#ifndef _X86_64_PGTABLE_H #define _X86_64_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. * * x86-64 has a 4 level table setup. Generic linux MM only supports * three levels. The fourth level is currently a single static page that * is shared by everybody and just contains a pointer to the current * three level page setup on the beginning and some kernel mappings at * the end. For more details see Documentation/x86_64/mm.txt */ #include <asm/processor.h> #include <asm/fixmap.h> #include <asm/bitops.h> #include <linux/threads.h> #include <asm/pda.h> extern pgd_t level3_kernel_pgt[512]; extern pgd_t level3_physmem_pgt[512]; extern pgd_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pml4_t init_level4_pgt[]; extern pgd_t boot_vmalloc_pgt[]; extern unsigned long __supported_pte_mask; #define swapper_pg_dir NULL extern void paging_init(void); extern unsigned long pgkern_mask; /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[1024]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #define PML4_SHIFT 39 #define PTRS_PER_PML4 512 /* * PGDIR_SHIFT determines what a top-level page table entry can map */ #define PGDIR_SHIFT 30 #define PTRS_PER_PGD 512 /* * PMD_SHIFT determines the size of the area a middle-level * page table can map */ #define PMD_SHIFT 21 #define PTRS_PER_PMD 512 /* * entries per page directory level */ #define PTRS_PER_PTE 512 #define pte_ERROR(e) \ printk("%s:%d: bad pte %p(%016lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %p(%016lx).\n", __FILE__, __LINE__, &(e), pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %p(%016lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) #define pml4_none(x) (!pml4_val(x)) #define pgd_none(x) (!pgd_val(x)) extern inline int pgd_present(pgd_t pgd) { return !pgd_none(pgd); } static inline void set_pte(pte_t *dst, pte_t val) { pte_val(*dst) = pte_val(val); } static inline void set_pmd(pmd_t *dst, pmd_t val) { pmd_val(*dst) = pmd_val(val); } static inline void set_pgd(pgd_t *dst, pgd_t val) { pgd_val(*dst) = pgd_val(val); } extern inline void pgd_clear (pgd_t * pgd) { set_pgd(pgd, __pgd(0)); } static inline void set_pml4(pml4_t *dst, pml4_t val) { pml4_val(*dst) = pml4_val(val); } #define pgd_page(pgd) \ ((unsigned long) __va(pgd_val(pgd) & PHYSICAL_PAGE_MASK)) #define ptep_get_and_clear(xp) __pte(xchg(&(xp)->pte, 0)) #define pte_same(a, b) ((a).pte == (b).pte) #define PML4_SIZE (1UL << PML4_SHIFT) #define PML4_MASK (~(PML4_SIZE-1)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) #define TWOLEVEL_PGDIR_SHIFT 20 #define BOOT_USER_L4_PTRS 1 #define BOOT_KERNEL_L4_PTRS 511 /* But we will do it in 4rd level */ #ifndef __ASSEMBLY__ #define VMALLOC_START 0xffffff0000000000 #define VMALLOC_END 0xffffff7fffffffff #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define MODULES_VADDR 0xffffffffa0000000 #define MODULES_END 0xffffffffafffffff #define MODULES_LEN (MODULES_END - MODULES_VADDR) #define IOMAP_START 0xfffffe8000000000 #define _PAGE_BIT_PRESENT 0 #define _PAGE_BIT_RW 1 #define _PAGE_BIT_USER 2 #define _PAGE_BIT_PWT 3 #define _PAGE_BIT_PCD 4 #define _PAGE_BIT_ACCESSED 5 #define _PAGE_BIT_DIRTY 6 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ #define _PAGE_PRESENT 0x001 #define _PAGE_RW 0x002 #define _PAGE_USER 0x004 #define _PAGE_PWT 0x008 #define _PAGE_PCD 0x010 #define _PAGE_ACCESSED 0x020 #define _PAGE_DIRTY 0x040 #define _PAGE_PSE 0x080 /* 2MB page */ #define _PAGE_GLOBAL 0x100 /* Global TLB entry */ #define _PAGE_PROTNONE 0x080 /* If not present */ #define _PAGE_NX (1UL<<_PAGE_BIT_NX) #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define __PAGE_KERNEL \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX) #define __PAGE_KERNEL_EXECUTABLE \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) #define __PAGE_KERNEL_NOCACHE \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_PCD | _PAGE_ACCESSED | _PAGE_NX) #define __PAGE_KERNEL_RO \ (_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX) #define __PAGE_KERNEL_VSYSCALL \ (_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define __PAGE_KERNEL_LARGE \ (_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_PSE | _PAGE_NX) #define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL) #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) #define PAGE_KERNEL_EXECUTABLE MAKE_GLOBAL(__PAGE_KERNEL_EXECUTABLE) #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) #define PAGE_KERNEL_VSYSCALL MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL) #define PAGE_KERNEL_LARGE MAKE_GLOBAL(__PAGE_KERNEL_LARGE) /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_EXEC #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_EXEC #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED_EXEC #define __S111 PAGE_SHARED_EXEC static inline unsigned long pgd_bad(pgd_t pgd) { unsigned long val = pgd_val(pgd); val &= ~PTE_MASK; val &= ~(_PAGE_USER | _PAGE_DIRTY); return val & ~(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED); } #define pte_none(x) (!pte_val(x)) #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE)) #define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0) #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* FIXME: is this right? */ #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pte_pfn(x) ((pte_val(x) >> PAGE_SHIFT) & __PHYSICAL_MASK) static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { pte_t pte; pte_val(pte) = (page_nr << PAGE_SHIFT); pte_val(pte) |= pgprot_val(pgprot); pte_val(pte) &= __supported_pte_mask; return pte; } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; } extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; } extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; } extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; } extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; } static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); } static inline int ptep_test_and_clear_young(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); } static inline void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_RW, ptep); } static inline void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, ptep); } #define __LARGE_PTE (_PAGE_PSE|_PAGE_PRESENT) static inline int pmd_large(pmd_t pte) { return (pmd_val(pte) & __LARGE_PTE) == __LARGE_PTE; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define page_pte(page) page_pte_prot(page, __pgprot(0)) /* * Level 4 access. * Never use these in the common code. */ #define pml4_page(pml4) ((unsigned long) __va(pml4_val(pml4) & PTE_MASK)) #define pml4_index(address) ((address >> PML4_SHIFT) & (PTRS_PER_PML4-1)) #define pml4_offset_k(address) (init_level4_pgt + pml4_index(address)) #define mk_kernel_pml4(address) ((pml4_t){ (address) | _KERNPG_TABLE }) #define level3_offset_k(dir, address) ((pgd_t *) pml4_page(*(dir)) + pgd_index(address)) /* PGD - Level3 access */ /* to find an entry in a page-table-directory. */ #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) static inline pgd_t *__pgd_offset_k(pgd_t *pgd, unsigned long address) { return pgd + pgd_index(address); } /* Find correct pgd via the hidden fourth level page level: */ /* This accesses the reference page table of the boot cpu. Other CPUs get synced lazily via the page fault handler. */ static inline pgd_t *pgd_offset_k(unsigned long address) { unsigned long addr; addr = pml4_val(init_level4_pgt[pml4_index(address)]); addr &= PHYSICAL_PAGE_MASK; return __pgd_offset_k((pgd_t *)__va(addr), address); } /* Access the pgd of the page table as seen by the current CPU. */ static inline pgd_t *current_pgd_offset_k(unsigned long address) { unsigned long addr; addr = read_pda(level4_pgt)[pml4_index(address)]; addr &= PHYSICAL_PAGE_MASK; return __pgd_offset_k((pgd_t *)__va(addr), address); } #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) /* PMD - Level 2 access */ #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PTE_MASK)) #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) #define __pmd_offset(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) #define pmd_offset(dir, address) ((pmd_t *) pgd_page(*(dir)) + \ __pmd_offset(address)) #define pmd_none(x) (!pmd_val(x)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0) #define pmd_bad(x) ((pmd_val(x) & (~PTE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE ) #define pfn_pmd(nr,prot) (__pmd(((nr) << PAGE_SHIFT) | pgprot_val(prot))) /* PTE - Level 1 access. */ /* page, protection -> pte */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* physical address -> PTE */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t pte; pte_val(pte) = physpage | pgprot_val(pgprot); return pte; } /* Change flags of a PTE */ extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) &= _PAGE_CHG_MASK; pte_val(pte) |= pgprot_val(newprot); return pte; } #define __pte_offset(address) \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, address) ((pte_t *) pmd_page_kernel(*(dir)) + \ __pte_offset(address)) /* x86-64 always has all page tables mapped. */ #define pte_offset_map(dir,address) pte_offset_kernel(dir,address) #define pte_offset_map_nested(dir,address) pte_offset_kernel(dir,address) #define pte_unmap(pte) /* NOP */ #define pte_unmap_nested(pte) /* NOP */ #define update_mmu_cache(vma,address,pte) do { } while (0) /* Encode and de-code a swap entry */ #define __swp_type(x) (((x).val >> 1) & 0x3f) #define __swp_offset(x) ((x).val >> 8) #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) typedef pte_t *pte_addr_t; #endif /* !__ASSEMBLY__ */ #ifndef CONFIG_DISCONTIGMEM #define kern_addr_valid(addr) (1) #endif #define io_remap_page_range remap_page_range #define HAVE_ARCH_UNMAPPED_AREA #define pgtable_cache_init() do { } while (0) #define check_pgt_cache() do { } while (0) #endif /* _X86_64_PGTABLE_H */