Commit 2fa93b84 authored by Alexander Nozdrin's avatar Alexander Nozdrin

Auto-merge (pull) from mysql-next-mr.

parents a8d553e0 4b28a6ce
dnl -*- ksh -*-
dnl Process this file with autoconf to produce a configure script.
# Copyright (C) 2008-2009 Sun Microsystems, Inc
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
AC_PREREQ(2.52)dnl Minimum Autoconf version required.
AC_INIT(sql/mysqld.cc)
......@@ -2914,7 +2929,54 @@ case $SYSTEM_TYPE in
esac
AC_SUBST(MAKE_BINARY_DISTRIBUTION_OPTIONS)
#--------------------------------------------------------------------
# Support for WL#2373 (Use cycle counter for timing)
#--------------------------------------------------------------------
AC_CHECK_HEADERS(time.h)
AC_CHECK_HEADERS(sys/time.h)
AC_CHECK_HEADERS(sys/times.h)
AC_CHECK_HEADERS(asm/msr.h)
#msr.h has rdtscll()
AC_CHECK_HEADERS(ia64intrin.h)
AC_CHECK_FUNCS(times)
AC_CHECK_FUNCS(gettimeofday)
AC_CHECK_FUNCS(read_real_time)
# This should work on AIX.
AC_CHECK_FUNCS(ftime)
# This is still a normal call for milliseconds.
AC_CHECK_FUNCS(time)
# We can use time() on Macintosh if there is no ftime().
AC_CHECK_FUNCS(rdtscll)
# I doubt that we'll ever reach the check for this.
# When compiling with Sun Studio C / C++ we need to include
# my_timer_cycles.il, an "inline templates" separate file,
# on the command line. It has assembly code, "rd %tick" for
# SPARC or "rdtsc" for x86.
RDTSC_SPARC_ASSEMBLY=""
case $CC_VERSION in
*Sun*C*)
RDTSC_SPARC_ASSEMBLY="my_timer_cycles.il"
;;
esac
case $CXX_VERSION in
*Sun*C++*)
RDTSC_SPARC_ASSEMBLY="my_timer_cycles.il"
;;
esac
AC_SUBST([RDTSC_SPARC_ASSEMBLY])
#--------------------------------------------------------------------
# Output results
#--------------------------------------------------------------------
if test -d "$srcdir/pstack" ; then
AC_CONFIG_FILES(pstack/Makefile pstack/aout/Makefile)
fi
......
......@@ -38,6 +38,7 @@ noinst_HEADERS = config-win.h config-netware.h lf.h my_bit.h \
my_aes.h my_tree.h my_trie.h hash.h thr_alarm.h \
thr_lock.h t_ctype.h violite.h my_md5.h base64.h \
my_handler.h my_time.h service_versions.h \
my_rdtsc.h \
my_vle.h my_user.h my_atomic.h atomic/nolock.h \
atomic/rwlock.h atomic/x86-gcc.h atomic/generic-msvc.h \
atomic/gcc_builtins.h my_libwrap.h my_stacktrace.h \
......
/* Copyright (C) 2008, 2009 Sun Microsystems, Inc
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
rdtsc3 -- multi-platform timer code
pgulutzan@mysql.com, 2005-08-29
modified 2008-11-02
*/
#ifndef MY_RDTSC_H
#define MY_RDTSC_H
/**
Characteristics of a timer.
*/
struct my_timer_unit_info
{
/** Routine used for the timer. */
ulonglong routine;
/** Overhead of the timer. */
ulonglong overhead;
/** Frequency of the timer. */
ulonglong frequency;
/** Resolution of the timer. */
ulonglong resolution;
};
/**
Characteristics of all the supported timers.
@sa my_timer_init().
*/
struct my_timer_info
{
/** Characteristics of the cycle timer. */
struct my_timer_unit_info cycles;
/** Characteristics of the nanosecond timer. */
struct my_timer_unit_info nanoseconds;
/** Characteristics of the microsecond timer. */
struct my_timer_unit_info microseconds;
/** Characteristics of the millisecond timer. */
struct my_timer_unit_info milliseconds;
/** Characteristics of the tick timer. */
struct my_timer_unit_info ticks;
};
typedef struct my_timer_info MY_TIMER_INFO;
C_MODE_START
/**
A cycle timer.
@return the current timer value, in cycles.
*/
ulonglong my_timer_cycles(void);
/**
A namoseconds timer.
@return the current timer value, in nanoseconds.
*/
ulonglong my_timer_nanoseconds(void);
/**
A microseconds timer.
@return the current timer value, in microseconds.
*/
ulonglong my_timer_microseconds(void);
/**
A millisecond timer.
@return the current timer value, in milliseconds.
*/
ulonglong my_timer_milliseconds(void);
/**
A ticks timer.
@return the current timer value, in ticks.
*/
ulonglong my_timer_ticks(void);
/**
Timer initialization function.
@param [out] mti the timer characteristics.
*/
void my_timer_init(MY_TIMER_INFO *mti);
C_MODE_END
#define MY_TIMER_ROUTINE_ASM_X86 1
#define MY_TIMER_ROUTINE_ASM_X86_64 2
#define MY_TIMER_ROUTINE_RDTSCLL 3
#define MY_TIMER_ROUTINE_ASM_X86_WIN 4
#define MY_TIMER_ROUTINE_RDTSC 5
#define MY_TIMER_ROUTINE_ASM_IA64 6
#define MY_TIMER_ROUTINE_ASM_PPC 7
#define MY_TIMER_ROUTINE_SGI_CYCLE 8
#define MY_TIMER_ROUTINE_GETHRTIME 9
#define MY_TIMER_ROUTINE_READ_REAL_TIME 10
#define MY_TIMER_ROUTINE_CLOCK_GETTIME 11
#define MY_TIMER_ROUTINE_NXGETTIME 12
#define MY_TIMER_ROUTINE_GETTIMEOFDAY 13
#define MY_TIMER_ROUTINE_QUERYPERFORMANCECOUNTER 14
#define MY_TIMER_ROUTINE_GETTICKCOUNT 15
#define MY_TIMER_ROUTINE_TIME 16
#define MY_TIMER_ROUTINE_TIMES 17
#define MY_TIMER_ROUTINE_FTIME 18
#define MY_TIMER_ROUTINE_ASM_PPC64 19
#define MY_TIMER_ROUTINE_ASM_SUNPRO_SPARC64 20
#define MY_TIMER_ROUTINE_ASM_SUNPRO_SPARC32 21
#define MY_TIMER_ROUTINE_ASM_SUNPRO_I386 22
#define MY_TIMER_ROUTINE_ASM_GCC_SPARC64 23
#define MY_TIMER_ROUTINE_ASM_GCC_SPARC32 24
#define MY_TIMER_ROUTINE_MACH_ABSOLUTE_TIME 25
#define MY_TIMER_ROUTINE_GETSYSTEMTIMEASFILETIME 26
#define MY_TIMER_ROUTINE_ASM_SUNPRO_X86_64 27
#endif
# Copyright (C) 2006 MySQL AB
# Copyright (C) 2006 MySQL AB, 2009 Sun Microsystems, Inc
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
......@@ -41,7 +41,8 @@ SET(MYSYS_SOURCES array.c charset-def.c charset.c checksum.c default.c default_
rijndael.c safemalloc.c sha1.c string.c thr_alarm.c thr_lock.c thr_mutex.c
thr_rwlock.c tree.c typelib.c my_vle.c base64.c my_memmem.c my_getpagesize.c
lf_alloc-pin.c lf_dynarray.c lf_hash.c
my_atomic.c my_getncpus.c)
my_atomic.c my_getncpus.c
my_rdtsc.c)
IF(NOT SOURCE_SUBLIBS)
ADD_LIBRARY(mysys ${MYSYS_SOURCES})
......
