Commit 3ce0880d authored by reggie@big_geek's avatar reggie@big_geek

Merge reggie@192.168.0.9:/home/reggie/work/mysql-5.1-bug15408

into  big_geek.:C:/Work/mysql/mysql-5.1-bug15408
parents 9d2fffb8 466a5bb3
......@@ -142,3 +142,8 @@ t1 CREATE TABLE `t1` (
DROP TABLE t1;
CREATE TABLE t1 (a INT) PARTITION BY HASH(a);
ALTER TABLE t1 ADD PARTITION PARTITIONS 4;
CREATE TABLE t1 (s1 int, s2 int) PARTITION BY LIST (s1) (
PARTITION p1 VALUES IN (0) (SUBPARTITION p1b),
PARTITION p2 VALUES IN (2) (SUBPARTITION p1b)
);
ERROR HY000: Duplicate partition name p1b
......@@ -216,3 +216,12 @@ DROP TABLE t1;
#
CREATE TABLE t1 (a INT) PARTITION BY HASH(a);
ALTER TABLE t1 ADD PARTITION PARTITIONS 4;
#
#BUG 15408: Partitions: subpartition names are not unique
#
--error ER_SAME_NAME_PARTITION
CREATE TABLE t1 (s1 int, s2 int) PARTITION BY LIST (s1) (
PARTITION p1 VALUES IN (0) (SUBPARTITION p1b),
PARTITION p2 VALUES IN (2) (SUBPARTITION p1b)
);
......@@ -65,7 +65,7 @@ noinst_HEADERS = item.h item_func.h item_sum.h item_cmpfunc.h \
sp_head.h sp_pcontext.h sp_rcontext.h sp.h sp_cache.h \
parse_file.h sql_view.h sql_trigger.h \
sql_array.h sql_cursor.h event.h event_priv.h \
sql_plugin.h authors.h
sql_plugin.h authors.h sql_partition.h partition_info.h partition_element.h
mysqld_SOURCES = sql_lex.cc sql_handler.cc sql_partition.cc \
item.cc item_sum.cc item_buff.cc item_func.cc \
item_cmpfunc.cc item_strfunc.cc item_timefunc.cc \
......@@ -101,7 +101,7 @@ mysqld_SOURCES = sql_lex.cc sql_handler.cc sql_partition.cc \
sp_cache.cc parse_file.cc sql_trigger.cc \
event_executor.cc event.cc event_timed.cc \
sql_plugin.cc sql_binlog.cc \
handlerton.cc sql_tablespace.cc
handlerton.cc sql_tablespace.cc partition_info.cpp
EXTRA_mysqld_SOURCES = ha_innodb.cc ha_berkeley.cc ha_archive.cc \
ha_innodb.h ha_berkeley.h ha_archive.h \
ha_blackhole.cc ha_federated.cc ha_ndbcluster.cc \
......
......@@ -186,7 +186,7 @@ ha_partition::ha_partition(TABLE_SHARE *share)
ha_partition::ha_partition(partition_info *part_info)
:handler(&partition_hton, NULL), m_part_info(part_info),
m_create_handler(TRUE),
m_is_sub_partitioned(is_sub_partitioned(m_part_info))
m_is_sub_partitioned(m_part_info->is_sub_partitioned())
{
DBUG_ENTER("ha_partition::ha_partition(part_info)");
......@@ -331,7 +331,7 @@ int ha_partition::ha_initialise()
if (m_create_handler)
{
m_tot_parts= get_tot_partitions(m_part_info);
m_tot_parts= m_part_info->get_tot_partitions();
DBUG_ASSERT(m_tot_parts > 0);
if (new_handlers_from_part_info())
DBUG_RETURN(1);
......@@ -1290,7 +1290,7 @@ int ha_partition::change_partitions(HA_CREATE_INFO *create_info,
DBUG_ENTER("ha_partition::change_partitions");
m_reorged_parts= 0;
if (!is_sub_partitioned(m_part_info))
if (!m_part_info->is_sub_partitioned())
no_subparts= 1;
/*
......@@ -1453,7 +1453,7 @@ int ha_partition::change_partitions(HA_CREATE_INFO *create_info,
if (part_elem->part_state == PART_CHANGED ||
(part_elem->part_state == PART_TO_BE_ADDED && temp_partitions))
name_variant= TEMP_PART_NAME;
if (is_sub_partitioned(m_part_info))
if (m_part_info->is_sub_partitioned())
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
uint j= 0, part;
......
......@@ -135,7 +135,7 @@ public:
virtual void set_part_info(partition_info *part_info)
{
m_part_info= part_info;
m_is_sub_partitioned= is_sub_partitioned(part_info);
m_is_sub_partitioned= part_info->is_sub_partitioned();
}
/*
-------------------------------------------------------------------------
......
......@@ -95,13 +95,6 @@
#define HA_ANY_INDEX_MAY_BE_UNIQUE (1 << 30)
#define HA_NO_COPY_ON_ALTER (1 << 31)
/* Flags for partition handlers */
#define HA_CAN_PARTITION (1 << 0) /* Partition support */
#define HA_CAN_UPDATE_PARTITION_KEY (1 << 1)
#define HA_CAN_PARTITION_UNIQUE (1 << 2)
#define HA_USE_AUTO_PARTITION (1 << 3)
/* bits in index_flags(index_number) for what you can do with index */
#define HA_READ_NEXT 1 /* TODO really use this flag */
#define HA_READ_PREV 2 /* supports ::index_prev */
......@@ -134,34 +127,6 @@
#define HA_ONLINE_DROP_UNIQUE_INDEX (1L << 9) /*drop uniq. online*/
#define HA_ONLINE_ADD_PK_INDEX (1L << 10)/*add prim. online*/
#define HA_ONLINE_DROP_PK_INDEX (1L << 11)/*drop prim. online*/
/*
HA_PARTITION_FUNCTION_SUPPORTED indicates that the function is
supported at all.
