconnector->dsc_settings.dsc_force_enable == DSC_CLK_FORCE_ENABLE); if (aconnector->dc_link && sink->sink_signal == SIGNAL_TYPE_EDP && !dc->debug.disable_dsc_edp && dc->caps.edp_dsc_support && aconnector->dsc_settings.dsc_force_enable != DSC_CLK_FORCE_DISABLE) { apply_dsc_policy_for_edp(aconnector, sink, stream, dsc_caps, max_dsc_target_bpp_limit_override); } else if (aconnector->dc_link && sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT) { if (dc_dsc_compute_config(aconnector->dc_link->ctx->dc->res_pool->dscs[0], dsc_caps, aconnector->dc_link->ctx->dc->debug.dsc_min_slice_height_override, max_dsc_target_bpp_limit_override, link_bandwidth_kbps, &stream->timing, &stream->timing.dsc_cfg)) { stream->timing.flags.DSC = 1; DRM_DEBUG_DRIVER("%s: [%s] DSC is selected from SST RX\n", __func__, drm_connector->name); } } /* Overwrite the stream flag if DSC is enabled through debugfs */ if (aconnector->dsc_settings.dsc_force_enable == DSC_CLK_FORCE_ENABLE) stream->timing.flags.DSC = 1; if (stream->timing.flags.DSC && aconnector->dsc_settings.dsc_num_slices_h) stream->timing.dsc_cfg.num_slices_h = aconnector->dsc_settings.dsc_num_slices_h; if (stream->timing.flags.DSC && aconnector->dsc_settings.dsc_num_slices_v) stream->timing.dsc_cfg.num_slices_v = aconnector->dsc_settings.dsc_num_slices_v; if (stream->timing.flags.DSC && aconnector->dsc_settings.dsc_bits_per_pixel) stream->timing.dsc_cfg.bits_per_pixel = aconnector->dsc_settings.dsc_bits_per_pixel; } #endif /* CONFIG_DRM_AMD_DC_DCN */ /** * DOC: FreeSync Video * * When a userspace application wants to play a video, the content follows a * standard format definition that usually specifies the FPS for that format. * The below list illustrates some video format and the expected FPS, * respectively: * * - TV/NTSC (23.976 FPS) * - Cinema (24 FPS) * - TV/PAL (25 FPS) * - TV/NTSC (29.97 FPS) * - TV/NTSC (30 FPS) * - Cinema HFR (48 FPS) * - TV/PAL (50 FPS) * - Commonly used (60 FPS) * - Multiples of 24 (48,72,96,120 FPS) * * The list of standards video format is not huge and can be added to the * connector modeset list beforehand. With that, userspace can leverage * FreeSync to extends the front porch in order to attain the target refresh * rate. Such a switch will happen seamlessly, without screen blanking or * reprogramming of the output in any other way. If the userspace requests a * modesetting change compatible with FreeSync modes that only differ in the * refresh rate, DC will skip the full update and avoid blink during the * transition. For example, the video player can change the modesetting from * 60Hz to 30Hz for playing TV/NTSC content when it goes full screen without * causing any display blink. This same concept can be applied to a mode * setting change. */ static struct drm_display_mode * get_highest_refresh_rate_mode(struct amdgpu_dm_connector *aconnector, bool use_probed_modes) { struct drm_display_mode *m, *m_pref = NULL; u16 current_refresh, highest_refresh; struct list_head *list_head = use_probed_modes ? &aconnector->base.probed_modes : &aconnector->base.modes; if (aconnector->freesync_vid_base.clock != 0) return &aconnector->freesync_vid_base; /* Find the preferred mode */ list_for_each_entry (m, list_head, head) { if (m->type & DRM_MODE_TYPE_PREFERRED) { m_pref = m; break; } } if (!m_pref) { /* Probably an EDID with no preferred mode. Fallback to first entry */ m_pref = list_first_entry_or_null( &aconnector->base.modes, struct drm_display_mode, head); if (!m_pref) { DRM_DEBUG_DRIVER("No preferred mode found in EDID\n"); return NULL; } } highest_refresh = drm_mode_vrefresh(m_pref); /* * Find the mode with highest refresh rate with same resolution. * For some monitors, preferred mode is not the mode with highest * supported refresh rate. */ list_for_each_entry (m, list_head, head) { current_refresh = drm_mode_vrefresh(m); if (m->hdisplay == m_pref->hdisplay && m->vdisplay == m_pref->vdisplay && highest_refresh < current_refresh) { highest_refresh = current_refresh; m_pref = m; } } aconnector->freesync_vid_base = *m_pref; return m_pref; } static bool is_freesync_video_mode(const struct drm_display_mode *mode, struct amdgpu_dm_connector *aconnector) { struct drm_display_mode *high_mode; int timing_diff; high_mode = get_highest_refresh_rate_mode(aconnector, false); if (!high_mode || !mode) return false; timing_diff = high_mode->vtotal - mode->vtotal; if (high_mode->clock == 0 || high_mode->clock != mode->clock || high_mode->hdisplay != mode->hdisplay || high_mode->vdisplay != mode->vdisplay || high_mode->hsync_start != mode->hsync_start || high_mode->hsync_end != mode->hsync_end || high_mode->htotal != mode->htotal || high_mode->hskew != mode->hskew || high_mode->vscan != mode->vscan || high_mode->vsync_start - mode->vsync_start != timing_diff || high_mode->vsync_end - mode->vsync_end != timing_diff) return false; else return true; } static struct dc_stream_state * create_stream_for_sink(struct amdgpu_dm_connector *aconnector, const struct drm_display_mode *drm_mode, const struct dm_connector_state *dm_state, const struct dc_stream_state *old_stream, int requested_bpc) { struct drm_display_mode *preferred_mode = NULL; struct drm_connector *drm_connector; const struct drm_connector_state *con_state = dm_state ? &dm_state->base : NULL; struct dc_stream_state *stream = NULL; struct drm_display_mode mode = *drm_mode; struct drm_display_mode saved_mode; struct drm_display_mode *freesync_mode = NULL; bool native_mode_found = false; bool recalculate_timing = false; bool scale = dm_state ? (dm_state->scaling != RMX_OFF) : false; int mode_refresh; int preferred_refresh = 0; #if defined(CONFIG_DRM_AMD_DC_DCN) struct dsc_dec_dpcd_caps dsc_caps; #endif struct dc_sink *sink = NULL; memset(&saved_mode, 0, sizeof(saved_mode)); if (aconnector == NULL) { DRM_ERROR("aconnector is NULL!\n"); return stream; } drm_connector = &aconnector->base; if (!aconnector->dc_sink) { sink = create_fake_sink(aconnector); if (!sink) return stream; } else { sink = aconnector->dc_sink; dc_sink_retain(sink); } stream = dc_create_stream_for_sink(sink); if (stream == NULL) { DRM_ERROR("Failed to create stream for sink!\n"); goto finish; } stream->dm_stream_context = aconnector; stream->timing.flags.LTE_340MCSC_SCRAMBLE = drm_connector->display_info.hdmi.scdc.scrambling.low_rates; list_for_each_entry(preferred_mode, &aconnector->base.modes, head) { /* Search for preferred mode */ if (preferred_mode->type & DRM_MODE_TYPE_PREFERRED) { native_mode_found = true; break; } } if (!native_mode_found) preferred_mode = list_first_entry_or_null( &aconnector->base.modes, struct drm_display_mode, head); mode_refresh = drm_mode_vrefresh(&mode); if (preferred_mode == NULL) { /* * This may not be an error, the use case is when we have no * usermode calls to reset and set mode upon hotplug. In this * case, we call set mode ourselves to restore the previous mode * and the modelist may not be filled in in time. */ DRM_DEBUG_DRIVER("No preferred mode found\n"); } else { recalculate_timing = amdgpu_freesync_vid_mode && is_freesync_video_mode(&mode, aconnector); if (recalculate_timing) { freesync_mode = get_highest_refresh_rate_mode(aconnector, false); saved_mode = mode; mode = *freesync_mode; } else { decide_crtc_timing_for_drm_display_mode( &mode, preferred_mode, scale); preferred_refresh = drm_mode_vrefresh(preferred_mode); } } if (recalculate_timing) drm_mode_set_crtcinfo(&saved_mode, 0); else if (!dm_state) drm_mode_set_crtcinfo(&mode, 0); /* * If scaling is enabled and refresh rate didn't change * we copy the vic and polarities of the old timings */ if (!scale || mode_refresh != preferred_refresh) fill_stream_properties_from_drm_display_mode( stream, &mode, &aconnector->base, con_state, NULL, requested_bpc); else fill_stream_properties_from_drm_display_mode( stream, &mode, &aconnector->base, con_state, old_stream, requested_bpc); #if defined(CONFIG_DRM_AMD_DC_DCN) /* SST DSC determination policy */ update_dsc_caps(aconnector, sink, stream, &dsc_caps); if (aconnector->dsc_settings.dsc_force_enable != DSC_CLK_FORCE_DISABLE && dsc_caps.is_dsc_supported) apply_dsc_policy_for_stream(aconnector, sink, stream, &dsc_caps); #endif update_stream_scaling_settings(&mode, dm_state, stream); fill_audio_info( &stream->audio_info, drm_connector, sink); update_stream_signal(stream, sink); if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A) mod_build_hf_vsif_infopacket(stream, &stream->vsp_infopacket); if (stream->link->psr_settings.psr_feature_enabled) { // // should decide stream support vsc sdp colorimetry capability // before building vsc info packet // stream->use_vsc_sdp_for_colorimetry = false; if (aconnector->dc_sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT_MST) { stream->use_vsc_sdp_for_colorimetry = aconnector->dc_sink->is_vsc_sdp_colorimetry_supported; } else { if (stream->link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) stream->use_vsc_sdp_for_colorimetry = true; } mod_build_vsc_infopacket(stream, &stream->vsc_infopacket); aconnector->psr_skip_count = AMDGPU_DM_PSR_ENTRY_DELAY; } finish: dc_sink_release(sink); return stream; } static void amdgpu_dm_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); kfree(crtc); } static void dm_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct dm_crtc_state *cur = to_dm_crtc_state(state); /* TODO Destroy dc_stream objects are stream object is flattened */ if (cur->stream) dc_stream_release(cur->stream); __drm_atomic_helper_crtc_destroy_state(state); kfree(state); } static void dm_crtc_reset_state(struct drm_crtc *crtc) { struct dm_crtc_state *state; if (crtc->state) dm_crtc_destroy_state(crtc, crtc->state); state = kzalloc(sizeof(*state), GFP_KERNEL); if (WARN_ON(!state)) return; __drm_atomic_helper_crtc_reset(crtc, &state->base); } static struct drm_crtc_state * dm_crtc_duplicate_state(struct drm_crtc *crtc) { struct dm_crtc_state *state, *cur; cur = to_dm_crtc_state(crtc->state); if (WARN_ON(!crtc->state)) return NULL; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); if (cur->stream) { state->stream = cur->stream; dc_stream_retain(state->stream); } state->active_planes = cur->active_planes; state->vrr_infopacket = cur->vrr_infopacket; state->abm_level = cur->abm_level; state->vrr_supported = cur->vrr_supported; state->freesync_config = cur->freesync_config; state->cm_has_degamma = cur->cm_has_degamma; state->cm_is_degamma_srgb = cur->cm_is_degamma_srgb; state->force_dpms_off = cur->force_dpms_off; /* TODO Duplicate dc_stream after objects are stream object is flattened */ return &state->base; } #ifdef CONFIG_DRM_AMD_SECURE_DISPLAY static int amdgpu_dm_crtc_late_register(struct drm_crtc *crtc) { crtc_debugfs_init(crtc); return 0; } #endif static inline int dm_set_vupdate_irq(struct drm_crtc *crtc, bool enable) { enum dc_irq_source irq_source; struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); struct amdgpu_device *adev = drm_to_adev(crtc->dev); int rc; irq_source = IRQ_TYPE_VUPDATE + acrtc->otg_inst; rc = dc_interrupt_set(adev->dm.dc, irq_source, enable) ? 0 : -EBUSY; DRM_DEBUG_VBL("crtc %d - vupdate irq %sabling: r=%d\n", acrtc->crtc_id, enable ? "en" : "dis", rc); return rc; } static inline int dm_set_vblank(struct drm_crtc *crtc, bool enable) { enum dc_irq_source irq_source; struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); struct amdgpu_device *adev = drm_to_adev(crtc->dev); struct dm_crtc_state *acrtc_state = to_dm_crtc_state(crtc->state); #if defined(CONFIG_DRM_AMD_DC_DCN) struct amdgpu_display_manager *dm = &adev->dm; struct vblank_control_work *work; #endif int rc = 0; if (enable) { /* vblank irq on -> Only need vupdate irq in vrr mode */ if (amdgpu_dm_vrr_active(acrtc_state)) rc = dm_set_vupdate_irq(crtc, true); } else { /* vblank irq off -> vupdate irq off */ rc = dm_set_vupdate_irq(crtc, false); } if (rc) return rc; irq_source = IRQ_TYPE_VBLANK + acrtc->otg_inst; if (!dc_interrupt_set(adev->dm.dc, irq_source, enable)) return -EBUSY; if (amdgpu_in_reset(adev)) return 0; #if defined(CONFIG_DRM_AMD_DC_DCN) if (dm->vblank_control_workqueue) { work = kzalloc(sizeof(*work), GFP_ATOMIC); if (!work) return -ENOMEM; INIT_WORK(&work->work, vblank_control_worker); work->dm = dm; work->acrtc = acrtc; work->enable = enable; if (acrtc_state->stream) { dc_stream_retain(acrtc_state->stream); work->stream = acrtc_state->stream; } queue_work(dm->vblank_control_workqueue, &work->work); } #endif return 0; } static int dm_enable_vblank(struct drm_crtc *crtc) { return dm_set_vblank(crtc, true); } static void dm_disable_vblank(struct drm_crtc *crtc) { dm_set_vblank(crtc, false); } /* Implemented only the options currently availible for the driver */ static const struct drm_crtc_funcs amdgpu_dm_crtc_funcs = { .reset = dm_crtc_reset_state, .destroy = amdgpu_dm_crtc_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = dm_crtc_duplicate_state, .atomic_destroy_state = dm_crtc_destroy_state, .set_crc_source = amdgpu_dm_crtc_set_crc_source, .verify_crc_source = amdgpu_dm_crtc_verify_crc_source, .get_crc_sources = amdgpu_dm_crtc_get_crc_sources, .get_vblank_counter = amdgpu_get_vblank_counter_kms, .enable_vblank = dm_enable_vblank, .disable_vblank = dm_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) .late_register = amdgpu_dm_crtc_late_register, #endif }; static enum drm_connector_status amdgpu_dm_connector_detect(struct drm_connector *connector, bool force) { bool connected; struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); /* * Notes: * 1. This interface is NOT called in context of HPD irq. * 2. This interface *is called* in context of user-mode ioctl. Which * makes it a bad place for *any* MST-related activity. */ if (aconnector->base.force == DRM_FORCE_UNSPECIFIED && !aconnector->fake_enable) connected = (aconnector->dc_sink != NULL); else connected = (aconnector->base.force == DRM_FORCE_ON); update_subconnector_property(aconnector); return (connected ? connector_status_connected : connector_status_disconnected); } int amdgpu_dm_connector_atomic_set_property(struct drm_connector *connector, struct drm_connector_state *connector_state, struct drm_property *property, uint64_t val) { struct drm_device *dev = connector->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct dm_connector_state *dm_old_state = to_dm_connector_state(connector->state); struct dm_connector_state *dm_new_state = to_dm_connector_state(connector_state); int ret = -EINVAL; if (property == dev->mode_config.scaling_mode_property) { enum amdgpu_rmx_type rmx_type; switch (val) { case DRM_MODE_SCALE_CENTER: rmx_type = RMX_CENTER; break; case DRM_MODE_SCALE_ASPECT: rmx_type = RMX_ASPECT; break; case DRM_MODE_SCALE_FULLSCREEN: rmx_type = RMX_FULL; break; case DRM_MODE_SCALE_NONE: default: rmx_type = RMX_OFF; break; } if (dm_old_state->scaling == rmx_type) return 0; dm_new_state->scaling = rmx_type; ret = 0; } else if (property == adev->mode_info.underscan_hborder_property) { dm_new_state->underscan_hborder = val; ret = 0; } else if (property == adev->mode_info.underscan_vborder_property) { dm_new_state->underscan_vborder = val; ret = 0; } else if (property == adev->mode_info.underscan_property) { dm_new_state->underscan_enable = val; ret = 0; } else if (property == adev->mode_info.abm_level_property) { dm_new_state->abm_level = val; ret = 0; } return ret; } int amdgpu_dm_connector_atomic_get_property(struct drm_connector *connector, const struct drm_connector_state *state, struct drm_property *property, uint64_t *val) { struct drm_device *dev = connector->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct dm_connector_state *dm_state = to_dm_connector_state(state); int ret = -EINVAL; if (property == dev->mode_config.scaling_mode_property) { switch (dm_state->scaling) { case RMX_CENTER: *val = DRM_MODE_SCALE_CENTER; break; case RMX_ASPECT: *val = DRM_MODE_SCALE_ASPECT; break; case RMX_FULL: *val = DRM_MODE_SCALE_FULLSCREEN; break; case RMX_OFF: default: *val = DRM_MODE_SCALE_NONE; break; } ret = 0; } else if (property == adev->mode_info.underscan_hborder_property) { *val = dm_state->underscan_hborder; ret = 0; } else if (property == adev->mode_info.underscan_vborder_property) { *val = dm_state->underscan_vborder; ret = 0; } else if (property == adev->mode_info.underscan_property) { *val = dm_state->underscan_enable; ret = 0; } else if (property == adev->mode_info.abm_level_property) { *val = dm_state->abm_level; ret = 0; } return ret; } static void amdgpu_dm_connector_unregister(struct drm_connector *connector) { struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); drm_dp_aux_unregister(&amdgpu_dm_connector->dm_dp_aux.aux); } static void amdgpu_dm_connector_destroy(struct drm_connector *connector) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); const struct dc_link *link = aconnector->dc_link; struct amdgpu_device *adev = drm_to_adev(connector->dev); struct amdgpu_display_manager *dm = &adev->dm; int i; /* * Call only if mst_mgr was iniitalized before since it's not done * for all connector types. */ if (aconnector->mst_mgr.dev) drm_dp_mst_topology_mgr_destroy(&aconnector->mst_mgr); #if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) ||\ defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE) for (i = 0; i < dm->num_of_edps; i++) { if ((link == dm->backlight_link[i]) && dm->backlight_dev[i]) { backlight_device_unregister(dm->backlight_dev[i]); dm->backlight_dev[i] = NULL; } } #endif if (aconnector->dc_em_sink) dc_sink_release(aconnector->dc_em_sink); aconnector->dc_em_sink = NULL; if (aconnector->dc_sink) dc_sink_release(aconnector->dc_sink); aconnector->dc_sink = NULL; drm_dp_cec_unregister_connector(&aconnector->dm_dp_aux.aux); drm_connector_unregister(connector); drm_connector_cleanup(connector); if (aconnector->i2c) { i2c_del_adapter(&aconnector->i2c->base); kfree(aconnector->i2c); } kfree(aconnector->dm_dp_aux.aux.name); kfree(connector); } void amdgpu_dm_connector_funcs_reset(struct drm_connector *connector) { struct dm_connector_state *state = to_dm_connector_state(connector->state); if (connector->state) __drm_atomic_helper_connector_destroy_state(connector->state); kfree(state); state = kzalloc(sizeof(*state), GFP_KERNEL); if (state) { state->scaling = RMX_OFF; state->underscan_enable = false; state->underscan_hborder = 0; state->underscan_vborder = 0; state->base.max_requested_bpc = 8; state->vcpi_slots = 0; state->pbn = 0; if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) state->abm_level = amdgpu_dm_abm_level; __drm_atomic_helper_connector_reset(connector, &state->base); } } struct drm_connector_state * amdgpu_dm_connector_atomic_duplicate_state(struct drm_connector *connector) { struct dm_connector_state *state = to_dm_connector_state(connector->state); struct dm_connector_state *new_state = kmemdup(state, sizeof(*state), GFP_KERNEL); if (!new_state) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, &new_state->base); new_state->freesync_capable = state->freesync_capable; new_state->abm_level = state->abm_level; new_state->scaling = state->scaling; new_state->underscan_enable = state->underscan_enable; new_state->underscan_hborder = state->underscan_hborder; new_state->underscan_vborder = state->underscan_vborder; new_state->vcpi_slots = state->vcpi_slots; new_state->pbn = state->pbn; return &new_state->base; } static int amdgpu_dm_connector_late_register(struct drm_connector *connector) { struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); int r; if ((connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort) || (connector->connector_type == DRM_MODE_CONNECTOR_eDP)) { amdgpu_dm_connector->dm_dp_aux.aux.dev = connector->kdev; r = drm_dp_aux_register(&amdgpu_dm_connector->dm_dp_aux.aux); if (r) return r; } #if defined(CONFIG_DEBUG_FS) connector_debugfs_init(amdgpu_dm_connector); #endif return 0; } static const struct drm_connector_funcs amdgpu_dm_connector_funcs = { .reset = amdgpu_dm_connector_funcs_reset, .detect = amdgpu_dm_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = amdgpu_dm_connector_destroy, .atomic_duplicate_state = amdgpu_dm_connector_atomic_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_set_property = amdgpu_dm_connector_atomic_set_property, .atomic_get_property = amdgpu_dm_connector_atomic_get_property, .late_register = amdgpu_dm_connector_late_register, .early_unregister = amdgpu_dm_connector_unregister }; static int get_modes(struct drm_connector *connector) { return amdgpu_dm_connector_get_modes(connector); } static void create_eml_sink(struct amdgpu_dm_connector *aconnector) { struct dc_sink_init_data init_params = { .link = aconnector->dc_link, .sink_signal = SIGNAL_TYPE_VIRTUAL }; struct edid *edid; if (!aconnector->base.edid_blob_ptr) { DRM_ERROR("No EDID firmware found on connector: %s ,forcing to OFF!