......@@ -16,7 +16,8 @@
MYSQLDATAdir = $(localstatedir)
MYSQLSHAREdir = $(pkgdatadir)
MYSQLBASEdir= $(prefix)
INCLUDES = @ZLIB_INCLUDES@ -I$(top_builddir)/include \
INCLUDES = @ZLIB_INCLUDES@ @RDTSC_SPARC_ASSEMBLY@ \
-I$(top_builddir)/include \
-I$(top_srcdir)/include -I$(srcdir)
pkglib_LIBRARIES = libmysys.a
LDADD = libmysys.a $(top_builddir)/strings/libmystrings.a $(top_builddir)/dbug/libdbug.a
......@@ -53,7 +54,8 @@ libmysys_a_SOURCES = my_init.c my_getwd.c mf_getdate.c my_mmap.c \
my_gethostbyname.c rijndael.c my_aes.c sha1.c \
my_handler.c my_netware.c my_largepage.c \
my_memmem.c stacktrace.c \
my_windac.c my_access.c base64.c my_libwrap.c
my_windac.c my_access.c base64.c my_libwrap.c \
my_rdtsc.c
if NEED_THREAD
# mf_keycache is used only in the server, so it is safe to leave the file
......@@ -65,7 +67,9 @@ endif
EXTRA_DIST = thr_alarm.c thr_lock.c my_pthread.c my_thr_init.c \
thr_mutex.c thr_rwlock.c \
CMakeLists.txt mf_soundex.c \
my_conio.c my_wincond.c my_winthread.c my_winerr.c my_winfile.c
my_conio.c my_wincond.c my_winthread.c my_winerr.c \
my_winfile.c \
my_timer_cycles.il
libmysys_a_LIBADD = @THREAD_LOBJECTS@
# test_dir_DEPENDENCIES= $(LIBRARIES)
# testhash_DEPENDENCIES= $(LIBRARIES)
......
/* Copyright (C) 2008, 2009 Sun Microsystems, Inc
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
rdtsc3 -- multi-platform timer code
pgulutzan@mysql.com, 2005-08-29
modified 2008-11-02
Functions:
my_timer_cycles ulonglong cycles
my_timer_nanoseconds ulonglong nanoseconds
my_timer_microseconds ulonglong "microseconds"
my_timer_milliseconds ulonglong milliseconds
my_timer_ticks ulonglong ticks
my_timer_init initialization / test
We'll call the first 5 functions (the ones that return
a ulonglong) "my_timer_xxx" functions.
Each my_timer_xxx function returns a 64-bit timing value
since an arbitrary 'epoch' start. Since the only purpose
is to determine elapsed times, wall-clock time-of-day
is not known and not relevant.
The my_timer_init function is necessary for initializing.
It returns information (underlying routine name,
frequency, resolution, overhead) about all my_timer_xxx
functions. A program should call my_timer_init once,
use the information to decide what my_timer_xxx function
to use, and subsequently call that function by function
pointer.
A typical use would be:
my_timer_init() ... once, at program start
...
time1= my_timer_xxx() ... time before start
[code that's timed]
time2= my_timer_xxx() ... time after end
elapsed_time= (time2 - time1) - overhead
*/
#include "my_global.h"
#include "my_rdtsc.h"
#if defined(_WIN32)
#include <stdio.h>
#include "windows.h"
#else
#include <stdio.h>
#endif
#if !defined(_WIN32)
#if TIME_WITH_SYS_TIME
#include <sys/time.h>
#include <time.h> /* for clock_gettime */
#else
#if HAVE_SYS_TIME_H
#include <sys/time.h>
#elif defined(HAVE_TIME_H)
#include <time.h>
#endif
#endif
#endif
#if defined(HAVE_ASM_MSR_H) && defined(HAVE_RDTSCLL)
#include <asm/msr.h> /* for rdtscll */
#endif
#if defined(HAVE_SYS_TIMEB_H) && defined(HAVE_FTIME)
#include <sys/timeb.h> /* for ftime */
#endif
#if defined(HAVE_SYS_TIMES_H) && defined(HAVE_TIMES)
#include <sys/times.h> /* for times */
#endif
#if defined(__NETWARE__)
#include <nks/time.h> /* for NXGetTime */
#endif
#if defined(__INTEL_COMPILER) && defined(__ia64__) && defined(HAVE_IA64INTRIN_H)
#include <ia64intrin.h> /* for __GetReg */
#endif
#if defined(__APPLE__) && defined(__MACH__)
#include <mach/mach_time.h>
#endif
#if defined(__SUNPRO_CC) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7)
extern "C" ulonglong my_timer_cycles_il_sparc64();
#elif defined(__SUNPRO_CC) && defined(__sparcv8plus) && defined(_ILP32) && !defined(__SunOS_5_7)
extern "C" ulonglong my_timer_cycles_il_sparc32();
#elif defined(__SUNPRO_CC) && defined(__i386) && defined(_ILP32)
extern "C" ulonglong my_timer_cycles_il_i386();
#elif defined(__SUNPRO_CC) && defined(__x86_64) && defined(_LP64)
extern "C" ulonglong my_timer_cycles_il_x86_64();
#elif defined(__SUNPRO_C) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7)
ulonglong my_timer_cycles_il_sparc64();
#elif defined(__SUNPRO_C) && defined(__sparcv8plus) && defined(_ILP32) && !defined(__SunOS_5_7)
ulonglong my_timer_cycles_il_sparc32();
#elif defined(__SUNPRO_C) && defined(__i386) && defined(_ILP32)
ulonglong my_timer_cycles_il_i386();
#elif defined(__SUNPRO_C) && defined(__x86_64) && defined(_LP64)
ulonglong my_timer_cycles_il_x86_64();
#endif
#if defined(__INTEL_COMPILER)
/*
icc warning #1011 is:
missing return statement at end of non-void function
*/
#pragma warning (disable:1011)
#endif
/*
For cycles, we depend on RDTSC for x86 platforms,
or on time buffer (which is not really a cycle count
but a separate counter with less than nanosecond
resolution) for most PowerPC platforms, or on
gethrtime which is okay for hpux and solaris, or on
clock_gettime(CLOCK_SGI_CYCLE) for Irix platforms,
or on read_real_time for aix platforms. There is
nothing for Alpha platforms, they would be tricky.