HA_FAST_CHANGE_PARTITION means that optimised variants of the changes
exists but they are not necessarily done online.
HA_ONLINE_DOUBLE_WRITE means that the handler supports writing to both
the new partition and to the old partitions when updating through the
old partitioning schema while performing a change of the partitioning.
This means that we can support updating of the table while performing
the copy phase of the change. For no lock at all also a double write
from new to old must exist and this is not required when this flag is
set.
This is actually removed even before it was introduced the first time.
The new idea is that handlers will handle the lock level already in
store_lock for ALTER TABLE partitions.
HA_PARTITION_ONE_PHASE is a flag that can be set by handlers that take
care of changing the partitions online and in one phase. Thus all phases
needed to handle the change are implemented inside the storage engine.
The storage engine must also support auto-discovery since the frm file
is changed as part of the change and this change must be controlled by
the storage engine. A typical engine to support this is NDB (through
WL #2498).
*/
#define HA_PARTITION_FUNCTION_SUPPORTED (1L << 12)
#define HA_FAST_CHANGE_PARTITION (1L << 13)
#define HA_PARTITION_ONE_PHASE (1L << 14)
/*
Index scan will not return records in rowid order. Not guaranteed to be
......@@ -618,33 +583,6 @@ enum enum_tx_isolation { ISO_READ_UNCOMMITTED, ISO_READ_COMMITTED,
enum ndb_distribution { ND_KEYHASH= 0, ND_LINHASH= 1 };
typedef struct {
uint32 start_part;
uint32 end_part;
} part_id_range;
/**
* An enum and a struct to handle partitioning and subpartitioning.
*/
enum partition_type {
NOT_A_PARTITION= 0,
RANGE_PARTITION,
HASH_PARTITION,
LIST_PARTITION
};
enum partition_state {
PART_NORMAL= 0,
PART_IS_DROPPED= 1,
PART_TO_BE_DROPPED= 2,
PART_TO_BE_ADDED= 3,
PART_TO_BE_REORGED= 4,
PART_REORGED_DROPPED= 5,
PART_CHANGED= 6,
PART_IS_CHANGED= 7,
PART_IS_ADDED= 8
};
typedef struct {
ulonglong data_file_length;
......@@ -662,400 +600,12 @@ typedef struct {
#define UNDEF_NODEGROUP 65535
class Item;
class partition_element :public Sql_alloc {
public:
List<partition_element> subpartitions;
List<longlong> list_val_list;
ulonglong part_max_rows;
ulonglong part_min_rows;
char *partition_name;
char *tablespace_name;
longlong range_value;
char* part_comment;
char* data_file_name;
char* index_file_name;
handlerton *engine_type;
enum partition_state part_state;
uint16 nodegroup_id;
partition_element()
: part_max_rows(0), part_min_rows(0), partition_name(NULL),
tablespace_name(NULL), range_value(0), part_comment(NULL),
data_file_name(NULL), index_file_name(NULL),
engine_type(NULL),part_state(PART_NORMAL),
nodegroup_id(UNDEF_NODEGROUP)
{
subpartitions.empty();
list_val_list.empty();
}
~partition_element() {}
};
typedef struct {
longlong list_value;
uint32 partition_id;
} LIST_PART_ENTRY;
class partition_info;
typedef int (*get_part_id_func)(partition_info *part_info,
uint32 *part_id,
longlong *func_value);
typedef uint32 (*get_subpart_id_func)(partition_info *part_info);
struct st_partition_iter;
#define NOT_A_PARTITION_ID ((uint32)-1)
/*
A "Get next" function for partition iterator.
SYNOPSIS
partition_iter_func()
part_iter Partition iterator, you call only "iter.get_next(&iter)"
RETURN
NOT_A_PARTITION_ID if there are no more partitions.
[sub]partition_id of the next partition
*/
typedef uint32 (*partition_iter_func)(st_partition_iter* part_iter);
/*
Partition set iterator. Used to enumerate a set of [sub]partitions
obtained in partition interval analysis (see get_partitions_in_range_iter).
For the user, the only meaningful field is get_next, which may be used as
follows:
part_iterator.get_next(&part_iterator);
Initialization is done by any of the following calls:
- get_partitions_in_range_iter-type function call
- init_single_partition_iterator()
- init_all_partitions_iterator()
Cleanup is not needed.
*/
typedef struct st_partition_iter
{
partition_iter_func get_next;
struct st_part_num_range
{
uint32 start;
uint32 end;
};
struct st_field_value_range
{
longlong start;
longlong end;
};
union
{
struct st_part_num_range part_nums;
struct st_field_value_range field_vals;
};
partition_info *part_info;
} PARTITION_ITERATOR;
/*
Get an iterator for set of partitions that match given field-space interval
SYNOPSIS
get_partitions_in_range_iter()
part_info Partitioning info
is_subpart
min_val Left edge, field value in opt_range_key format.
max_val Right edge, field value in opt_range_key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Functions with this signature are used to perform "Partitioning Interval
Analysis". This analysis is applicable for any type of [sub]partitioning
by some function of a single fieldX. The idea is as follows:
Given an interval "const1 <=? fieldX <=? const2", find a set of partitions
that may contain records with value of fieldX within the given interval.