\n", aconnector->base.name); aconnector->base.force = DRM_FORCE_OFF; aconnector->base.override_edid = false; return; } edid = (struct edid *) aconnector->base.edid_blob_ptr->data; aconnector->edid = edid; aconnector->dc_em_sink = dc_link_add_remote_sink( aconnector->dc_link, (uint8_t *)edid, (edid->extensions + 1) * EDID_LENGTH, &init_params); if (aconnector->base.force == DRM_FORCE_ON) { aconnector->dc_sink = aconnector->dc_link->local_sink ? aconnector->dc_link->local_sink : aconnector->dc_em_sink; dc_sink_retain(aconnector->dc_sink); } } static void handle_edid_mgmt(struct amdgpu_dm_connector *aconnector) { struct dc_link *link = (struct dc_link *)aconnector->dc_link; /* * In case of headless boot with force on for DP managed connector * Those settings have to be != 0 to get initial modeset */ if (link->connector_signal == SIGNAL_TYPE_DISPLAY_PORT) { link->verified_link_cap.lane_count = LANE_COUNT_FOUR; link->verified_link_cap.link_rate = LINK_RATE_HIGH2; } aconnector->base.override_edid = true; create_eml_sink(aconnector); } static struct dc_stream_state * create_validate_stream_for_sink(struct amdgpu_dm_connector *aconnector, const struct drm_display_mode *drm_mode, const struct dm_connector_state *dm_state, const struct dc_stream_state *old_stream) { struct drm_connector *connector = &aconnector->base; struct amdgpu_device *adev = drm_to_adev(connector->dev); struct dc_stream_state *stream; const struct drm_connector_state *drm_state = dm_state ? &dm_state->base : NULL; int requested_bpc = drm_state ? drm_state->max_requested_bpc : 8; enum dc_status dc_result = DC_OK; do { stream = create_stream_for_sink(aconnector, drm_mode, dm_state, old_stream, requested_bpc); if (stream == NULL) { DRM_ERROR("Failed to create stream for sink!\n"); break; } dc_result = dc_validate_stream(adev->dm.dc, stream); if (dc_result != DC_OK) { DRM_DEBUG_KMS("Mode %dx%d (clk %d) failed DC validation with error %d (%s)\n", drm_mode->hdisplay, drm_mode->vdisplay, drm_mode->clock, dc_result, dc_status_to_str(dc_result)); dc_stream_release(stream); stream = NULL; requested_bpc -= 2; /* lower bpc to retry validation */ } } while (stream == NULL && requested_bpc >= 6); if (dc_result == DC_FAIL_ENC_VALIDATE && !aconnector->force_yuv420_output) { DRM_DEBUG_KMS("Retry forcing YCbCr420 encoding\n"); aconnector->force_yuv420_output = true; stream = create_validate_stream_for_sink(aconnector, drm_mode, dm_state, old_stream); aconnector->force_yuv420_output = false; } return stream; } enum drm_mode_status amdgpu_dm_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { int result = MODE_ERROR; struct dc_sink *dc_sink; /* TODO: Unhardcode stream count */ struct dc_stream_state *stream; struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); if ((mode->flags & DRM_MODE_FLAG_INTERLACE) || (mode->flags & DRM_MODE_FLAG_DBLSCAN)) return result; /* * Only run this the first time mode_valid is called to initilialize * EDID mgmt */ if (aconnector->base.force != DRM_FORCE_UNSPECIFIED && !aconnector->dc_em_sink) handle_edid_mgmt(aconnector); dc_sink = to_amdgpu_dm_connector(connector)->dc_sink; if (dc_sink == NULL && aconnector->base.force != DRM_FORCE_ON_DIGITAL && aconnector->base.force != DRM_FORCE_ON) { DRM_ERROR("dc_sink is NULL!\n"); goto fail; } stream = create_validate_stream_for_sink(aconnector, mode, NULL, NULL); if (stream) { dc_stream_release(stream); result = MODE_OK; } fail: /* TODO: error handling*/ return result; } static int fill_hdr_info_packet(const struct drm_connector_state *state, struct dc_info_packet *out) { struct hdmi_drm_infoframe frame; unsigned char buf[30]; /* 26 + 4 */ ssize_t len; int ret, i; memset(out, 0, sizeof(*out)); if (!state->hdr_output_metadata) return 0; ret = drm_hdmi_infoframe_set_hdr_metadata(&frame, state); if (ret) return ret; len = hdmi_drm_infoframe_pack_only(&frame, buf, sizeof(buf)); if (len < 0) return (int)len; /* Static metadata is a fixed 26 bytes + 4 byte header. */ if (len != 30) return -EINVAL; /* Prepare the infopacket for DC. */ switch (state->connector->connector_type) { case DRM_MODE_CONNECTOR_HDMIA: out->hb0 = 0x87; /* type */ out->hb1 = 0x01; /* version */ out->hb2 = 0x1A; /* length */ out->sb[0] = buf[3]; /* checksum */ i = 1; break; case DRM_MODE_CONNECTOR_DisplayPort: case DRM_MODE_CONNECTOR_eDP: out->hb0 = 0x00; /* sdp id, zero */ out->hb1 = 0x87; /* type */ out->hb2 = 0x1D; /* payload len - 1 */ out->hb3 = (0x13 << 2); /* sdp version */ out->sb[0] = 0x01; /* version */ out->sb[1] = 0x1A; /* length */ i = 2; break; default: return -EINVAL; } memcpy(&out->sb[i], &buf[4], 26); out->valid = true; print_hex_dump(KERN_DEBUG, "HDR SB:", DUMP_PREFIX_NONE, 16, 1, out->sb, sizeof(out->sb), false); return 0; } static int amdgpu_dm_connector_atomic_check(struct drm_connector *conn, struct drm_atomic_state *state) { struct drm_connector_state *new_con_state = drm_atomic_get_new_connector_state(state, conn); struct drm_connector_state *old_con_state = drm_atomic_get_old_connector_state(state, conn); struct drm_crtc *crtc = new_con_state->crtc; struct drm_crtc_state *new_crtc_state; int ret; trace_amdgpu_dm_connector_atomic_check(new_con_state); if (!crtc) return 0; if (!drm_connector_atomic_hdr_metadata_equal(old_con_state, new_con_state)) { struct dc_info_packet hdr_infopacket; ret = fill_hdr_info_packet(new_con_state, &hdr_infopacket); if (ret) return ret; new_crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(new_crtc_state)) return PTR_ERR(new_crtc_state); /* * DC considers the stream backends changed if the * static metadata changes. Forcing the modeset also * gives a simple way for userspace to switch from * 8bpc to 10bpc when setting the metadata to enter * or exit HDR. * * Changing the static metadata after it's been * set is permissible, however. So only force a * modeset if we're entering or exiting HDR. */ new_crtc_state->mode_changed = !old_con_state->hdr_output_metadata || !new_con_state->hdr_output_metadata; } return 0; } static const struct drm_connector_helper_funcs amdgpu_dm_connector_helper_funcs = { /* * If hotplugging a second bigger display in FB Con mode, bigger resolution * modes will be filtered by drm_mode_validate_size(), and those modes * are missing after user start lightdm. So we need to renew modes list. * in get_modes call back, not just return the modes count */ .get_modes = get_modes, .mode_valid = amdgpu_dm_connector_mode_valid, .atomic_check = amdgpu_dm_connector_atomic_check, }; static void dm_crtc_helper_disable(struct drm_crtc *crtc) { } static int count_crtc_active_planes(struct drm_crtc_state *new_crtc_state) { struct drm_atomic_state *state = new_crtc_state->state; struct drm_plane *plane; int num_active = 0; drm_for_each_plane_mask(plane, state->dev, new_crtc_state->plane_mask) { struct drm_plane_state *new_plane_state; /* Cursor planes are "fake". */ if (plane->type == DRM_PLANE_TYPE_CURSOR) continue; new_plane_state = drm_atomic_get_new_plane_state(state, plane); if (!new_plane_state) { /* * The plane is enable on the CRTC and hasn't changed * state. This means that it previously passed * validation and is therefore enabled. */ num_active += 1; continue; } /* We need a framebuffer to be considered enabled. */ num_active += (new_plane_state->fb != NULL); } return num_active; } static void dm_update_crtc_active_planes(struct drm_crtc *crtc, struct drm_crtc_state *new_crtc_state) { struct dm_crtc_state *dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); dm_new_crtc_state->active_planes = 0; if (!dm_new_crtc_state->stream) return; dm_new_crtc_state->active_planes = count_crtc_active_planes(new_crtc_state); } static int dm_crtc_helper_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct amdgpu_device *adev = drm_to_adev(crtc->dev); struct dc *dc = adev->dm.dc; struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(crtc_state); int ret = -EINVAL; trace_amdgpu_dm_crtc_atomic_check(crtc_state); dm_update_crtc_active_planes(crtc, crtc_state); if (WARN_ON(unlikely(!dm_crtc_state->stream && modeset_required(crtc_state, NULL, dm_crtc_state->stream)))) { return ret; } /* * We require the primary plane to be enabled whenever the CRTC is, otherwise * drm_mode_cursor_universal may end up trying to enable the cursor plane while all other * planes are disabled, which is not supported by the hardware. And there is legacy * userspace which stops using the HW cursor altogether in response to the resulting EINVAL. */ if (crtc_state->enable && !(crtc_state->plane_mask & drm_plane_mask(crtc->primary))) { DRM_DEBUG_ATOMIC("Can't enable a CRTC without enabling the primary plane\n"); return -EINVAL; } /* In some use cases, like reset, no stream is attached */ if (!dm_crtc_state->stream) return 0; if (dc_validate_stream(dc, dm_crtc_state->stream) == DC_OK) return 0; DRM_DEBUG_ATOMIC("Failed DC stream validation\n"); return ret; } static bool dm_crtc_helper_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static const struct drm_crtc_helper_funcs amdgpu_dm_crtc_helper_funcs = { .disable = dm_crtc_helper_disable, .atomic_check = dm_crtc_helper_atomic_check, .mode_fixup = dm_crtc_helper_mode_fixup, .get_scanout_position = amdgpu_crtc_get_scanout_position, }; static void dm_encoder_helper_disable(struct drm_encoder *encoder) { } static int convert_dc_color_depth_into_bpc (enum dc_color_depth display_color_depth) { switch (display_color_depth) { case COLOR_DEPTH_666: return 6; case COLOR_DEPTH_888: return 8; case COLOR_DEPTH_101010: return 10; case COLOR_DEPTH_121212: return 12; case COLOR_DEPTH_141414: return 14; case COLOR_DEPTH_161616: return 16; default: break; } return 0; } static int dm_encoder_helper_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_atomic_state *state = crtc_state->state; struct drm_connector *connector = conn_state->connector; struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); struct dm_connector_state *dm_new_connector_state = to_dm_connector_state(conn_state); const struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct drm_dp_mst_topology_mgr *mst_mgr; struct drm_dp_mst_port *mst_port; enum dc_color_depth color_depth; int clock, bpp = 0; bool is_y420 = false; if (!aconnector->port || !aconnector->dc_sink) return 0; mst_port = aconnector->port; mst_mgr = &aconnector->mst_port->mst_mgr; if (!crtc_state->connectors_changed && !crtc_state->mode_changed) return 0; if (!state->duplicated) { int max_bpc = conn_state->max_requested_bpc; is_y420 = drm_mode_is_420_also(&connector->display_info, adjusted_mode) && aconnector->force_yuv420_output; color_depth = convert_color_depth_from_display_info(connector, is_y420, max_bpc); bpp = convert_dc_color_depth_into_bpc(color_depth) * 3; clock = adjusted_mode->clock; dm_new_connector_state->pbn = drm_dp_calc_pbn_mode(clock, bpp, false); } dm_new_connector_state->vcpi_slots = drm_dp_atomic_find_vcpi_slots(state, mst_mgr, mst_port, dm_new_connector_state->pbn, dm_mst_get_pbn_divider(aconnector->dc_link)); if (dm_new_connector_state->vcpi_slots < 0) { DRM_DEBUG_ATOMIC("failed finding vcpi slots: %d\n", (int)dm_new_connector_state->vcpi_slots); return dm_new_connector_state->vcpi_slots; } return 0; } const struct drm_encoder_helper_funcs amdgpu_dm_encoder_helper_funcs = { .disable = dm_encoder_helper_disable, .atomic_check = dm_encoder_helper_atomic_check }; #if defined(CONFIG_DRM_AMD_DC_DCN) static int dm_update_mst_vcpi_slots_for_dsc(struct drm_atomic_state *state, struct dc_state *dc_state, struct dsc_mst_fairness_vars *vars) { struct dc_stream_state *stream = NULL; struct drm_connector *connector; struct drm_connector_state *new_con_state; struct amdgpu_dm_connector *aconnector; struct dm_connector_state *dm_conn_state; int i, j; int vcpi, pbn_div, pbn, slot_num = 0; for_each_new_connector_in_state(state, connector, new_con_state, i) { aconnector = to_amdgpu_dm_connector(connector); if (!aconnector->port) continue; if (!new_con_state || !new_con_state->crtc) continue; dm_conn_state = to_dm_connector_state(new_con_state); for (j = 0; j < dc_state->stream_count; j++) { stream = dc_state->streams[j]; if (!stream) continue; if ((struct amdgpu_dm_connector*)stream->dm_stream_context == aconnector) break; stream = NULL; } if (!stream) continue; pbn_div = dm_mst_get_pbn_divider(stream->link); /* pbn is calculated by compute_mst_dsc_configs_for_state*/ for (j = 0; j < dc_state->stream_count; j++) { if (vars[j].aconnector == aconnector) { pbn = vars[j].pbn; break; } } if (j == dc_state->stream_count) continue; slot_num = DIV_ROUND_UP(pbn, pbn_div); if (stream->timing.flags.DSC != 1) { dm_conn_state->pbn = pbn; dm_conn_state->vcpi_slots = slot_num; drm_dp_mst_atomic_enable_dsc(state, aconnector->port, dm_conn_state->pbn, 0, false); continue; } vcpi = drm_dp_mst_atomic_enable_dsc(state, aconnector->port, pbn, pbn_div, true); if (vcpi < 0) return vcpi; dm_conn_state->pbn = pbn; dm_conn_state->vcpi_slots = vcpi; } return 0; } #endif static void dm_drm_plane_reset(struct drm_plane *plane) { struct dm_plane_state *amdgpu_state = NULL; if (plane->state) plane->funcs->atomic_destroy_state(plane, plane->state); amdgpu_state = kzalloc(sizeof(*amdgpu_state), GFP_KERNEL); WARN_ON(amdgpu_state == NULL); if (amdgpu_state) __drm_atomic_helper_plane_reset(plane, &amdgpu_state->base); } static struct drm_plane_state * dm_drm_plane_duplicate_state(struct drm_plane *plane) { struct dm_plane_state *dm_plane_state, *old_dm_plane_state; old_dm_plane_state = to_dm_plane_state(plane->state); dm_plane_state = kzalloc(sizeof(*dm_plane_state), GFP_KERNEL); if (!dm_plane_state) return NULL; __drm_atomic_helper_plane_duplicate_state(plane, &dm_plane_state->base); if (old_dm_plane_state->dc_state) { dm_plane_state->dc_state = old_dm_plane_state->dc_state; dc_plane_state_retain(dm_plane_state->dc_state); } return &dm_plane_state->base; } static void dm_drm_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct dm_plane_state *dm_plane_state = to_dm_plane_state(state); if (dm_plane_state->dc_state) dc_plane_state_release(dm_plane_state->dc_state); drm_atomic_helper_plane_destroy_state(plane, state); } static const struct drm_plane_funcs dm_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_primary_helper_destroy, .reset = dm_drm_plane_reset, .atomic_duplicate_state = dm_drm_plane_duplicate_state, .atomic_destroy_state = dm_drm_plane_destroy_state, .format_mod_supported = dm_plane_format_mod_supported, }; static int dm_plane_helper_prepare_fb(struct drm_plane *plane, struct drm_plane_state *new_state) { struct amdgpu_framebuffer *afb; struct drm_gem_object *obj; struct amdgpu_device *adev; struct amdgpu_bo *rbo; struct dm_plane_state *dm_plane_state_new, *dm_plane_state_old; struct list_head list; struct ttm_validate_buffer tv; struct ww_acquire_ctx ticket; uint32_t domain; int r; if (!new_state->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } afb = to_amdgpu_framebuffer(new_state->fb); obj = new_state->fb->obj[0]; rbo = gem_to_amdgpu_bo(obj); adev = amdgpu_ttm_adev(rbo->tbo.bdev); INIT_LIST_HEAD(&list); tv.bo = &rbo->tbo; tv.num_shared = 1; list_add(&tv.head, &list); r = ttm_eu_reserve_buffers(&ticket, &list, false, NULL); if (r) { dev_err(adev->dev, "fail to reserve bo (%d)\n", r); return r; } if (plane->type != DRM_PLANE_TYPE_CURSOR) domain = amdgpu_display_supported_domains(adev, rbo->flags); else domain = AMDGPU_GEM_DOMAIN_VRAM; r = amdgpu_bo_pin(rbo, domain); if (unlikely(r != 0)) { if (r != -ERESTARTSYS) DRM_ERROR("Failed to pin framebuffer with error %d\n", r); ttm_eu_backoff_reservation(&ticket, &list); return r; } r = amdgpu_ttm_alloc_gart(&rbo->tbo); if (unlikely(r != 0)) { amdgpu_bo_unpin(rbo); ttm_eu_backoff_reservation(&ticket, &list); DRM_ERROR("%p bind failed\n", rbo); return r; } ttm_eu_backoff_reservation(&ticket, &list); afb->address = amdgpu_bo_gpu_offset(rbo); amdgpu_bo_ref(rbo); /** * We don't do surface updates on planes that have been newly created, * but we also don't have the afb->address during atomic check. * * Fill in buffer attributes depending on the address here, but only on * newly created planes since they're not being used by DC yet and this * won't modify global state. */ dm_plane_state_old = to_dm_plane_state(plane->state); dm_plane_state_new = to_dm_plane_state(new_state); if (dm_plane_state_new->dc_state && dm_plane_state_old->dc_state != dm_plane_state_new->dc_state) { struct dc_plane_state *plane_state = dm_plane_state_new->dc_state; bool force_disable_dcc = !plane_state->dcc.enable; fill_plane_buffer_attributes( adev, afb, plane_state->format, plane_state->rotation, afb->tiling_flags, &plane_state->tiling_info, &plane_state->plane_size, &plane_state->dcc, &plane_state->address, afb->tmz_surface, force_disable_dcc); } return 0; } static void dm_plane_helper_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct amdgpu_bo *rbo; int r; if (!old_state->fb) return; rbo = gem_to_amdgpu_bo(old_state->fb->obj[0]); r = amdgpu_bo_reserve(rbo, false); if (unlikely(r)) { DRM_ERROR("failed to reserve rbo before unpin\n"); return; } amdgpu_bo_unpin(rbo); amdgpu_bo_unreserve(rbo); amdgpu_bo_unref(&rbo); } static int dm_plane_helper_check_state(struct drm_plane_state *state, struct drm_crtc_state *new_crtc_state) { struct drm_framebuffer *fb = state->fb; int min_downscale, max_upscale; int min_scale = 0; int max_scale = INT_MAX; /* Plane enabled? Validate viewport and get scaling factors from plane caps. */ if (fb && state->crtc) { /* Validate viewport to cover the case when only the position changes */ if (state->plane->type != DRM_PLANE_TYPE_CURSOR) { int viewport_width = state->crtc_w; int viewport_height = state->crtc_h; if (state->crtc_x < 0) viewport_width += state->crtc_x; else if (state->crtc_x + state->crtc_w > new_crtc_state->mode.crtc_hdisplay) viewport_width = new_crtc_state->mode.crtc_hdisplay - state->crtc_x; if (state->crtc_y < 0) viewport_height += state->crtc_y; else if (state->crtc_y + state->crtc_h > new_crtc_state->mode.crtc_vdisplay) viewport_height = new_crtc_state->mode.crtc_vdisplay - state->crtc_y; if (viewport_width < 0 || viewport_height < 0) { DRM_DEBUG_ATOMIC("Plane completely outside of screen\n"); return -EINVAL; } else if (viewport_width < MIN_VIEWPORT_SIZE*2) { /* x2 for width is because of pipe-split. */ DRM_DEBUG_ATOMIC("Viewport width %d smaller than %d\n", viewport_width, MIN_VIEWPORT_SIZE*2); return -EINVAL; } else if (viewport_height < MIN_VIEWPORT_SIZE) { DRM_DEBUG_ATOMIC("Viewport height %d smaller than %d\n", viewport_height, MIN_VIEWPORT_SIZE); return -EINVAL; } } /* Get min/max allowed scaling factors from plane caps. */ get_min_max_dc_plane_scaling(state->crtc->dev, fb, &min_downscale, &max_upscale); /* * Convert to drm convention: 16.16 fixed point, instead of dc's * 1.0 == 1000. Also drm scaling is src/dst instead of dc's * dst/src, so min_scale = 1.0 / max_upscale, etc. */ min_scale = (1000 << 16) / max_upscale; max_scale = (1000 << 16) / min_downscale; } return drm_atomic_helper_check_plane_state( state, new_crtc_state, min_scale, max_scale, true, true); } static int dm_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct amdgpu_device *adev = drm_to_adev(plane->dev); struct dc *dc = adev->dm.dc; struct dm_plane_state *dm_plane_state; struct dc_scaling_info scaling_info; struct drm_crtc_state *new_crtc_state; int ret; trace_amdgpu_dm_plane_atomic_check(new_plane_state); dm_plane_state = to_dm_plane_state(new_plane_state); if (!dm_plane_state->dc_state) return 0; new_crtc_state = drm_atomic_get_new_crtc_state(state, new_plane_state->crtc); if (!new_crtc_state) return -EINVAL; ret = dm_plane_helper_check_state(new_plane_state, new_crtc_state); if (ret) return ret; ret = fill_dc_scaling_info(adev, new_plane_state, &scaling_info); if (ret) return ret; if (dc_validate_plane(dc, dm_plane_state->dc_state) == DC_OK) return 0; return -EINVAL; } static int dm_plane_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state) { /* Only support async updates on cursor planes. */ if (plane->type != DRM_PLANE_TYPE_CURSOR) return -EINVAL; return 0; } static void dm_plane_atomic_async_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); trace_amdgpu_dm_atomic_update_cursor(new_state); swap(plane->state->fb, new_state->fb); plane->state->src_x = new_state->src_x; plane->state->src_y = new_state->src_y; plane->state->src_w = new_state->src_w; plane->state->src_h = new_state->src_h; plane->state->crtc_x = new_state->crtc_x; plane->state->crtc_y = new_state->crtc_y; plane->state->crtc_w = new_state->crtc_w; plane->state->crtc_h = new_state->crtc_h; handle_cursor_update(plane, old_state); } static const struct drm_plane_helper_funcs dm_plane_helper_funcs = { .prepare_fb = dm_plane_helper_prepare_fb, .cleanup_fb = dm_plane_helper_cleanup_fb, .atomic_check = dm_plane_atomic_check, .atomic_async_check = dm_plane_atomic_async_check, .atomic_async_update = dm_plane_atomic_async_update }; /* * TODO: these are currently initialized to rgb formats only. * For future use cases we should either initialize them dynamically based on * plane capabilities, or initialize this array to all formats, so internal drm * check will succeed, and let DC implement proper check */ static const uint32_t rgb_formats[] = { DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_XRGB2101010, DRM_FORMAT_XBGR2101010, DRM_FORMAT_ARGB2101010, DRM_FORMAT_ABGR2101010, DRM_FORMAT_XRGB16161616, DRM_FORMAT_XBGR16161616, DRM_FORMAT_ARGB16161616, DRM_FORMAT_ABGR16161616, DRM_FORMAT_XBGR8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_RGB565, }; static const uint32_t overlay_formats[] = { DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_RGB565 }; static const u32 cursor_formats[] = { DRM_FORMAT_ARGB8888 }; static int get_plane_formats(const struct drm_plane *plane, const struct dc_plane_cap *plane_cap, uint32_t *formats, int max_formats) { int i, num_formats = 0; /* * TODO: Query support for each group of formats directly from * DC plane caps. This will require adding more formats to the * caps list. */ switch (plane->type) { case DRM_PLANE_TYPE_PRIMARY: for (i = 0; i < ARRAY_SIZE(rgb_formats); ++i) { if (num_formats >= max_formats) break; formats[num_formats++] = rgb_formats[i]; } if (plane_cap && plane_cap->pixel_format_support.nv12) formats[num_formats++] = DRM_FORMAT_NV12; if (plane_cap && plane_cap->pixel_format_support.p010) formats[num_formats++] = DRM_FORMAT_P010; if (plane_cap && plane_cap->pixel_format_support.fp16) { formats[num_formats++] = DRM_FORMAT_XRGB16161616F; formats[num_formats++] = DRM_FORMAT_ARGB16161616F; formats[num_formats++] = DRM_FORMAT_XBGR16161616F; formats[num_formats++] = DRM_FORMAT_ABGR16161616F; } break; case DRM_PLANE_TYPE_OVERLAY: for (i = 0; i < ARRAY_SIZE(overlay_formats); ++i) { if (num_formats >= max_formats) break; formats[num_formats++] = overlay_formats[i]; } break; case DRM_PLANE_TYPE_CURSOR: for (i = 0; i < ARRAY_SIZE(cursor_formats); ++i) { if (num_formats >= max_formats) break; formats[num_formats++] = cursor_formats[i]; } break; } return num_formats; } static int amdgpu_dm_plane_init(struct amdgpu_display_manager *dm, struct drm_plane *plane, unsigned long possible_crtcs, const struct dc_plane_cap *plane_cap) { uint32_t formats[32]; int num_formats; int res = -EPERM; unsigned int supported_rotations; uint64_t *modifiers = NULL; num_formats = get_plane_formats(plane, plane_cap, formats, ARRAY_SIZE(formats)); res = get_plane_modifiers(dm->adev, plane->type, &modifiers); if (res) return res; res = drm_universal_plane_init(adev_to_drm(dm->adev), plane, possible_crtcs, &dm_plane_funcs, formats, num_formats, modifiers, plane->type, NULL); kfree(modifiers); if (res) return res; if (plane->type == DRM_PLANE_TYPE_OVERLAY && plane_cap && plane_cap->per_pixel_alpha) { unsigned int blend_caps = BIT(DRM_MODE_BLEND_PIXEL_NONE) | BIT(DRM_MODE_BLEND_PREMULTI); drm_plane_create_alpha_property(plane); drm_plane_create_blend_mode_property(plane, blend_caps); } if (plane->type == DRM_PLANE_TYPE_PRIMARY && plane_cap && (plane_cap->pixel_format_support.nv12 || plane_cap->pixel_format_support.p010)) { /* This only affects YUV formats. */ drm_plane_create_color_properties( plane, BIT(DRM_COLOR_YCBCR_BT601) | BIT(DRM_COLOR_YCBCR_BT709) | BIT(DRM_COLOR_YCBCR_BT2020), BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) | BIT(DRM_COLOR_YCBCR_FULL_RANGE), DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE); } supported_rotations = DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270; if (dm->adev->asic_type >= CHIP_BONAIRE && plane->type != DRM_PLANE_TYPE_CURSOR) drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, supported_rotations); drm_plane_helper_add(plane, &dm_plane_helper_funcs); /* Create (reset) the plane state */ if (plane->funcs->reset) plane->funcs->reset(plane); return 0; } static int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm, struct drm_plane *plane, uint32_t crtc_index) { struct amdgpu_crtc *acrtc = NULL; struct drm_plane *cursor_plane; int res = -ENOMEM; cursor_plane = kzalloc(sizeof(*cursor_plane), GFP_KERNEL); if (!cursor_plane) goto fail; cursor_plane->type = DRM_PLANE_TYPE_CURSOR; res = amdgpu_dm_plane_init(dm, cursor_plane, 0, NULL); acrtc = kzalloc(sizeof(struct amdgpu_crtc), GFP_KERNEL); if (!acrtc) goto fail; res = drm_crtc_init_with_planes( dm->ddev, &acrtc->base, plane, cursor_plane, &amdgpu_dm_crtc_funcs, NULL); if (res) goto fail; drm_crtc_helper_add(&acrtc->base, &amdgpu_dm_crtc_helper_funcs); /* Create (reset) the plane state */ if (acrtc->base.funcs->reset) acrtc->base.funcs->reset(&acrtc->base); acrtc->max_cursor_width = dm->adev->dm.dc->caps.max_cursor_size; acrtc->max_cursor_height = dm->adev->dm.dc->caps.max_cursor_size; acrtc->crtc_id = crtc_index; acrtc->base.enabled = false; acrtc->otg_inst = -1; dm->adev->mode_info.crtcs[crtc_index] = acrtc; drm_crtc_enable_color_mgmt(&acrtc->base, MAX_COLOR_LUT_ENTRIES, true, MAX_COLOR_LUT_ENTRIES); drm_mode_crtc_set_gamma_size(&acrtc->base, MAX_COLOR_LEGACY_LUT_ENTRIES); return 0; fail: kfree(acrtc); kfree(cursor_plane); return res; } static int to_drm_connector_type(enum signal_type st) { switch (st) { case SIGNAL_TYPE_HDMI_TYPE_A: return DRM_MODE_CONNECTOR_HDMIA; case SIGNAL_TYPE_EDP: return DRM_MODE_CONNECTOR_eDP; case SIGNAL_TYPE_LVDS: return DRM_MODE_CONNECTOR_LVDS; case SIGNAL_TYPE_RGB: return DRM_MODE_CONNECTOR_VGA; case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_DISPLAY_PORT_MST: return DRM_MODE_CONNECTOR_DisplayPort; case SIGNAL_TYPE_DVI_DUAL_LINK: case SIGNAL_TYPE_DVI_SINGLE_LINK: return DRM_MODE_CONNECTOR_DVID; case SIGNAL_TYPE_VIRTUAL: return DRM_MODE_CONNECTOR_VIRTUAL; default: return DRM_MODE_CONNECTOR_Unknown; } } static struct drm_encoder *amdgpu_dm_connector_to_encoder(struct drm_connector *connector) { struct drm_encoder *encoder; /* There is only one encoder per connector */ drm_connector_for_each_possible_encoder(connector, encoder) return encoder; return NULL; } static void amdgpu_dm_get_native_mode(struct drm_connector *connector) { struct drm_encoder *encoder; struct amdgpu_encoder *amdgpu_encoder; encoder = amdgpu_dm_connector_to_encoder(connector); if (encoder == NULL) return; amdgpu_encoder = to_amdgpu_encoder(encoder); amdgpu_encoder->native_mode.clock = 0; if (!list_empty(&connector->probed_modes)) { struct drm_display_mode *preferred_mode = NULL; list_for_each_entry(preferred_mode, &connector->probed_modes, head) { if (preferred_mode->type & DRM_MODE_TYPE_PREFERRED) amdgpu_encoder->native_mode = *preferred_mode; break; } } } static struct drm_display_mode * amdgpu_dm_create_common_mode(struct drm_encoder *encoder, char *name, int hdisplay, int vdisplay) { struct drm_device *dev = encoder->dev; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct drm_display_mode *mode = NULL; struct drm_display_mode *native_mode = &amdgpu_encoder->native_mode; mode = drm_mode_duplicate(dev, native_mode); if (mode == NULL) return NULL; mode->hdisplay = hdisplay; mode->vdisplay = vdisplay; mode->type &= ~DRM_MODE_TYPE_PREFERRED; strscpy(mode->name, name, DRM_DISPLAY_MODE_LEN); return mode; } static void amdgpu_dm_connector_add_common_modes(struct drm_encoder *encoder, struct drm_connector *connector) { struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct drm_display_mode *mode = NULL; struct drm_display_mode *native_mode = &amdgpu_encoder->native_mode; struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); int i; int n; struct mode_size { char name[DRM_DISPLAY_MODE_LEN]; int w; int h; } common_modes[] = { { "640x480", 640, 480}, { "800x600", 800, 600}, { "1024x768", 1024, 768}, { "1280x720", 1280, 720}, { "1280x800", 1280, 800}, {"1280x1024", 1280, 1024}, { "1440x900", 1440, 900}, {"1680x1050", 1680, 1050}, {"1600x1200", 1600, 1200}, {"1920x1080", 1920, 1080}, {"1920x1200", 1920, 1200} }; n = ARRAY_SIZE(common_modes); for (i = 0; i < n; i++) { struct drm_display_mode *curmode = NULL; bool mode_existed = false; if (common_modes[i].w > native_mode->hdisplay || common_modes[i].h > native_mode->vdisplay || (common_modes[i].w == native_mode->hdisplay && common_modes[i].h == native_mode->vdisplay)) continue; list_for_each_entry(curmode, &connector->probed_modes, head) { if (common_modes[i].w == curmode->hdisplay && common_modes[i].h == curmode->vdisplay) { mode_existed = true; break; } } if (mode_existed) continue; mode = amdgpu_dm_create_common_mode(encoder, common_modes[i].name, common_modes[i].w, common_modes[i].h); drm_mode_probed_add(connector, mode); amdgpu_dm_connector->num_modes++; } } static void amdgpu_set_panel_orientation(struct drm_connector *connector) { struct drm_encoder *encoder; struct amdgpu_encoder *amdgpu_encoder; const struct drm_display_mode *native_mode; if (connector->connector_type != DRM_MODE_CONNECTOR_eDP && connector->connector_type != DRM_MODE_CONNECTOR_LVDS) return; encoder = amdgpu_dm_connector_to_encoder(connector); if (!encoder) return; amdgpu_encoder = to_amdgpu_encoder(encoder); native_mode = &amdgpu_encoder->native_mode; if (native_mode->hdisplay == 0 || native_mode->vdisplay == 0) return; drm_connector_set_panel_orientation_with_quirk(connector, DRM_MODE_PANEL_ORIENTATION_UNKNOWN, native_mode->hdisplay, native_mode->vdisplay); } static void amdgpu_dm_connector_ddc_get_modes(struct drm_connector *connector, struct edid *edid) { struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); if (edid) { /* empty probed_modes */ INIT_LIST_HEAD(&connector->probed_modes); amdgpu_dm_connector->num_modes = drm_add_edid_modes(connector, edid); /* sorting the probed modes before calling function * amdgpu_dm_get_native_mode() since EDID can have * more than one preferred mode. The modes that are * later in the probed mode list could be of higher * and preferred resolution. For example, 3840x2160 * resolution in base EDID preferred timing and 4096x2160 * preferred resolution in DID extension block later. */ drm_mode_sort(&connector->probed_modes); amdgpu_dm_get_native_mode(connector); /* Freesync capabilities are reset by calling * drm_add_edid_modes() and need to be * restored here. */ amdgpu_dm_update_freesync_caps(connector, edid); amdgpu_set_panel_orientation(connector); } else { amdgpu_dm_connector->num_modes = 0; } } static bool is_duplicate_mode(struct amdgpu_dm_connector *aconnector, struct drm_display_mode *mode) { struct drm_display_mode *m; list_for_each_entry (m, &aconnector->base.probed_modes, head) { if (drm_mode_equal(m, mode)) return true; } return false; } static uint add_fs_modes(struct amdgpu_dm_connector *aconnector) { const struct drm_display_mode *m; struct drm_display_mode *new_mode; uint i; uint32_t new_modes_count = 0; /* Standard FPS values * * 23.976 - TV/NTSC * 24 - Cinema * 25 - TV/PAL * 29.97 - TV/NTSC * 30 - TV/NTSC * 48 - Cinema HFR * 50 - TV/PAL * 60 - Commonly used * 48,72,96,120 - Multiples of 24 */ static const uint32_t common_rates[] = { 23976, 24000, 25000, 29970, 30000, 48000, 50000, 60000, 72000, 96000, 120000 }; /* * Find mode with highest refresh rate with the same resolution * as the preferred mode. Some monitors report a preferred mode * with lower resolution than the highest refresh rate supported. */ m = get_highest_refresh_rate_mode(aconnector, true); if (!m) return 0; for (i = 0; i < ARRAY_SIZE(common_rates); i++) { uint64_t target_vtotal, target_vtotal_diff; uint64_t num, den; if (drm_mode_vrefresh(m) * 1000 < common_rates[i]) continue; if (common_rates[i] < aconnector->min_vfreq * 1000 || common_rates[i] > aconnector->max_vfreq * 1000) continue; num = (unsigned long long)m->clock * 1000 * 1000; den = common_rates[i] * (unsigned long long)m->htotal; target_vtotal = div_u64(num, den); target_vtotal_diff = target_vtotal - m->vtotal; /* Check for illegal modes */ if (m->vsync_start + target_vtotal_diff < m->vdisplay || m->vsync_end + target_vtotal_diff < m->vsync_start || m->vtotal + target_vtotal_diff < m->vsync_end) continue; new_mode = drm_mode_duplicate(aconnector->base.dev, m); if (!new_mode) goto out; new_mode->vtotal += (u16)target_vtotal_diff; new_mode->vsync_start += (u16)target_vtotal_diff; new_mode->vsync_end += (u16)target_vtotal_diff; new_mode->type &= ~DRM_MODE_TYPE_PREFERRED; new_mode->type |= DRM_MODE_TYPE_DRIVER; if (!is_duplicate_mode(aconnector, new_mode)) { drm_mode_probed_add(&aconnector->base, new_mode); new_modes_count += 1; } else drm_mode_destroy(aconnector->base.dev, new_mode); } out: return new_modes_count; } static void amdgpu_dm_connector_add_freesync_modes(struct drm_connector *connector, struct edid *edid) { struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); if (!