*/
ulonglong my_timer_cycles(void)
{
#if defined(__GNUC__) && defined(__i386__)
/* This works much better if compiled with "gcc -O3". */
ulonglong result;
__asm__ __volatile__ ("rdtsc" : "=A" (result));
return result;
#elif defined(__SUNPRO_C) && defined(__i386)
__asm("rdtsc");
#elif defined(__GNUC__) && defined(__x86_64__)
ulonglong result;
__asm__ __volatile__ ("rdtsc\n\t" \
"shlq $32,%%rdx\n\t" \
"orq %%rdx,%%rax"
: "=a" (result) :: "%edx");
return result;
#elif defined(HAVE_ASM_MSR_H) && defined(HAVE_RDTSCLL)
{
ulonglong result;
rdtscll(result);
return result;
}
#elif defined(_WIN32) && defined(_M_IX86)
__asm {rdtsc};
#elif defined(_WIN64) && defined(_M_X64)
/* For 64-bit Windows: unsigned __int64 __rdtsc(); */
return __rdtsc();
#elif defined(__INTEL_COMPILER) && defined(__ia64__) && defined(HAVE_IA64INTRIN_H)
return (ulonglong) __getReg(_IA64_REG_AR_ITC); /* (3116) */
#elif defined(__GNUC__) && defined(__ia64__)
{
ulonglong result;
__asm __volatile__ ("mov %0=ar.itc" : "=r" (result));
return result;
}
#elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (defined(__64BIT__) || defined(_ARCH_PPC64))
{
ulonglong result;
__asm __volatile__ ("mftb %0" : "=r" (result));
return result;
}
#elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (!defined(__64BIT__) && !defined(_ARCH_PPC64))
{
/*
mftbu means "move from time-buffer-upper to result".
The loop is saying: x1=upper, x2=lower, x3=upper,
if x1!=x3 there was an overflow so repeat.
*/
unsigned int x1, x2, x3;
ulonglong result;
for (;;)
{
__asm __volatile__ ( "mftbu %0" : "=r"(x1) );
__asm __volatile__ ( "mftb %0" : "=r"(x2) );
__asm __volatile__ ( "mftbu %0" : "=r"(x3) );
if (x1 == x3) break;
}
result = x1;
return ( result << 32 ) | x2;
}
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7)
return (my_timer_cycles_il_sparc64());
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__sparcv8plus) && defined(_ILP32) && !defined(__SunOS_5_7)
return (my_timer_cycles_il_sparc32());
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__i386) && defined(_ILP32)
/* This is probably redundant for __SUNPRO_C. */
return (my_timer_cycles_il_i386());
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__x86_64) && defined(_LP64)
return (my_timer_cycles_il_x86_64());
#elif defined(__GNUC__) && defined(__sparcv9) && defined(_LP64) && (__GNUC__>2)
{
ulonglong result;
__asm __volatile__ ("rd %%tick,%0" : "=r" (result));
return result;
}
#elif defined(__GNUC__) && defined(__sparc__) && !defined(_LP64) && (__GNUC__>2)
{
union {
ulonglong wholeresult;
struct {
ulong high;
ulong low;
} splitresult;
} result;
__asm __volatile__ ("rd %%tick,%1; srlx %1,32,%0" : "=r" (result.splitresult.high), "=r" (result.splitresult.low));
return result.wholeresult;
}
#elif defined(__sgi) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_SGI_CYCLE)
{
struct timespec tp;
clock_gettime(CLOCK_SGI_CYCLE, &tp);
return (ulonglong) tp.tv_sec * 1000000000 + (ulonglong) tp.tv_nsec;
}
#elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME)
/* gethrtime may appear as either cycle or nanosecond counter */
return (ulonglong) gethrtime();
#else
return 0;
#endif
}
#if defined(__INTEL_COMPILER)
/* re-enable warning#1011 which was only for my_timer_cycles() */
/* There may be an icc bug which means we must leave disabled. */
#pragma warning (default:1011)
#endif
/*
For nanoseconds, most platforms have nothing available that
(a) doesn't require bringing in a 40-kb librt.so library
(b) really has nanosecond resolution.
*/
ulonglong my_timer_nanoseconds(void)
{
#if defined(HAVE_READ_REAL_TIME)
{
timebasestruct_t tr;
read_real_time(&tr, TIMEBASE_SZ);
return (ulonglong) tr.tb_high * 1000000000 + (ulonglong) tr.tb_low;
}
#elif defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_REALTIME)
{
struct timespec tp;
clock_gettime(CLOCK_REALTIME, &tp);
return (ulonglong) tp.tv_sec * 1000000000 + (ulonglong) tp.tv_nsec;
}
#elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME)
/* SunOS 5.10+, Solaris, HP-UX: hrtime_t gethrtime(void) */
return (ulonglong) gethrtime();
#elif defined(__NETWARE__)
{
NXTime_t tm;
NXGetTime(NX_SINCE_1970, NX_NSECONDS, &tm);
return (ulonglong) tm;
}
#elif defined(__APPLE__) && defined(__MACH__)
{
ulonglong tm;
static mach_timebase_info_data_t timebase_info= {0,0};
if (timebase_info.denom == 0)
(void) mach_timebase_info(&timebase_info);
tm= mach_absolute_time();
return (tm * timebase_info.numer) / timebase_info.denom;
}
#else
return 0;
#endif
}
/*
For microseconds, gettimeofday() is available on
almost all platforms. On Windows we use
QueryPerformanceCounter which will usually tick over
3.5 million times per second, and we don't throw
away the extra precision. (On Windows Server 2003
the frequency is same as the cycle frequency.)
*/
ulonglong my_timer_microseconds(void)
{
#if defined(HAVE_GETTIMEOFDAY)
{
static ulonglong last_value= 0;
struct timeval tv;
if (gettimeofday(&tv, NULL) == 0)
last_value= (ulonglong) tv.tv_sec * 1000000 + (ulonglong) tv.tv_usec;
else
{
/*
There are reports that gettimeofday(2) can have intermittent failures
on some platform, see for example Bug#36819.
We are not trying again or looping, just returning the best value possible
under the circumstances ...
