/* * sd.c Copyright (C) 1992 Drew Eckhardt * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale * * Linux scsi disk driver * Initial versions: Drew Eckhardt * Subsequent revisions: Eric Youngdale * Modification history: * - Drew Eckhardt <drew@colorado.edu> original * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple * outstanding request, and other enhancements. * Support loadable low-level scsi drivers. * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using * eight major numbers. * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in * sd_init and cleanups. * - Alex Davis <letmein@erols.com> Fix problem where partition info * not being read in sd_open. Fix problem where removable media * could be ejected after sd_open. * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: * Support 32k/1M disks. * * Logging policy (needs CONFIG_SCSI_LOGGING defined): * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 * - entering other commands: SCSI_LOG_HLQUEUE level 3 * Note: when the logging level is set by the user, it must be greater * than the level indicated above to trigger output. */ #include <linux/module.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/bio.h> #include <linux/genhd.h> #include <linux/hdreg.h> #include <linux/errno.h> #include <linux/idr.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/blkpg.h> #include <linux/delay.h> #include <linux/mutex.h> #include <asm/uaccess.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_dbg.h> #include <scsi/scsi_device.h> #include <scsi/scsi_driver.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_ioctl.h> #include <scsi/scsicam.h> #include <scsi/sd.h> #include "scsi_logging.h" MODULE_AUTHOR("Eric Youngdale"); MODULE_DESCRIPTION("SCSI disk (sd) driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); static int sd_revalidate_disk(struct gendisk *); static int sd_probe(struct device *); static int sd_remove(struct device *); static void sd_shutdown(struct device *); static int sd_suspend(struct device *, pm_message_t state); static int sd_resume(struct device *); static void sd_rescan(struct device *); static int sd_done(struct scsi_cmnd *); static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); static void scsi_disk_release(struct class_device *cdev); static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); static void sd_print_result(struct scsi_disk *, int); static DEFINE_IDR(sd_index_idr); static DEFINE_SPINLOCK(sd_index_lock); /* This semaphore is used to mediate the 0->1 reference get in the * face of object destruction (i.e. we can't allow a get on an * object after last put) */ static DEFINE_MUTEX(sd_ref_mutex); static const char *sd_cache_types[] = { "write through", "none", "write back", "write back, no read (daft)" }; static ssize_t sd_store_cache_type(struct class_device *cdev, const char *buf, size_t count) { int i, ct = -1, rcd, wce, sp; struct scsi_disk *sdkp = to_scsi_disk(cdev); struct scsi_device *sdp = sdkp->device; char buffer[64]; char *buffer_data; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; int len; if (sdp->type != TYPE_DISK) /* no cache control on RBC devices; theoretically they * can do it, but there's probably so many exceptions * it's not worth the risk */ return -EINVAL; for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { const int len = strlen(sd_cache_types[i]); if (strncmp(sd_cache_types[i], buf, len) == 0 && buf[len] == '\n') { ct = i; break; } } if (ct < 0) return -EINVAL; rcd = ct & 0x01 ? 1 : 0; wce = ct & 0x02 ? 1 : 0; if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, SD_MAX_RETRIES, &data, NULL)) return -EINVAL; len = min_t(size_t, sizeof(buffer), data.length - data.header_length - data.block_descriptor_length); buffer_data = buffer + data.header_length + data.block_descriptor_length; buffer_data[2] &= ~0x05; buffer_data[2] |= wce << 2 | rcd; sp = buffer_data[0] & 0x80 ? 1 : 0; if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, SD_MAX_RETRIES, &data, &sshdr)) { if (scsi_sense_valid(&sshdr)) sd_print_sense_hdr(sdkp, &sshdr); return -EINVAL; } sd_revalidate_disk(sdkp->disk); return count; } static ssize_t sd_store_manage_start_stop(struct class_device *cdev, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(cdev); struct scsi_device *sdp = sdkp->device; if (!capable(CAP_SYS_ADMIN)) return -EACCES; sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); return count; } static ssize_t sd_store_allow_restart(struct class_device *cdev, const char *buf, size_t count) { struct scsi_disk *sdkp = to_scsi_disk(cdev); struct scsi_device *sdp = sdkp->device; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (sdp->type != TYPE_DISK) return -EINVAL; sdp->allow_restart = simple_strtoul(buf, NULL, 10); return count; } static ssize_t sd_show_cache_type(struct class_device *cdev, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(cdev); int ct = sdkp->RCD + 2*sdkp->WCE; return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); } static ssize_t sd_show_fua(struct class_device *cdev, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(cdev); return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); } static ssize_t sd_show_manage_start_stop(struct class_device *cdev, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(cdev); struct scsi_device *sdp = sdkp->device; return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); } static ssize_t sd_show_allow_restart(struct class_device *cdev, char *buf) { struct scsi_disk *sdkp = to_scsi_disk(cdev); return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); } static struct class_device_attribute sd_disk_attrs[] = { __ATTR(cache_type, S_IRUGO|S_IWUSR, sd_show_cache_type, sd_store_cache_type), __ATTR(FUA, S_IRUGO, sd_show_fua, NULL), __ATTR(allow_restart, S_IRUGO|S_IWUSR, sd_show_allow_restart, sd_store_allow_restart), __ATTR(manage_start_stop, S_IRUGO|S_IWUSR, sd_show_manage_start_stop, sd_store_manage_start_stop), __ATTR_NULL, }; static struct class sd_disk_class = { .name = "scsi_disk", .owner = THIS_MODULE, .release = scsi_disk_release, .class_dev_attrs = sd_disk_attrs, }; static struct scsi_driver sd_template = { .owner = THIS_MODULE, .gendrv = { .name = "sd", .probe = sd_probe, .remove = sd_remove, .suspend = sd_suspend, .resume = sd_resume, .shutdown = sd_shutdown, }, .rescan = sd_rescan, .done = sd_done, }; /* * Device no to disk mapping: * * major disc2 disc p1 * |............