(amdgpu_freesync_vid_mode && edid)) return; if (amdgpu_dm_connector->max_vfreq - amdgpu_dm_connector->min_vfreq > 10) amdgpu_dm_connector->num_modes += add_fs_modes(amdgpu_dm_connector); } static int amdgpu_dm_connector_get_modes(struct drm_connector *connector) { struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); struct drm_encoder *encoder; struct edid *edid = amdgpu_dm_connector->edid; encoder = amdgpu_dm_connector_to_encoder(connector); if (!drm_edid_is_valid(edid)) { amdgpu_dm_connector->num_modes = drm_add_modes_noedid(connector, 640, 480); } else { amdgpu_dm_connector_ddc_get_modes(connector, edid); amdgpu_dm_connector_add_common_modes(encoder, connector); amdgpu_dm_connector_add_freesync_modes(connector, edid); } amdgpu_dm_fbc_init(connector); return amdgpu_dm_connector->num_modes; } void amdgpu_dm_connector_init_helper(struct amdgpu_display_manager *dm, struct amdgpu_dm_connector *aconnector, int connector_type, struct dc_link *link, int link_index) { struct amdgpu_device *adev = drm_to_adev(dm->ddev); /* * Some of the properties below require access to state, like bpc. * Allocate some default initial connector state with our reset helper. */ if (aconnector->base.funcs->reset) aconnector->base.funcs->reset(&aconnector->base); aconnector->connector_id = link_index; aconnector->dc_link = link; aconnector->base.interlace_allowed = false; aconnector->base.doublescan_allowed = false; aconnector->base.stereo_allowed = false; aconnector->base.dpms = DRM_MODE_DPMS_OFF; aconnector->hpd.hpd = AMDGPU_HPD_NONE; /* not used */ aconnector->audio_inst = -1; mutex_init(&aconnector->hpd_lock); /* * configure support HPD hot plug connector_>polled default value is 0 * which means HPD hot plug not supported */ switch (connector_type) { case DRM_MODE_CONNECTOR_HDMIA: aconnector->base.polled = DRM_CONNECTOR_POLL_HPD; aconnector->base.ycbcr_420_allowed = link->link_enc->features.hdmi_ycbcr420_supported ? true : false; break; case DRM_MODE_CONNECTOR_DisplayPort: aconnector->base.polled = DRM_CONNECTOR_POLL_HPD; if (link->is_dig_mapping_flexible && link->dc->res_pool->funcs->link_encs_assign) { link->link_enc = link_enc_cfg_get_link_enc_used_by_link(link->ctx->dc, link); if (!link->link_enc) link->link_enc = link_enc_cfg_get_next_avail_link_enc(link->ctx->dc); } if (link->link_enc) aconnector->base.ycbcr_420_allowed = link->link_enc->features.dp_ycbcr420_supported ? true : false; break; case DRM_MODE_CONNECTOR_DVID: aconnector->base.polled = DRM_CONNECTOR_POLL_HPD; break; default: break; } drm_object_attach_property(&aconnector->base.base, dm->ddev->mode_config.scaling_mode_property, DRM_MODE_SCALE_NONE); drm_object_attach_property(&aconnector->base.base, adev->mode_info.underscan_property, UNDERSCAN_OFF); drm_object_attach_property(&aconnector->base.base, adev->mode_info.underscan_hborder_property, 0); drm_object_attach_property(&aconnector->base.base, adev->mode_info.underscan_vborder_property, 0); if (!aconnector->mst_port) drm_connector_attach_max_bpc_property(&aconnector->base, 8, 16); /* This defaults to the max in the range, but we want 8bpc for non-edp. */ aconnector->base.state->max_bpc = (connector_type == DRM_MODE_CONNECTOR_eDP) ? 16 : 8; aconnector->base.state->max_requested_bpc = aconnector->base.state->max_bpc; if (connector_type == DRM_MODE_CONNECTOR_eDP && (dc_is_dmcu_initialized(adev->dm.dc) || adev->dm.dc->ctx->dmub_srv)) { drm_object_attach_property(&aconnector->base.base, adev->mode_info.abm_level_property, 0); } if (connector_type == DRM_MODE_CONNECTOR_HDMIA || connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector_type == DRM_MODE_CONNECTOR_eDP) { drm_connector_attach_hdr_output_metadata_property(&aconnector->base); if (!aconnector->mst_port) drm_connector_attach_vrr_capable_property(&aconnector->base); #ifdef CONFIG_DRM_AMD_DC_HDCP if (adev->dm.hdcp_workqueue) drm_connector_attach_content_protection_property(&aconnector->base, true); #endif } } static int amdgpu_dm_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num) { struct amdgpu_i2c_adapter *i2c = i2c_get_adapdata(i2c_adap); struct ddc_service *ddc_service = i2c->ddc_service; struct i2c_command cmd; int i; int result = -EIO; cmd.payloads = kcalloc(num, sizeof(struct i2c_payload), GFP_KERNEL); if (!cmd.payloads) return result; cmd.number_of_payloads = num; cmd.engine = I2C_COMMAND_ENGINE_DEFAULT; cmd.speed = 100; for (i = 0; i < num; i++) { cmd.payloads[i].write = !(msgs[i].flags & I2C_M_RD); cmd.payloads[i].address = msgs[i].addr; cmd.payloads[i].length = msgs[i].len; cmd.payloads[i].data = msgs[i].buf; } if (dc_submit_i2c( ddc_service->ctx->dc, ddc_service->ddc_pin->hw_info.ddc_channel, &cmd)) result = num; kfree(cmd.payloads); return result; } static u32 amdgpu_dm_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm amdgpu_dm_i2c_algo = { .master_xfer = amdgpu_dm_i2c_xfer, .functionality = amdgpu_dm_i2c_func, }; static struct amdgpu_i2c_adapter * create_i2c(struct ddc_service *ddc_service, int link_index, int *res) { struct amdgpu_device *adev = ddc_service->ctx->driver_context; struct amdgpu_i2c_adapter *i2c; i2c = kzalloc(sizeof(struct amdgpu_i2c_adapter), GFP_KERNEL); if (!i2c) return NULL; i2c->base.owner = THIS_MODULE; i2c->base.class = I2C_CLASS_DDC; i2c->base.dev.parent = &adev->pdev->dev; i2c->base.algo = &amdgpu_dm_i2c_algo; snprintf(i2c->base.name, sizeof(i2c->base.name), "AMDGPU DM i2c hw bus %d", link_index); i2c_set_adapdata(&i2c->base, i2c); i2c->ddc_service = ddc_service; if (i2c->ddc_service->ddc_pin) i2c->ddc_service->ddc_pin->hw_info.ddc_channel = link_index; return i2c; } /* * Note: this function assumes that dc_link_detect() was called for the * dc_link which will be represented by this aconnector. */ static int amdgpu_dm_connector_init(struct amdgpu_display_manager *dm, struct amdgpu_dm_connector *aconnector, uint32_t link_index, struct amdgpu_encoder *aencoder) { int res = 0; int connector_type; struct dc *dc = dm->dc; struct dc_link *link = dc_get_link_at_index(dc, link_index); struct amdgpu_i2c_adapter *i2c; link->priv = aconnector; DRM_DEBUG_DRIVER("%s()\n", __func__); i2c = create_i2c(link->ddc, link->link_index, &res); if (!i2c) { DRM_ERROR("Failed to create i2c adapter data\n"); return -ENOMEM; } aconnector->i2c = i2c; res = i2c_add_adapter(&i2c->base); if (res) { DRM_ERROR("Failed to register hw i2c %d\n", link->link_index); goto out_free; } connector_type = to_drm_connector_type(link->connector_signal); res = drm_connector_init_with_ddc( dm->ddev, &aconnector->base, &amdgpu_dm_connector_funcs, connector_type, &i2c->base); if (res) { DRM_ERROR("connector_init failed\n"); aconnector->connector_id = -1; goto out_free; } drm_connector_helper_add( &aconnector->base, &amdgpu_dm_connector_helper_funcs); amdgpu_dm_connector_init_helper( dm, aconnector, connector_type, link, link_index); drm_connector_attach_encoder( &aconnector->base, &aencoder->base); if (connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector_type == DRM_MODE_CONNECTOR_eDP) amdgpu_dm_initialize_dp_connector(dm, aconnector, link->link_index); out_free: if (res) { kfree(i2c); aconnector->i2c = NULL; } return res; } int amdgpu_dm_get_encoder_crtc_mask(struct amdgpu_device *adev) { switch (adev->mode_info.num_crtc) { case 1: return 0x1; case 2: return 0x3; case 3: return 0x7; case 4: return 0xf; case 5: return 0x1f; case 6: default: return 0x3f; } } static int amdgpu_dm_encoder_init(struct drm_device *dev, struct amdgpu_encoder *aencoder, uint32_t link_index) { struct amdgpu_device *adev = drm_to_adev(dev); int res = drm_encoder_init(dev, &aencoder->base, &amdgpu_dm_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); aencoder->base.possible_crtcs = amdgpu_dm_get_encoder_crtc_mask(adev); if (!res) aencoder->encoder_id = link_index; else aencoder->encoder_id = -1; drm_encoder_helper_add(&aencoder->base, &amdgpu_dm_encoder_helper_funcs); return res; } static void manage_dm_interrupts(struct amdgpu_device *adev, struct amdgpu_crtc *acrtc, bool enable) { /* * We have no guarantee that the frontend index maps to the same * backend index - some even map to more than one. * * TODO: Use a different interrupt or check DC itself for the mapping. */ int irq_type = amdgpu_display_crtc_idx_to_irq_type( adev, acrtc->crtc_id); if (enable) { drm_crtc_vblank_on(&acrtc->base); amdgpu_irq_get( adev, &adev->pageflip_irq, irq_type); #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) amdgpu_irq_get( adev, &adev->vline0_irq, irq_type); #endif } else { #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) amdgpu_irq_put( adev, &adev->vline0_irq, irq_type); #endif amdgpu_irq_put( adev, &adev->pageflip_irq, irq_type); drm_crtc_vblank_off(&acrtc->base); } } static void dm_update_pflip_irq_state(struct amdgpu_device *adev, struct amdgpu_crtc *acrtc) { int irq_type = amdgpu_display_crtc_idx_to_irq_type(adev, acrtc->crtc_id); /** * This reads the current state for the IRQ and force reapplies * the setting to hardware. */ amdgpu_irq_update(adev, &adev->pageflip_irq, irq_type); } static bool is_scaling_state_different(const struct dm_connector_state *dm_state, const struct dm_connector_state *old_dm_state) { if (dm_state->scaling != old_dm_state->scaling) return true; if (!dm_state->underscan_enable && old_dm_state->underscan_enable) { if (old_dm_state->underscan_hborder != 0 && old_dm_state->underscan_vborder != 0) return true; } else if (dm_state->underscan_enable && !old_dm_state->underscan_enable) { if (dm_state->underscan_hborder != 0 && dm_state->underscan_vborder != 0) return true; } else if (dm_state->underscan_hborder != old_dm_state->underscan_hborder || dm_state->underscan_vborder != old_dm_state->underscan_vborder) return true; return false; } #ifdef CONFIG_DRM_AMD_DC_HDCP static bool is_content_protection_different(struct drm_connector_state *state, const struct drm_connector_state *old_state, const struct drm_connector *connector, struct hdcp_workqueue *hdcp_w) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); struct dm_connector_state *dm_con_state = to_dm_connector_state(connector->state); /* Handle: Type0/1 change */ if (old_state->hdcp_content_type != state->hdcp_content_type && state->content_protection != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) { state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED; return true; } /* CP is being re enabled, ignore this * * Handles: ENABLED -> DESIRED */ if (old_state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED && state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED) { state->content_protection = DRM_MODE_CONTENT_PROTECTION_ENABLED; return false; } /* S3 resume case, since old state will always be 0 (UNDESIRED) and the restored state will be ENABLED * * Handles: UNDESIRED -> ENABLED */ if (old_state->content_protection == DRM_MODE_CONTENT_PROTECTION_UNDESIRED && state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED) state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED; /* Stream removed and re-enabled * * Can sometimes overlap with the HPD case, * thus set update_hdcp to false to avoid * setting HDCP multiple times. * * Handles: DESIRED -> DESIRED (Special case) */ if (!(old_state->crtc && old_state->crtc->enabled) && state->crtc && state->crtc->enabled && connector->state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED) { dm_con_state->update_hdcp = false; return true; } /* Hot-plug, headless s3, dpms * * Only start HDCP if the display is connected/enabled. * update_hdcp flag will be set to false until the next * HPD comes in. * * Handles: DESIRED -> DESIRED (Special case) */ if (dm_con_state->update_hdcp && state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED && connector->dpms == DRM_MODE_DPMS_ON && aconnector->dc_sink != NULL) { dm_con_state->update_hdcp = false; return true; } /* * Handles: UNDESIRED -> UNDESIRED * DESIRED -> DESIRED * ENABLED -> ENABLED */ if (old_state->content_protection == state->content_protection) return false; /* * Handles: UNDESIRED -> DESIRED * DESIRED -> UNDESIRED * ENABLED -> UNDESIRED */ if (state->content_protection != DRM_MODE_CONTENT_PROTECTION_ENABLED) return true; /* * Handles: DESIRED -> ENABLED */ return false; } #endif static void remove_stream(struct amdgpu_device *adev, struct amdgpu_crtc *acrtc, struct dc_stream_state *stream) { /* this is the update mode case */ acrtc->otg_inst = -1; acrtc->enabled = false; } static int get_cursor_position(struct drm_plane *plane, struct drm_crtc *crtc, struct dc_cursor_position *position) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); int x, y; int xorigin = 0, yorigin = 0; if (!crtc || !plane->state->fb) return 0; if ((plane->state->crtc_w > amdgpu_crtc->max_cursor_width) || (plane->state->crtc_h > amdgpu_crtc->max_cursor_height)) { DRM_ERROR("%s: bad cursor width or height %d x %d\n", __func__, plane->state->crtc_w, plane->state->crtc_h); return -EINVAL; } x = plane->state->crtc_x; y = plane->state->crtc_y; if (x <= -amdgpu_crtc->max_cursor_width || y <= -amdgpu_crtc->max_cursor_height) return 0; if (x < 0) { xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1); x = 0; } if (y < 0) { yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1); y = 0; } position->enable = true; position->translate_by_source = true; position->x = x; position->y = y; position->x_hotspot = xorigin; position->y_hotspot = yorigin; return 0; } static void handle_cursor_update(struct drm_plane *plane, struct drm_plane_state *old_plane_state) { struct amdgpu_device *adev = drm_to_adev(plane->dev); struct amdgpu_framebuffer *afb = to_amdgpu_framebuffer(plane->state->fb); struct drm_crtc *crtc = afb ? plane->state->crtc : old_plane_state->crtc; struct dm_crtc_state *crtc_state = crtc ? to_dm_crtc_state(crtc->state) : NULL; struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); uint64_t address = afb ? afb->address : 0; struct dc_cursor_position position = {0}; struct dc_cursor_attributes attributes; int ret; if (!plane->state->fb && !old_plane_state->fb) return; DC_LOG_CURSOR("%s: crtc_id=%d with size %d to %d\n", __func__, amdgpu_crtc->crtc_id, plane->state->crtc_w, plane->state->crtc_h); ret = get_cursor_position(plane, crtc, &position); if (ret) return; if (!position.enable) { /* turn off cursor */ if (crtc_state && crtc_state->stream) { mutex_lock(&adev->dm.dc_lock); dc_stream_set_cursor_position(crtc_state->stream, &position); mutex_unlock(&adev->dm.dc_lock); } return; } amdgpu_crtc->cursor_width = plane->state->crtc_w; amdgpu_crtc->cursor_height = plane->state->crtc_h; memset(&attributes, 0, sizeof(attributes)); attributes.address.high_part = upper_32_bits(address); attributes.address.low_part = lower_32_bits(address); attributes.width = plane->state->crtc_w; attributes.height = plane->state->crtc_h; attributes.color_format = CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA; attributes.rotation_angle = 0; attributes.attribute_flags.value = 0; attributes.pitch = afb->base.pitches[0] / afb->base.format->cpp[0]; if (crtc_state->stream) { mutex_lock(&adev->dm.dc_lock); if (!dc_stream_set_cursor_attributes(crtc_state->stream, &attributes)) DRM_ERROR("DC failed to set cursor attributes\n"); if (!dc_stream_set_cursor_position(crtc_state->stream, &position)) DRM_ERROR("DC failed to set cursor position\n"); mutex_unlock(&adev->dm.dc_lock); } } static void prepare_flip_isr(struct amdgpu_crtc *acrtc) { assert_spin_locked(&acrtc->base.dev->event_lock); WARN_ON(acrtc->event); acrtc->event = acrtc->base.state->event; /* Set the flip status */ acrtc->pflip_status = AMDGPU_FLIP_SUBMITTED; /* Mark this event as consumed */ acrtc->base.state->event = NULL; DC_LOG_PFLIP("crtc:%d, pflip_stat:AMDGPU_FLIP_SUBMITTED\n", acrtc->crtc_id); } static void update_freesync_state_on_stream( struct amdgpu_display_manager *dm, struct dm_crtc_state *new_crtc_state, struct dc_stream_state *new_stream, struct dc_plane_state *surface, u32 flip_timestamp_in_us) { struct mod_vrr_params vrr_params; struct dc_info_packet vrr_infopacket = {0}; struct amdgpu_device *adev = dm->adev; struct amdgpu_crtc *acrtc = to_amdgpu_crtc(new_crtc_state->base.crtc); unsigned long flags; bool pack_sdp_v1_3 = false; if (!new_stream) return; /* * TODO: Determine why min/max totals and vrefresh can be 0 here. * For now it's sufficient to just guard against these conditions. */ if (!new_stream->timing.h_total || !new_stream->timing.v_total) return; spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); vrr_params = acrtc->dm_irq_params.vrr_params; if (surface) { mod_freesync_handle_preflip( dm->freesync_module, surface, new_stream, flip_timestamp_in_us, &vrr_params); if (adev->family < AMDGPU_FAMILY_AI && amdgpu_dm_vrr_active(new_crtc_state)) { mod_freesync_handle_v_update(dm->freesync_module, new_stream, &vrr_params); /* Need to call this before the frame ends. */ dc_stream_adjust_vmin_vmax(dm->dc, new_crtc_state->stream, &vrr_params.adjust); } } mod_freesync_build_vrr_infopacket( dm->freesync_module, new_stream, &vrr_params, PACKET_TYPE_VRR, TRANSFER_FUNC_UNKNOWN, &vrr_infopacket, pack_sdp_v1_3); new_crtc_state->freesync_timing_changed |= (memcmp(&acrtc->dm_irq_params.vrr_params.adjust, &vrr_params.adjust, sizeof(vrr_params.adjust)) != 0); new_crtc_state->freesync_vrr_info_changed |= (memcmp(&new_crtc_state->vrr_infopacket, &vrr_infopacket, sizeof(vrr_infopacket)) != 0); acrtc->dm_irq_params.vrr_params = vrr_params; new_crtc_state->vrr_infopacket = vrr_infopacket; new_stream->adjust = acrtc->dm_irq_params.vrr_params.adjust; new_stream->vrr_infopacket = vrr_infopacket; if (new_crtc_state->freesync_vrr_info_changed) DRM_DEBUG_KMS("VRR packet update: crtc=%u enabled=%d state=%d", new_crtc_state->base.crtc->base.id, (int)new_crtc_state->base.vrr_enabled, (int)vrr_params.state); spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); } static void update_stream_irq_parameters( struct amdgpu_display_manager *dm, struct dm_crtc_state *new_crtc_state) { struct dc_stream_state *new_stream = new_crtc_state->stream; struct mod_vrr_params vrr_params; struct mod_freesync_config config = new_crtc_state->freesync_config; struct amdgpu_device *adev = dm->adev; struct amdgpu_crtc *acrtc = to_amdgpu_crtc(new_crtc_state->base.crtc); unsigned long flags; if (!new_stream) return; /* * TODO: Determine why min/max totals and vrefresh can be 0 here. * For now it's sufficient to just guard against these conditions. */ if (!new_stream->timing.h_total || !new_stream->timing.v_total) return; spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); vrr_params = acrtc->dm_irq_params.vrr_params; if (new_crtc_state->vrr_supported && config.min_refresh_in_uhz && config.max_refresh_in_uhz) { /* * if freesync compatible mode was set, config.state will be set * in atomic check */ if (config.state == VRR_STATE_ACTIVE_FIXED && config.fixed_refresh_in_uhz && (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) || new_crtc_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED)) { vrr_params.max_refresh_in_uhz = config.max_refresh_in_uhz; vrr_params.min_refresh_in_uhz = config.min_refresh_in_uhz; vrr_params.fixed_refresh_in_uhz = config.fixed_refresh_in_uhz; vrr_params.state = VRR_STATE_ACTIVE_FIXED; } else { config.state = new_crtc_state->base.vrr_enabled ? VRR_STATE_ACTIVE_VARIABLE : VRR_STATE_INACTIVE; } } else { config.state = VRR_STATE_UNSUPPORTED; } mod_freesync_build_vrr_params(dm->freesync_module, new_stream, &config, &vrr_params); new_crtc_state->freesync_timing_changed |= (memcmp(&acrtc->dm_irq_params.vrr_params.adjust, &vrr_params.adjust, sizeof(vrr_params.adjust)) != 0); new_crtc_state->freesync_config = config; /* Copy state for access from DM IRQ handler */ acrtc->dm_irq_params.freesync_config = config; acrtc->dm_irq_params.active_planes = new_crtc_state->active_planes; acrtc->dm_irq_params.vrr_params = vrr_params; spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); } static void amdgpu_dm_handle_vrr_transition(struct dm_crtc_state *old_state, struct dm_crtc_state *new_state) { bool old_vrr_active = amdgpu_dm_vrr_active(old_state); bool new_vrr_active = amdgpu_dm_vrr_active(new_state); if (!old_vrr_active && new_vrr_active) { /* Transition VRR inactive -> active: * While VRR is active, we must not disable vblank irq, as a * reenable after disable would compute bogus vblank/pflip * timestamps if it likely happened inside display front-porch. * * We also need vupdate irq for the actual core vblank handling * at end of vblank. */ dm_set_vupdate_irq(new_state->base.crtc, true); drm_crtc_vblank_get(new_state->base.crtc); DRM_DEBUG_DRIVER("%s: crtc=%u VRR off->on: Get vblank ref\n", __func__, new_state->base.crtc->base.id); } else if (old_vrr_active && !new_vrr_active) { /* Transition VRR active -> inactive: * Allow vblank irq disable again for fixed refresh rate. */ dm_set_vupdate_irq(new_state->base.crtc, false); drm_crtc_vblank_put(new_state->base.crtc); DRM_DEBUG_DRIVER("%s: crtc=%u VRR on->off: Drop vblank ref\n", __func__, new_state->base.crtc->base.id); } } static void amdgpu_dm_commit_cursors(struct drm_atomic_state *state) { struct drm_plane *plane; struct drm_plane_state *old_plane_state; int i; /* * TODO: Make this per-stream so we don't issue redundant updates for * commits with multiple streams. */ for_each_old_plane_in_state(state, plane, old_plane_state, i) if (plane->type == DRM_PLANE_TYPE_CURSOR) handle_cursor_update(plane, old_plane_state); } static void amdgpu_dm_commit_planes(struct drm_atomic_state *state, struct dc_state *dc_state, struct drm_device *dev, struct amdgpu_display_manager *dm, struct drm_crtc *pcrtc, bool wait_for_vblank) { uint32_t i; uint64_t timestamp_ns; struct drm_plane *plane; struct drm_plane_state *old_plane_state, *new_plane_state; struct amdgpu_crtc *acrtc_attach = to_amdgpu_crtc(pcrtc); struct drm_crtc_state *new_pcrtc_state = drm_atomic_get_new_crtc_state(state, pcrtc); struct dm_crtc_state *acrtc_state = to_dm_crtc_state(new_pcrtc_state); struct dm_crtc_state *dm_old_crtc_state = to_dm_crtc_state(drm_atomic_get_old_crtc_state(state, pcrtc)); int planes_count = 0, vpos, hpos; long r; unsigned long flags; struct amdgpu_bo *abo; uint32_t target_vblank, last_flip_vblank; bool vrr_active = amdgpu_dm_vrr_active(acrtc_state); bool pflip_present = false; struct { struct dc_surface_update surface_updates[MAX_SURFACES]; struct dc_plane_info plane_infos[MAX_SURFACES]; struct dc_scaling_info scaling_infos[MAX_SURFACES]; struct dc_flip_addrs flip_addrs[MAX_SURFACES]; struct dc_stream_update stream_update; } *bundle; bundle = kzalloc(sizeof(*bundle), GFP_KERNEL); if (!bundle) { dm_error("Failed to allocate update bundle\n"); goto cleanup; } /* * Disable the cursor first if we're disabling all the planes. * It'll remain on the screen after the planes are re-enabled * if we don't. */ if (acrtc_state->active_planes == 0) amdgpu_dm_commit_cursors(state); /* update planes when needed */ for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { struct drm_crtc *crtc = new_plane_state->crtc; struct drm_crtc_state *new_crtc_state; struct drm_framebuffer *fb = new_plane_state->fb; struct amdgpu_framebuffer *afb = (struct amdgpu_framebuffer *)fb; bool plane_needs_flip; struct dc_plane_state *dc_plane; struct dm_plane_state *dm_new_plane_state = to_dm_plane_state(new_plane_state); /* Cursor plane is handled after stream updates */ if (plane->type == DRM_PLANE_TYPE_CURSOR) continue; if (!fb || !crtc || pcrtc != crtc) continue; new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc); if (!new_crtc_state->active) continue; dc_plane = dm_new_plane_state->dc_state; bundle->surface_updates[planes_count].surface = dc_plane; if (new_pcrtc_state->color_mgmt_changed) { bundle->surface_updates[planes_count].gamma = dc_plane->gamma_correction; bundle->surface_updates[planes_count].in_transfer_func = dc_plane->in_transfer_func; bundle->surface_updates[planes_count].gamut_remap_matrix = &dc_plane->gamut_remap_matrix; } fill_dc_scaling_info(dm->adev, new_plane_state, &bundle->scaling_infos[planes_count]); bundle->surface_updates[planes_count].scaling_info = &bundle->scaling_infos[planes_count]; plane_needs_flip = old_plane_state->fb && new_plane_state->fb; pflip_present = pflip_present || plane_needs_flip; if (!plane_needs_flip) { planes_count += 1; continue; } abo = gem_to_amdgpu_bo(fb->obj[0]); /* * Wait for all fences on this FB. Do limited wait to avoid * deadlock during GPU reset when this fence will not signal * but we hold reservation lock for the BO. */ r = dma_resv_wait_timeout(abo->tbo.base.resv, true, false, msecs_to_jiffies(5000)); if (unlikely(r <= 0)) DRM_ERROR("Waiting for fences timed out!"); fill_dc_plane_info_and_addr( dm->adev, new_plane_state, afb->tiling_flags, &bundle->plane_infos[planes_count], &bundle->flip_addrs[planes_count].address, afb->tmz_surface, false); DRM_DEBUG_ATOMIC("plane: id=%d dcc_en=%d\n", new_plane_state->plane->index, bundle->plane_infos[planes_count].dcc.enable); bundle->surface_updates[planes_count].plane_info = &bundle->plane_infos[planes_count]; /* * Only allow immediate flips for fast updates that don't * change FB pitch, DCC state, rotation or mirroing. */ bundle->flip_addrs[planes_count].flip_immediate = crtc->state->async_flip && acrtc_state->update_type == UPDATE_TYPE_FAST; timestamp_ns = ktime_get_ns(); bundle->flip_addrs[planes_count].flip_timestamp_in_us = div_u64(timestamp_ns, 1000); bundle->surface_updates[planes_count].flip_addr = &bundle->flip_addrs[planes_count]; bundle->surface_updates[planes_count].surface = dc_plane; if (!bundle->surface_updates[planes_count].surface) { DRM_ERROR("No surface for CRTC: id=%d\n", acrtc_attach->crtc_id); continue; } if (plane == pcrtc->primary) update_freesync_state_on_stream( dm, acrtc_state, acrtc_state->stream, dc_plane, bundle->flip_addrs[planes_count].flip_timestamp_in_us); DRM_DEBUG_ATOMIC("%s Flipping to hi: 0x%x, low: 0x%x\n", __func__, bundle->flip_addrs[planes_count].address.grph.addr.high_part, bundle->flip_addrs[planes_count].address.grph.addr.low_part); planes_count += 1; } if (pflip_present) { if (!vrr_active) { /* Use old throttling in non-vrr fixed refresh rate mode * to keep flip scheduling based on target vblank counts * working in a backwards compatible way, e.g., for * clients using the GLX_OML_sync_control extension or * DRI3/Present extension with defined target_msc. */ last_flip_vblank = amdgpu_get_vblank_counter_kms(pcrtc); } else { /* For variable refresh rate mode only: * Get vblank of last completed flip to avoid > 1 vrr * flips per video frame by use of throttling, but allow * flip programming anywhere in the possibly large * variable vrr vblank interval for fine-grained flip * timing control and more opportunity to avoid stutter * on late submission of flips. */ spin_lock_irqsave(&pcrtc->dev->event_lock, flags); last_flip_vblank = acrtc_attach->dm_irq_params.last_flip_vblank; spin_unlock_irqrestore(&pcrtc->dev->event_lock, flags); } target_vblank = last_flip_vblank + wait_for_vblank; /* * Wait until we're out of the vertical blank period before the one * targeted by the flip */ while ((acrtc_attach->enabled && (amdgpu_display_get_crtc_scanoutpos(dm->ddev, acrtc_attach->crtc_id, 0, &vpos, &hpos, NULL, NULL, &pcrtc->hwmode) & (DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK)) == (DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_IN_VBLANK) && (int)(target_vblank - amdgpu_get_vblank_counter_kms(pcrtc)) > 0)) { usleep_range(1000, 1100); } /** * Prepare the flip event for the pageflip interrupt to handle. * * This only works in the case where we've already turned on the * appropriate hardware blocks (eg. HUBP) so in the transition case * from 0 -> n planes we have to skip a hardware generated event * and rely on sending it from software. */ if (acrtc_attach->base.state->event && acrtc_state->active_planes > 0 && !acrtc_state->force_dpms_off) { drm_crtc_vblank_get(pcrtc); spin_lock_irqsave(&pcrtc->dev->event_lock, flags); WARN_ON(acrtc_attach->pflip_status != AMDGPU_FLIP_NONE); prepare_flip_isr(acrtc_attach); spin_unlock_irqrestore(&pcrtc->dev->event_lock, flags); } if (acrtc_state->stream) { if (acrtc_state->freesync_vrr_info_changed) bundle->stream_update.vrr_infopacket = &acrtc_state->stream->vrr_infopacket; } } /* Update the planes if changed or disable if we don't have any. */ if ((planes_count || acrtc_state->active_planes == 0) && acrtc_state->stream) { #if defined(CONFIG_DRM_AMD_DC_DCN) /* * If PSR or idle optimizations are enabled then flush out * any pending work before hardware programming. */ if (dm->vblank_control_workqueue) flush_workqueue(dm->vblank_control_workqueue); #endif bundle->stream_update.stream = acrtc_state->stream; if (new_pcrtc_state->mode_changed) { bundle->stream_update.src = acrtc_state->stream->src; bundle->stream_update.dst = acrtc_state->stream->dst; } if (new_pcrtc_state->color_mgmt_changed) { /* * TODO: This isn't fully correct since we've actually * already modified the stream in place. */ bundle->stream_update.gamut_remap = &acrtc_state->stream->gamut_remap_matrix; bundle->stream_update.output_csc_transform = &acrtc_state->stream->csc_color_matrix; bundle->stream_update.out_transfer_func = acrtc_state->stream->out_transfer_func; } acrtc_state->stream->abm_level = acrtc_state->abm_level; if (acrtc_state->abm_level != dm_old_crtc_state->abm_level) bundle->stream_update.abm_level = &acrtc_state->abm_level; /* * If FreeSync state on the stream has changed then we need to * re-adjust the min/max bounds now that DC doesn't handle this * as part of commit. */ if (is_dc_timing_adjust_needed(dm_old_crtc_state, acrtc_state)) { spin_lock_irqsave(&pcrtc->dev->event_lock, flags); dc_stream_adjust_vmin_vmax( dm->dc, acrtc_state->stream, &acrtc_attach->dm_irq_params.vrr_params.adjust); spin_unlock_irqrestore(&pcrtc->dev->event_lock, flags); } mutex_lock(&dm->dc_lock); if ((acrtc_state->update_type > UPDATE_TYPE_FAST) && acrtc_state->stream->link->psr_settings.psr_allow_active) amdgpu_dm_psr_disable(acrtc_state->stream); dc_commit_updates_for_stream(dm->dc, bundle->surface_updates, planes_count, acrtc_state->stream, &bundle->stream_update, dc_state); /** * Enable or disable the interrupts on the backend. * * Most pipes are put into power gating when unused. * * When power gating is enabled on a pipe we lose the * interrupt enablement state when power gating is disabled. * * So we need to update the IRQ control state in hardware * whenever the pipe turns on (since it could be previously * power gated) or off (since some pipes can't be power gated * on some ASICs). */ if (dm_old_crtc_state->active_planes != acrtc_state->active_planes) dm_update_pflip_irq_state(drm_to_adev(dev), acrtc_attach); if ((acrtc_state->update_type > UPDATE_TYPE_FAST) && acrtc_state->stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED && !acrtc_state->stream->link->psr_settings.psr_feature_enabled) amdgpu_dm_link_setup_psr(acrtc_state->stream); /* Decrement skip count when PSR is enabled and we're doing fast updates. */ if (acrtc_state->update_type == UPDATE_TYPE_FAST && acrtc_state->stream->link->psr_settings.psr_feature_enabled) { struct amdgpu_dm_connector *aconn = (struct amdgpu_dm_connector *)acrtc_state->stream->dm_stream_context; if (aconn->psr_skip_count > 0) aconn->psr_skip_count--; /* Allow PSR when skip count is 0. */ acrtc_attach->dm_irq_params.allow_psr_entry = !aconn->psr_skip_count; } else { acrtc_attach->dm_irq_params.allow_psr_entry = false; } mutex_unlock(&dm->dc_lock); } /* * Update cursor state *after* programming all the planes. * This avoids redundant programming in the case where we're going * to be disabling a single plane - those pipes are being disabled. */ if (acrtc_state->active_planes) amdgpu_dm_commit_cursors(state); cleanup: kfree(bundle); } static void amdgpu_dm_commit_audio(struct drm_device *dev, struct drm_atomic_state *state) { struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_dm_connector *aconnector; struct drm_connector *connector; struct drm_connector_state *old_con_state, *new_con_state; struct drm_crtc_state *new_crtc_state; struct dm_crtc_state *new_dm_crtc_state; const struct dc_stream_status *status; int i, inst; /* Notify device removals. */ for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) { if (old_con_state->crtc != new_con_state->crtc) { /* CRTC changes require notification. */ goto notify; } if (!new_con_state->crtc) continue; new_crtc_state = drm_atomic_get_new_crtc_state( state, new_con_state->crtc); if (!new_crtc_state) continue; if (!drm_atomic_crtc_needs_modeset(new_crtc_state)) continue; notify: aconnector = to_amdgpu_dm_connector(connector); mutex_lock(&adev->dm.audio_lock); inst = aconnector->audio_inst; aconnector->audio_inst = -1; mutex_unlock(&adev->dm.audio_lock); amdgpu_dm_audio_eld_notify(adev, inst); } /* Notify audio device additions. */ for_each_new_connector_in_state(state, connector, new_con_state, i) { if (!new_con_state->crtc) continue; new_crtc_state = drm_atomic_get_new_crtc_state( state, new_con_state->crtc); if (!new_crtc_state) continue; if (!drm_atomic_crtc_needs_modeset(new_crtc_state)) continue; new_dm_crtc_state = to_dm_crtc_state(new_crtc_state); if (!new_dm_crtc_state->stream) continue; status = dc_stream_get_status(new_dm_crtc_state->stream); if (!status) continue; aconnector = to_amdgpu_dm_connector(connector); mutex_lock(&adev->dm.audio_lock); inst = status->audio_inst; aconnector->audio_inst = inst; mutex_unlock(&adev->dm.audio_lock); amdgpu_dm_audio_eld_notify(adev, inst); } } /* * amdgpu_dm_crtc_copy_transient_flags - copy mirrored flags from DRM to DC * @crtc_state: the DRM CRTC state * @stream_state: the DC stream state. * * Copy the mirrored transient state flags from DRM, to DC. It is used to bring * a dc_stream_state's flags in sync with a drm_crtc_state's flags. */ static void amdgpu_dm_crtc_copy_transient_flags(struct drm_crtc_state *crtc_state, struct dc_stream_state *stream_state) { stream_state->mode_changed = drm_atomic_crtc_needs_modeset(crtc_state); } /** * amdgpu_dm_atomic_commit_tail() - AMDgpu DM's commit tail implementation. * @state: The atomic state to commit * * This will tell DC to commit the constructed DC state from atomic_check, * programming the hardware. Any failures here implies a hardware failure, since * atomic check should have filtered anything non-kosher. */ static void amdgpu_dm_atomic_commit_tail(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct amdgpu_device *adev = drm_to_adev(dev); struct amdgpu_display_manager *dm = &adev->dm; struct dm_atomic_state *dm_state; struct dc_state *dc_state = NULL, *dc_state_temp = NULL; uint32_t i, j; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; unsigned long flags; bool wait_for_vblank = true; struct drm_connector *connector; struct drm_connector_state *old_con_state, *new_con_state; struct dm_crtc_state *dm_old_crtc_state, *dm_new_crtc_state; int crtc_disable_count = 0; bool mode_set_reset_required = false; trace_amdgpu_dm_atomic_commit_tail_begin(state); drm_atomic_helper_update_legacy_modeset_state(dev, state); dm_state = dm_atomic_get_new_state(state); if (dm_state && dm_state->context) { dc_state = dm_state->context; } else { /* No state changes, retain current state. */ dc_state_temp = dc_create_state(dm->dc); ASSERT(dc_state_temp); dc_state = dc_state_temp; dc_resource_state_copy_construct_current(dm->dc, dc_state); } for_each_oldnew_crtc_in_state (state, crtc, old_crtc_state, new_crtc_state, i) { struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); dm_old_crtc_state = to_dm_crtc_state(old_crtc_state); if (old_crtc_state->active && (!new_crtc_state->active || drm_atomic_crtc_needs_modeset(new_crtc_state))) { manage_dm_interrupts(adev, acrtc, false); dc_stream_release(dm_old_crtc_state->stream); } } drm_atomic_helper_calc_timestamping_constants(state); /* update changed items */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); dm_old_crtc_state = to_dm_crtc_state(old_crtc_state); DRM_DEBUG_ATOMIC( "amdgpu_crtc id:%d crtc_state_flags: enable:%d, active:%d, " "planes_changed:%d, mode_changed:%d,active_changed:%d," "connectors_changed:%d\n", acrtc->crtc_id, new_crtc_state->enable, new_crtc_state->active, new_crtc_state->planes_changed, new_crtc_state->mode_changed, new_crtc_state->active_changed, new_crtc_state->connectors_changed); /* Disable cursor if disabling crtc */ if (old_crtc_state->active && !new_crtc_state->active) { struct dc_cursor_position position; memset(&position, 0, sizeof(position)); mutex_lock(&dm->dc_lock); dc_stream_set_cursor_position(dm_old_crtc_state->stream, &position); mutex_unlock(&dm->dc_lock); } /* Copy all transient state flags into dc state */ if (dm_new_crtc_state->stream) { amdgpu_dm_crtc_copy_transient_flags(&dm_new_crtc_state->base, dm_new_crtc_state->stream); } /* handles headless hotplug case, updating new_state and * aconnector as needed */ if (modeset_required(new_crtc_state, dm_new_crtc_state->stream, dm_old_crtc_state->stream)) { DRM_DEBUG_ATOMIC("Atomic commit: SET crtc id %d: [%p]\n", acrtc->crtc_id, acrtc); if (!dm_new_crtc_state->stream) { /* * this could happen because of issues with * userspace notifications delivery. * In this case userspace tries to set mode on * display which is disconnected in fact. * dc_sink is NULL in this case on aconnector. * We expect reset mode will come soon. * * This can also happen when unplug is done * during resume sequence ended * * In this case, we want to pretend we still * have a sink to keep the pipe running so that * hw state is consistent with the sw state */ DRM_DEBUG_DRIVER("%s: Failed to create new stream for crtc %d\n", __func__, acrtc->base.base.id); continue; } if (dm_old_crtc_state->stream) remove_stream(adev, acrtc, dm_old_crtc_state->stream); pm_runtime_get_noresume(dev->dev); acrtc->enabled = true; acrtc->hw_mode = new_crtc_state->mode; crtc->hwmode = new_crtc_state->mode; mode_set_reset_required = true; } else if (modereset_required(new_crtc_state)) { DRM_DEBUG_ATOMIC("Atomic commit: RESET. crtc id %d:[%p]\n", acrtc->crtc_id, acrtc); /* i.e. reset mode */ if (dm_old_crtc_state->stream) remove_stream(adev, acrtc, dm_old_crtc_state->stream); mode_set_reset_required = true; } } /* for_each_crtc_in_state() */ if (dc_state) { /* if there mode set or reset, disable eDP PSR */ if (mode_set_reset_required) { #if defined(CONFIG_DRM_AMD_DC_DCN) if (dm->vblank_control_workqueue) flush_workqueue(dm->vblank_control_workqueue); #endif amdgpu_dm_psr_disable_all(dm); } dm_enable_per_frame_crtc_master_sync(dc_state); mutex_lock(&dm->dc_lock); WARN_ON(!dc_commit_state(dm->dc, dc_state)); #if defined(CONFIG_DRM_AMD_DC_DCN) /* Allow idle optimization when vblank count is 0 for display off */ if (dm->active_vblank_irq_count == 0) dc_allow_idle_optimizations(dm->dc,true); #endif