*/
last_value++;
}
return last_value;
}
#elif defined(_WIN32)
{
/* QueryPerformanceCounter usually works with about 1/3 microsecond. */
LARGE_INTEGER t_cnt;
QueryPerformanceCounter(&t_cnt);
return (ulonglong) t_cnt.QuadPart;
}
#elif defined(__NETWARE__)
{
NXTime_t tm;
NXGetTime(NX_SINCE_1970, NX_USECONDS, &tm);
return (ulonglong) tm;
}
#else
return 0;
#endif
}
/*
For milliseconds, we use ftime() if it's supported
or time()*1000 if it's not. With modern versions of
Windows and with HP Itanium, resolution is 10-15
milliseconds.
*/
ulonglong my_timer_milliseconds(void)
{
#if defined(HAVE_SYS_TIMEB_H) && defined(HAVE_FTIME)
/* ftime() is obsolete but maybe the platform is old */
struct timeb ft;
ftime(&ft);
return (ulonglong)ft.time * 1000 + (ulonglong)ft.millitm;
#elif defined(HAVE_TIME)
return (ulonglong) time(NULL) * 1000;
#elif defined(_WIN32)
FILETIME ft;
GetSystemTimeAsFileTime( &ft );
return ((ulonglong)ft.dwLowDateTime +
(((ulonglong)ft.dwHighDateTime) << 32))/10000;
#elif defined(__NETWARE__)
{
NXTime_t tm;
NXGetTime(NX_SINCE_1970, NX_MSECONDS, &tm);
return (ulonglong)tm;
}
#else
return 0;
#endif
}
/*
For ticks, which we handle with times(), the frequency
is usually 100/second and the overhead is surprisingly
bad, sometimes even worse than gettimeofday's overhead.
*/
ulonglong my_timer_ticks(void)
{
#if defined(HAVE_SYS_TIMES_H) && defined(HAVE_TIMES)
{
struct tms times_buf;
return (ulonglong) times(&times_buf);
}
#elif defined(__NETWARE__)
{
NXTime_t tm;
NXGetTime(NX_SINCE_BOOT, NX_TICKS, &tm);
return (ulonglong) tm;
}
#elif defined(_WIN32)
return (ulonglong) GetTickCount();
#else
return 0;
#endif
}
/*
The my_timer_init() function and its sub-functions
have several loops which call timers. If there's
something wrong with a timer -- which has never
happened in tests -- we want the loop to end after
an arbitrary number of iterations, and my_timer_info
will show a discouraging result. The arbitrary
number is 1,000,000.
*/
#define MY_TIMER_ITERATIONS 1000000
/*
Calculate overhead. Called from my_timer_init().
Usually best_timer_overhead = cycles.overhead or
nanoseconds.overhead, so returned amount is in
cycles or nanoseconds. We repeat the calculation
ten times, so that we can disregard effects of
caching or interrupts. Result is quite consistent
for cycles, at least. But remember it's a minimum.
*/
static void my_timer_init_overhead(ulonglong *overhead,
ulonglong (*cycle_timer)(void),
ulonglong (*this_timer)(void),
ulonglong best_timer_overhead)
{
ulonglong time1, time2;
int i;
/* *overhead, least of 20 calculations - cycles.overhead */
for (i= 0, *overhead= 1000000000; i < 20; ++i)
{
time1= cycle_timer();
this_timer(); /* rather than 'time_tmp= timer();' */
time2= cycle_timer() - time1;
if (*overhead > time2)
*overhead= time2;
}
*overhead-= best_timer_overhead;
}
/*
Calculate Resolution. Called from my_timer_init().
If a timer goes up by jumps, e.g. 1050, 1075, 1100, ...
then the best resolution is the minimum jump, e.g. 25.
If it's always divisible by 1000 then it's just a
result of multiplication of a lower-precision timer
result, e.g. nanoseconds are often microseconds * 1000.
If the minimum jump is less than an arbitrary passed
figure (a guess based on maximum overhead * 2), ignore.
Usually we end up with nanoseconds = 1 because it's too
hard to detect anything <= 100 nanoseconds.
Often GetTickCount() has resolution = 15.
We don't check with ticks because they take too long.
*/
static ulonglong my_timer_init_resolution(ulonglong (*this_timer)(void),
ulonglong overhead_times_2)
{
ulonglong time1, time2;
ulonglong best_jump;
int i, jumps, divisible_by_1000, divisible_by_1000000;
divisible_by_1000= divisible_by_1000000= 0;
best_jump= 1000000;
for (i= jumps= 0; jumps < 3 && i < MY_TIMER_ITERATIONS * 10; ++i)
{
time1= this_timer();
time2= this_timer();
time2-= time1;
if (time2)
{
++jumps;
if (!(time2 % 1000))
{
++divisible_by_1000;
if (!(time2 % 1000000))
++divisible_by_1000000;
}
if (best_jump > time2)
best_jump= time2;
/* For milliseconds, one jump is enough. */
if (overhead_times_2 == 0)
break;
}
}
if (jumps == 3)
{
if (jumps == divisible_by_1000000)
return 1000000;
if (jumps == divisible_by_1000)
return 1000;
}
if (best_jump > overhead_times_2)
return best_jump;
return 1;
}
/*
Calculate cycle frequency by seeing how many cycles pass
in a 200-microsecond period. I tried with 10-microsecond
periods originally, and the result was often very wrong.
*/
static ulonglong my_timer_init_frequency(MY_TIMER_INFO *mti)
{
int i;
ulonglong time1, time2, time3, time4;
time1= my_timer_cycles();
time2= my_timer_microseconds();
time3= time2; /* Avoids a Microsoft/IBM compiler warning */
for (i= 0; i < MY_TIMER_ITERATIONS; ++i)
{
time3= my_timer_microseconds();
if (time3 - time2 > 200) break;
}
time4= my_timer_cycles() - mti->cycles.overhead;
time4-= mti->microseconds.overhead;
return (mti->microseconds.frequency * (time4 - time1)) / (time3 - time2);
}
/*
Call my_timer_init before the first call to my_timer_xxx().
If something must be initialized, it happens here.
Set: what routine is being used e.g. "asm_x86"
Set: function, overhead, actual frequency, resolution.