|.............|....|....| <- dev_t * 31 20 19 8 7 4 3 0 * * Inside a major, we have 16k disks, however mapped non- * contiguously. The first 16 disks are for major0, the next * ones with major1, ... Disk 256 is for major0 again, disk 272 * for major1, ... * As we stay compatible with our numbering scheme, we can reuse * the well-know SCSI majors 8, 65--71, 136--143. */ static int sd_major(int major_idx) { switch (major_idx) { case 0: return SCSI_DISK0_MAJOR; case 1 ... 7: return SCSI_DISK1_MAJOR + major_idx - 1; case 8 ... 15: return SCSI_DISK8_MAJOR + major_idx - 8; default: BUG(); return 0; /* shut up gcc */ } } static inline struct scsi_disk *scsi_disk(struct gendisk *disk) { return container_of(disk->private_data, struct scsi_disk, driver); } static struct scsi_disk *__scsi_disk_get(struct gendisk *disk) { struct scsi_disk *sdkp = NULL; if (disk->private_data) { sdkp = scsi_disk(disk); if (scsi_device_get(sdkp->device) == 0) class_device_get(&sdkp->cdev); else sdkp = NULL; } return sdkp; } static struct scsi_disk *scsi_disk_get(struct gendisk *disk) { struct scsi_disk *sdkp; mutex_lock(&sd_ref_mutex); sdkp = __scsi_disk_get(disk); mutex_unlock(&sd_ref_mutex); return sdkp; } static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev) { struct scsi_disk *sdkp; mutex_lock(&sd_ref_mutex); sdkp = dev_get_drvdata(dev); if (sdkp) sdkp = __scsi_disk_get(sdkp->disk); mutex_unlock(&sd_ref_mutex); return sdkp; } static void scsi_disk_put(struct scsi_disk *sdkp) { struct scsi_device *sdev = sdkp->device; mutex_lock(&sd_ref_mutex); class_device_put(&sdkp->cdev); scsi_device_put(sdev); mutex_unlock(&sd_ref_mutex); } /** * sd_init_command - build a scsi (read or write) command from * information in the request structure. * @SCpnt: pointer to mid-level's per scsi command structure that * contains request and into which the scsi command is written * * Returns 1 if successful and 0 if error (or cannot be done now). **/ static int sd_prep_fn(struct request_queue *q, struct request *rq) { struct scsi_cmnd *SCpnt; struct scsi_device *sdp = q->queuedata; struct gendisk *disk = rq->rq_disk; sector_t block = rq->sector; unsigned int this_count = rq->nr_sectors; unsigned int timeout = sdp->timeout; int ret; if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { ret = scsi_setup_blk_pc_cmnd(sdp, rq); goto out; } else if (rq->cmd_type != REQ_TYPE_FS) { ret = BLKPREP_KILL; goto out; } ret = scsi_setup_fs_cmnd(sdp, rq); if (ret != BLKPREP_OK) goto out; SCpnt = rq->special; /* from here on until we're complete, any goto out * is used for a killable error condition */ ret = BLKPREP_KILL; SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, SCpnt, "sd_init_command: block=%llu, " "count=%d\n", (unsigned long long)block, this_count)); if (!sdp || !scsi_device_online(sdp) || block + rq->nr_sectors > get_capacity(disk)) { SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "Finishing %ld sectors\n", rq->nr_sectors)); SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "Retry with 0x%p\n", SCpnt)); goto out; } if (sdp->changed) { /* * quietly refuse to do anything to a changed disc until * the changed bit has been reset */ /* printk("SCSI disk has been changed. Prohibiting further I/O.\n"); */ goto out; } SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", (unsigned long long)block)); /* * If we have a 1K hardware sectorsize, prevent access to single * 512 byte sectors. In theory we could handle this - in fact * the scsi cdrom driver must be able to handle this because * we typically use 1K blocksizes, and cdroms typically have * 2K hardware sectorsizes. Of course, things are simpler * with the cdrom, since it is read-only. For performance * reasons, the filesystems should be able to handle this * and not force the scsi disk driver to use bounce buffers * for this. */ if (sdp->sector_size == 1024) { if ((block & 1) || (rq->nr_sectors & 1)) { scmd_printk(KERN_ERR, SCpnt, "Bad block number requested\n"); goto out; } else { block = block >> 1; this_count = this_count >> 1; } } if (sdp->sector_size == 2048) { if ((block & 3) || (rq->nr_sectors & 3)) { scmd_printk(KERN_ERR, SCpnt, "Bad block number requested\n"); goto out; } else { block = block >> 2; this_count = this_count >> 2; } } if (sdp->sector_size == 4096) { if ((block & 7) || (rq->nr_sectors & 7)) { scmd_printk(KERN_ERR, SCpnt, "Bad block number requested\n"); goto out; } else { block = block >> 3; this_count = this_count >> 3; } } if (rq_data_dir(rq) == WRITE) { if (!sdp->writeable) { goto out; } SCpnt->cmnd[0] = WRITE_6; SCpnt->sc_data_direction = DMA_TO_DEVICE; } else if (rq_data_dir(rq) == READ) { SCpnt->cmnd[0] = READ_6; SCpnt->sc_data_direction = DMA_FROM_DEVICE; } else { scmd_printk(KERN_ERR, SCpnt, "Unknown command %x\n", rq->cmd_flags); goto out; } SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "%s %d/%ld 512 byte blocks.\n", (rq_data_dir(rq) == WRITE) ? "writing" : "reading", this_count, rq->nr_sectors)); SCpnt->cmnd[1] = 0; if (block > 0xffffffff) { SCpnt->cmnd[0] += READ_16 - READ_6; SCpnt->cmnd[1] |= blk_fua_rq(rq) ? 