The min_val, max_val and flags parameters specify the interval.
The set of partitions is returned by initializing an iterator in *part_iter
NOTES
There are currently two functions of this type:
- get_part_iter_for_interval_via_walking
- get_part_iter_for_interval_via_mapping
RETURN
0 - No matching partitions, iterator not initialized
1 - Some partitions would match, iterator intialized for traversing them
-1 - All partitions would match, iterator not initialized
*/
typedef int (*get_partitions_in_range_iter)(partition_info *part_info,
bool is_subpart,
char *min_val, char *max_val,
uint flags,
PARTITION_ITERATOR *part_iter);
class partition_info : public Sql_alloc
{
public:
/*
* Here comes a set of definitions needed for partitioned table handlers.
*/
List<partition_element> partitions;
List<partition_element> temp_partitions;
List<char> part_field_list;
List<char> subpart_field_list;
/*
If there is no subpartitioning, use only this func to get partition ids.
If there is subpartitioning, use the this func to get partition id when
you have both partition and subpartition fields.
*/
get_part_id_func get_partition_id;
/* Get partition id when we don't have subpartition fields */
get_part_id_func get_part_partition_id;
/*
Get subpartition id when we have don't have partition fields by we do
have subpartition ids.
Mikael said that for given constant tuple
{subpart_field1, ..., subpart_fieldN} the subpartition id will be the
same in all subpartitions
*/
get_subpart_id_func get_subpartition_id;
/* NULL-terminated array of fields used in partitioned expression */
Field **part_field_array;
/* NULL-terminated array of fields used in subpartitioned expression */
Field **subpart_field_array;
/*
Array of all fields used in partition and subpartition expression,
without duplicates, NULL-terminated.
*/
Field **full_part_field_array;
Item *part_expr;
Item *subpart_expr;
Item *item_free_list;
/*
A bitmap of partitions used by the current query.
Usage pattern:
* The handler->extra(HA_EXTRA_RESET) call at query start/end sets all
partitions to be unused.
* Before index/rnd_init(), partition pruning code sets the bits for used
partitions.
*/
MY_BITMAP used_partitions;
union {
longlong *range_int_array;
LIST_PART_ENTRY *list_array;
};
/********************************************
* INTERVAL ANALYSIS
********************************************/
/*
Partitioning interval analysis function for partitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_part_iter_for_interval;
/*
Partitioning interval analysis function for subpartitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_subpart_iter_for_interval;
/*
Valid iff
get_part_iter_for_interval=get_part_iter_for_interval_via_walking:
controls how we'll process "field < C" and "field > C" intervals.
If the partitioning function F is strictly increasing, then for any x, y
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
we can perform partition pruning on the equivalent "F(field) < F(C)".
If the partitioning function not strictly increasing (it is simply
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
i.e. for interval "field < C" we can perform partition pruning for
"F(field) <= F(C)".
*/
bool range_analysis_include_bounds;
/********************************************
* INTERVAL ANALYSIS ENDS
********************************************/
char* part_info_string;
char *part_func_string;
char *subpart_func_string;
uchar *part_state;
partition_element *curr_part_elem;
partition_element *current_partition;
/*
These key_map's are used for Partitioning to enable quick decisions
on whether we can derive more information about which partition to
scan just by looking at what index is used.
*/
key_map all_fields_in_PF, all_fields_in_PPF, all_fields_in_SPF;
key_map some_fields_in_PF;
handlerton *default_engine_type;
Item_result part_result_type;
partition_type part_type;
partition_type subpart_type;
uint part_info_len;
uint part_state_len;
uint part_func_len;
uint subpart_func_len;
uint no_parts;
uint no_subparts;
uint count_curr_subparts;
uint part_error_code;
uint no_list_values;
uint no_part_fields;
uint no_subpart_fields;
uint no_full_part_fields;
/*
This variable is used to calculate the partition id when using
LINEAR KEY/HASH. This functionality is kept in the MySQL Server
but mainly of use to handlers supporting partitioning.