*/
void my_timer_init(MY_TIMER_INFO *mti)
{
ulonglong (*best_timer)(void);
ulonglong best_timer_overhead;
ulonglong time1, time2;
int i;
/* cycles */
mti->cycles.frequency= 1000000000;
#if defined(__GNUC__) && defined(__i386__)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86;
#elif defined(__SUNPRO_C) && defined(__i386)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86;
#elif defined(__GNUC__) && defined(__x86_64__)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86_64;
#elif defined(HAVE_ASM_MSR_H) && defined(HAVE_RDTSCLL)
mti->cycles.routine= MY_TIMER_ROUTINE_RDTSCLL;
#elif defined(_WIN32) && defined(_M_IX86)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86_WIN;
#elif defined(_WIN64) && defined(_M_X64)
mti->cycles.routine= MY_TIMER_ROUTINE_RDTSC;
#elif defined(__INTEL_COMPILER) && defined(__ia64__) && defined(HAVE_IA64INTRIN_H)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_IA64;
#elif defined(__GNUC__) && defined(__ia64__)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_IA64;
#elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (defined(__64BIT__) || defined(_ARCH_PPC64))
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_PPC64;
#elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (!defined(__64BIT__) && !defined(_ARCH_PPC64))
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_PPC;
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_SPARC64;
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__sparcv8plus) && defined(_ILP32) && !defined(__SunOS_5_7)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_SPARC32;
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__i386) && defined(_ILP32)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_I386;
#elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__x86_64) && defined(_LP64)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_X86_64;
#elif defined(__GNUC__) && defined(__sparcv9) && defined(_LP64) && (__GNUC__>2)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_GCC_SPARC64;
#elif defined(__GNUC__) && defined(__sparc__) && !defined(_LP64) && (__GNUC__>2)
mti->cycles.routine= MY_TIMER_ROUTINE_ASM_GCC_SPARC32;
#elif defined(__sgi) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_SGI_CYCLE)
mti->cycles.routine= MY_TIMER_ROUTINE_SGI_CYCLE;
#elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME)
mti->cycles.routine= MY_TIMER_ROUTINE_GETHRTIME;
#else
mti->cycles.routine= 0;
#endif
if (!mti->cycles.routine || !my_timer_cycles())
{
mti->cycles.routine= 0;
mti->cycles.resolution= 0;
mti->cycles.frequency= 0;
mti->cycles.overhead= 0;
}
/* nanoseconds */
mti->nanoseconds.frequency= 1000000000; /* initial assumption */
#if defined(HAVE_READ_REAL_TIME)
mti->nanoseconds.routine= MY_TIMER_ROUTINE_READ_REAL_TIME;
#elif defined(HAVE_CLOCK_GETTIME)
mti->nanoseconds.routine= MY_TIMER_ROUTINE_CLOCK_GETTIME;
#elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME)
mti->nanoseconds.routine= MY_TIMER_ROUTINE_GETHRTIME;
#elif defined(__NETWARE__)
mti->nanoseconds.routine= MY_TIMER_ROUTINE_NXGETTIME;
#elif defined(__APPLE__) && defined(__MACH__)
mti->nanoseconds.routine= MY_TIMER_ROUTINE_MACH_ABSOLUTE_TIME;
#else
mti->nanoseconds.routine= 0;
#endif
if (!mti->nanoseconds.routine || !my_timer_nanoseconds())
{
mti->nanoseconds.routine= 0;
mti->nanoseconds.resolution= 0;
mti->nanoseconds.frequency= 0;
mti->nanoseconds.overhead= 0;
}
/* microseconds */
mti->microseconds.frequency= 1000000; /* initial assumption */
#if defined(HAVE_GETTIMEOFDAY)
mti->microseconds.routine= MY_TIMER_ROUTINE_GETTIMEOFDAY;
#elif defined(_WIN32)
{
LARGE_INTEGER li;
/* Windows: typical frequency = 3579545, actually 1/3 microsecond. */
if (!QueryPerformanceFrequency(&li))
mti->microseconds.routine= 0;
else
{
mti->microseconds.frequency= li.QuadPart;
mti->microseconds.routine= MY_TIMER_ROUTINE_QUERYPERFORMANCECOUNTER;
}
}
#elif defined(__NETWARE__)
mti->microseconds.routine= MY_TIMER_ROUTINE_NXGETTIME;
#else
mti->microseconds.routine= 0;
#endif
if (!mti->microseconds.routine || !my_timer_microseconds())
{
mti->microseconds.routine= 0;
mti->microseconds.resolution= 0;
mti->microseconds.frequency= 0;
mti->microseconds.overhead= 0;
}
/* milliseconds */
mti->milliseconds.frequency= 1000; /* initial assumption */
#if defined(HAVE_SYS_TIMEB_H) && defined(HAVE_FTIME)
mti->milliseconds.routine= MY_TIMER_ROUTINE_FTIME;
#elif defined(_WIN32)
mti->milliseconds.routine= MY_TIMER_ROUTINE_GETSYSTEMTIMEASFILETIME;
#elif defined(__NETWARE__)
mti->milliseconds.routine= MY_TIMER_ROUTINE_NXGETTIME;
#elif defined(HAVE_TIME)
mti->milliseconds.routine= MY_TIMER_ROUTINE_TIME;
#else
mti->milliseconds.routine= 0;
#endif
if (!mti->milliseconds.routine || !my_timer_milliseconds())
{
mti->milliseconds.routine= 0;
mti->milliseconds.resolution= 0;
mti->milliseconds.frequency= 0;
mti->milliseconds.overhead= 0;
}
/* ticks */
mti->ticks.frequency= 100; /* permanent assumption */
#if defined(HAVE_SYS_TIMES_H) && defined(HAVE_TIMES)
mti->ticks.routine= MY_TIMER_ROUTINE_TIMES;
#elif defined(__NETWARE__)
mti->ticks.routine= MY_TIMER_ROUTINE_NXGETTIME;
#elif defined(_WIN32)
mti->ticks.routine= MY_TIMER_ROUTINE_GETTICKCOUNT;
#else
mti->ticks.routine= 0;
#endif
if (!mti->ticks.routine || !my_timer_ticks())
{
mti->ticks.routine= 0;
mti->ticks.resolution= 0;
mti->ticks.frequency= 0;
mti->ticks.overhead= 0;
}
/*
Calculate overhead in terms of the timer that
gives the best resolution: cycles or nanoseconds.
I doubt it ever will be as bad as microseconds.
*/
if (mti->cycles.routine)
best_timer= &my_timer_cycles;
else
{
if (mti->nanoseconds.routine)
{
best_timer= &my_timer_nanoseconds;
}
else
best_timer= &my_timer_microseconds;
}
/* best_timer_overhead = least of 20 calculations */
for (i= 0, best_timer_overhead= 1000000000; i < 20; ++i)
{
time1= best_timer();
time2= best_timer() - time1;
if (best_timer_overhead > time2)
best_timer_overhead= time2;
}
if (mti->cycles.routine)
my_timer_init_overhead(&mti->cycles.overhead,
best_timer,
&my_timer_cycles,
best_timer_overhead);
if (mti->nanoseconds.routine)
my_timer_init_overhead(&mti->nanoseconds.overhead,
best_timer,
&my_timer_nanoseconds,
best_timer_overhead);
if (mti->microseconds.routine)
my_timer_init_overhead(&mti->microseconds.overhead,
best_timer,
&my_timer_microseconds,
best_timer_overhead);
if (mti->milliseconds.routine)
my_timer_init_overhead(&mti->milliseconds.overhead,
best_timer,
&my_timer_milliseconds,
best_timer_overhead);
if (mti->ticks.routine)
my_timer_init_overhead(&mti->ticks.overhead,
best_timer,
&my_timer_ticks,
best_timer_overhead);
/*
Calculate resolution for nanoseconds or microseconds
or milliseconds, by seeing if it's always divisible
by 1000, and by noticing how much jumping occurs.