mutex_unlock(&dm->dc_lock); } for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); if (dm_new_crtc_state->stream != NULL) { const struct dc_stream_status *status = dc_stream_get_status(dm_new_crtc_state->stream); if (!status) status = dc_stream_get_status_from_state(dc_state, dm_new_crtc_state->stream); if (!status) DC_ERR("got no status for stream %p on acrtc%p\n", dm_new_crtc_state->stream, acrtc); else acrtc->otg_inst = status->primary_otg_inst; } } #ifdef CONFIG_DRM_AMD_DC_HDCP for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) { struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state); struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc); struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); new_crtc_state = NULL; if (acrtc) new_crtc_state = drm_atomic_get_new_crtc_state(state, &acrtc->base); dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); if (dm_new_crtc_state && dm_new_crtc_state->stream == NULL && connector->state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED) { hdcp_reset_display(adev->dm.hdcp_workqueue, aconnector->dc_link->link_index); new_con_state->content_protection = DRM_MODE_CONTENT_PROTECTION_DESIRED; dm_new_con_state->update_hdcp = true; continue; } if (is_content_protection_different(new_con_state, old_con_state, connector, adev->dm.hdcp_workqueue)) hdcp_update_display( adev->dm.hdcp_workqueue, aconnector->dc_link->link_index, aconnector, new_con_state->hdcp_content_type, new_con_state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED); } #endif /* Handle connector state changes */ for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) { struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state); struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state); struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc); struct dc_surface_update dummy_updates[MAX_SURFACES]; struct dc_stream_update stream_update; struct dc_info_packet hdr_packet; struct dc_stream_status *status = NULL; bool abm_changed, hdr_changed, scaling_changed; memset(&dummy_updates, 0, sizeof(dummy_updates)); memset(&stream_update, 0, sizeof(stream_update)); if (acrtc) { new_crtc_state = drm_atomic_get_new_crtc_state(state, &acrtc->base); old_crtc_state = drm_atomic_get_old_crtc_state(state, &acrtc->base); } /* Skip any modesets/resets */ if (!acrtc || drm_atomic_crtc_needs_modeset(new_crtc_state)) continue; dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); dm_old_crtc_state = to_dm_crtc_state(old_crtc_state); scaling_changed = is_scaling_state_different(dm_new_con_state, dm_old_con_state); abm_changed = dm_new_crtc_state->abm_level != dm_old_crtc_state->abm_level; hdr_changed = !drm_connector_atomic_hdr_metadata_equal(old_con_state, new_con_state); if (!scaling_changed && !abm_changed && !hdr_changed) continue; stream_update.stream = dm_new_crtc_state->stream; if (scaling_changed) { update_stream_scaling_settings(&dm_new_con_state->base.crtc->mode, dm_new_con_state, dm_new_crtc_state->stream); stream_update.src = dm_new_crtc_state->stream->src; stream_update.dst = dm_new_crtc_state->stream->dst; } if (abm_changed) { dm_new_crtc_state->stream->abm_level = dm_new_crtc_state->abm_level; stream_update.abm_level = &dm_new_crtc_state->abm_level; } if (hdr_changed) { fill_hdr_info_packet(new_con_state, &hdr_packet); stream_update.hdr_static_metadata = &hdr_packet; } status = dc_stream_get_status(dm_new_crtc_state->stream); if (WARN_ON(!status)) continue; WARN_ON(!status->plane_count); /* * TODO: DC refuses to perform stream updates without a dc_surface_update. * Here we create an empty update on each plane. * To fix this, DC should permit updating only stream properties. */ for (j = 0; j < status->plane_count; j++) dummy_updates[j].surface = status->plane_states[0]; mutex_lock(&dm->dc_lock); dc_commit_updates_for_stream(dm->dc, dummy_updates, status->plane_count, dm_new_crtc_state->stream, &stream_update, dc_state); mutex_unlock(&dm->dc_lock); } /* Count number of newly disabled CRTCs for dropping PM refs later. */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (old_crtc_state->active && !new_crtc_state->active) crtc_disable_count++; dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); dm_old_crtc_state = to_dm_crtc_state(old_crtc_state); /* For freesync config update on crtc state and params for irq */ update_stream_irq_parameters(dm, dm_new_crtc_state); /* Handle vrr on->off / off->on transitions */ amdgpu_dm_handle_vrr_transition(dm_old_crtc_state, dm_new_crtc_state); } /** * Enable interrupts for CRTCs that are newly enabled or went through * a modeset. It was intentionally deferred until after the front end * state was modified to wait until the OTG was on and so the IRQ * handlers didn't access stale or invalid state. */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); #ifdef CONFIG_DEBUG_FS bool configure_crc = false; enum amdgpu_dm_pipe_crc_source cur_crc_src; #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) struct crc_rd_work *crc_rd_wrk = dm->crc_rd_wrk; #endif spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); cur_crc_src = acrtc->dm_irq_params.crc_src; spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); #endif dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); if (new_crtc_state->active && (!old_crtc_state->active || drm_atomic_crtc_needs_modeset(new_crtc_state))) { dc_stream_retain(dm_new_crtc_state->stream); acrtc->dm_irq_params.stream = dm_new_crtc_state->stream; manage_dm_interrupts(adev, acrtc, true); #ifdef CONFIG_DEBUG_FS /** * Frontend may have changed so reapply the CRC capture * settings for the stream. */ dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); if (amdgpu_dm_is_valid_crc_source(cur_crc_src)) { configure_crc = true; #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY) if (amdgpu_dm_crc_window_is_activated(crtc)) { spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); acrtc->dm_irq_params.crc_window.update_win = true; acrtc->dm_irq_params.crc_window.skip_frame_cnt = 2; spin_lock_irq(&crc_rd_wrk->crc_rd_work_lock); crc_rd_wrk->crtc = crtc; spin_unlock_irq(&crc_rd_wrk->crc_rd_work_lock); spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); } #endif } if (configure_crc) if (amdgpu_dm_crtc_configure_crc_source( crtc, dm_new_crtc_state, cur_crc_src)) DRM_DEBUG_DRIVER("Failed to configure crc source"); #endif } } for_each_new_crtc_in_state(state, crtc, new_crtc_state, j) if (new_crtc_state->async_flip) wait_for_vblank = false; /* update planes when needed per crtc*/ for_each_new_crtc_in_state(state, crtc, new_crtc_state, j) { dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); if (dm_new_crtc_state->stream) amdgpu_dm_commit_planes(state, dc_state, dev, dm, crtc, wait_for_vblank); } /* Update audio instances for each connector. */ amdgpu_dm_commit_audio(dev, state); #if defined(CONFIG_BACKLIGHT_CLASS_DEVICE) || \ defined(CONFIG_BACKLIGHT_CLASS_DEVICE_MODULE) /* restore the backlight level */ for (i = 0; i < dm->num_of_edps; i++) { if (dm->backlight_dev[i] && (amdgpu_dm_backlight_get_level(dm, i) != dm->brightness[i])) amdgpu_dm_backlight_set_level(dm, i, dm->brightness[i]); } #endif /* * send vblank event on all events not handled in flip and * mark consumed event for drm_atomic_helper_commit_hw_done */ spin_lock_irqsave(&adev_to_drm(adev)->event_lock, flags); for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->event) drm_send_event_locked(dev, &new_crtc_state->event->base); new_crtc_state->event = NULL; } spin_unlock_irqrestore(&adev_to_drm(adev)->event_lock, flags); /* Signal HW programming completion */ drm_atomic_helper_commit_hw_done(state); if (wait_for_vblank) drm_atomic_helper_wait_for_flip_done(dev, state); drm_atomic_helper_cleanup_planes(dev, state); /* return the stolen vga memory back to VRAM */ if (!adev->mman.keep_stolen_vga_memory) amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); /* * Finally, drop a runtime PM reference for each newly disabled CRTC, * so we can put the GPU into runtime suspend if we're not driving any * displays anymore */ for (i = 0; i < crtc_disable_count; i++) pm_runtime_put_autosuspend(dev->dev); pm_runtime_mark_last_busy(dev->dev); if (dc_state_temp) dc_release_state(dc_state_temp); } static int dm_force_atomic_commit(struct drm_connector *connector) { int ret = 0; struct drm_device *ddev = connector->dev; struct drm_atomic_state *state = drm_atomic_state_alloc(ddev); struct amdgpu_crtc *disconnected_acrtc = to_amdgpu_crtc(connector->encoder->crtc); struct drm_plane *plane = disconnected_acrtc->base.primary; struct drm_connector_state *conn_state; struct drm_crtc_state *crtc_state; struct drm_plane_state *plane_state; if (!state) return -ENOMEM; state->acquire_ctx = ddev->mode_config.acquire_ctx; /* Construct an atomic state to restore previous display setting */ /* * Attach connectors to drm_atomic_state */ conn_state = drm_atomic_get_connector_state(state, connector); ret = PTR_ERR_OR_ZERO(conn_state); if (ret) goto out; /* Attach crtc to drm_atomic_state*/ crtc_state = drm_atomic_get_crtc_state(state, &disconnected_acrtc->base); ret = PTR_ERR_OR_ZERO(crtc_state); if (ret) goto out; /* force a restore */ crtc_state->mode_changed = true; /* Attach plane to drm_atomic_state */ plane_state = drm_atomic_get_plane_state(state, plane); ret = PTR_ERR_OR_ZERO(plane_state); if (ret) goto out; /* Call commit internally with the state we just constructed */ ret = drm_atomic_commit(state); out: drm_atomic_state_put(state); if (ret) DRM_ERROR("Restoring old state failed with %i\n", ret); return ret; } /* * This function handles all cases when set mode does not come upon hotplug. * This includes when a display is unplugged then plugged back into the * same port and when running without usermode desktop manager supprot */ void dm_restore_drm_connector_state(struct drm_device *dev, struct drm_connector *connector) { struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(connector); struct amdgpu_crtc *disconnected_acrtc; struct dm_crtc_state *acrtc_state; if (!aconnector->dc_sink || !connector->state || !connector->encoder) return; disconnected_acrtc = to_amdgpu_crtc(connector->encoder->crtc); if (!disconnected_acrtc) return; acrtc_state = to_dm_crtc_state(disconnected_acrtc->base.state); if (!acrtc_state->stream) return; /* * If the previous sink is not released and different from the current, * we deduce we are in a state where we can not rely on usermode call * to turn on the display, so we do it here */ if (acrtc_state->stream->sink != aconnector->dc_sink) dm_force_atomic_commit(&aconnector->base); } /* * Grabs all modesetting locks to serialize against any blocking commits, * Waits for completion of all non blocking commits. */ static int do_aquire_global_lock(struct drm_device *dev, struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_commit *commit; long ret; /* * Adding all modeset locks to aquire_ctx will * ensure that when the framework release it the * extra locks we are locking here will get released to */ ret = drm_modeset_lock_all_ctx(dev, state->acquire_ctx); if (ret) return ret; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { spin_lock(&crtc->commit_lock); commit = list_first_entry_or_null(&crtc->commit_list, struct drm_crtc_commit, commit_entry); if (commit) drm_crtc_commit_get(commit); spin_unlock(&crtc->commit_lock); if (!commit) continue; /* * Make sure all pending HW programming completed and * page flips done */ ret = wait_for_completion_interruptible_timeout(&commit->hw_done, 10*HZ); if (ret > 0) ret = wait_for_completion_interruptible_timeout( &commit->flip_done, 10*HZ); if (ret == 0) DRM_ERROR("[CRTC:%d:%s] hw_done or flip_done " "timed out\n", crtc->base.id, crtc->name); drm_crtc_commit_put(commit); } return ret < 0 ? ret : 0; } static void get_freesync_config_for_crtc( struct dm_crtc_state *new_crtc_state, struct dm_connector_state *new_con_state) { struct mod_freesync_config config = {0}; struct amdgpu_dm_connector *aconnector = to_amdgpu_dm_connector(new_con_state->base.connector); struct drm_display_mode *mode = &new_crtc_state->base.mode; int vrefresh = drm_mode_vrefresh(mode); bool fs_vid_mode = false; new_crtc_state->vrr_supported = new_con_state->freesync_capable && vrefresh >= aconnector->min_vfreq && vrefresh <= aconnector->max_vfreq; if (new_crtc_state->vrr_supported) { new_crtc_state->stream->ignore_msa_timing_param = true; fs_vid_mode = new_crtc_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED; config.min_refresh_in_uhz = aconnector->min_vfreq * 1000000; config.max_refresh_in_uhz = aconnector->max_vfreq * 1000000; config.vsif_supported = true; config.btr = true; if (fs_vid_mode) { config.state = VRR_STATE_ACTIVE_FIXED; config.fixed_refresh_in_uhz = new_crtc_state->freesync_config.fixed_refresh_in_uhz; goto out; } else if (new_crtc_state->base.vrr_enabled) { config.state = VRR_STATE_ACTIVE_VARIABLE; } else { config.state = VRR_STATE_INACTIVE; } } out: new_crtc_state->freesync_config = config; } static void reset_freesync_config_for_crtc( struct dm_crtc_state *new_crtc_state) { new_crtc_state->vrr_supported = false; memset(&new_crtc_state->vrr_infopacket, 0, sizeof(new_crtc_state->vrr_infopacket)); } static bool is_timing_unchanged_for_freesync(struct drm_crtc_state *old_crtc_state, struct drm_crtc_state *new_crtc_state) { struct drm_display_mode old_mode, new_mode; if (!old_crtc_state || !new_crtc_state) return false; old_mode = old_crtc_state->mode; new_mode = new_crtc_state->mode; if (old_mode.clock == new_mode.clock && old_mode.hdisplay == new_mode.hdisplay && old_mode.vdisplay == new_mode.vdisplay && old_mode.htotal == new_mode.htotal && old_mode.vtotal != new_mode.vtotal && old_mode.hsync_start == new_mode.hsync_start && old_mode.vsync_start != new_mode.vsync_start && old_mode.hsync_end == new_mode.hsync_end && old_mode.vsync_end != new_mode.vsync_end && old_mode.hskew == new_mode.hskew && old_mode.vscan == new_mode.vscan && (old_mode.vsync_end - old_mode.vsync_start) == (new_mode.vsync_end - new_mode.vsync_start)) return true; return false; } static void set_freesync_fixed_config(struct dm_crtc_state *dm_new_crtc_state) { uint64_t num, den, res; struct drm_crtc_state *new_crtc_state = &dm_new_crtc_state->base; dm_new_crtc_state->freesync_config.state = VRR_STATE_ACTIVE_FIXED; num = (unsigned long long)new_crtc_state->mode.clock * 1000 * 1000000; den = (unsigned long long)new_crtc_state->mode.htotal * (unsigned long long)new_crtc_state->mode.vtotal; res = div_u64(num, den); dm_new_crtc_state->freesync_config.fixed_refresh_in_uhz = res; } static int dm_update_crtc_state(struct amdgpu_display_manager *dm, struct drm_atomic_state *state, struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state, struct drm_crtc_state *new_crtc_state, bool enable, bool *lock_and_validation_needed) { struct dm_atomic_state *dm_state = NULL; struct dm_crtc_state *dm_old_crtc_state, *dm_new_crtc_state; struct dc_stream_state *new_stream; int ret = 0; /* * TODO Move this code into dm_crtc_atomic_check once we get rid of dc_validation_set * update changed items */ struct amdgpu_crtc *acrtc = NULL; struct amdgpu_dm_connector *aconnector = NULL; struct drm_connector_state *drm_new_conn_state = NULL, *drm_old_conn_state = NULL; struct dm_connector_state *dm_new_conn_state = NULL, *dm_old_conn_state = NULL; new_stream = NULL; dm_old_crtc_state = to_dm_crtc_state(old_crtc_state); dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); acrtc = to_amdgpu_crtc(crtc); aconnector = amdgpu_dm_find_first_crtc_matching_connector(state, crtc); /* TODO This hack should go away */ if (aconnector && enable) { /* Make sure fake sink is created in plug-in scenario */ drm_new_conn_state = drm_atomic_get_new_connector_state(state, &aconnector->base); drm_old_conn_state = drm_atomic_get_old_connector_state(state, &aconnector->base); if (IS_ERR(drm_new_conn_state)) { ret = PTR_ERR_OR_ZERO(drm_new_conn_state); goto fail; } dm_new_conn_state = to_dm_connector_state(drm_new_conn_state); dm_old_conn_state = to_dm_connector_state(drm_old_conn_state); if (!drm_atomic_crtc_needs_modeset(new_crtc_state)) goto skip_modeset; new_stream = create_validate_stream_for_sink(aconnector, &new_crtc_state->mode, dm_new_conn_state, dm_old_crtc_state->stream); /* * we can have no stream on ACTION_SET if a display * was disconnected during S3, in this case it is not an * error, the OS will be updated after detection, and * will do the right thing on next atomic commit */ if (!new_stream) { DRM_DEBUG_DRIVER("%s: Failed to create new stream for crtc %d\n", __func__, acrtc->base.base.id); ret = -ENOMEM; goto fail; } /* * TODO: Check VSDB bits to decide whether this should * be enabled or not. */ new_stream->triggered_crtc_reset.enabled = dm->force_timing_sync; dm_new_crtc_state->abm_level = dm_new_conn_state->abm_level; ret = fill_hdr_info_packet(drm_new_conn_state, &new_stream->hdr_static_metadata); if (ret) goto fail; /* * If we already removed the old stream from the context * (and set the new stream to NULL) then we can't reuse * the old stream even if the stream and scaling are unchanged. * We'll hit the BUG_ON and black screen. * * TODO: Refactor this function to allow this check to work * in all conditions. */ if (amdgpu_freesync_vid_mode && dm_new_crtc_state->stream && is_timing_unchanged_for_freesync(new_crtc_state, old_crtc_state)) goto skip_modeset; if (dm_new_crtc_state->stream && dc_is_stream_unchanged(new_stream, dm_old_crtc_state->stream) && dc_is_stream_scaling_unchanged(new_stream, dm_old_crtc_state->stream)) { new_crtc_state->mode_changed = false; DRM_DEBUG_DRIVER("Mode change not required, setting mode_changed to %d", new_crtc_state->mode_changed); } } /* mode_changed flag may get updated above, need to check again */ if (!drm_atomic_crtc_needs_modeset(new_crtc_state)) goto skip_modeset; DRM_DEBUG_ATOMIC( "amdgpu_crtc id:%d crtc_state_flags: enable:%d, active:%d, " "planes_changed:%d, mode_changed:%d,active_changed:%d," "connectors_changed:%d\n", acrtc->crtc_id, new_crtc_state->enable, new_crtc_state->active, new_crtc_state->planes_changed, new_crtc_state->mode_changed, new_crtc_state->active_changed, new_crtc_state->connectors_changed); /* Remove stream for any changed/disabled CRTC */ if (!enable) { if (!dm_old_crtc_state->stream) goto skip_modeset; if (amdgpu_freesync_vid_mode && dm_new_crtc_state->stream && is_timing_unchanged_for_freesync(new_crtc_state, old_crtc_state)) { new_crtc_state->mode_changed = false; DRM_DEBUG_DRIVER( "Mode change not required for front porch change, " "setting mode_changed to %d", new_crtc_state->mode_changed); set_freesync_fixed_config(dm_new_crtc_state); goto skip_modeset; } else if (amdgpu_freesync_vid_mode && aconnector && is_freesync_video_mode(&new_crtc_state->mode, aconnector)) { struct drm_display_mode *high_mode; high_mode = get_highest_refresh_rate_mode(aconnector, false); if (!drm_mode_equal(&new_crtc_state->mode, high_mode)) { set_freesync_fixed_config(dm_new_crtc_state); } } ret = dm_atomic_get_state(state, &dm_state); if (ret) goto fail; DRM_DEBUG_DRIVER("Disabling DRM crtc: %d\n", crtc->base.id); /* i.e. reset mode */ if (dc_remove_stream_from_ctx( dm->dc, dm_state->context, dm_old_crtc_state->stream) != DC_OK) { ret = -EINVAL; goto fail; } dc_stream_release(dm_old_crtc_state->stream); dm_new_crtc_state->stream = NULL; reset_freesync_config_for_crtc(dm_new_crtc_state); *lock_and_validation_needed = true; } else {/* Add stream for any updated/enabled CRTC */ /* * Quick fix to prevent NULL pointer on new_stream when * added MST connectors not found in existing crtc_state in the chained mode * TODO: need to dig out the root cause of that */ if (!aconnector || (!aconnector->dc_sink && aconnector->mst_port)) goto skip_modeset; if (modereset_required(new_crtc_state)) goto skip_modeset; if (modeset_required(new_crtc_state, new_stream, dm_old_crtc_state->stream)) { WARN_ON(dm_new_crtc_state->stream); ret = dm_atomic_get_state(state, &dm_state); if (ret) goto fail; dm_new_crtc_state->stream = new_stream; dc_stream_retain(new_stream); DRM_DEBUG_ATOMIC("Enabling DRM crtc: %d\n", crtc->base.id); if (dc_add_stream_to_ctx( dm->dc, dm_state->context, dm_new_crtc_state->stream) != DC_OK) { ret = -EINVAL; goto fail; } *lock_and_validation_needed = true; } } skip_modeset: /* Release extra reference */ if (new_stream) dc_stream_release(new_stream); /* * We want to do dc stream updates that do not require a * full modeset below. */ if (!