0x8 : 0; SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; SCpnt->cmnd[9] = (unsigned char) block & 0xff; SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; } else if ((this_count > 0xff) || (block > 0x1fffff) || SCpnt->device->use_10_for_rw) { if (this_count > 0xffff) this_count = 0xffff; SCpnt->cmnd[0] += READ_10 - READ_6; SCpnt->cmnd[1] |= blk_fua_rq(rq) ? 0x8 : 0; SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; SCpnt->cmnd[5] = (unsigned char) block & 0xff; SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; } else { if (unlikely(blk_fua_rq(rq))) { /* * This happens only if this drive failed * 10byte rw command with ILLEGAL_REQUEST * during operation and thus turned off * use_10_for_rw. */ scmd_printk(KERN_ERR, SCpnt, "FUA write on READ/WRITE(6) drive\n"); goto out; } SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); SCpnt->cmnd[3] = (unsigned char) block & 0xff; SCpnt->cmnd[4] = (unsigned char) this_count; SCpnt->cmnd[5] = 0; } SCpnt->request_bufflen = this_count * sdp->sector_size; /* * We shouldn't disconnect in the middle of a sector, so with a dumb * host adapter, it's safe to assume that we can at least transfer * this many bytes between each connect / disconnect. */ SCpnt->transfersize = sdp->sector_size; SCpnt->underflow = this_count << 9; SCpnt->allowed = SD_MAX_RETRIES; SCpnt->timeout_per_command = timeout; /* * This indicates that the command is ready from our end to be * queued. */ ret = BLKPREP_OK; out: return scsi_prep_return(q, rq, ret); } /** * sd_open - open a scsi disk device * @inode: only i_rdev member may be used * @filp: only f_mode and f_flags may be used * * Returns 0 if successful. Returns a negated errno value in case * of error. * * Note: This can be called from a user context (e.g. fsck(1) ) * or from within the kernel (e.g. as a result of a mount(1) ). * In the latter case @inode and @filp carry an abridged amount * of information as noted above. **/ static int sd_open(struct inode *inode, struct file *filp) { struct gendisk *disk = inode->i_bdev->bd_disk; struct scsi_disk *sdkp; struct scsi_device *sdev; int retval; if (!(sdkp = scsi_disk_get(disk))) return -ENXIO; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); sdev = sdkp->device; /* * If the device is in error recovery, wait until it is done. * If the device is offline, then disallow any access to it. */ retval = -ENXIO; if (!scsi_block_when_processing_errors(sdev)) goto error_out; if (sdev->removable || sdkp->write_prot) check_disk_change(inode->i_bdev); /* * If the drive is empty, just let the open fail. */ retval = -ENOMEDIUM; if (sdev->removable && !sdkp->media_present && !(filp->f_flags & O_NDELAY)) goto error_out; /* * If the device has the write protect tab set, have the open fail * if the user expects to be able to write to the thing. */ retval = -EROFS; if (sdkp->write_prot && (filp->f_mode & FMODE_WRITE)) goto error_out; /* * It is possible that the disk changing stuff resulted in * the device being taken offline. If this is the case, * report this to the user, and don't pretend that the * open actually succeeded. */ retval = -ENXIO; if (!scsi_device_online(sdev)) goto error_out; if (!sdkp->openers++ && sdev->removable) { if (scsi_block_when_processing_errors(sdev)) scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); } return 0; error_out: scsi_disk_put(sdkp); return retval; } /** * sd_release - invoked when the (last) close(2) is called on this * scsi disk. * @inode: only i_rdev member may be used * @filp: only f_mode and f_flags may be used * * Returns 0. * * Note: may block (uninterruptible) if error recovery is underway * on this disk. **/ static int sd_release(struct inode *inode, struct file *filp) { struct gendisk *disk = inode->i_bdev->bd_disk; struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdev = sdkp->device; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); if (!--sdkp->openers && sdev->removable) { if (scsi_block_when_processing_errors(sdev)) scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); } /* * XXX and what if there are packets in flight and this close() * XXX is followed by a "rmmod sd_mod"? */ scsi_disk_put(sdkp); return 0; } static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); struct scsi_device *sdp = sdkp->device; struct Scsi_Host *host = sdp->host; int diskinfo[4]; /* default to most commonly used values */ diskinfo[0] = 0x40; /* 1 << 6 */ diskinfo[1] = 0x20; /* 1 << 5 */ diskinfo[2] = sdkp->capacity >> 11; /* override with calculated, extended default, or driver values */ if (host->hostt->bios_param) host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo); else scsicam_bios_param(bdev, sdkp->capacity, diskinfo); geo->heads = diskinfo[0]; geo->sectors = diskinfo[1]; geo->cylinders = diskinfo[2]; return 0; } /** * sd_ioctl - process an ioctl * @inode: only i_rdev/i_bdev members may be used * @filp: only f_mode and f_flags may be used * @cmd: ioctl command number * @arg: this is third argument given to ioctl(2) system call. * Often contains a pointer. * * Returns 0 if successful (some ioctls return postive numbers on * success as well). Returns a negated errno value in case of error. * * Note: most ioctls are forward onto the block subsystem or further * down in the scsi subsytem. **/ static int sd_ioctl(struct inode * inode, struct file * filp, unsigned int cmd, unsigned long arg) { struct block_device *bdev = inode->i_bdev; struct gendisk *disk = bdev->bd_disk; struct scsi_device *sdp = scsi_disk(disk)->device; void __user *p = (void __user *)arg; int error; SCSI_LOG_IOCTL(1, printk("sd_ioctl: disk=%s, cmd=0x%x\n", disk->disk_name, cmd)); /* * If we are in the middle of error recovery, don't let anyone * else try and use this device. Also, if error recovery fails, it * may try and take the device offline, in which case all further * access to the device is prohibited. */ error = scsi_nonblockable_ioctl(sdp, cmd, p, filp); if (!scsi_block_when_processing_errors(sdp) || !error) return