*/
uint16 linear_hash_mask;
bool use_default_partitions;
bool use_default_no_partitions;
bool use_default_subpartitions;
bool use_default_no_subpartitions;
bool default_partitions_setup;
bool defined_max_value;
bool list_of_part_fields;
bool list_of_subpart_fields;
bool linear_hash_ind;
bool fixed;
bool from_openfrm;
partition_info()
: get_partition_id(NULL), get_part_partition_id(NULL),
get_subpartition_id(NULL),
part_field_array(NULL), subpart_field_array(NULL),
full_part_field_array(NULL),
part_expr(NULL), subpart_expr(NULL), item_free_list(NULL),
list_array(NULL),
part_info_string(NULL),
part_func_string(NULL), subpart_func_string(NULL),
part_state(NULL),
curr_part_elem(NULL), current_partition(NULL),
default_engine_type(NULL),
part_result_type(INT_RESULT),
part_type(NOT_A_PARTITION), subpart_type(NOT_A_PARTITION),
part_info_len(0), part_state_len(0),
part_func_len(0), subpart_func_len(0),
no_parts(0), no_subparts(0),
count_curr_subparts(0), part_error_code(0),
no_list_values(0), no_part_fields(0), no_subpart_fields(0),
no_full_part_fields(0), linear_hash_mask(0),
use_default_partitions(TRUE),
use_default_no_partitions(TRUE),
use_default_subpartitions(TRUE),
use_default_no_subpartitions(TRUE),
default_partitions_setup(FALSE),
defined_max_value(FALSE),
list_of_part_fields(FALSE), list_of_subpart_fields(FALSE),
linear_hash_ind(FALSE),
fixed(FALSE),
from_openfrm(FALSE)
{
all_fields_in_PF.clear_all();
all_fields_in_PPF.clear_all();
all_fields_in_SPF.clear_all();
some_fields_in_PF.clear_all();
partitions.empty();
temp_partitions.empty();
part_field_list.empty();
subpart_field_list.empty();
}
~partition_info() {}
};
#ifdef WITH_PARTITION_STORAGE_ENGINE
uint32 get_next_partition_id_range(struct st_partition_iter* part_iter);
/* Initialize the iterator to return a single partition with given part_id */
static inline void init_single_partition_iterator(uint32 part_id,
PARTITION_ITERATOR *part_iter)
{
part_iter->part_nums.start= part_id;
part_iter->part_nums.end= part_id+1;
part_iter->get_next= get_next_partition_id_range;
}
/* Initialize the iterator to enumerate all partitions */
static inline
void init_all_partitions_iterator(partition_info *part_info,
PARTITION_ITERATOR *part_iter)
{
part_iter->part_nums.start= 0;
part_iter->part_nums.end= part_info->no_parts;
part_iter->get_next= get_next_partition_id_range;
}
/*
Answers the question if subpartitioning is used for a certain table
SYNOPSIS
is_sub_partitioned()
part_info A reference to the partition_info struct
RETURN VALUE
Returns true if subpartitioning used and false otherwise
DESCRIPTION
A routine to check for subpartitioning for improved readability of code
*/
static inline
bool is_sub_partitioned(partition_info *part_info)
{ return (part_info->subpart_type == NOT_A_PARTITION ? FALSE : TRUE); }
/*
Returns the total number of partitions on the leaf level.
SYNOPSIS
get_tot_partitions()
part_info A reference to the partition_info struct
RETURN VALUE
Returns the number of partitions
DESCRIPTION
A routine to check for number of partitions for improved readability
of code
*/
static inline
uint get_tot_partitions(partition_info *part_info)
{
return part_info->no_parts *
(is_sub_partitioned(part_info) ? part_info->no_subparts : 1);
}
#endif
typedef struct st_ha_create_information
{
......@@ -1100,54 +650,6 @@ typedef struct st_ha_check_opt
} HA_CHECK_OPT;
#ifdef WITH_PARTITION_STORAGE_ENGINE
bool is_partition_in_list(char *part_name, List<char> list_part_names);
char *are_partitions_in_table(partition_info *new_part_info,
partition_info *old_part_info);
bool check_reorganise_list(partition_info *new_part_info,
partition_info *old_part_info,
List<char> list_part_names);
bool set_up_defaults_for_partitioning(partition_info *part_info,
handler *file,
ulonglong max_rows,
uint start_no);
handler *get_ha_partition(partition_info *part_info);
int get_parts_for_update(const byte *old_data, byte *new_data,
const byte *rec0, partition_info *part_info,
uint32 *old_part_id, uint32 *new_part_id,
longlong *func_value);
int get_part_for_delete(const byte *buf, const byte *rec0,
partition_info *part_info, uint32 *part_id);
bool check_partition_info(partition_info *part_info,handlerton **eng_type,
handler *file, ulonglong max_rows);
bool fix_partition_func(THD *thd, const char *name, TABLE *table,
bool create_table_ind);
char *generate_partition_syntax(partition_info *part_info,
uint *buf_length, bool use_sql_alloc,
bool write_all);
bool partition_key_modified(TABLE *table, List<Item> &fields);
void prune_partition_set(const TABLE *table, part_id_range *part_spec);
void get_partition_set(const TABLE *table, byte *buf, const uint index,
const key_range *key_spec,
part_id_range *part_spec);
void get_full_part_id_from_key(const TABLE *table, byte *buf,
KEY *key_info,
const key_range *key_spec,
part_id_range *part_spec);
bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
uint part_info_len,
uchar *part_state, uint part_state_len,
TABLE *table, bool is_create_table_ind,
handlerton *default_db_type);
void make_used_partitions_str(partition_info *part_info, String *parts_str);
uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint);
uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint);
#endif
/*
This is a buffer area that the handler can use to store rows.
......
......@@ -503,6 +503,8 @@ typedef my_bool (*qc_engine_callback)(THD *thd, char *table_key,
#include "protocol.h"
#include "sql_plugin.h"
#include "sql_udf.h"
#include "sql_partition.h"
class user_var_entry;
class Security_context;
enum enum_var_type
......
......@@ -2976,7 +2976,7 @@ static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
ppar->last_subpart_partno=
used_subpart_fields?(int)(used_part_fields + used_subpart_fields - 1): -1;
if (is_sub_partitioned(part_info))
if (part_info->is_sub_partitioned())
{
ppar->mark_full_partition_used= mark_full_partition_used_with_parts;
ppar->get_top_partition_id_func= part_info->get_part_partition_id;
......
/* Copyright (C) 2000,2004 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
/**
* An enum and a struct to handle partitioning and subpartitioning.