(enable && aconnector && new_crtc_state->active)) return 0; /* * Given above conditions, the dc state cannot be NULL because: * 1. We're in the process of enabling CRTCs (just been added * to the dc context, or already is on the context) * 2. Has a valid connector attached, and * 3. Is currently active and enabled. * => The dc stream state currently exists. */ BUG_ON(dm_new_crtc_state->stream == NULL); /* Scaling or underscan settings */ if (is_scaling_state_different(dm_old_conn_state, dm_new_conn_state) || drm_atomic_crtc_needs_modeset(new_crtc_state)) update_stream_scaling_settings( &new_crtc_state->mode, dm_new_conn_state, dm_new_crtc_state->stream); /* ABM settings */ dm_new_crtc_state->abm_level = dm_new_conn_state->abm_level; /* * Color management settings. We also update color properties * when a modeset is needed, to ensure it gets reprogrammed. */ if (dm_new_crtc_state->base.color_mgmt_changed || drm_atomic_crtc_needs_modeset(new_crtc_state)) { ret = amdgpu_dm_update_crtc_color_mgmt(dm_new_crtc_state); if (ret) goto fail; } /* Update Freesync settings. */ get_freesync_config_for_crtc(dm_new_crtc_state, dm_new_conn_state); return ret; fail: if (new_stream) dc_stream_release(new_stream); return ret; } static bool should_reset_plane(struct drm_atomic_state *state, struct drm_plane *plane, struct drm_plane_state *old_plane_state, struct drm_plane_state *new_plane_state) { struct drm_plane *other; struct drm_plane_state *old_other_state, *new_other_state; struct drm_crtc_state *new_crtc_state; int i; /* * TODO: Remove this hack once the checks below are sufficient * enough to determine when we need to reset all the planes on * the stream. */ if (state->allow_modeset) return true; /* Exit early if we know that we're adding or removing the plane. */ if (old_plane_state->crtc != new_plane_state->crtc) return true; /* old crtc == new_crtc == NULL, plane not in context. */ if (!new_plane_state->crtc) return false; new_crtc_state = drm_atomic_get_new_crtc_state(state, new_plane_state->crtc); if (!new_crtc_state) return true; /* CRTC Degamma changes currently require us to recreate planes. */ if (new_crtc_state->color_mgmt_changed) return true; if (drm_atomic_crtc_needs_modeset(new_crtc_state)) return true; /* * If there are any new primary or overlay planes being added or * removed then the z-order can potentially change. To ensure * correct z-order and pipe acquisition the current DC architecture * requires us to remove and recreate all existing planes. * * TODO: Come up with a more elegant solution for this. */ for_each_oldnew_plane_in_state(state, other, old_other_state, new_other_state, i) { struct amdgpu_framebuffer *old_afb, *new_afb; if (other->type == DRM_PLANE_TYPE_CURSOR) continue; if (old_other_state->crtc != new_plane_state->crtc && new_other_state->crtc != new_plane_state->crtc) continue; if (old_other_state->crtc != new_other_state->crtc) return true; /* Src/dst size and scaling updates. */ if (old_other_state->src_w != new_other_state->src_w || old_other_state->src_h != new_other_state->src_h || old_other_state->crtc_w != new_other_state->crtc_w || old_other_state->crtc_h != new_other_state->crtc_h) return true; /* Rotation / mirroring updates. */ if (old_other_state->rotation != new_other_state->rotation) return true; /* Blending updates. */ if (old_other_state->pixel_blend_mode != new_other_state->pixel_blend_mode) return true; /* Alpha updates. */ if (old_other_state->alpha != new_other_state->alpha) return true; /* Colorspace changes. */ if (old_other_state->color_range != new_other_state->color_range || old_other_state->color_encoding != new_other_state->color_encoding) return true; /* Framebuffer checks fall at the end. */ if (!old_other_state->fb || !new_other_state->fb) continue; /* Pixel format changes can require bandwidth updates. */ if (old_other_state->fb->format != new_other_state->fb->format) return true; old_afb = (struct amdgpu_framebuffer *)old_other_state->fb; new_afb = (struct amdgpu_framebuffer *)new_other_state->fb; /* Tiling and DCC changes also require bandwidth updates. */ if (old_afb->tiling_flags != new_afb->tiling_flags || old_afb->base.modifier != new_afb->base.modifier) return true; } return false; } static int dm_check_cursor_fb(struct amdgpu_crtc *new_acrtc, struct drm_plane_state *new_plane_state, struct drm_framebuffer *fb) { struct amdgpu_device *adev = drm_to_adev(new_acrtc->base.dev); struct amdgpu_framebuffer *afb = to_amdgpu_framebuffer(fb); unsigned int pitch; bool linear; if (fb->width > new_acrtc->max_cursor_width || fb->height > new_acrtc->max_cursor_height) { DRM_DEBUG_ATOMIC("Bad cursor FB size %dx%d\n", new_plane_state->fb->width, new_plane_state->fb->height); return -EINVAL; } if (new_plane_state->src_w != fb->width << 16 || new_plane_state->src_h != fb->height << 16) { DRM_DEBUG_ATOMIC("Cropping not supported for cursor plane\n"); return -EINVAL; } /* Pitch in pixels */ pitch = fb->pitches[0] / fb->format->cpp[0]; if (fb->width != pitch) { DRM_DEBUG_ATOMIC("Cursor FB width %d doesn't match pitch %d", fb->width, pitch); return -EINVAL; } switch (pitch) { case 64: case 128: case 256: /* FB pitch is supported by cursor plane */ break; default: DRM_DEBUG_ATOMIC("Bad cursor FB pitch %d px\n", pitch); return -EINVAL; } /* Core DRM takes care of checking FB modifiers, so we only need to * check tiling flags when the FB doesn't have a modifier. */ if (!(fb->flags & DRM_MODE_FB_MODIFIERS)) { if (adev->family < AMDGPU_FAMILY_AI) { linear = AMDGPU_TILING_GET(afb->tiling_flags, ARRAY_MODE) != DC_ARRAY_2D_TILED_THIN1 && AMDGPU_TILING_GET(afb->tiling_flags, ARRAY_MODE) != DC_ARRAY_1D_TILED_THIN1 && AMDGPU_TILING_GET(afb->tiling_flags, MICRO_TILE_MODE) == 0; } else { linear = AMDGPU_TILING_GET(afb->tiling_flags, SWIZZLE_MODE) == 0; } if (!linear) { DRM_DEBUG_ATOMIC("Cursor FB not linear"); return -EINVAL; } } return 0; } static int dm_update_plane_state(struct dc *dc, struct drm_atomic_state *state, struct drm_plane *plane, struct drm_plane_state *old_plane_state, struct drm_plane_state *new_plane_state, bool enable, bool *lock_and_validation_needed) { struct dm_atomic_state *dm_state = NULL; struct drm_crtc *new_plane_crtc, *old_plane_crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct dm_crtc_state *dm_new_crtc_state, *dm_old_crtc_state; struct dm_plane_state *dm_new_plane_state, *dm_old_plane_state; struct amdgpu_crtc *new_acrtc; bool needs_reset; int ret = 0; new_plane_crtc = new_plane_state->crtc; old_plane_crtc = old_plane_state->crtc; dm_new_plane_state = to_dm_plane_state(new_plane_state); dm_old_plane_state = to_dm_plane_state(old_plane_state); if (plane->type == DRM_PLANE_TYPE_CURSOR) { if (!enable || !new_plane_crtc || drm_atomic_plane_disabling(plane->state, new_plane_state)) return 0; new_acrtc = to_amdgpu_crtc(new_plane_crtc); if (new_plane_state->src_x != 0 || new_plane_state->src_y != 0) { DRM_DEBUG_ATOMIC("Cropping not supported for cursor plane\n"); return -EINVAL; } if (new_plane_state->fb) { ret = dm_check_cursor_fb(new_acrtc, new_plane_state, new_plane_state->fb); if (ret) return ret; } return 0; } needs_reset = should_reset_plane(state, plane, old_plane_state, new_plane_state); /* Remove any changed/removed planes */ if (!enable) { if (!needs_reset) return 0; if (!old_plane_crtc) return 0; old_crtc_state = drm_atomic_get_old_crtc_state( state, old_plane_crtc); dm_old_crtc_state = to_dm_crtc_state(old_crtc_state); if (!dm_old_crtc_state->stream) return 0; DRM_DEBUG_ATOMIC("Disabling DRM plane: %d on DRM crtc %d\n", plane->base.id, old_plane_crtc->base.id); ret = dm_atomic_get_state(state, &dm_state); if (ret) return ret; if (!dc_remove_plane_from_context( dc, dm_old_crtc_state->stream, dm_old_plane_state->dc_state, dm_state->context)) { return -EINVAL; } dc_plane_state_release(dm_old_plane_state->dc_state); dm_new_plane_state->dc_state = NULL; *lock_and_validation_needed = true; } else { /* Add new planes */ struct dc_plane_state *dc_new_plane_state; if (drm_atomic_plane_disabling(plane->state, new_plane_state)) return 0; if (!new_plane_crtc) return 0; new_crtc_state = drm_atomic_get_new_crtc_state(state, new_plane_crtc); dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); if (!dm_new_crtc_state->stream) return 0; if (!needs_reset) return 0; ret = dm_plane_helper_check_state(new_plane_state, new_crtc_state); if (ret) return ret; WARN_ON(dm_new_plane_state->dc_state); dc_new_plane_state = dc_create_plane_state(dc); if (!dc_new_plane_state) return -ENOMEM; DRM_DEBUG_ATOMIC("Enabling DRM plane: %d on DRM crtc %d\n", plane->base.id, new_plane_crtc->base.id); ret = fill_dc_plane_attributes( drm_to_adev(new_plane_crtc->dev), dc_new_plane_state, new_plane_state, new_crtc_state); if (ret) { dc_plane_state_release(dc_new_plane_state); return ret; } ret = dm_atomic_get_state(state, &dm_state); if (ret) { dc_plane_state_release(dc_new_plane_state); return ret; } /* * Any atomic check errors that occur after this will * not need a release. The plane state will be attached * to the stream, and therefore part of the atomic * state. It'll be released when the atomic state is * cleaned. */ if (!dc_add_plane_to_context( dc, dm_new_crtc_state->stream, dc_new_plane_state, dm_state->context)) { dc_plane_state_release(dc_new_plane_state); return -EINVAL; } dm_new_plane_state->dc_state = dc_new_plane_state; /* Tell DC to do a full surface update every time there * is a plane change. Inefficient, but works for now. */ dm_new_plane_state->dc_state->update_flags.bits.full_update = 1; *lock_and_validation_needed = true; } return ret; } static int dm_check_crtc_cursor(struct drm_atomic_state *state, struct drm_crtc *crtc, struct drm_crtc_state *new_crtc_state) { struct drm_plane *cursor = crtc->cursor, *underlying; struct drm_plane_state *new_cursor_state, *new_underlying_state; int i; int cursor_scale_w, cursor_scale_h, underlying_scale_w, underlying_scale_h; /* On DCE and DCN there is no dedicated hardware cursor plane. We get a * cursor per pipe but it's going to inherit the scaling and * positioning from the underlying pipe. Check the cursor plane's * blending properties match the underlying planes'. */ new_cursor_state = drm_atomic_get_new_plane_state(state, cursor); if (!new_cursor_state || !new_cursor_state->fb) { return 0; } cursor_scale_w = new_cursor_state->crtc_w * 1000 / (new_cursor_state->src_w >> 16); cursor_scale_h = new_cursor_state->crtc_h * 1000 / (new_cursor_state->src_h >> 16); for_each_new_plane_in_state_reverse(state, underlying, new_underlying_state, i) { /* Narrow down to non-cursor planes on the same CRTC as the cursor */ if (new_underlying_state->crtc != crtc || underlying == crtc->cursor) continue; /* Ignore disabled planes */ if (!new_underlying_state->fb) continue; underlying_scale_w = new_underlying_state->crtc_w * 1000 / (new_underlying_state->src_w >> 16); underlying_scale_h = new_underlying_state->crtc_h * 1000 / (new_underlying_state->src_h >> 16); if (cursor_scale_w != underlying_scale_w || cursor_scale_h != underlying_scale_h) { drm_dbg_atomic(crtc->dev, "Cursor [PLANE:%d:%s] scaling doesn't match underlying [PLANE:%d:%s]\n", cursor->base.id, cursor->name, underlying->base.id, underlying->name); return -EINVAL; } /* If this plane covers the whole CRTC, no need to check planes underneath */ if (new_underlying_state->crtc_x <= 0 && new_underlying_state->crtc_y <= 0 && new_underlying_state->crtc_x + new_underlying_state->crtc_w >= new_crtc_state->mode.hdisplay && new_underlying_state->crtc_y + new_underlying_state->crtc_h >= new_crtc_state->mode.vdisplay) break; } return 0; } #if defined(CONFIG_DRM_AMD_DC_DCN) static int add_affected_mst_dsc_crtcs(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_connector *connector; struct drm_connector_state *conn_state; struct amdgpu_dm_connector *aconnector = NULL; int i; for_each_new_connector_in_state(state, connector, conn_state, i) { if (conn_state->crtc != crtc) continue; aconnector = to_amdgpu_dm_connector(connector); if (!aconnector->port || !aconnector->mst_port) aconnector = NULL; else break; } if (!aconnector) return 0; return drm_dp_mst_add_affected_dsc_crtcs(state, &aconnector->mst_port->mst_mgr); } #endif /** * amdgpu_dm_atomic_check() - Atomic check implementation for AMDgpu DM. * @dev: The DRM device * @state: The atomic state to commit * * Validate that the given atomic state is programmable by DC into hardware. * This involves constructing a &struct dc_state reflecting the new hardware * state we wish to commit, then querying DC to see if it is programmable. It's * important not to modify the existing DC state. Otherwise, atomic_check * may unexpectedly commit hardware changes. * * When validating the DC state, it's important that the right locks are * acquired. For full updates case which removes/adds/updates streams on one * CRTC while flipping on another CRTC, acquiring global lock will guarantee * that any such full update commit will wait for completion of any outstanding * flip using DRMs synchronization events. * * Note that DM adds the affected connectors for all CRTCs in state, when that * might not seem necessary. This is because DC stream creation requires the * DC sink, which is tied to the DRM connector state. Cleaning this up should * be possible but non-trivial - a possible TODO item. * * Return: -Error code if validation failed. */ static int amdgpu_dm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct amdgpu_device *adev = drm_to_adev(dev); struct dm_atomic_state *dm_state = NULL; struct dc *dc = adev->dm.dc; struct drm_connector *connector; struct drm_connector_state *old_con_state, *new_con_state; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_plane *plane; struct drm_plane_state *old_plane_state, *new_plane_state; enum dc_status status; int ret, i; bool lock_and_validation_needed = false; struct dm_crtc_state *dm_old_crtc_state; #if defined(CONFIG_DRM_AMD_DC_DCN) struct dsc_mst_fairness_vars vars[MAX_PIPES]; struct drm_dp_mst_topology_state *mst_state; struct drm_dp_mst_topology_mgr *mgr; #endif trace_amdgpu_dm_atomic_check_begin(state); ret = drm_atomic_helper_check_modeset(dev, state); if (ret) { DRM_DEBUG_DRIVER("drm_atomic_helper_check_modeset() failed\n"); goto fail; } /* Check connector changes */ for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) { struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state); struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state); /* Skip connectors that are disabled or part of modeset already. */ if (!old_con_state->crtc && !new_con_state->crtc) continue; if (!new_con_state->crtc) continue; new_crtc_state = drm_atomic_get_crtc_state(state, new_con_state->crtc); if (IS_ERR(new_crtc_state)) { DRM_DEBUG_DRIVER("drm_atomic_get_crtc_state() failed\n"); ret = PTR_ERR(new_crtc_state); goto fail; } if (dm_old_con_state->abm_level != dm_new_con_state->abm_level) new_crtc_state->connectors_changed = true; } #if defined(CONFIG_DRM_AMD_DC_DCN) if (dc_resource_is_dsc_encoding_supported(dc)) { for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (drm_atomic_crtc_needs_modeset(new_crtc_state)) { ret = add_affected_mst_dsc_crtcs(state, crtc); if (ret) { DRM_DEBUG_DRIVER("add_affected_mst_dsc_crtcs() failed\n"); goto fail; } } } } #endif for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { dm_old_crtc_state = to_dm_crtc_state(old_crtc_state); if (!drm_atomic_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->color_mgmt_changed && old_crtc_state->vrr_enabled == new_crtc_state->vrr_enabled && dm_old_crtc_state->dsc_force_changed == false) continue; ret = amdgpu_dm_verify_lut_sizes(new_crtc_state); if (ret) { DRM_DEBUG_DRIVER("amdgpu_dm_verify_lut_sizes() failed\n"); goto fail; } if (!new_crtc_state->enable) continue; ret = drm_atomic_add_affected_connectors(state, crtc); if (ret) { DRM_DEBUG_DRIVER("drm_atomic_add_affected_connectors() failed\n"); goto fail; } ret = drm_atomic_add_affected_planes(state, crtc); if (ret) { DRM_DEBUG_DRIVER("drm_atomic_add_affected_planes() failed\n"); goto fail; } if (dm_old_crtc_state->dsc_force_changed) new_crtc_state->mode_changed = true; } /* * Add all primary and overlay planes on the CRTC to the state * whenever a plane is enabled to maintain correct z-ordering * and to enable fast surface updates. */ drm_for_each_crtc(crtc, dev) { bool modified = false; for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { if (plane->type == DRM_PLANE_TYPE_CURSOR) continue; if (new_plane_state->crtc == crtc || old_plane_state->crtc == crtc) { modified = true; break; } } if (!modified) continue; drm_for_each_plane_mask(plane, state->dev, crtc->state->plane_mask) { if (plane->type == DRM_PLANE_TYPE_CURSOR) continue; new_plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(new_plane_state)) { ret = PTR_ERR(new_plane_state); DRM_DEBUG_DRIVER("new_plane_state is BAD\n"); goto fail; } } } /* Remove exiting planes if they are modified */ for_each_oldnew_plane_in_state_reverse(state, plane, old_plane_state, new_plane_state, i) { ret = dm_update_plane_state(dc, state, plane, old_plane_state, new_plane_state, false, &lock_and_validation_needed); if (ret) { DRM_DEBUG_DRIVER("dm_update_plane_state() failed\n"); goto fail; } } /* Disable all crtcs which require disable */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { ret = dm_update_crtc_state(&adev->dm, state, crtc, old_crtc_state, new_crtc_state, false, &lock_and_validation_needed); if (ret) { DRM_DEBUG_DRIVER("DISABLE: dm_update_crtc_state() failed\n"); goto fail; } } /* Enable all crtcs which require enable */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { ret = dm_update_crtc_state(&adev->dm, state, crtc, old_crtc_state, new_crtc_state, true, &lock_and_validation_needed); if (ret) { DRM_DEBUG_DRIVER("ENABLE: dm_update_crtc_state() failed\n"); goto fail; } } /* Add new/modified planes */ for_each_oldnew_plane_in_state_reverse(state, plane, old_plane_state, new_plane_state, i) { ret = dm_update_plane_state(dc, state, plane, old_plane_state, new_plane_state, true, &lock_and_validation_needed); if (ret) { DRM_DEBUG_DRIVER("dm_update_plane_state() failed\n"); goto fail; } } /* Run this here since we want to validate the streams we created */ ret = drm_atomic_helper_check_planes(dev, state); if (ret) { DRM_DEBUG_DRIVER("drm_atomic_helper_check_planes() failed\n"); goto fail; } /* Check cursor planes scaling */ for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { ret = dm_check_crtc_cursor(state, crtc, new_crtc_state); if (ret) { DRM_DEBUG_DRIVER("dm_check_crtc_cursor() failed\n"); goto fail; } } if (state->legacy_cursor_update) { /* * This is a fast cursor update coming from the plane update * helper, check if it can be done asynchronously for better * performance. */ state->async_update = !drm_atomic_helper_async_check(dev, state); /* * Skip the remaining global validation if this is an async * update. Cursor updates can be done without affecting * state or bandwidth calcs and this avoids the performance * penalty of locking the private state object and * allocating a new dc_state. */ if (state->async_update) return 0; } /* Check scaling and underscan changes*/ /* TODO Removed scaling changes validation due to inability to commit * new stream into context w\o causing full reset. Need to * decide how to handle. */ for_each_oldnew_connector_in_state(state, connector, old_con_state, new_con_state, i) { struct dm_connector_state *dm_old_con_state = to_dm_connector_state(old_con_state); struct dm_connector_state *dm_new_con_state = to_dm_connector_state(new_con_state); struct amdgpu_crtc *acrtc = to_amdgpu_crtc(dm_new_con_state->base.crtc); /* Skip any modesets/resets */ if (!acrtc || drm_atomic_crtc_needs_modeset( drm_atomic_get_new_crtc_state(state, &acrtc->base))) continue; /* Skip any thing not scale or underscan changes */ if (!is_scaling_state_different(dm_new_con_state, dm_old_con_state)) continue; lock_and_validation_needed = true; } #if defined(CONFIG_DRM_AMD_DC_DCN) /* set the slot info for each mst_state based on the link encoding format */ for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { struct amdgpu_dm_connector *aconnector; struct drm_connector *connector; struct drm_connector_list_iter iter; u8 link_coding_cap; if (!mgr->mst_state ) continue; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { int id = connector->index; if (id == mst_state->mgr->conn_base_id) { aconnector = to_amdgpu_dm_connector(connector); link_coding_cap = dc_link_dp_mst_decide_link_encoding_format(aconnector->dc_link); drm_dp_mst_update_slots(mst_state, link_coding_cap); break; } } drm_connector_list_iter_end(&iter); } #endif /** * Streams and planes are reset when there are changes that affect * bandwidth. Anything that affects bandwidth needs to go through * DC global validation to ensure that the configuration can be applied * to hardware. * * We have to currently stall out here in atomic_check for outstanding * commits to finish in this case because our IRQ handlers reference * DRM state directly - we can end up disabling interrupts too early * if we don't. * * TODO: Remove this stall and drop DM state private objects. */ if (lock_and_validation_needed) { ret = dm_atomic_get_state(state, &dm_state); if (ret) { DRM_DEBUG_DRIVER("dm_atomic_get_state() failed\n"); goto fail; } ret = do_aquire_global_lock(dev, state); if (ret) { DRM_DEBUG_DRIVER("do_aquire_global_lock() failed\n"); goto fail; } #if defined(CONFIG_DRM_AMD_DC_DCN) if (!compute_mst_dsc_configs_for_state(state, dm_state->context, vars)) { DRM_DEBUG_DRIVER("compute_mst_dsc_configs_for_state() failed\n"); goto fail; } ret = dm_update_mst_vcpi_slots_for_dsc(state, dm_state->context, vars); if (ret) { DRM_DEBUG_DRIVER("dm_update_mst_vcpi_slots_for_dsc() failed\n"); goto fail; } #endif /* * Perform validation of MST topology in the state: * We need to perform MST atomic check before calling * dc_validate_global_state(), or there is a chance * to get stuck in an infinite loop and hang eventually. */ ret = drm_dp_mst_atomic_check(state); if (ret) { DRM_DEBUG_DRIVER("drm_dp_mst_atomic_check() failed\n"); goto fail; } status = dc_validate_global_state(dc, dm_state->context, true); if (status != DC_OK) { DRM_DEBUG_DRIVER("DC global validation failure: %s (%d)", dc_status_to_str(status), status); ret = -EINVAL; goto fail; } } else { /* * The commit is a fast update. Fast updates shouldn't change * the DC context, affect global validation, and can have their * commit work done in parallel with other commits not touching * the same resource. If we have a new DC context as part of * the DM atomic state from validation we need to free it and * retain the existing one instead. * * Furthermore, since the DM atomic state only contains the DC * context and can safely be annulled, we can free the state * and clear the associated private object now to free * some memory and avoid a possible use-after-free later. */ for (i = 0; i < state->num_private_objs; i++) { struct drm_private_obj *obj = state->private_objs[i].ptr; if (obj->funcs == adev->dm.atomic_obj.funcs) { int j = state->num_private_objs-1; dm_atomic_destroy_state(obj, state->private_objs[i].state); /* If i is not at the end of the array then the * last element needs to be moved to where i was * before the array can safely be truncated. */ if (i != j) state->private_objs[i] = state->private_objs[j]; state->private_objs[j].ptr = NULL; state->private_objs[j].state = NULL; state->private_objs[j].old_state = NULL; state->private_objs[j].new_state = NULL; state->num_private_objs = j; break; } } } /* Store the overall update type for use later in atomic check. */ for_each_new_crtc_in_state (state, crtc, new_crtc_state, i) { struct dm_crtc_state *dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); dm_new_crtc_state->update_type = lock_and_validation_needed ? UPDATE_TYPE_FULL : UPDATE_TYPE_FAST; } /* Must be success */ WARN_ON(ret); trace_amdgpu_dm_atomic_check_finish(state, ret); return ret; fail: if (ret == -EDEADLK) DRM_DEBUG_DRIVER("Atomic check stopped to avoid deadlock.\n"); else if (ret == -EINTR || ret == -EAGAIN || ret == -ERESTARTSYS) DRM_DEBUG_DRIVER("Atomic check stopped due to signal.\n"); else DRM_DEBUG_DRIVER("Atomic check failed with err: %d \n", ret); trace_amdgpu_dm_atomic_check_finish(state, ret); return ret; } static bool is_dp_capable_without_timing_msa(struct dc *dc, struct amdgpu_dm_connector *amdgpu_dm_connector) { uint8_t dpcd_data; bool capable = false; if (amdgpu_dm_connector->dc_link && dm_helpers_dp_read_dpcd( NULL, amdgpu_dm_connector->dc_link, DP_DOWN_STREAM_PORT_COUNT, &dpcd_data, sizeof(dpcd_data))) { capable = (dpcd_data & DP_MSA_TIMING_PAR_IGNORED) ? true:false; } return capable; } static bool dm_edid_parser_send_cea(struct amdgpu_display_manager *dm, unsigned int offset, unsigned int total_length, uint8_t *data, unsigned int length, struct amdgpu_hdmi_vsdb_info *vsdb) { bool res; union dmub_rb_cmd cmd; struct dmub_cmd_send_edid_cea *input; struct dmub_cmd_edid_cea_output *output; if (length > DMUB_EDID_CEA_DATA_CHUNK_BYTES) return false; memset(&cmd, 0, sizeof(cmd)); input = &cmd.edid_cea.data.input; cmd.edid_cea.header.type = DMUB_CMD__EDID_CEA; cmd.edid_cea.header.sub_type = 0; cmd.edid_cea.header.payload_bytes = sizeof(cmd.edid_cea) - sizeof(cmd.edid_cea.header); input->offset = offset; input->length = length; input->total_length = total_length; memcpy(input->payload, data, length); res = dc_dmub_srv_cmd_with_reply_data(dm->dc->ctx->dmub_srv, &cmd); if (!res) { DRM_ERROR("EDID CEA parser failed\n"); return false; } output = &cmd.edid_cea.data.output; if (output->type == DMUB_CMD__EDID_CEA_ACK) { if (!output->ack.success) { DRM_ERROR("EDID CEA ack failed at offset %d\n", output->ack.offset); } } else if (output->type == DMUB_CMD__EDID_CEA_AMD_VSDB) { if (!output->amd_vsdb.vsdb_found) return false; vsdb->freesync_supported = output->amd_vsdb.freesync_supported; vsdb->amd_vsdb_version = output->amd_vsdb.amd_vsdb_version; vsdb->min_refresh_rate_hz = output->amd_vsdb.min_frame_rate; vsdb->max_refresh_rate_hz = output->amd_vsdb.max_frame_rate; } else { DRM_WARN("Unknown EDID CEA parser results\n"); return false; } return true; } static bool parse_edid_cea_dmcu(struct amdgpu_display_manager *dm, uint8_t *edid_ext, int len, struct amdgpu_hdmi_vsdb_info *vsdb_info) { int i; /* send extension block to DMCU for parsing */ for (i = 0; i < len; i += 8) { bool res; int offset; /* send 8 bytes a time */ if (!dc_edid_parser_send_cea(dm->dc, i, len, &edid_ext[i], 8)) return false; if (i+8 == len) { /* EDID block sent completed, expect result */ int version, min_rate, max_rate; res = dc_edid_parser_recv_amd_vsdb(dm->dc, &version, &min_rate, &max_rate); if (res) { /* amd vsdb found */ vsdb_info->freesync_supported = 1; vsdb_info->amd_vsdb_version = version; vsdb_info->min_refresh_rate_hz = min_rate; vsdb_info->max_refresh_rate_hz = max_rate; return true; } /* not amd vsdb */ return false; } /* check for ack*/ res = dc_edid_parser_recv_cea_ack(dm->dc, &offset); if (!res) return false; } return false; } static bool parse_edid_cea_dmub(struct amdgpu_display_manager *dm, uint8_t *edid_ext, int len, struct amdgpu_hdmi_vsdb_info *vsdb_info) { int i; /* send extension block to DMCU for parsing */ for (i = 0; i < len; i += 8) { /* send 8 bytes a time */ if (!dm_edid_parser_send_cea(dm, i, len, &edid_ext[i], 8, vsdb_info)) return false; } return vsdb_info->freesync_supported; } static bool parse_edid_cea(struct amdgpu_dm_connector *aconnector, uint8_t *edid_ext, int len, struct amdgpu_hdmi_vsdb_info *vsdb_info) { struct amdgpu_device *adev = drm_to_adev(aconnector->base.dev); if (adev->dm.dmub_srv) return parse_edid_cea_dmub(&adev->dm, edid_ext, len, vsdb_info); else return parse_edid_cea_dmcu(&adev->dm, edid_ext, len, vsdb_info); } static int parse_hdmi_amd_vsdb(struct amdgpu_dm_connector *aconnector, struct edid *edid, struct amdgpu_hdmi_vsdb_info *vsdb_info) { uint8_t *edid_ext = NULL; int i; bool valid_vsdb_found = false; /*----- drm_find_cea_extension() -----*/ /* No EDID or EDID extensions */ if (edid == NULL || edid->extensions == 0) return -ENODEV; /* Find CEA extension */ for (i = 0; i < edid->extensions; i++) { edid_ext = (uint8_t *)edid + EDID_LENGTH * (i + 1); if (edid_ext[0] == CEA_EXT) break; } if (i == edid->extensions) return -ENODEV; /*----- cea_db_offsets() -----*/ if (edid_ext[0] != CEA_EXT) return -ENODEV; valid_vsdb_found = parse_edid_cea(aconnector, edid_ext, EDID_LENGTH, vsdb_info); return valid_vsdb_found ? i : -ENODEV; } void amdgpu_dm_update_freesync_caps(struct drm_connector *connector, struct edid *edid) { int i = 0; struct detailed_timing *timing; struct detailed_non_pixel *data; struct detailed_data_monitor_range *range; struct amdgpu_dm_connector *amdgpu_dm_connector = to_amdgpu_dm_connector(connector); struct dm_connector_state *dm_con_state = NULL; struct dc_sink *sink; struct drm_device *dev = connector->dev; struct amdgpu_device *adev = drm_to_adev(dev); bool freesync_capable = false; struct amdgpu_hdmi_vsdb_info vsdb_info = {0}; if (!connector->state) { DRM_ERROR("%s - Connector has no state", __func__); goto update; } sink = amdgpu_dm_connector->dc_sink ? amdgpu_dm_connector->dc_sink : amdgpu_dm_connector->dc_em_sink; if (!edid || !sink) { dm_con_state = to_dm_connector_state(connector->state); amdgpu_dm_connector->min_vfreq = 0; amdgpu_dm_connector->max_vfreq = 0; amdgpu_dm_connector->pixel_clock_mhz = 0; connector->display_info.monitor_range.min_vfreq = 0; connector->display_info.monitor_range.max_vfreq = 0; freesync_capable = false; goto update; } dm_con_state = to_dm_connector_state(connector->state); if (!adev->dm.freesync_module) goto update; if (sink->sink_signal == SIGNAL_TYPE_DISPLAY_PORT || sink->sink_signal == SIGNAL_TYPE_EDP) { bool edid_check_required = false; if (edid) { edid_check_required = is_dp_capable_without_timing_msa( adev->dm.dc, amdgpu_dm_connector); } if (edid_check_required == true && (edid->version > 1 || (edid->version == 1 && edid->revision > 1))) { for (i = 0; i < 4; i++) { timing = &edid->detailed_timings[i]; data = &timing->data.other_data; range = &data->data.range; /* * Check if monitor has continuous frequency mode */ if (data->type != EDID_DETAIL_MONITOR_RANGE) continue; /* * Check for flag range limits only. If flag == 1 then * no additional timing information provided. * Default GTF, GTF Secondary curve and CVT are not * supported */ if (range->flags != 1) continue; amdgpu_dm_connector->min_vfreq = range->min_vfreq; amdgpu_dm_connector->max_vfreq = range->max_vfreq; amdgpu_dm_connector->pixel_clock_mhz = range->pixel_clock_mhz * 10; connector->display_info.monitor_range.min_vfreq = range->min_vfreq; connector->display_info.monitor_range.max_vfreq = range->max_vfreq; break; } if (amdgpu_dm_connector->max_vfreq - amdgpu_dm_connector->min_vfreq > 10) { freesync_capable = true; } } } else if (edid && sink->sink_signal == SIGNAL_TYPE_HDMI_TYPE_A) { i = parse_hdmi_amd_vsdb(amdgpu_dm_connector, edid, &vsdb_info); if (i >= 0 && vsdb_info.freesync_supported) { timing = &edid->detailed_timings[i]; data = &timing->data.other_data; amdgpu_dm_connector->min_vfreq = vsdb_info.min_refresh_rate_hz; amdgpu_dm_connector->max_vfreq = vsdb_info.max_refresh_rate_hz; if (amdgpu_dm_connector->max_vfreq - amdgpu_dm_connector->min_vfreq > 10) freesync_capable = true; connector->display_info.monitor_range.min_vfreq = vsdb_info.min_refresh_rate_hz; connector->display_info.monitor_range.max_vfreq = vsdb_info.max_refresh_rate_hz; } } update: if (dm_con_state) dm_con_state->freesync_capable = freesync_capable; if (connector->vrr_capable_property) drm_connector_set_vrr_capable_property(connector, freesync_capable); } void amdgpu_dm_trigger_timing_sync(struct drm_device *dev) { struct amdgpu_device *adev = drm_to_adev(dev); struct dc *dc = adev->dm.dc; int i; mutex_lock(&adev->dm.dc_lock); if (dc->current_state) { for (i = 0; i < dc->current_state->stream_count; ++i) dc->current_state->streams[i] ->triggered_crtc_reset.enabled = adev->dm.force_timing_sync; dm_enable_per_frame_crtc_master_sync(dc->current_state); dc_trigger_sync(dc, dc->current_state); } mutex_unlock(&adev->dm.dc_lock); } void dm_write_reg_func(const struct dc_context *ctx, uint32_t address, uint32_t value, const char *func_name) { #ifdef DM_CHECK_ADDR_0 if (address == 0) { DC_ERR("invalid register write. address = 0"); return; } #endif cgs_write_register(ctx->cgs_device, address, value); trace_amdgpu_dc_wreg(&ctx->perf_trace->write_count, address, value); } uint32_t dm_read_reg_func(const struct dc_context *ctx, uint32_t address, const char *func_name) { uint32_t value; #ifdef DM_CHECK_ADDR_0 if (address == 0) { DC_ERR("invalid register read; address = 0\n"); return 0; } #endif if (ctx->dmub_srv && ctx->dmub_srv->reg_helper_offload.gather_in_progress && !ctx->dmub_srv->reg_helper_offload.should_burst_write) { ASSERT(false); return 0; } value = cgs_read_register(ctx->cgs_device, address); trace_amdgpu_dc_rreg(&ctx->perf_trace->read_count, address, value); return value; } int amdgpu_dm_set_dmub_async_sync_status(bool is_cmd_aux, struct dc_context *ctx, uint8_t status_type, uint32_t *operation_result) { struct amdgpu_device *adev = ctx->driver_context; int return_status = -1; struct dmub_notification *p_notify = adev->dm.dmub_notify; if (is_cmd_aux) { if (status_type == DMUB_ASYNC_TO_SYNC_ACCESS_SUCCESS) { return_status = p_notify->aux_reply.length; *operation_result = p_notify->result; } else if (status_type == DMUB_ASYNC_TO_SYNC_ACCESS_TIMEOUT) { *operation_result = AUX_RET_ERROR_TIMEOUT; } else if (status_type == DMUB_ASYNC_TO_SYNC_ACCESS_FAIL) { *operation_result = AUX_RET_ERROR_ENGINE_ACQUIRE; } else { *operation_result = AUX_RET_ERROR_UNKNOWN; } } else { if (status_type == DMUB_ASYNC_TO_SYNC_ACCESS_SUCCESS) { return_status = 0; *operation_result = p_notify->sc_status; } else { *operation_result = SET_CONFIG_UNKNOWN_ERROR; } } return return_status; } int amdgpu_dm_process_dmub_aux_transfer_sync(bool is_cmd_aux, struct dc_context *ctx, unsigned int link_index, void *cmd_payload, void *operation_result) { struct amdgpu_device *adev = ctx->driver_context; int ret = 0; if (is_cmd_aux) { dc_process_dmub_aux_transfer_async(ctx->dc, link_index, (struct aux_payload *)cmd_payload); } else if (dc_process_dmub_set_config_async(ctx->dc, link_index, (struct set_config_cmd_payload *)cmd_payload, adev->dm.dmub_notify)) { return amdgpu_dm_set_dmub_async_sync_status(is_cmd_aux, ctx, DMUB_ASYNC_TO_SYNC_ACCESS_SUCCESS, (uint32_t *)operation_result); } ret = wait_for_completion_timeout(&adev->dm.dmub_aux_transfer_done, 10 * HZ); if (ret == 0) { DRM_ERROR("wait_for_completion_timeout timeout!"); return amdgpu_dm_set_dmub_async_sync_status(is_cmd_aux, ctx, DMUB_ASYNC_TO_SYNC_ACCESS_TIMEOUT, (uint32_t *)operation_result); } if (is_cmd_aux) { if (adev->dm.dmub_notify->result == AUX_RET_SUCCESS) { struct aux_payload *payload = (struct aux_payload *)cmd_payload; payload->reply[0] = adev->dm.dmub_notify->aux_reply.command; if (!payload->write && adev->dm.dmub_notify->aux_reply.length && payload->reply[0] == AUX_TRANSACTION_REPLY_AUX_ACK) { memcpy(payload->data, adev->dm.dmub_notify->aux_reply.data, adev->dm.dmub_notify->aux_reply.length); } } } return amdgpu_dm_set_dmub_async_sync_status(is_cmd_aux, ctx, DMUB_ASYNC_TO_SYNC_ACCESS_SUCCESS, (uint32_t *)operation_result); }