error; /* * Send SCSI addressing ioctls directly to mid level, send other * ioctls to block level and then onto mid level if they can't be * resolved. */ switch (cmd) { case SCSI_IOCTL_GET_IDLUN: case SCSI_IOCTL_GET_BUS_NUMBER: return scsi_ioctl(sdp, cmd, p); default: error = scsi_cmd_ioctl(filp, disk->queue, disk, cmd, p); if (error != -ENOTTY) return error; } return scsi_ioctl(sdp, cmd, p); } static void set_media_not_present(struct scsi_disk *sdkp) { sdkp->media_present = 0; sdkp->capacity = 0; sdkp->device->changed = 1; } /** * sd_media_changed - check if our medium changed * @disk: kernel device descriptor * * Returns 0 if not applicable or no change; 1 if change * * Note: this function is invoked from the block subsystem. **/ static int sd_media_changed(struct gendisk *disk) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdp = sdkp->device; int retval; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_media_changed\n")); if (!sdp->removable) return 0; /* * If the device is offline, don't send any commands - just pretend as * if the command failed. If the device ever comes back online, we * can deal with it then. It is only because of unrecoverable errors * that we would ever take a device offline in the first place. */ if (!scsi_device_online(sdp)) goto not_present; /* * Using TEST_UNIT_READY enables differentiation between drive with * no cartridge loaded - NOT READY, drive with changed cartridge - * UNIT ATTENTION, or with same cartridge - GOOD STATUS. * * Drives that auto spin down. eg iomega jaz 1G, will be started * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever * sd_revalidate() is called. */ retval = -ENODEV; if (scsi_block_when_processing_errors(sdp)) retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES); /* * Unable to test, unit probably not ready. This usually * means there is no disc in the drive. Mark as changed, * and we will figure it out later once the drive is * available again. */ if (retval) goto not_present; /* * For removable scsi disk we have to recognise the presence * of a disk in the drive. This is kept in the struct scsi_disk * struct and tested at open ! Daniel Roche (dan@lectra.fr) */ sdkp->media_present = 1; retval = sdp->changed; sdp->changed = 0; return retval; not_present: set_media_not_present(sdkp); return 1; } static int sd_sync_cache(struct scsi_disk *sdkp) { int retries, res; struct scsi_device *sdp = sdkp->device; struct scsi_sense_hdr sshdr; if (!scsi_device_online(sdp)) return -ENODEV; for (retries = 3; retries > 0; --retries) { unsigned char cmd[10] = { 0 }; cmd[0] = SYNCHRONIZE_CACHE; /* * Leave the rest of the command zero to indicate * flush everything. */ res = scsi_execute_req(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES); if (res == 0) break; } if (res) { sd_print_result(sdkp, res); if (driver_byte(res) & DRIVER_SENSE) sd_print_sense_hdr(sdkp, &sshdr); } if (res) return -EIO; return 0; } static int sd_issue_flush(struct request_queue *q, struct gendisk *disk, sector_t *error_sector) { int ret = 0; struct scsi_device *sdp = q->queuedata; struct scsi_disk *sdkp; if (sdp->sdev_state != SDEV_RUNNING) return -ENXIO; sdkp = scsi_disk_get_from_dev(&sdp->sdev_gendev); if (!sdkp) return -ENODEV; if (sdkp->WCE) ret = sd_sync_cache(sdkp); scsi_disk_put(sdkp); return ret; } static void sd_prepare_flush(struct request_queue *q, struct request *rq) { memset(rq->cmd, 0, sizeof(rq->cmd)); rq->cmd_type = REQ_TYPE_BLOCK_PC; rq->timeout = SD_TIMEOUT; rq->cmd[0] = SYNCHRONIZE_CACHE; rq->cmd_len = 10; } static void sd_rescan(struct device *dev) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); if (sdkp) { sd_revalidate_disk(sdkp->disk); scsi_disk_put(sdkp); } } #ifdef CONFIG_COMPAT /* * This gets directly called from VFS. When the ioctl * is not recognized we go back to the other translation paths. */ static long sd_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct block_device *bdev = file->f_path.dentry->d_inode->i_bdev; struct gendisk *disk = bdev->bd_disk; struct scsi_device *sdev = scsi_disk(disk)->device; /* * If we are in the middle of error recovery, don't let anyone * else try and use this device. Also, if error recovery fails, it * may try and take the device offline, in which case all further * access to the device is prohibited. */ if (!scsi_block_when_processing_errors(sdev)) return -ENODEV; if (sdev->host->hostt->compat_ioctl) { int ret; ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); return ret; } /* * Let the static ioctl translation table take care of it. */ return -ENOIOCTLCMD; } #endif static struct block_device_operations sd_fops = { .owner = THIS_MODULE, .open = sd_open, .release = sd_release, .ioctl = sd_ioctl, .getgeo = sd_getgeo, #ifdef CONFIG_COMPAT .compat_ioctl = sd_compat_ioctl, #endif .media_changed = sd_media_changed, .revalidate_disk = sd_revalidate_disk, }; /** * sd_done - bottom half handler: called when the lower level * driver has completed (successfully or otherwise) a scsi command. * @SCpnt: mid-level's per command structure. * * Note: potentially run from within an ISR. Must not block. **/ static int sd_done(struct scsi_cmnd *SCpnt) { int result = SCpnt->result; unsigned int xfer_size = SCpnt->request_bufflen; unsigned int good_bytes = result ? 