*/
enum partition_type {
NOT_A_PARTITION= 0,
RANGE_PARTITION,
HASH_PARTITION,
LIST_PARTITION
};
enum partition_state {
PART_NORMAL= 0,
PART_IS_DROPPED= 1,
PART_TO_BE_DROPPED= 2,
PART_TO_BE_ADDED= 3,
PART_TO_BE_REORGED= 4,
PART_REORGED_DROPPED= 5,
PART_CHANGED= 6,
PART_IS_CHANGED= 7,
PART_IS_ADDED= 8
};
class partition_element :public Sql_alloc {
public:
List<partition_element> subpartitions;
List<longlong> list_val_list;
ulonglong part_max_rows;
ulonglong part_min_rows;
char *partition_name;
char *tablespace_name;
longlong range_value;
char* part_comment;
char* data_file_name;
char* index_file_name;
handlerton *engine_type;
enum partition_state part_state;
uint16 nodegroup_id;
partition_element()
: part_max_rows(0), part_min_rows(0), partition_name(NULL),
tablespace_name(NULL), range_value(0), part_comment(NULL),
data_file_name(NULL), index_file_name(NULL),
engine_type(NULL),part_state(PART_NORMAL),
nodegroup_id(UNDEF_NODEGROUP)
{
subpartitions.empty();
list_val_list.empty();
}
~partition_element() {}
};
/* Copyright (C) 2005 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
This file was introduced as a container for general functionality related
to partitioning introduced in MySQL version 5.1. It contains functionality
used by all handlers that support partitioning, which in the first version
is the partitioning handler itself and the NDB handler.
The first version was written by Mikael Ronstrom.
This version supports RANGE partitioning, LIST partitioning, HASH
partitioning and composite partitioning (hereafter called subpartitioning)
where each RANGE/LIST partitioning is HASH partitioned. The hash function
can either be supplied by the user or by only a list of fields (also
called KEY partitioning, where the MySQL server will use an internal
hash function.
There are quite a few defaults that can be used as well.
*/
/* Some general useful functions */
#include "mysql_priv.h"
#include "ha_partition.h"
#ifdef WITH_PARTITION_STORAGE_ENGINE
/*
Create a memory area where default partition names are stored and fill it
up with the names.
SYNOPSIS
create_default_partition_names()
part_no Partition number for subparts
no_parts Number of partitions
start_no Starting partition number
subpart Is it subpartitions
RETURN VALUE
A pointer to the memory area of the default partition names
DESCRIPTION
A support routine for the partition code where default values are
generated.
The external routine needing this code is check_partition_info
*/
#define MAX_PART_NAME_SIZE 16
char *partition_info::create_default_partition_names(uint part_no, uint no_parts,
uint start_no, bool is_subpart)
{
char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE);
char *move_ptr= ptr;
uint i= 0;
DBUG_ENTER("create_default_partition_names");
if (likely(ptr != 0))
{
do
{
if (is_subpart)
my_sprintf(move_ptr, (move_ptr,"p%usp%u", part_no, (start_no + i)));
else
my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
move_ptr+=MAX_PART_NAME_SIZE;
} while (++i < no_parts);
}
else
{
mem_alloc_error(no_parts*MAX_PART_NAME_SIZE);
}
DBUG_RETURN(ptr);
}
/*
Set up all the default partitions not set-up by the user in the SQL
statement. Also perform a number of checks that the user hasn't tried
to use default values where no defaults exists.
SYNOPSIS
set_up_default_partitions()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine only accepts HASH and KEY partitioning and thus there is
no subpartitioning if this routine is successful.
The external routine needing this code is check_partition_info
*/
bool partition_info::set_up_default_partitions(handler *file, ulonglong max_rows,
uint start_no)
{
uint i;
char *default_name;
bool result= TRUE;
DBUG_ENTER("partition_info::set_up_default_partitions");
if (part_type != HASH_PARTITION)
{
const char *error_string;
if (part_type == RANGE_PARTITION)
error_string= partition_keywords[PKW_RANGE].str;
else
error_string= partition_keywords[PKW_LIST].str;
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
goto end;
}
if (no_parts == 0)
no_parts= file->get_default_no_partitions(max_rows);
if (unlikely(no_parts > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely((!(default_name= create_default_partition_names(0, no_parts,
start_no,
FALSE)))))
goto end;
i= 0;
do
{
partition_element *part_elem= new partition_element();
if (likely(part_elem != 0 &&
(!partitions.push_back(part_elem))))
{
part_elem->engine_type= default_engine_type;
part_elem->partition_name= default_name;
default_name+=MAX_PART_NAME_SIZE;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Set up all the default subpartitions not set-up by the user in the SQL
statement. Also perform a number of checks that the default partitioning
becomes an allowed partitioning scheme.
SYNOPSIS
set_up_default_subpartitions()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine is only called for RANGE or LIST partitioning and those
need to be specified so only subpartitions are specified.
The external routine needing this code is check_partition_info
*/
bool partition_info::set_up_default_subpartitions(handler *file,
ulonglong max_rows)
{
uint i, j; //, no_parts, no_subparts;
char *default_name, *name_ptr;
bool result= TRUE;
partition_element *part_elem;
List_iterator<partition_element> part_it(partitions);
DBUG_ENTER("partition_info::set_up_default_subpartitions");
if (no_subparts == 0)
no_subparts= file->get_default_no_partitions(max_rows);
// no_parts= part_info->no_parts;
//no_subparts= part_info->no_subparts;
if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
// if (unlikely((!(default_name=
// create_default_partition_names(no_subparts, (uint)0, TRUE)))))
//goto end;
i= 0;
do
{
part_elem= part_it++;
j= 0;
name_ptr= create_default_partition_names(i, no_subparts, (uint)0, TRUE);
if (unlikely(!name_ptr))
goto end;
do
{
partition_element *subpart_elem= new partition_element();
if (likely(subpart_elem != 0 &&
(!part_elem->subpartitions.push_back(subpart_elem))))
{
subpart_elem->engine_type= default_engine_type;
subpart_elem->partition_name= name_ptr;
name_ptr+= MAX_PART_NAME_SIZE;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++j < no_subparts);
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Support routine for check_partition_info
SYNOPSIS
set_up_defaults_for_partitioning()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
Set up defaults for partition or subpartition (cannot set-up for both,
this will return an error.