For ticks, just assume the resolution is 1.
*/
if (mti->cycles.routine)
mti->cycles.resolution= 1;
if (mti->nanoseconds.routine)
mti->nanoseconds.resolution=
my_timer_init_resolution(&my_timer_nanoseconds, 20000);
if (mti->microseconds.routine)
mti->microseconds.resolution=
my_timer_init_resolution(&my_timer_microseconds, 20);
if (mti->milliseconds.routine)
{
if (mti->milliseconds.routine == MY_TIMER_ROUTINE_TIME)
mti->milliseconds.resolution= 1000;
else
mti->milliseconds.resolution=
my_timer_init_resolution(&my_timer_milliseconds, 0);
}
if (mti->ticks.routine)
mti->ticks.resolution= 1;
/*
Calculate cycles frequency,
if we have both a cycles routine and a microseconds routine.
In tests, this usually results in a figure within 2% of
what "cat /proc/cpuinfo" says.
If the microseconds routine is QueryPerformanceCounter
(i.e. it's Windows), and the microseconds frequency is >
500,000,000 (i.e. it's Windows Server so it uses RDTSC)
and the microseconds resolution is > 100 (i.e. dreadful),
then calculate cycles frequency = microseconds frequency.
*/
if (mti->cycles.routine
&& mti->microseconds.routine)
{
if (mti->microseconds.routine ==
MY_TIMER_ROUTINE_QUERYPERFORMANCECOUNTER
&& mti->microseconds.frequency > 500000000
&& mti->microseconds.resolution > 100)
mti->cycles.frequency= mti->microseconds.frequency;
else
{
ulonglong time1, time2;
time1= my_timer_init_frequency(mti);
/* Repeat once in case there was an interruption. */
time2= my_timer_init_frequency(mti);
if (time1 < time2) mti->cycles.frequency= time1;
else mti->cycles.frequency= time2;
}
}
/*
Calculate milliseconds frequency =
(cycles-frequency/#-of-cycles) * #-of-milliseconds,
if we have both a milliseconds routine and a cycles
routine.
This will be inaccurate if milliseconds resolution > 1.
This is probably only useful when testing new platforms.
*/
if (mti->milliseconds.routine
&& mti->milliseconds.resolution < 1000
&& mti->microseconds.routine
&& mti->cycles.routine)
{
int i;
ulonglong time1, time2, time3, time4;
time1= my_timer_cycles();
time2= my_timer_milliseconds();
time3= time2; /* Avoids a Microsoft/IBM compiler warning */
for (i= 0; i < MY_TIMER_ITERATIONS * 1000; ++i)
{
time3= my_timer_milliseconds();
if (time3 - time2 > 10) break;
}
time4= my_timer_cycles();
mti->milliseconds.frequency=
(mti->cycles.frequency * (time3 - time2)) / (time4 - time1);
}
/*
Calculate ticks.frequency =
(cycles-frequency/#-of-cycles * #-of-ticks,
if we have both a ticks routine and a cycles
routine,
This is probably only useful when testing new platforms.
*/
if (mti->ticks.routine
&& mti->microseconds.routine
&& mti->cycles.routine)
{
int i;
ulonglong time1, time2, time3, time4;
time1= my_timer_cycles();
time2= my_timer_ticks();
time3= time2; /* Avoids a Microsoft/IBM compiler warning */
for (i= 0; i < MY_TIMER_ITERATIONS * 1000; ++i)
{
time3= my_timer_ticks();
if (time3 - time2 > 10) break;
}
time4= my_timer_cycles();
mti->ticks.frequency=
(mti->cycles.frequency * (time3 - time2)) / (time4 - time1);
}
}
/*
Additional Comments
-------------------
This is for timing, i.e. finding out how long a piece of code
takes. If you want time of day matching a wall clock, the
my_timer_xxx functions won't help you.
The best timer is the one with highest frequency, lowest
overhead, and resolution=1. The my_timer_info() routine will tell
you at runtime which timer that is. Usually it will be
my_timer_cycles() but be aware that, although it's best,
it has possible flaws and dangers. Depending on platform:
- The frequency might change. We don't test for this. It
happens on laptops for power saving, and on blade servers
for avoiding overheating.
- The overhead that my_timer_init() returns is the minimum.
In fact it could be slightly greater because of caching or
because you call the routine by address, as recommended.
It could be hugely greater if there's an interrupt.
- The x86 cycle counter, RDTSC doesn't "serialize". That is,
if there is out-of-order execution, rdtsc might be processed
after an instruction that logically follows it.
(We could force serialization, but that would be slower.)
- It is possible to set a flag which renders RDTSC
inoperative. Somebody responsible for the kernel
of the operating system would have to make this
decision. For the platforms we've tested with, there's
no such problem.
- With a multi-processor arrangement, it's possible
to get the cycle count from one processor in
thread X, and the cycle count from another processor
in thread Y. They may not always be in synch.
- You can't depend on a cycle counter being available for
all platforms. On Alphas, the
cycle counter is only 32-bit, so it would overflow quickly,
so we don't bother with it. On platforms that we haven't
tested, there might be some if/endif combination that we
didn't expect, or some assembler routine that we didn't
supply.
The recommended way to use the timer routines is:
1. Somewhere near the beginning of the program, call
my_timer_init(). This should only be necessary once,
although you can call it again if you think that the
frequency has changed.
2. Determine the best timer based on frequency, resolution,
overhead -- all things that my_timer_init() returns.
Preserve the address of the timer and the my_timer_into
results in an easily-accessible place.
3. Instrument the code section that you're monitoring, thus:
time1= my_timer_xxx();
Instrumented code;
time2= my_timer_xxx();
elapsed_time= (time2 - time1) - overhead;
If the timer is always on, then overhead is always there,
so don't subtract it.
4. Save the elapsed time, or add it to a totaller.
5. When all timing processes are complete, transfer the
saved / totalled elapsed time to permanent storage.
Optionally you can convert cycles to microseconds at
this point. (Don't do so every time you calculate
elapsed_time! That would waste time and lose precision!)
For converting cycles to microseconds, use the frequency
that my_timer_init() returns. You'll also need to convert
if the my_timer_microseconds() function is the Windows
function QueryPerformanceCounter(), since that's sometimes
a counter with precision slightly better than microseconds.
