/* * Support code for Analog Devices Sigma-Delta ADCs * * Copyright 2012 Analog Devices Inc. * Author: Lars-Peter Clausen <lars@metafoo.de> * * Licensed under the GPL-2. */ #include <linux/interrupt.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/err.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/adc/ad_sigma_delta.h> #include <asm/unaligned.h> #define AD_SD_COMM_CHAN_MASK 0x3 #define AD_SD_REG_COMM 0x00 #define AD_SD_REG_DATA 0x03 /** * ad_sd_set_comm() - Set communications register * * @sigma_delta: The sigma delta device * @comm: New value for the communications register */ void ad_sd_set_comm(struct ad_sigma_delta *sigma_delta, uint8_t comm) { /* Some variants use the lower two bits of the communications register * to select the channel */ sigma_delta->comm = comm & AD_SD_COMM_CHAN_MASK; } EXPORT_SYMBOL_GPL(ad_sd_set_comm); /** * ad_sd_write_reg() - Write a register * * @sigma_delta: The sigma delta device * @reg: Address of the register * @size: Size of the register (0-3) * @val: Value to write to the register * * Returns 0 on success, an error code otherwise. **/ int ad_sd_write_reg(struct ad_sigma_delta *sigma_delta, unsigned int reg, unsigned int size, unsigned int val) { uint8_t *data = sigma_delta->data; struct spi_transfer t = { .tx_buf = data, .len = size + 1, .cs_change = sigma_delta->keep_cs_asserted, }; struct spi_message m; int ret; data[0] = (reg << sigma_delta->info->addr_shift) | sigma_delta->comm; switch (size) { case 3: data[1] = val >> 16; data[2] = val >> 8; data[3] = val; break; case 2: put_unaligned_be16(val, &data[1]); break; case 1: data[1] = val; break; case 0: break; default: return -EINVAL; } spi_message_init(&m); spi_message_add_tail(&t, &m); if (sigma_delta->bus_locked) ret = spi_sync_locked(sigma_delta->spi, &m); else ret = spi_sync(sigma_delta->spi, &m); return ret; } EXPORT_SYMBOL_GPL(ad_sd_write_reg); static int ad_sd_read_reg_raw(struct ad_sigma_delta *sigma_delta, unsigned int reg, unsigned int size, uint8_t *val) { uint8_t *data = sigma_delta->data; int ret; struct spi_transfer t[] = { { .tx_buf = data, .len = 1, }, { .rx_buf = val, .len = size, .cs_change = sigma_delta->bus_locked, }, }; struct spi_message m; spi_message_init(&m); if (sigma_delta->info->has_registers) { data[0] = reg << sigma_delta->info->addr_shift; data[0] |= sigma_delta->info->read_mask; spi_message_add_tail(&t[0], &m); } spi_message_add_tail(&t[1], &m); if (sigma_delta->bus_locked) ret = spi_sync_locked(sigma_delta->spi, &m); else ret = spi_sync(sigma_delta->spi, &m); return ret; } /** * ad_sd_read_reg() - Read a register * * @sigma_delta: The sigma delta device * @reg: Address of the register * @size: Size of the register (1-4) * @val: Read value * * Returns 0 on success, an error code otherwise. **/ int ad_sd_read_reg(struct ad_sigma_delta *sigma_delta, unsigned int reg, unsigned int size, unsigned int *val) { int ret; ret = ad_sd_read_reg_raw(sigma_delta, reg, size, sigma_delta->data); if (ret < 0) goto out; switch (size) { case 4: *val = get_unaligned_be32(sigma_delta->data); break; case 3: *val = (sigma_delta->data[0] << 16) | (sigma_delta->data[1] << 8) | sigma_delta->data[2]; break; case 2: *val = get_unaligned_be16(sigma_delta->data); break; case 1: *val = sigma_delta->data[0]; break; default: ret = -EINVAL; break; } out: return ret; } EXPORT_SYMBOL_GPL(ad_sd_read_reg); /** * ad_sd_reset() - Reset the serial interface * * @sigma_delta: The sigma delta device * @reset_length: Number of SCLKs with DIN = 1 * * Returns 0 on success, an error code otherwise. **/ int ad_sd_reset(struct ad_sigma_delta *sigma_delta, unsigned int reset_length) { uint8_t *buf; unsigned int size; int ret; size = DIV_ROUND_UP(reset_length, 8); buf = kcalloc(size, sizeof(*buf), GFP_KERNEL); if (!buf) return -ENOMEM; memset(buf, 0xff, size); ret = spi_write(sigma_delta->spi, buf, size); kfree(buf); return ret; } EXPORT_SYMBOL_GPL(ad_sd_reset); static int ad_sd_calibrate(struct ad_sigma_delta *sigma_delta, unsigned int mode, unsigned int channel) { int ret; unsigned long timeout; ret = ad_sigma_delta_set_channel(sigma_delta, channel); if (ret) return ret; spi_bus_lock(sigma_delta->spi->master); sigma_delta->bus_locked = true; sigma_delta->keep_cs_asserted = true; reinit_completion(&sigma_delta->completion); ret = ad_sigma_delta_set_mode(sigma_delta, mode); if (ret < 0) goto out; sigma_delta->irq_dis = false; enable_irq(sigma_delta->spi->irq); timeout = wait_for_completion_timeout(&sigma_delta->completion, 2 * HZ); if (timeout == 0) { sigma_delta->irq_dis = true; disable_irq_nosync(sigma_delta->spi->irq); ret = -EIO; } else { ret = 0; } out: sigma_delta->keep_cs_asserted = false; ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE); sigma_delta->bus_locked = false; spi_bus_unlock(sigma_delta->spi->master); return ret; } /** * ad_sd_calibrate_all() - Performs channel calibration * @sigma_delta: The sigma delta device * @cb: Array of channels and calibration type to perform * @n: Number of items in cb * * Returns 0 on success, an error code otherwise. **/ int ad_sd_calibrate_all(struct ad_sigma_delta *sigma_delta, const struct ad_sd_calib_data *cb, unsigned int n) { unsigned int i; int ret; for (i = 0; i < n; i++) { ret = ad_sd_calibrate(sigma_delta, cb[i].mode, cb[i].channel); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(ad_sd_calibrate_all); /** * ad_sigma_delta_single_conversion() - Performs a single data conversion * @indio_dev: The IIO device * @chan: The conversion is done for this channel * @val: Pointer to the location where to store the read value * * Returns: 0 on success, an error value otherwise. */ int ad_sigma_delta_single_conversion(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val) { struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev); unsigned int sample, raw_sample; unsigned int data_reg; int ret = 0; if (iio_buffer_enabled(indio_dev)) return -EBUSY; mutex_lock(&indio_dev->mlock); ad_sigma_delta_set_channel(sigma_delta, chan->address); spi_bus_lock(sigma_delta->spi->master); sigma_delta->bus_locked = true; sigma_delta->keep_cs_asserted = true; reinit_completion(&sigma_delta->completion); ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_SINGLE); sigma_delta->irq_dis = false; enable_irq(sigma_delta->spi->irq); ret = wait_for_completion_interruptible_timeout( &sigma_delta->completion, HZ); if (ret == 0) ret = -EIO; if (ret < 0) goto out; if (sigma_delta->info->data_reg != 0) data_reg = sigma_delta->info->data_reg; else data_reg = AD_SD_REG_DATA; ret = ad_sd_read_reg(sigma_delta, data_reg, DIV_ROUND_UP(chan->scan_type.realbits + chan->scan_type.shift, 8), &raw_sample); out: if (!sigma_delta->irq_dis) { disable_irq_nosync(sigma_delta->spi->irq); sigma_delta->irq_dis = true; } sigma_delta->keep_cs_asserted = false; ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE); sigma_delta->bus_locked = false; spi_bus_unlock(sigma_delta->spi->master); mutex_unlock(&indio_dev->mlock); if (ret) return ret; sample = raw_sample >> chan->scan_type.shift; sample &= (1 << chan->scan_type.realbits) - 1; *val = sample; ret = ad_sigma_delta_postprocess_sample(sigma_delta, raw_sample); if (ret) return ret; return IIO_VAL_INT; } EXPORT_SYMBOL_GPL(ad_sigma_delta_single_conversion); static int ad_sd_buffer_postenable(struct iio_dev *indio_dev) { struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev); unsigned int channel; int ret; ret = iio_triggered_buffer_postenable(indio_dev); if (ret < 0) return ret; channel = find_first_bit(indio_dev->active_scan_mask, indio_dev->masklength); ret = ad_sigma_delta_set_channel(sigma_delta, indio_dev->channels[channel].address); if (ret) goto err_predisable; spi_bus_lock(sigma_delta->spi->master); sigma_delta->bus_locked = true; sigma_delta->keep_cs_asserted = true; ret = ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_CONTINUOUS); if (ret) goto err_unlock; sigma_delta->irq_dis = false; enable_irq(sigma_delta->spi->irq); return 0; err_unlock: spi_bus_unlock(sigma_delta->spi->master); err_predisable: return ret; } static int ad_sd_buffer_postdisable(struct iio_dev *indio_dev) { struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev); reinit_completion(&sigma_delta->completion); wait_for_completion_timeout(&sigma_delta->completion, HZ); if (!sigma_delta->irq_dis) { disable_irq_nosync(sigma_delta->spi->irq); sigma_delta->irq_dis = true; } sigma_delta->keep_cs_asserted = false; ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE); sigma_delta->bus_locked = false; return spi_bus_unlock(sigma_delta->spi->master); } static irqreturn_t ad_sd_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev); unsigned int reg_size; unsigned int data_reg; uint8_t data[16]; int ret; memset(data, 0x00, 16); reg_size = indio_dev->channels[0].scan_type.realbits + indio_dev->channels[0].scan_type.shift; reg_size = DIV_ROUND_UP(reg_size, 