*/
bool partition_info::set_up_defaults_for_partitioning(handler *file,
ulonglong max_rows,
uint start_no)
{
DBUG_ENTER("partition_info::set_up_defaults_for_partitioning");
if (!default_partitions_setup)
{
default_partitions_setup= TRUE;
if (use_default_partitions)
DBUG_RETURN(set_up_default_partitions(file, max_rows, start_no));
if (is_sub_partitioned() &&
use_default_subpartitions)
DBUG_RETURN(set_up_default_subpartitions(file, max_rows));
}
DBUG_RETURN(FALSE);
}
bool partition_info::has_unique_name(partition_element *element)
{
DBUG_ENTER("partition_info::has_unique_name");
const char *name_to_check= element->partition_name;
List_iterator<partition_element> parts_it(partitions);
partition_element *el;
while (el= (parts_it++))
{
if (!(my_strcasecmp(system_charset_info, el->partition_name,
name_to_check)) && el != element)
DBUG_RETURN(FALSE);
if (el->subpartitions.is_empty()) continue;
List_iterator<partition_element> subparts_it(el->subpartitions);
partition_element *sub_el;
while (sub_el= (subparts_it++))
{
if (!(my_strcasecmp(system_charset_info, sub_el->partition_name,
name_to_check)) && sub_el != element)
DBUG_RETURN(FALSE);
}
}
DBUG_RETURN(TRUE);
}
/*
A support function to check partition names for duplication in a
partitioned table
SYNOPSIS
has_unique_names()
RETURN VALUES
TRUE Has unique part and subpart names
FALSE Doesn't
DESCRIPTION
Checks that the list of names in the partitions doesn't contain any
duplicated names.
*/
char *partition_info::has_unique_names()
{
DBUG_ENTER("partition_info::has_unique_names");
List_iterator<partition_element> parts_it(partitions);
partition_element *el;
while (el= (parts_it++))
{
if (! has_unique_name(el))
DBUG_RETURN(el->partition_name);
if (el->subpartitions.is_empty()) continue;
List_iterator<partition_element> subparts_it(el->subpartitions);
partition_element *subel;
while (subel= (subparts_it++))
{
if (! has_unique_name(subel))
DBUG_RETURN(subel->partition_name);
}
}
DBUG_RETURN(NULL);
}
#endif /* WITH_PARTITION_STORAGE_ENGINE */
/* Copyright (C) 2000,2004 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
#include "partition_element.h"
class partition_info;
/* Some function typedefs */
typedef int (*get_part_id_func)(partition_info *part_info,
uint32 *part_id,
longlong *func_value);
typedef uint32 (*get_subpart_id_func)(partition_info *part_info);
class partition_info : public Sql_alloc
{
public:
/*
* Here comes a set of definitions needed for partitioned table handlers.
*/
List<partition_element> partitions;
List<partition_element> temp_partitions;
List<char> part_field_list;
List<char> subpart_field_list;
/*
If there is no subpartitioning, use only this func to get partition ids.
If there is subpartitioning, use the this func to get partition id when
you have both partition and subpartition fields.
*/
get_part_id_func get_partition_id;
/* Get partition id when we don't have subpartition fields */
get_part_id_func get_part_partition_id;
/*
Get subpartition id when we have don't have partition fields by we do
have subpartition ids.
Mikael said that for given constant tuple
{subpart_field1, ..., subpart_fieldN} the subpartition id will be the
same in all subpartitions
*/
get_subpart_id_func get_subpartition_id;
/* NULL-terminated array of fields used in partitioned expression */
Field **part_field_array;
/* NULL-terminated array of fields used in subpartitioned expression */
Field **subpart_field_array;
/*
Array of all fields used in partition and subpartition expression,
without duplicates, NULL-terminated.
*/
Field **full_part_field_array;
Item *part_expr;
Item *subpart_expr;
Item *item_free_list;
/*
A bitmap of partitions used by the current query.
Usage pattern:
* The handler->extra(HA_EXTRA_RESET) call at query start/end sets all
partitions to be unused.
* Before index/rnd_init(), partition pruning code sets the bits for used
partitions.
*/
MY_BITMAP used_partitions;
union {
longlong *range_int_array;
LIST_PART_ENTRY *list_array;
};
/********************************************
* INTERVAL ANALYSIS
********************************************/
/*
Partitioning interval analysis function for partitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_part_iter_for_interval;
/*
Partitioning interval analysis function for subpartitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_subpart_iter_for_interval;
/*
Valid iff
get_part_iter_for_interval=get_part_iter_for_interval_via_walking:
controls how we'll process "field < C" and "field > C" intervals.
If the partitioning function F is strictly increasing, then for any x, y
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
we can perform partition pruning on the equivalent "F(field) < F(C)".
If the partitioning function not strictly increasing (it is simply
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
i.e. for interval "field < C" we can perform partition pruning for
"F(field) <= F(C)".
*/
bool range_analysis_include_bounds;
/********************************************
* INTERVAL ANALYSIS ENDS
********************************************/
char* part_info_string;
char *part_func_string;
char *subpart_func_string;
uchar *part_state;
partition_element *curr_part_elem;
partition_element *current_partition;
/*
These key_map's are used for Partitioning to enable quick decisions
on whether we can derive more information about which partition to
scan just by looking at what index is used.
*/
key_map all_fields_in_PF, all_fields_in_PPF, all_fields_in_SPF;
key_map some_fields_in_PF;
handlerton *default_engine_type;
Item_result part_result_type;
partition_type part_type;
partition_type subpart_type;
uint part_info_len;
uint part_state_len;
uint part_func_len;
uint subpart_func_len;
uint no_parts;
uint no_subparts;
uint count_curr_subparts;
uint part_error_code;
uint no_list_values;
uint no_part_fields;
uint no_subpart_fields;
uint no_full_part_fields;
/*
This variable is used to calculate the partition id when using
LINEAR KEY/HASH. This functionality is kept in the MySQL Server
but mainly of use to handlers supporting partitioning.
*/
uint16 linear_hash_mask;
bool use_default_partitions;
bool use_default_no_partitions;
bool use_default_subpartitions;
bool use_default_no_subpartitions;
bool default_partitions_setup;
bool defined_max_value;
bool list_of_part_fields;
bool list_of_subpart_fields;
bool linear_hash_ind;
bool fixed;
bool from_openfrm;
partition_info()
: get_partition_id(NULL), get_part_partition_id(NULL),
get_subpartition_id(NULL),
part_field_array(NULL), subpart_field_array(NULL),
full_part_field_array(NULL),
part_expr(NULL), subpart_expr(NULL), item_free_list(NULL),
list_array(NULL),
part_info_string(NULL),
part_func_string(NULL), subpart_func_string(NULL),
part_state(NULL),
curr_part_elem(NULL), current_partition(NULL),
default_engine_type(NULL),
part_result_type(INT_RESULT),
part_type(NOT_A_PARTITION), subpart_type(NOT_A_PARTITION),
part_info_len(0), part_state_len(0),
part_func_len(0), subpart_func_len(0),
no_parts(0), no_subparts(0),
count_curr_subparts(0), part_error_code(0),
no_list_values(0), no_part_fields(0), no_subpart_fields(0),
no_full_part_fields(0), linear_hash_mask(0),
use_default_partitions(TRUE),
use_default_no_partitions(TRUE),
use_default_subpartitions(TRUE),
use_default_no_subpartitions(TRUE),
default_partitions_setup(FALSE),
defined_max_value(FALSE),
list_of_part_fields(FALSE), list_of_subpart_fields(FALSE),
linear_hash_ind(FALSE),
fixed(FALSE),
from_openfrm(FALSE)
{
all_fields_in_PF.clear_all();
all_fields_in_PPF.clear_all();
all_fields_in_SPF.clear_all();
some_fields_in_PF.clear_all();
partitions.empty();
temp_partitions.empty();
part_field_list.empty();
subpart_field_list.empty();
}
~partition_info() {}
bool is_sub_partitioned();
uint get_tot_partitions();
bool set_up_defaults_for_partitioning(handler *file, ulonglong max_rows,
uint start_no);
char *has_unique_names();
private:
bool set_up_default_partitions(handler *file, ulonglong max_rows,
uint start_no);
bool set_up_default_subpartitions(handler *file, ulonglong max_rows);
char *create_default_partition_names(uint part_no, uint no_parts,
uint start_no, bool is_subpart);
bool has_unique_name(partition_element *element);
};
/*
Answers the question if subpartitioning is used for a certain table
SYNOPSIS
is_sub_partitioned()
part_info A reference to the partition_info struct
RETURN VALUE
Returns true if subpartitioning used and false otherwise
DESCRIPTION
A routine to check for subpartitioning for improved readability of code
*/
inline
bool partition_info::is_sub_partitioned()
{
return (subpart_type == NOT_A_PARTITION ? FALSE : TRUE);
}
/*
Returns the total number of partitions on the leaf level.
SYNOPSIS
get_tot_partitions()
part_info A reference to the partition_info struct
RETURN VALUE
Returns the number of partitions
DESCRIPTION
A routine to check for number of partitions for improved readability
of code
*/
inline
uint partition_info::get_tot_partitions()
{
return no_parts * (is_sub_partitioned() ? no_subparts : 1);
}
uint32 get_next_partition_id_range(struct st_partition_iter* part_iter);
/* Initialize the iterator to return a single partition with given part_id */
static inline void init_single_partition_iterator(uint32 part_id,
PARTITION_ITERATOR *part_iter)
{
part_iter->part_nums.start= part_id;
part_iter->part_nums.end= part_id+1;
part_iter->get_next= get_next_partition_id_range;
}
/* Initialize the iterator to enumerate all partitions */
static inline
void init_all_partitions_iterator(partition_info *part_info,
PARTITION_ITERATOR *part_iter)
{
part_iter->part_nums.start= 0;
part_iter->part_nums.end= part_info->no_parts;
part_iter->get_next= get_next_partition_id_range;
}
......@@ -181,59 +181,6 @@ bool is_name_in_list(char *name,
}
/*
A support function to check partition names for duplication in a
partitioned table
SYNOPSIS
are_partitions_in_table()
new_part_info New partition info
old_part_info Old partition info
RETURN VALUES
TRUE Duplicate names found
FALSE Duplicate names not found
DESCRIPTION
Can handle that the new and old parts are the same in which case it
checks that the list of names in the partitions doesn't contain any
duplicated names.