Since we recommend calls by function pointer, we supply
no inline functions.
Some comments on the many candidate routines for timing ...
clock() -- We don't use because it would overflow frequently.
clock_gettime() -- Often we don't use this even when it exists.
In configure.in, we use AC_CHECK_FUNCS(clock_gettime). Not
AC_CHECK_LIB(rc,clock_gettime)
AC_CHECK_FUNCS(clock_gettime)
If we had the above lines in configure.in, we'd have to use
/usr/lib/librt.so or /usr/lib64/librt.so when linking, and
the size of librt.so is 40KB. In tests, clock_gettime often
had resolution = 1000.
ftime() -- A "man ftime" says: "This function is obsolete.
Don't use it." On every platform that we tested, if ftime()
was available, then so was gettimeofday(), and gettimeofday()
overhead was always at least as good as ftime() overhead.
gettimeofday() -- available on most platforms, though not
on Windows. There is a hardware timer (sometimes a Programmable
Interrupt Timer or "PIT") (sometimes a "HPET") used for
interrupt generation. When it interrupts (a "tick" or "jiffy",
typically 1 centisecond) it sets xtime. For gettimeofday, a
Linux kernel routine usually gets xtime and then gets rdtsc
to get elapsed nanoseconds since the last tick. On Red Hat
Enterprise Linux 3, there was once a bug which caused the
resolution to be 1000, i.e. one centisecond. We never check
for time-zone change.
getnstimeofday() -- something to watch for in future Linux
do_gettimeofday() -- exists on Linux but not for "userland"
get_cycles() -- a multi-platform function, worth watching
in future Linux versions. But we found platform-specific
functions which were better documented in operating-system
manuals. And get_cycles() can fail or return a useless
32-bit number. It might be available on some platforms,
such as arm, which we didn't test. Using
"include <linux/timex.h>" or "include <asm/timex.h>"
can lead to autoconf or compile errors, depending on system.
rdtsc, __rdtsc, rdtscll: available for x86 with Linux BSD,
Solaris, Windows. See "possible flaws and dangers" comments.
times(): what we use for ticks. Should just read the last
(xtime) tick count, therefore should be fast, but usually
isn't.
GetTickCount(): we use this for my_timer_ticks() on
Windows. Actually it really is a tick counter, so resolution
>= 10 milliseconds unless you have a very old Windows version.
With Windows 95 or 98 or ME, timeGetTime() has better resolution than
GetTickCount (1ms rather than 55ms). But with Windows NT or XP or 2000,
they're both getting from a variable in the Process Environment Block
(PEB), and the variable is set by the programmable interrupt timer, so
the resolution is the same (usually 10-15 milliseconds). Also timeGetTime
is slower on old machines:
http://www.doumo.jp/aon-java/jsp/postgretips/tips.jsp?tips=74.
Also timeGetTime requires linking winmm.lib,
Therefore we use GetTickCount.
It will overflow every 49 days because the return is 32-bit.
There is also a GetTickCount64 but it requires Vista or Windows Server 2008.
(As for GetSystemTimeAsFileTime, its precision is spurious, it
just reads the tick variable like the other functions do.
However, we don't expect it to overflow every 49 days, so we
will prefer it for my_timer_milliseconds().)
QueryPerformanceCounter() we use this for my_timer_microseconds()
on Windows. 1-PIT-tick (often 1/3-microsecond). Usually reads
the PIT so it's slow. On some Windows variants, uses RDTSC.
GetLocalTime() this is available on Windows but we don't use it.
getclock(): documented for Alpha, but not found during tests.
mach_absolute_time() and UpTime() are recommended for Apple.
Inititally they weren't tried, because asm_ppc seems to do the job.
But now we use mach_absolute_time for nanoseconds.
Any clock-based timer can be affected by NPT (ntpd program),
which means:
- full-second correction can occur for leap second
- tiny corrections can occcur approimately every 11 minutes
(but I think they only affect the RTC which isn't the PIT).
We define "precision" as "frequency" and "high precision" is
"frequency better than 1 microsecond". We define "resolution"
as a synonym for "granularity". We define "accuracy" as
"closeness to the truth" as established by some authoritative
clock, but we can't measure accuracy.
Do not expect any of our timers to be monotonic; we
won't guarantee that they return constantly-increasing
unique numbers.
We tested with AIX, Solaris (x86 + Sparc), Linux (x86 +
Itanium), Windows, 64-bit Windows, QNX, FreeBSD, HPUX,
Irix, Mac. We didn't test with NetWare or SCO.
*/
/* Copyright (C) 2008 Sun Microsystems, Inc
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Sun Studio SPARC inline templates for cycle timer */
/* Sun Studio i386 and x86_64 inline templates for cycle timer */
/* I didn't say ".volatile" or ".nonvolatile". */
.inline my_timer_cycles_il_sparc64,0
rd %tick,%o0
.end
.inline my_timer_cycles_il_sparc32,0
rd %tick,%o2
srlx %o2,32,%o0
sra %o2,0,%o1
.end
.inline my_timer_cycles_il_i386,0
rdtsc
.end
.inline my_timer_cycles_il_x86_64,0
rdtsc
shlq $32,%rdx
orq %rdx,%rax
.end
# Copyright (C) 2007 MySQL AB, 2008-2009 Sun Microsystems, Inc
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
INCLUDE_DIRECTORIES(${CMAKE_SOURCE_DIR}/include ${CMAKE_SOURCE_DIR}/zlib
${CMAKE_SOURCE_DIR}/sql
${CMAKE_SOURCE_DIR}/regex
${CMAKE_SOURCE_DIR}/extra/yassl/include
${CMAKE_SOURCE_DIR}/unittest/mytap)
ADD_EXECUTABLE(bitmap-t bitmap-t.c)
TARGET_LINK_LIBRARIES(bitmap-t mytap mysys dbug strings)
ADD_EXECUTABLE(base64-t base64-t.c)
TARGET_LINK_LIBRARIES(base64-t mytap mysys dbug strings)
ADD_EXECUTABLE(my_atomic-t my_atomic-t.c)
TARGET_LINK_LIBRARIES(my_atomic-t mytap mysys dbug strings)
ADD_EXECUTABLE(lf-t lf-t.c)
TARGET_LINK_LIBRARIES(lf-t mytap mysys dbug strings)
ADD_EXECUTABLE(my_rdtsc-t my_rdtsc-t.c)
TARGET_LINK_LIBRARIES(my_rdtsc-t mytap mysys dbug strings)
......@@ -23,7 +23,7 @@ LDADD = $(top_builddir)/unittest/mytap/libmytap.a \
$(top_builddir)/dbug/libdbug.a \
$(top_builddir)/strings/libmystrings.a
noinst_PROGRAMS = bitmap-t base64-t lf-t my_vsnprintf-t
noinst_PROGRAMS = bitmap-t base64-t lf-t my_rdtsc-t my_vsnprintf-t
if NEED_THREAD
# my_atomic-t is used to check thread functions, so it is safe to
......@@ -32,5 +32,4 @@ if NEED_THREAD
noinst_PROGRAMS += my_atomic-t
endif
# Don't update the files from bitkeeper
%::SCCS/s.%
EXTRA_DIST = CMakeLists.txt
/* Copyright (C) 2008-2009 Sun Microsystems, Inc
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
rdtsc3 -- multi-platform timer code
pgulutzan@mysql.com, 2005-08-29
modified 2008-11-02
When you run rdtsc3, it will print the contents of
"my_timer_info". The display indicates
what timer routine is best for a given platform.