8); if (sigma_delta->info->data_reg != 0) data_reg = sigma_delta->info->data_reg; else data_reg = AD_SD_REG_DATA; switch (reg_size) { case 4: case 2: case 1: ret = ad_sd_read_reg_raw(sigma_delta, data_reg, reg_size, &data[0]); break; case 3: /* We store 24 bit samples in a 32 bit word. Keep the upper * byte set to zero. */ ret = ad_sd_read_reg_raw(sigma_delta, data_reg, reg_size, &data[1]); break; } iio_push_to_buffers_with_timestamp(indio_dev, data, pf->timestamp); iio_trigger_notify_done(indio_dev->trig); sigma_delta->irq_dis = false; enable_irq(sigma_delta->spi->irq); return IRQ_HANDLED; } static const struct iio_buffer_setup_ops ad_sd_buffer_setup_ops = { .postenable = &ad_sd_buffer_postenable, .predisable = &iio_triggered_buffer_predisable, .postdisable = &ad_sd_buffer_postdisable, .validate_scan_mask = &iio_validate_scan_mask_onehot, }; static irqreturn_t ad_sd_data_rdy_trig_poll(int irq, void *private) { struct ad_sigma_delta *sigma_delta = private; complete(&sigma_delta->completion); disable_irq_nosync(irq); sigma_delta->irq_dis = true; iio_trigger_poll(sigma_delta->trig); return IRQ_HANDLED; } /** * ad_sd_validate_trigger() - validate_trigger callback for ad_sigma_delta devices * @indio_dev: The IIO device * @trig: The new trigger * * Returns: 0 if the 'trig' matches the trigger registered by the ad_sigma_delta * device, -EINVAL otherwise. */ int ad_sd_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev); if (sigma_delta->trig != trig) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(ad_sd_validate_trigger); static const struct iio_trigger_ops ad_sd_trigger_ops = { }; static int ad_sd_probe_trigger(struct iio_dev *indio_dev) { struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev); int ret; sigma_delta->trig = iio_trigger_alloc("%s-dev%d", indio_dev->name, indio_dev->id); if (sigma_delta->trig == NULL) { ret = -ENOMEM; goto error_ret; } sigma_delta->trig->ops = &ad_sd_trigger_ops; init_completion(&sigma_delta->completion); ret = request_irq(sigma_delta->spi->irq, ad_sd_data_rdy_trig_poll, IRQF_TRIGGER_LOW, indio_dev->name, sigma_delta); if (ret) goto error_free_trig; if (!sigma_delta->irq_dis) { sigma_delta->irq_dis = true; disable_irq_nosync(sigma_delta->spi->irq); } sigma_delta->trig->dev.parent = &sigma_delta->spi->dev; iio_trigger_set_drvdata(sigma_delta->trig, sigma_delta); ret = iio_trigger_register(sigma_delta->trig); if (ret) goto error_free_irq; /* select default trigger */ indio_dev->trig = iio_trigger_get(sigma_delta->trig); return 0; error_free_irq: free_irq(sigma_delta->spi->irq, sigma_delta); error_free_trig: iio_trigger_free(sigma_delta->trig); error_ret: return ret; } static void ad_sd_remove_trigger(struct iio_dev *indio_dev) { struct ad_sigma_delta *sigma_delta = iio_device_get_drvdata(indio_dev); iio_trigger_unregister(sigma_delta->trig); free_irq(sigma_delta->spi->irq, sigma_delta); iio_trigger_free(sigma_delta->trig); } /** * ad_sd_setup_buffer_and_trigger() - * @indio_dev: The IIO device */ int ad_sd_setup_buffer_and_trigger(struct iio_dev *indio_dev) { int ret; ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, &ad_sd_trigger_handler, &ad_sd_buffer_setup_ops); if (ret) return ret; ret = ad_sd_probe_trigger(indio_dev); if (ret) { iio_triggered_buffer_cleanup(indio_dev); return ret; } return 0; } EXPORT_SYMBOL_GPL(ad_sd_setup_buffer_and_trigger); /** * ad_sd_cleanup_buffer_and_trigger() - * @indio_dev: The IIO device */ void ad_sd_cleanup_buffer_and_trigger(struct iio_dev *indio_dev) { ad_sd_remove_trigger(indio_dev); iio_triggered_buffer_cleanup(indio_dev); } EXPORT_SYMBOL_GPL(ad_sd_cleanup_buffer_and_trigger); /** * ad_sd_init() - Initializes a ad_sigma_delta struct * @sigma_delta: The ad_sigma_delta device * @indio_dev: The IIO device which the Sigma Delta device is used for * @spi: The SPI device for the ad_sigma_delta device * @info: Device specific callbacks and options * * This function needs to be called before any other operations are performed on * the ad_sigma_delta struct. */ int ad_sd_init(struct ad_sigma_delta *sigma_delta, struct iio_dev *indio_dev, struct spi_device *spi, const struct ad_sigma_delta_info *info) { sigma_delta->spi = spi; sigma_delta->info = info; iio_device_set_drvdata(indio_dev, sigma_delta); return 0; } EXPORT_SYMBOL_GPL(ad_sd_init); MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); MODULE_DESCRIPTION("Analog Devices Sigma-Delta ADCs"); MODULE_LICENSE("GPL v2");