0 : xfer_size; u64 start_lba = SCpnt->request->sector; u64 bad_lba; struct scsi_sense_hdr sshdr; int sense_valid = 0; int sense_deferred = 0; int info_valid; if (result) { sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); if (sense_valid) sense_deferred = scsi_sense_is_deferred(&sshdr); } #ifdef CONFIG_SCSI_LOGGING SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt)); if (sense_valid) { SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, "sd_done: sb[respc,sk,asc," "ascq]=%x,%x,%x,%x\n", sshdr.response_code, sshdr.sense_key, sshdr.asc, sshdr.ascq)); } #endif if (driver_byte(result) != DRIVER_SENSE && (!sense_valid || sense_deferred)) goto out; switch (sshdr.sense_key) { case HARDWARE_ERROR: case MEDIUM_ERROR: if (!blk_fs_request(SCpnt->request)) goto out; info_valid = scsi_get_sense_info_fld(SCpnt->sense_buffer, SCSI_SENSE_BUFFERSIZE, &bad_lba); if (!info_valid) goto out; if (xfer_size <= SCpnt->device->sector_size) goto out; switch (SCpnt->device->sector_size) { case 256: start_lba <<= 1; break; case 512: break; case 1024: start_lba >>= 1; break; case 2048: start_lba >>= 2; break; case 4096: start_lba >>= 3; break; default: /* Print something here with limiting frequency. */ goto out; break; } /* This computation should always be done in terms of * the resolution of the device's medium. */ good_bytes = (bad_lba - start_lba)*SCpnt->device->sector_size; break; case RECOVERED_ERROR: case NO_SENSE: /* Inform the user, but make sure that it's not treated * as a hard error. */ scsi_print_sense("sd", SCpnt); SCpnt->result = 0; memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); good_bytes = xfer_size; break; case ILLEGAL_REQUEST: if (SCpnt->device->use_10_for_rw && (SCpnt->cmnd[0] == READ_10 || SCpnt->cmnd[0] == WRITE_10)) SCpnt->device->use_10_for_rw = 0; if (SCpnt->device->use_10_for_ms && (SCpnt->cmnd[0] == MODE_SENSE_10 || SCpnt->cmnd[0] == MODE_SELECT_10)) SCpnt->device->use_10_for_ms = 0; break; default: break; } out: return good_bytes; } static int media_not_present(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) { if (!scsi_sense_valid(sshdr)) return 0; /* not invoked for commands that could return deferred errors */ if (sshdr->sense_key != NOT_READY && sshdr->sense_key != UNIT_ATTENTION) return 0; if (sshdr->asc != 0x3A) /* medium not present */ return 0; set_media_not_present(sdkp); return 1; } /* * spinup disk - called only in sd_revalidate_disk() */ static void sd_spinup_disk(struct scsi_disk *sdkp) { unsigned char cmd[10]; unsigned long spintime_expire = 0; int retries, spintime; unsigned int the_result; struct scsi_sense_hdr sshdr; int sense_valid = 0; spintime = 0; /* Spin up drives, as required. Only do this at boot time */ /* Spinup needs to be done for module loads too. */ do { retries = 0; do { cmd[0] = TEST_UNIT_READY; memset((void *) &cmd[1], 0, 9); the_result = scsi_execute_req(sdkp->device, cmd, DMA_NONE, NULL, 0, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES); /* * If the drive has indicated to us that it * doesn't have any media in it, don't bother * with any more polling. */ if (media_not_present(sdkp, &sshdr)) return; if (the_result) sense_valid = scsi_sense_valid(&sshdr); retries++; } while (retries < 3 && (!scsi_status_is_good(the_result) || ((driver_byte(the_result) & DRIVER_SENSE) && sense_valid && sshdr.sense_key == UNIT_ATTENTION))); if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { /* no sense, TUR either succeeded or failed * with a status error */ if(!spintime && !scsi_status_is_good(the_result)) { sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); sd_print_result(sdkp, the_result); } break; } /* * The device does not want the automatic start to be issued. */ if (sdkp->device->no_start_on_add) { break; } /* * If manual intervention is required, or this is an * absent USB storage device, a spinup is meaningless. */ if (sense_valid && sshdr.sense_key == NOT_READY && sshdr.asc == 4 && sshdr.ascq == 3) { break; /* manual intervention required */ /* * Issue command to spin up drive when not ready */ } else if (sense_valid && sshdr.sense_key == NOT_READY) { if (!spintime) { sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); cmd[0] = START_STOP; cmd[1] = 1; /* Return immediately */ memset((void *) &cmd[2], 0, 8); cmd[4] = 1; /* Start spin cycle */ scsi_execute_req(sdkp->device, cmd, DMA_NONE, NULL, 0, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES); spintime_expire = jiffies + 100 * HZ; spintime = 1; } /* Wait 1 second for next try */ msleep(1000); printk("."); /* * Wait for USB flash devices with slow firmware. * Yes, this sense key/ASC combination shouldn't * occur here. It's characteristic of these devices. */ } else if (sense_valid && sshdr.sense_key == UNIT_ATTENTION && sshdr.asc == 0x28) { if (!spintime) { spintime_expire = jiffies + 5 * HZ; spintime = 1; } /* Wait 1 second for next try */ msleep(1000); } else { /* we don't understand the sense code, so it's * probably pointless to loop */ if(!spintime) { sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); sd_print_sense_hdr(sdkp, &sshdr); } break; } } while (spintime && time_before_eq(jiffies, spintime_expire)); if (spintime) { if (scsi_status_is_good(the_result)) printk("ready\n"); else printk("not responding...\n"); } } /* * read disk capacity */ static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) { unsigned char cmd[16]; int the_result, retries; int sector_size = 0; int longrc = 0; struct scsi_sense_hdr sshdr; int sense_valid = 0; struct scsi_device *sdp = sdkp->device; repeat: retries = 3; do { if (longrc) { memset((void *) cmd, 0, 16); cmd[0] = SERVICE_ACTION_IN; cmd[1] = SAI_READ_CAPACITY_16; cmd[13] = 12; memset((void *) buffer, 0, 12); } else { cmd[0] = READ_CAPACITY; memset((void *) &cmd[1], 0, 9); memset((void *) buffer, 0, 8); } the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, buffer, longrc ? 12 : 8, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES); if (media_not_present(sdkp, &sshdr)) return; if (the_result) sense_valid = scsi_sense_valid(&sshdr); retries--; } while (the_result && retries); if (the_result && !longrc) { sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n"); sd_print_result(sdkp, the_result); if (driver_byte(the_result) & DRIVER_SENSE) sd_print_sense_hdr(sdkp, &sshdr); else sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); /* Set dirty bit for removable devices if not ready - * sometimes drives will not report this properly. */ if (sdp->removable && sense_valid && sshdr.sense_key == NOT_READY) sdp->changed = 1; /* Either no media are present but the drive didn't tell us, or they are present but the read capacity command fails */ /* sdkp->media_present = 0; -- not always correct */ sdkp->capacity = 0; /* unknown mapped to zero - as usual */ return; } else if (the_result && longrc) { /* READ CAPACITY(16) has been failed */ sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n"); sd_print_result(sdkp, the_result); sd_printk(KERN_NOTICE, sdkp, "Use 0xffffffff as device size\n"); sdkp->capacity = 1 + (sector_t) 0xffffffff; goto got_data; } if (!longrc) { sector_size = (buffer[4] << 24) | (buffer[5] << 16) | (buffer[6] << 8) | buffer[7]; if (buffer[0] == 0xff && buffer[1] == 0xff && buffer[2] == 0xff && buffer[3] == 0xff) { if(sizeof(sdkp->capacity) > 4) { sd_printk(KERN_NOTICE, sdkp, "Very big device. " "Trying to use READ CAPACITY(16).\n"); longrc = 1; goto repeat; } sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use " "a kernel compiled with support for large " "block devices.\n"); sdkp->capacity = 0; goto got_data; } sdkp->capacity = 1 + (((sector_t)buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3]); } else { sdkp->capacity = 1 + (((u64)buffer[0] << 56) | ((u64)buffer[1] << 48) | ((u64)buffer[2] << 40) | ((u64)buffer[3] << 32) | ((sector_t)buffer[4] << 24) | ((sector_t)buffer[5] << 16) | ((sector_t)buffer[6] << 8) | (sector_t)buffer[7]); sector_size = (buffer[8] << 24) | (buffer[9] << 16) | (buffer[10] << 8) | buffer[11]; } /* Some devices return the total number of sectors, not the * highest sector number. Make the necessary adjustment. */ if (sdp->fix_capacity) { --sdkp->capacity; /* Some devices have version which report the correct sizes * and others which do not. We guess size according to a heuristic * and err on the side of lowering the capacity. */ } else { if (sdp->guess_capacity) if (sdkp->capacity & 0x01) /* odd sizes are odd */ --sdkp->capacity; } got_data: if (sector_size == 0) { sector_size = 512; sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " "assuming 512.\n"); } if (sector_size != 512 && sector_size != 1024 && sector_size != 2048 && sector_size != 4096 && sector_size != 256) { sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", sector_size); /* * The user might want to re-format the drive with * a supported sectorsize. Once this happens, it * would be relatively trivial to set the thing up. * For this reason, we leave the thing in the table. */ sdkp->capacity = 0; /* * set a bogus sector size so the normal read/write * logic in the block layer will eventually refuse any * request on this device without tripping over power * of two sector size assumptions */ sector_size = 512; } { /* * The msdos fs needs to know the hardware sector size * So I have created this table. See ll_rw_blk.c * Jacques Gelinas (Jacques@solucorp.qc.ca) */ int hard_sector = sector_size; sector_t sz = (sdkp->capacity/2) * (hard_sector/256); struct request_queue *queue = sdp->request_queue; sector_t mb = sz; blk_queue_hardsect_size(queue, hard_sector); /* avoid 64-bit division on 32-bit platforms */ sector_div(sz, 625); mb -= sz - 974; sector_div(mb, 1950); sd_printk(KERN_NOTICE, sdkp, "%llu %d-byte hardware sectors (%llu MB)\n", (unsigned long long)sdkp->capacity, hard_sector, (unsigned long long)mb); } /* Rescale capacity to 512-byte units */ if (sector_size == 4096) sdkp->capacity <<= 3; else if (sector_size == 2048) sdkp->capacity <<= 2; else if (sector_size == 1024) sdkp->capacity <<= 1; else if (sector_size == 256) sdkp->capacity >>= 1; sdkp->device->sector_size = sector_size; } /* called with buffer of length 512 */ static inline int sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, unsigned char *buffer, int len, struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) { return scsi_mode_sense(sdp, dbd, modepage, buffer, len, SD_TIMEOUT, SD_MAX_RETRIES, data, sshdr); } /* * read write protect setting, if possible - called only in sd_revalidate_disk() * called with buffer of length SD_BUF_SIZE */ static void sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) { int res; struct scsi_device *sdp = sdkp->device; struct scsi_mode_data data; set_disk_ro(sdkp->disk, 0); if (sdp->skip_ms_page_3f) { sd_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); return; } if (sdp->use_192_bytes_for_3f) { res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); } else { /* * First attempt: ask for all pages (0x3F), but only 4 bytes. * We have to start carefully: some devices hang if we ask * for more than is available. */ res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); /* * Second attempt: ask for page 0 When only page 0 is * implemented, a request for page 3F may return Sense Key * 5: Illegal Request, Sense Code 24: Invalid field in * CDB. */ if (!scsi_status_is_good(res)) res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); /* * Third attempt: ask 255 bytes, as we did earlier. */ if (!scsi_status_is_good(res)) res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, &data, NULL); } if (!scsi_status_is_good(res)) { sd_printk(KERN_WARNING, sdkp, "Test WP failed, assume Write Enabled\n"); } else { sdkp->write_prot = ((data.device_specific & 0x80) != 0); set_disk_ro(sdkp->disk, sdkp->write_prot); sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", sdkp->write_prot ? "on" : "off"); sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %02x %02x %02x %02x\n", buffer[0], buffer[1], buffer[2], buffer[3]); } } /* * sd_read_cache_type - called only from sd_revalidate_disk() * called with buffer of length SD_BUF_SIZE */ static void sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) { int len = 0, res; struct scsi_device *sdp = sdkp->device; int dbd; int modepage; struct scsi_mode_data data; struct scsi_sense_hdr sshdr; if (sdp->skip_ms_page_8) goto defaults; if (sdp->type == TYPE_RBC) { modepage = 6; dbd = 8; } else { modepage = 8; dbd = 0; } /* cautiously ask */ res = sd_do_mode_sense(sdp, dbd, modepage, buffer, 4, &data, &sshdr); if (!scsi_status_is_good(res)) goto bad_sense; if (!data.header_length) { modepage = 6; sd_printk(KERN_ERR, sdkp, "Missing header in MODE_SENSE response\n"); } /* that went OK, now ask for the proper length */ len = data.length; /* * We're only interested in the first three bytes, actually. * But the data cache page is defined for the first 20. */ if (len < 3) goto bad_sense; if (len > 20) len = 20; /* Take headers and block descriptors into account */ len += data.header_length + data.block_descriptor_length; if (len > SD_BUF_SIZE) goto bad_sense; /* Get the data */ res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, &data, &sshdr); if (scsi_status_is_good(res)) { int offset = data.header_length + data.block_descriptor_length; if (offset >= SD_BUF_SIZE - 2) { sd_printk(KERN_ERR, sdkp, "Malformed MODE SENSE response\n"); goto defaults; } if ((buffer[offset] & 0x3f) != modepage) { sd_printk(KERN_ERR, sdkp, "Got wrong page\n"); goto defaults; } if (modepage == 8) { sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); } else { sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); sdkp->RCD = 0; } sdkp->DPOFUA = (data.device_specific & 0x10) != 0; if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { sd_printk(KERN_NOTICE, sdkp, "Uses READ/WRITE(6), disabling FUA\n"); sdkp->DPOFUA = 0; } sd_printk(KERN_NOTICE, sdkp, "Write cache: %s, read cache: %s, %s\n", sdkp->WCE ? "enabled" : "disabled", sdkp->RCD ? "disabled" : "enabled", sdkp->DPOFUA ? "supports DPO and FUA" : "doesn't support DPO or FUA"); return; } bad_sense: if (scsi_sense_valid(&sshdr) && sshdr.sense_key == ILLEGAL_REQUEST && sshdr.asc == 0x24 && sshdr.ascq == 0x0) /* Invalid field in CDB */ sd_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); else sd_printk(KERN_ERR, sdkp, "Asking for cache data failed\n"); defaults: sd_printk(KERN_ERR, sdkp, "Assuming drive cache: write through\n"); sdkp->WCE = 0; sdkp->RCD = 0; sdkp->DPOFUA = 0; } /** * sd_revalidate_disk - called the first time a new disk is seen, * performs disk spin up, read_capacity, etc. * @disk: struct gendisk we care about **/ static int sd_revalidate_disk(struct gendisk *disk) { struct scsi_disk *sdkp = scsi_disk(disk); struct scsi_device *sdp = sdkp->device; unsigned char *buffer; unsigned ordered; SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_revalidate_disk\n")); /* * If the device is offline, don't try and read capacity or any * of the other niceties. */ if (!scsi_device_online(sdp)) goto out; buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); if (!buffer) { sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " "allocation failure.\n"); goto out; } /* defaults, until the device tells us otherwise */ sdp->sector_size = 512; sdkp->capacity = 0; sdkp->media_present = 1; sdkp->write_prot = 0; sdkp->WCE = 0; sdkp->RCD = 0; sd_spinup_disk(sdkp); /* * Without media there is no reason to ask; moreover, some devices * react badly if we do. */ if (sdkp->media_present) { sd_read_capacity(sdkp, buffer); sd_read_write_protect_flag(sdkp, buffer); sd_read_cache_type(sdkp, buffer); } /* * We now have all cache related info, determine how we deal * with ordered requests. Note that as the current SCSI * dispatch function can alter request order, we cannot use * QUEUE_ORDERED_TAG_* even when ordered tag is supported. */ if (sdkp->WCE) ordered = sdkp->DPOFUA ? QUEUE_ORDERED_DRAIN_FUA : QUEUE_ORDERED_DRAIN_FLUSH; else ordered = QUEUE_ORDERED_DRAIN; blk_queue_ordered(sdkp->disk->queue, ordered, sd_prepare_flush); set_capacity(disk, sdkp->capacity); kfree(buffer); out: return 0; } /** * sd_probe - called during driver initialization and whenever a * new scsi device is attached to the system. It is called once * for each scsi device (not just disks) present. * @dev: pointer to device object * * Returns 0 if successful (or not interested in this scsi device * (e.g. scanner)); 1 when there is an error. * * Note: this function is invoked from the scsi mid-level. * This function sets up the mapping between a given * <host,channel,id,lun> (found in sdp) and new device name * (e.g. /dev/sda). More precisely it is the block device major * and minor number that is chosen here. * * Assume sd_attach is not re-entrant (for time being) * Also think about sd_attach() and sd_remove() running coincidentally. **/ static int sd_probe(struct device *dev) { struct scsi_device *sdp = to_scsi_device(dev); struct scsi_disk *sdkp; struct gendisk *gd; u32 index; int error; error = -ENODEV; if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) goto out; SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, "sd_attach\n")); error = -ENOMEM; sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); if (!sdkp) goto out; gd = alloc_disk(16); if (!gd) goto out_free; if (!idr_pre_get(&sd_index_idr, GFP_KERNEL)) goto out_put; spin_lock(&sd_index_lock); error = idr_get_new(&sd_index_idr, NULL, &index); spin_unlock(&sd_index_lock); if (index >= SD_MAX_DISKS) error = -EBUSY; if (error) goto out_put; sdkp->device = sdp; sdkp->driver = &sd_template; sdkp->disk = gd; sdkp->index = index; sdkp->openers = 0; if (!sdp->timeout) { if (sdp->type != TYPE_MOD) sdp->timeout = SD_TIMEOUT; else sdp->timeout = SD_MOD_TIMEOUT; } class_device_initialize(&sdkp->cdev); sdkp->cdev.dev = &sdp->sdev_gendev; sdkp->cdev.class = &sd_disk_class; strncpy(sdkp->cdev.class_id, sdp->sdev_gendev.bus_id, BUS_ID_SIZE); if (class_device_add(&sdkp->cdev)) goto out_put; get_device(&sdp->sdev_gendev); gd->major = sd_major((index & 0xf0) >> 4); gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); gd->minors = 16; gd->fops = &sd_fops; if (index < 26) { sprintf(gd->disk_name, "sd%c", 'a' + index % 26); } else if (index < (26 + 1) * 26) { sprintf(gd->disk_name, "sd%c%c", 'a' + index / 26 - 1,'a' + index % 26); } else { const unsigned int m1 = (index / 26 - 1) / 26 - 1; const unsigned int m2 = (index / 26 - 1) % 26; const unsigned int m3 = index % 26; sprintf(gd->disk_name, "sd%c%c%c", 'a' + m1, 'a' + m2, 'a' + m3); } gd->private_data = &sdkp->driver; gd->queue = sdkp->device->request_queue; sd_revalidate_disk(gd); blk_queue_prep_rq(sdp->request_queue, sd_prep_fn); blk_queue_issue_flush_fn(sdp->request_queue, sd_issue_flush); gd->driverfs_dev = &sdp->sdev_gendev; gd->flags = GENHD_FL_DRIVERFS; if (sdp->removable) gd->flags |= GENHD_FL_REMOVABLE; dev_set_drvdata(dev, sdkp); add_disk(gd); sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", sdp->removable ? "removable " : ""); return 0; out_put: put_disk(gd); out_free: kfree(sdkp); out: return error; } /** * sd_remove - called whenever a scsi disk (previously recognized by * sd_probe) is detached from the system. It is called (potentially * multiple times) during sd module unload. * @sdp: pointer to mid level scsi device object * * Note: this function is invoked from the scsi mid-level. * This function potentially frees up a device name (e.g. /dev/sdc) * that could be re-used by a subsequent sd_probe(). * This function is not called when the built-in sd driver is "exit-ed". **/ static int sd_remove(struct device *dev) { struct scsi_disk *sdkp = dev_get_drvdata(dev); class_device_del(&sdkp->cdev); del_gendisk(sdkp->disk); sd_shutdown(dev); mutex_lock(&sd_ref_mutex); dev_set_drvdata(dev, NULL); class_device_put(&sdkp->cdev); mutex_unlock(&sd_ref_mutex); return 0; } /** * scsi_disk_release - Called to free the scsi_disk structure * @cdev: pointer to embedded class device * * sd_ref_mutex must be held entering this routine. Because it is * called on last put, you should always use the scsi_disk_get() * scsi_disk_put() helpers which manipulate the semaphore directly * and never do a direct class_device_put(). **/ static void scsi_disk_release(struct class_device *cdev) { struct scsi_disk *sdkp = to_scsi_disk(cdev); struct gendisk *disk = sdkp->disk; spin_lock(&sd_index_lock); idr_remove(&sd_index_idr, sdkp->index); spin_unlock(&sd_index_lock); disk->private_data = NULL; put_disk(disk); put_device(&sdkp->device->sdev_gendev); kfree(sdkp); } static int sd_start_stop_device(struct scsi_disk *sdkp, int start) { unsigned char cmd[6] = { START_STOP }; /* START_VALID */ struct scsi_sense_hdr sshdr; struct scsi_device *sdp = sdkp->device; int res; if (start) cmd[4] |= 1; /* START */ if (!scsi_device_online(sdp)) return -ENODEV; res = scsi_execute_req(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, SD_TIMEOUT, SD_MAX_RETRIES); if (res) { sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n"); sd_print_result(sdkp, res); if (driver_byte(res) & DRIVER_SENSE) sd_print_sense_hdr(sdkp, &sshdr); } return res; } /* * Send a SYNCHRONIZE CACHE instruction down to the device through * the normal SCSI command structure. Wait for the command to * complete. */ static void sd_shutdown(struct device *dev) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); if (!sdkp) return; /* this can happen */ if (sdkp->WCE) { sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); sd_sync_cache(sdkp); } if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); sd_start_stop_device(sdkp, 0); } scsi_disk_put(sdkp); } static int sd_suspend(struct device *dev, pm_message_t mesg) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); int ret = 0; if (!sdkp) return 0; /* this can happen */ if (sdkp->WCE) { sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); ret = sd_sync_cache(sdkp); if (ret) goto done; } if (mesg.event == PM_EVENT_SUSPEND && sdkp->device->manage_start_stop) { sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); ret = sd_start_stop_device(sdkp, 0); } done: scsi_disk_put(sdkp); return ret; } static int sd_resume(struct device *dev) { struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); int ret = 0; if (!sdkp->device->manage_start_stop) goto done; sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); ret = sd_start_stop_device(sdkp, 1); done: scsi_disk_put(sdkp); return ret; } /** * init_sd - entry point for this driver (both when built in or when * a module). * * Note: this function registers this driver with the scsi mid-level. **/ static int __init init_sd(void) { int majors = 0, i, err; SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); for (i = 0; i < SD_MAJORS; i++) if (register_blkdev(sd_major(i), "sd") == 0) majors++; if (!majors) return -ENODEV; err = class_register(&sd_disk_class); if (err) goto err_out; err = scsi_register_driver(&sd_template.gendrv); if (err) goto err_out_class; return 0; err_out_class: class_unregister(&sd_disk_class); err_out: for (i = 0; i < SD_MAJORS; i++) unregister_blkdev(sd_major(i), "sd"); return err; } /** * exit_sd - exit point for this driver (when it is a module). * * Note: this function unregisters this driver from the scsi mid-level. **/ static void __exit exit_sd(void) { int i; SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); scsi_unregister_driver(&sd_template.gendrv); class_unregister(&sd_disk_class); for (i = 0; i < SD_MAJORS; i++) unregister_blkdev(sd_major(i), "sd"); } module_init(init_sd); module_exit(exit_sd); static void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) { sd_printk(KERN_INFO, sdkp, ""); scsi_show_sense_hdr(sshdr); sd_printk(KERN_INFO, sdkp, ""); scsi_show_extd_sense(sshdr->asc, sshdr->ascq); } static void sd_print_result(struct scsi_disk *sdkp, int result) { sd_printk(KERN_INFO, sdkp, ""); scsi_show_result(result); }