For example, this is the display on production.mysql.com,
a 2.8GHz Xeon with Linux 2.6.17, gcc 3.3.3:
cycles nanoseconds microseconds milliseconds ticks
------------- ------------- ------------- ------------- -------------
1 11 13 18 17
2815019607 1000000000 1000000 1049 102
1 1000 1 1 1
88 4116 3888 4092 2044
The first line shows routines, e.g. 1 = MY_TIMER_ROUTINE_ASM_X86.
The second line shows frequencies, e.g. 2815019607 is nearly 2.8GHz.
The third line shows resolutions, e.g. 1000 = very poor resolution.
The fourth line shows overheads, e.g. ticks takes 2044 cycles.
*/
#include "my_global.h"
#include "my_rdtsc.h"
#include "tap.h"
#define LOOP_COUNT 100
MY_TIMER_INFO myt;
void test_init()
{
my_timer_init(&myt);
diag("----- Routine ---------------");
diag("myt.cycles.routine : %13llu", myt.cycles.routine);
diag("myt.nanoseconds.routine : %13llu", myt.nanoseconds.routine);
diag("myt.microseconds.routine : %13llu", myt.microseconds.routine);
diag("myt.milliseconds.routine : %13llu", myt.milliseconds.routine);
diag("myt.ticks.routine : %13llu", myt.ticks.routine);
diag("----- Frequency -------------");
diag("myt.cycles.frequency : %13llu", myt.cycles.frequency);
diag("myt.nanoseconds.frequency : %13llu", myt.nanoseconds.frequency);
diag("myt.microseconds.frequency : %13llu", myt.microseconds.frequency);
diag("myt.milliseconds.frequency : %13llu", myt.milliseconds.frequency);
diag("myt.ticks.frequency : %13llu", myt.ticks.frequency);
diag("----- Resolution ------------");
diag("myt.cycles.resolution : %13llu", myt.cycles.resolution);
diag("myt.nanoseconds.resolution : %13llu", myt.nanoseconds.resolution);
diag("myt.microseconds.resolution : %13llu", myt.microseconds.resolution);
diag("myt.milliseconds.resolution : %13llu", myt.milliseconds.resolution);
diag("myt.ticks.resolution : %13llu", myt.ticks.resolution);
diag("----- Overhead --------------");
diag("myt.cycles.overhead : %13llu", myt.cycles.overhead);
diag("myt.nanoseconds.overhead : %13llu", myt.nanoseconds.overhead);
diag("myt.microseconds.overhead : %13llu", myt.microseconds.overhead);
diag("myt.milliseconds.overhead : %13llu", myt.milliseconds.overhead);
diag("myt.ticks.overhead : %13llu", myt.ticks.overhead);
ok(1, "my_timer_init() did not crash");
}
void test_cycle()
{
ulonglong t1= my_timer_cycles();
ulonglong t2;
int i;
int backward= 0;
int nonzero= 0;
for (i=0 ; i < LOOP_COUNT ; i++)
{
t2= my_timer_cycles();
if (t1 >= t2)
backward++;
if (t2 != 0)
nonzero++;
t1= t2;
}
/* Expect at most 1 backward, the cycle value can overflow */
ok((backward <= 1), "The cycle timer is strictly increasing");
if (myt.cycles.routine != 0)
ok((nonzero != 0), "The cycle timer is implemented");
else
ok((nonzero == 0), "The cycle timer is not implemented and returns 0");
}
void test_nanosecond()
{
ulonglong t1= my_timer_nanoseconds();
ulonglong t2;
int i;
int backward= 0;
int nonzero= 0;
for (i=0 ; i < LOOP_COUNT ; i++)
{
t2= my_timer_nanoseconds();
if (t1 > t2)
backward++;
if (t2 != 0)
nonzero++;
t1= t2;
}
ok((backward == 0), "The nanosecond timer is increasing");
if (myt.nanoseconds.routine != 0)
ok((nonzero != 0), "The nanosecond timer is implemented");
else
ok((nonzero == 0), "The nanosecond timer is not implemented and returns 0");
}
void test_microsecond()
{
ulonglong t1= my_timer_microseconds();
ulonglong t2;
int i;
int backward= 0;
int nonzero= 0;
for (i=0 ; i < LOOP_COUNT ; i++)
{
t2= my_timer_microseconds();
if (t1 > t2)
backward++;
if (t2 != 0)
nonzero++;
t1= t2;
}
ok((backward == 0), "The microsecond timer is increasing");
if (myt.microseconds.routine != 0)
ok((nonzero != 0), "The microsecond timer is implemented");
else
ok((nonzero == 0), "The microsecond timer is not implemented and returns 0");
}
void test_millisecond()
{
ulonglong t1= my_timer_milliseconds();
ulonglong t2;
int i;
int backward= 0;
int nonzero= 0;
for (i=0 ; i < LOOP_COUNT ; i++)
{
t2= my_timer_milliseconds();
if (t1 > t2)
backward++;
if (t2 != 0)
nonzero++;
t1= t2;
}
ok((backward == 0), "The millisecond timer is increasing");
if (myt.milliseconds.routine != 0)
ok((nonzero != 0), "The millisecond timer is implemented");
else
ok((nonzero == 0), "The millisecond timer is not implemented and returns 0");
}
void test_tick()
{
ulonglong t1= my_timer_ticks();
ulonglong t2;
int i;
int backward= 0;
int nonzero= 0;
for (i=0 ; i < LOOP_COUNT ; i++)
{
t2= my_timer_ticks();
if (t1 > t2)
backward++;
if (t2 != 0)
nonzero++;
t1= t2;
}
ok((backward == 0), "The tick timer is increasing");
if (myt.ticks.routine != 0)
ok((nonzero != 0), "The tick timer is implemented");
else
ok((nonzero == 0), "The tick timer is not implemented and returns 0");
}
int main(int argc __attribute__((unused)),
char ** argv __attribute__((unused)))
{
plan(11);
test_init();
test_cycle();
test_nanosecond();
test_microsecond();
test_millisecond();
test_tick();
return 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment