/* * Copyright 2014 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/firmware.h> #include "amdgpu.h" #include "amdgpu_gfx.h" #include "amdgpu_rlc.h" #include "amdgpu_ras.h" /* delay 0.1 second to enable gfx off feature */ #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) #define GFX_OFF_NO_DELAY 0 /* * GPU GFX IP block helpers function. */ int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, int pipe, int queue) { int bit = 0; bit += mec * adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe; bit += pipe * adev->gfx.mec.num_queue_per_pipe; bit += queue; return bit; } void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, int *mec, int *pipe, int *queue) { *queue = bit % adev->gfx.mec.num_queue_per_pipe; *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) % adev->gfx.mec.num_pipe_per_mec; *mec = (bit / adev->gfx.mec.num_queue_per_pipe) / adev->gfx.mec.num_pipe_per_mec; } bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, int mec, int pipe, int queue) { return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), adev->gfx.mec.queue_bitmap); } int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, int me, int pipe, int queue) { int bit = 0; bit += me * adev->gfx.me.num_pipe_per_me * adev->gfx.me.num_queue_per_pipe; bit += pipe * adev->gfx.me.num_queue_per_pipe; bit += queue; return bit; } void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, int *me, int *pipe, int *queue) { *queue = bit % adev->gfx.me.num_queue_per_pipe; *pipe = (bit / adev->gfx.me.num_queue_per_pipe) % adev->gfx.me.num_pipe_per_me; *me = (bit / adev->gfx.me.num_queue_per_pipe) / adev->gfx.me.num_pipe_per_me; } bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, int me, int pipe, int queue) { return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), adev->gfx.me.queue_bitmap); } /** * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter * * @mask: array in which the per-shader array disable masks will be stored * @max_se: number of SEs * @max_sh: number of SHs * * The bitmask of CUs to be disabled in the shader array determined by se and * sh is stored in mask[se * max_sh + sh]. */ void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh) { unsigned se, sh, cu; const char *p; memset(mask, 0, sizeof(*mask) * max_se * max_sh); if (!amdgpu_disable_cu || !*amdgpu_disable_cu) return; p = amdgpu_disable_cu; for (;;) { char *next; int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); if (ret < 3) { DRM_ERROR("amdgpu: could not parse disable_cu\n"); return; } if (se < max_se && sh < max_sh && cu < 16) { DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); mask[se * max_sh + sh] |= 1u << cu; } else { DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", se, sh, cu); } next = strchr(p, ','); if (!next) break; p = next + 1; } } static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) { return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; } static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) { if (amdgpu_compute_multipipe != -1) { DRM_INFO("amdgpu: forcing compute pipe policy %d\n", amdgpu_compute_multipipe); return amdgpu_compute_multipipe == 1; } if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0)) return true; /* FIXME: spreading the queues across pipes causes perf regressions * on POLARIS11 compute workloads */ if (adev->asic_type == CHIP_POLARIS11) return false; return adev->gfx.mec.num_mec > 1; } bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, struct amdgpu_ring *ring) { int queue = ring->queue; int pipe = ring->pipe; /* Policy: use pipe1 queue0 as high priority graphics queue if we * have more than one gfx pipe. */ if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { int me = ring->me; int bit; bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); if (ring == &adev->gfx.gfx_ring[bit]) return true; } return false; } bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, struct amdgpu_ring *ring) { /* Policy: use 1st queue as high priority compute queue if we * have more than one compute queue. */ if (adev->gfx.num_compute_rings > 1 && ring == &adev->gfx.compute_ring[0]) return true; return false; } void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) { int i, queue, pipe; bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe, adev->gfx.num_compute_rings); if (multipipe_policy) { /* policy: make queues evenly cross all pipes on MEC1 only */ for (i = 0; i < max_queues_per_mec; i++) { pipe = i % adev->gfx.mec.num_pipe_per_mec; queue = (i / adev->gfx.mec.num_pipe_per_mec) % adev->gfx.mec.num_queue_per_pipe; set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, adev->gfx.mec.queue_bitmap); } } else { /* policy: amdgpu owns all queues in the given pipe */ for (i = 0; i < max_queues_per_mec; ++i) set_bit(i, adev->gfx.mec.queue_bitmap); } dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", bitmap_weight(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); } void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) { int i, queue, pipe; bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); int max_queues_per_me = adev->gfx.me.num_pipe_per_me * adev->gfx.me.num_queue_per_pipe; if (multipipe_policy) { /* policy: amdgpu owns the first queue per pipe at this stage * will extend to mulitple queues per pipe later */ for (i = 0; i < max_queues_per_me; i++) { pipe = i % adev->gfx.me.num_pipe_per_me; queue = (i / adev->gfx.me.num_pipe_per_me) % adev->gfx.me.num_queue_per_pipe; set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, adev->gfx.me.queue_bitmap); } } else { for (i = 0; i < max_queues_per_me; ++i) set_bit(i, adev->gfx.me.queue_bitmap); } /* update the number of active graphics rings */ adev->gfx.num_gfx_rings = bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); } static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, struct amdgpu_ring *ring) { int queue_bit; int mec, pipe, queue; queue_bit = adev->gfx.mec.num_mec * adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe; while (--queue_bit >= 0) { if (test_bit(queue_bit, adev->gfx.mec.queue_bitmap)) continue; amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); /* * 1. Using pipes 2/3 from MEC 2 seems cause problems. * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN * only can be issued on queue 0. */ if ((mec == 1 && pipe > 1) || queue != 0) continue; ring->me = mec + 1; ring->pipe = pipe; ring->queue = queue; return 0; } dev_err(adev->dev, "Failed to find a queue for KIQ\n"); return -EINVAL; } int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, struct amdgpu_ring *ring, struct amdgpu_irq_src *irq) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; int r = 0; spin_lock_init(&kiq->ring_lock); ring->adev = NULL; ring->ring_obj = NULL; ring->use_doorbell = true; ring->doorbell_index = adev->doorbell_index.kiq; ring->vm_hub = AMDGPU_GFXHUB_0; r = amdgpu_gfx_kiq_acquire(adev, ring); if (r) return r; ring->eop_gpu_addr = kiq->eop_gpu_addr; ring->no_scheduler = true; sprintf(ring->name, "kiq_%d.%d.%d", ring->me, ring->pipe, ring->queue); r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); return r; } void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) { amdgpu_ring_fini(ring); } void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); } int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, unsigned hpd_size) { int r; u32 *hpd; struct amdgpu_kiq *kiq = &adev->gfx.kiq; r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, &kiq->eop_gpu_addr, (void **)&hpd); if (r) { dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); return r; } memset(hpd, 0, hpd_size); r = amdgpu_bo_reserve(kiq->eop_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); amdgpu_bo_kunmap(kiq->eop_obj); amdgpu_bo_unreserve(kiq->eop_obj); return 0; } /* create MQD for each compute/gfx queue */ int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, unsigned mqd_size) { struct amdgpu_ring *ring = NULL; int r, i; /* create MQD for KIQ */ ring = &adev->gfx.kiq.ring; if (!adev->enable_mes_kiq && !ring->mqd_obj) { /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for * KIQ MQD no matter SRIOV or Bare-metal */ r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); return r; } /* prepare MQD backup */ adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS] = kmalloc(mqd_size, GFP_KERNEL); if (!adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]) dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); } if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { /* create MQD for each KGQ */ for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; if (!ring->mqd_obj) { r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); return r; } /* prepare MQD backup */ adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); if (!adev->gfx.me.mqd_backup[i]) dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); } } } /* create MQD for each KCQ */ for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; if (!ring->mqd_obj) { r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); return r; } /* prepare MQD backup */ adev->gfx.mec.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); if (!adev->gfx.mec.mqd_backup[i]) dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); } } return 0; } void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev) { struct amdgpu_ring *ring = NULL; int i; if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; kfree(adev->gfx.me.mqd_backup[i]); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); } } for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; kfree(adev->gfx.mec.mqd_backup[i]); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); } ring = &adev->gfx.kiq.ring; kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); } int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; struct amdgpu_ring *kiq_ring = &kiq->ring; int i, r = 0; if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; spin_lock(&adev->gfx.kiq.ring_lock); if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * adev->gfx.num_compute_rings)) { spin_unlock(&adev->gfx.kiq.ring_lock); return -ENOMEM; } for (i = 0; i < adev->gfx.num_compute_rings; i++) kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.compute_ring[i], RESET_QUEUES, 0, 0); if (adev->gfx.kiq.ring.sched.ready && !adev->job_hang) r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&adev->gfx.kiq.ring_lock); return r; } int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, int queue_bit) { int mec, pipe, queue; int set_resource_bit = 0; amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; return set_resource_bit; } int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; uint64_t queue_mask = 0; int r, i; if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) return -EINVAL; for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { if (!test_bit(i, adev->gfx.mec.queue_bitmap)) continue; /* This situation may be hit in the future if a new HW * generation exposes more than 64 queues. If so, the * definition of queue_mask needs updating */ if (WARN_ON(i > (sizeof(queue_mask)*8))) { DRM_ERROR("Invalid KCQ enabled: %d\n", i); break; } queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); } DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, kiq_ring->queue); spin_lock(&adev->gfx.kiq.ring_lock); r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * adev->gfx.num_compute_rings + kiq->pmf->set_resources_size); if (r) { DRM_ERROR("Failed to lock KIQ (%d).\n", r); spin_unlock(&adev->gfx.kiq.ring_lock); return r; } if (adev->enable_mes) queue_mask = ~0ULL; kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); for (i = 0; i < adev->gfx.num_compute_rings; i++) kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.compute_ring[i]); r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&adev->gfx.kiq.ring_lock); if (r) DRM_ERROR("KCQ enable failed\n"); return r; } /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable * * @adev: amdgpu_device pointer * @bool enable true: enable gfx off feature, false: disable gfx off feature * * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. * 2. other client can send request to disable gfx off feature, the request should be honored. * 3. other client can cancel their request of disable gfx off feature * 4. other client should not send request to enable gfx off feature before disable gfx off feature. */ void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) { unsigned long delay = GFX_OFF_DELAY_ENABLE; if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) return; mutex_lock(&adev->gfx.gfx_off_mutex); if (enable) { /* If the count is already 0, it means there's an imbalance bug somewhere. * Note that the bug may be in a different caller than the one which triggers the * WARN_ON_ONCE. */ if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) goto unlock; adev->gfx.gfx_off_req_count--; if (adev->gfx.gfx_off_req_count == 0 && !adev->gfx.gfx_off_state) { /* If going to s2idle, no need to wait */ if (adev->in_s0ix) { if (!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, true)) adev->gfx.gfx_off_state = true; } else { schedule_delayed_work(&adev->gfx.gfx_off_delay_work, delay); } } } else { if (adev->gfx.gfx_off_req_count == 0) { cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); if (adev->gfx.gfx_off_state && !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { adev->gfx.gfx_off_state = false; if (adev->gfx.funcs->init_spm_golden) { dev_dbg(adev->dev, "GFXOFF is disabled, re-init SPM golden settings\n"); amdgpu_gfx_init_spm_golden(adev); } } } adev->gfx.gfx_off_req_count++; } unlock: mutex_unlock(&adev->gfx.gfx_off_mutex); } int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_set_residency_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_get_residency_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_get_status_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) { int r; if (amdgpu_ras_is_supported(adev, ras_block->block)) { if (!amdgpu_persistent_edc_harvesting_supported(adev)) amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); r = amdgpu_ras_block_late_init(adev, ras_block); if (r) return r; if (adev->gfx.cp_ecc_error_irq.funcs) { r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); if (r) goto late_fini; } } else { amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); } return 0; late_fini: amdgpu_ras_block_late_fini(adev, ras_block); return r; } int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) { int err = 0; struct amdgpu_gfx_ras *ras = NULL; /* adev->gfx.ras is NULL, which means gfx does not * support ras function, then do nothing here. */ if (!adev->gfx.ras) return 0; ras = adev->gfx.ras; err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); if (err) { dev_err(adev->dev, "Failed to register gfx ras block!\n"); return err; } strcpy(ras->ras_block.ras_comm.name, "gfx"); ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; adev->gfx.ras_if = &ras->ras_block.ras_comm; /* If not define special ras_late_init function, use gfx default ras_late_init */ if (!ras->ras_block.ras_late_init) ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; /* If not defined special ras_cb function, use default ras_cb */ if (!ras->ras_block.ras_cb) ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; return 0; } int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) return adev->gfx.ras->poison_consumption_handler(adev, entry); return 0; } int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, void *err_data, struct amdgpu_iv_entry *entry) { /* TODO ue will trigger an interrupt. * * When “Full RAS” is enabled, the per-IP interrupt sources should * be disabled and the driver should only look for the aggregated * interrupt via sync flood */ if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); amdgpu_ras_reset_gpu(adev); } return AMDGPU_RAS_SUCCESS; } int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct ras_common_if *ras_if = adev->gfx.ras_if; struct ras_dispatch_if ih_data = { .entry = entry, }; if (!ras_if) return 0; ih_data.head = *ras_if; DRM_ERROR("CP ECC ERROR IRQ\n"); amdgpu_ras_interrupt_dispatch(adev, &ih_data); return 0; } uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg) { signed long r, cnt = 0; unsigned long flags; uint32_t seq, reg_val_offs = 0, value = 0; struct amdgpu_kiq *kiq = &adev->gfx.kiq; struct amdgpu_ring *ring = &kiq->ring; if (amdgpu_device_skip_hw_access(adev)) return 0; if (adev->mes.ring.sched.ready) return amdgpu_mes_rreg(adev, reg); BUG_ON(!ring->funcs->emit_rreg); spin_lock_irqsave(&kiq->ring_lock, flags); if (amdgpu_device_wb_get(adev, ®_val_offs)) { pr_err("critical bug! too many kiq readers\n"); goto failed_unlock; } amdgpu_ring_alloc(ring, 32); amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); if (r) goto failed_undo; amdgpu_ring_commit(ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); /* don't wait anymore for gpu reset case because this way may * block gpu_recover() routine forever, e.g. this virt_kiq_rreg * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will * never return if we keep waiting in virt_kiq_rreg, which cause * gpu_recover() hang there. * * also don't wait anymore for IRQ context * */ if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) goto failed_kiq_read; might_sleep(); while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); } if (cnt > MAX_KIQ_REG_TRY) goto failed_kiq_read; mb(); value = adev->wb.wb[reg_val_offs]; amdgpu_device_wb_free(adev, reg_val_offs); return value; failed_undo: amdgpu_ring_undo(ring); failed_unlock: spin_unlock_irqrestore(&kiq->ring_lock, flags); failed_kiq_read: if (reg_val_offs) amdgpu_device_wb_free(adev, reg_val_offs); dev_err(adev->dev, "failed to read reg:%x\n", reg); return ~0; } void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v) { signed long r, cnt = 0; unsigned long flags; uint32_t seq; struct amdgpu_kiq *kiq = &adev->gfx.kiq; struct amdgpu_ring *ring = &kiq->ring; BUG_ON(!ring->funcs->emit_wreg); if (amdgpu_device_skip_hw_access(adev)) return; if (adev->mes.ring.sched.ready) { amdgpu_mes_wreg(adev, reg, v); return; } spin_lock_irqsave(&kiq->ring_lock, flags); amdgpu_ring_alloc(ring, 32); amdgpu_ring_emit_wreg(ring, reg, v); r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); if (r) goto failed_undo; amdgpu_ring_commit(ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); /* don't wait anymore for gpu reset case because this way may * block gpu_recover() routine forever, e.g. this virt_kiq_rreg * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will * never return if we keep waiting in virt_kiq_rreg, which cause * gpu_recover() hang there. * * also don't wait anymore for IRQ context * */ if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) goto failed_kiq_write; might_sleep(); while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); } if (cnt > MAX_KIQ_REG_TRY) goto failed_kiq_write; return; failed_undo: amdgpu_ring_undo(ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); failed_kiq_write: dev_err(adev->dev, "failed to write reg:%x\n", reg); } int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) { if (amdgpu_num_kcq == -1) { return 8; } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); return 8; } return amdgpu_num_kcq; } void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, uint32_t ucode_id) { const struct gfx_firmware_header_v1_0 *cp_hdr; const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; struct amdgpu_firmware_info *info = NULL; const struct firmware *ucode_fw; unsigned int fw_size; switch (ucode_id) { case AMDGPU_UCODE_ID_CP_PFP: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.pfp_fw->data; adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.pfp_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_PFP: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr_v2_0->header.ucode_version); adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); ucode_fw = adev->gfx.pfp_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; ucode_fw = adev->gfx.pfp_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); break; case AMDGPU_UCODE_ID_CP_ME: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.me_fw->data; adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.me_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_ME: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; adev->gfx.me_fw_version = le32_to_cpu(cp_hdr_v2_0->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); ucode_fw = adev->gfx.me_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; ucode_fw = adev->gfx.me_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); break; case AMDGPU_UCODE_ID_CP_CE: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.ce_fw->data; adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.ce_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_MEC1: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec_fw->data; adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_MEC1_JT: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec_fw->data; ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_MEC2: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec2_fw->data; adev->gfx.mec2_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec2_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.mec2_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_MEC2_JT: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec2_fw->data; ucode_fw = adev->gfx.mec2_fw; fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_RS64_MEC: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.mec_fw->data; adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr_v2_0->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.mec_fw->data; ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); break; default: break; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { info = &adev->firmware.ucode[ucode_id]; info->ucode_id = ucode_id; info->fw = ucode_fw; adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); } }