*/
char *are_partitions_in_table(partition_info *new_part_info,
partition_info *old_part_info)
{
uint no_new_parts= new_part_info->partitions.elements;
uint no_old_parts= old_part_info->partitions.elements;
uint new_count, old_count;
List_iterator<partition_element> new_parts_it(new_part_info->partitions);
bool is_same_part_info= (new_part_info == old_part_info);
DBUG_ENTER("are_partitions_in_table");
DBUG_PRINT("enter", ("%u", no_new_parts));
new_count= 0;
do
{
List_iterator<partition_element> old_parts_it(old_part_info->partitions);
char *new_name= (new_parts_it++)->partition_name;
DBUG_PRINT("info", ("%s", new_name));
new_count++;
old_count= 0;
do
{
char *old_name= (old_parts_it++)->partition_name;
old_count++;
if (is_same_part_info && old_count == new_count)
break;
if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
{
DBUG_PRINT("info", ("old_name = %s, not ok", old_name));
DBUG_RETURN(old_name);
}
} while (old_count < no_old_parts);
} while (new_count < no_new_parts);
DBUG_RETURN(NULL);
}
/*
Set-up defaults for partitions.
......@@ -262,7 +209,7 @@ bool partition_default_handling(TABLE *table, partition_info *part_info,
DBUG_RETURN(TRUE);
}
}
else if (is_sub_partitioned(part_info) &&
else if (part_info->is_sub_partitioned() &&
part_info->use_default_no_subpartitions)
{
uint no_parts;
......@@ -274,8 +221,8 @@ bool partition_default_handling(TABLE *table, partition_info *part_info,
part_info->no_subparts= no_parts / part_info->no_parts;
DBUG_ASSERT((no_parts % part_info->no_parts) == 0);
}
set_up_defaults_for_partitioning(part_info, table->file,
(ulonglong)0, (uint)0);
part_info->set_up_defaults_for_partitioning(table->file,
(ulonglong)0, (uint)0);
DBUG_RETURN(FALSE);
}
......@@ -660,244 +607,9 @@ end:
}
/*
Create a memory area where default partition names are stored and fill it
up with the names.
SYNOPSIS
create_default_partition_names()
no_parts Number of partitions
start_no Starting partition number
subpart Is it subpartitions
RETURN VALUE
A pointer to the memory area of the default partition names
DESCRIPTION
A support routine for the partition code where default values are
generated.
The external routine needing this code is check_partition_info
*/
#define MAX_PART_NAME_SIZE 8
static char *create_default_partition_names(uint no_parts, uint start_no,
bool is_subpart)
{
char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE);
char *move_ptr= ptr;
uint i= 0;
DBUG_ENTER("create_default_partition_names");
if (likely(ptr != 0))
{
do
{
if (is_subpart)
my_sprintf(move_ptr, (move_ptr,"sp%u", (start_no + i)));
else
my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
move_ptr+=MAX_PART_NAME_SIZE;
} while (++i < no_parts);
}
else
{
mem_alloc_error(no_parts*MAX_PART_NAME_SIZE);
}
DBUG_RETURN(ptr);
}
/*
Set up all the default partitions not set-up by the user in the SQL
statement. Also perform a number of checks that the user hasn't tried
to use default values where no defaults exists.
SYNOPSIS
set_up_default_partitions()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine only accepts HASH and KEY partitioning and thus there is
no subpartitioning if this routine is successful.
The external routine needing this code is check_partition_info
*/
static bool set_up_default_partitions(partition_info *part_info,
handler *file, ulonglong max_rows,
uint start_no)
{
uint no_parts, i;
char *default_name;
bool result= TRUE;
DBUG_ENTER("set_up_default_partitions");
if (part_info->part_type != HASH_PARTITION)
{
const char *error_string;
if (part_info->part_type == RANGE_PARTITION)
error_string= partition_keywords[PKW_RANGE].str;
else
error_string= partition_keywords[PKW_LIST].str;
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
goto end;
}
if (part_info->no_parts == 0)
part_info->no_parts= file->get_default_no_partitions(max_rows);
no_parts= part_info->no_parts;
if (unlikely(no_parts > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely((!(default_name= create_default_partition_names(no_parts,
start_no,
FALSE)))))
goto end;
i= 0;
do
{
partition_element *part_elem= new partition_element();
if (likely(part_elem != 0 &&
(!part_info->partitions.push_back(part_elem))))
{
part_elem->engine_type= part_info->default_engine_type;
part_elem->partition_name= default_name;
default_name+=MAX_PART_NAME_SIZE;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Set up all the default subpartitions not set-up by the user in the SQL
statement. Also perform a number of checks that the default partitioning
becomes an allowed partitioning scheme.
SYNOPSIS
set_up_default_subpartitions()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
The routine uses the underlying handler of the partitioning to define
the default number of partitions. For some handlers this requires
knowledge of the maximum number of rows to be stored in the table.
This routine is only called for RANGE or LIST partitioning and those
need to be specified so only subpartitions are specified.
The external routine needing this code is check_partition_info
*/
static bool set_up_default_subpartitions(partition_info *part_info,
handler *file, ulonglong max_rows)
{
uint i, j, no_parts, no_subparts;
char *default_name, *name_ptr;
bool result= TRUE;
partition_element *part_elem;
List_iterator<partition_element> part_it(part_info->partitions);
DBUG_ENTER("set_up_default_subpartitions");
if (part_info->no_subparts == 0)
part_info->no_subparts= file->get_default_no_partitions(max_rows);
no_parts= part_info->no_parts;
no_subparts= part_info->no_subparts;
if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (unlikely((!(default_name=
create_default_partition_names(no_subparts, (uint)0, TRUE)))))
goto end;
i= 0;
do
{
part_elem= part_it++;
j= 0;
name_ptr= default_name;
do
{
partition_element *subpart_elem= new partition_element();
if (likely(subpart_elem != 0 &&
(!part_elem->subpartitions.push_back(subpart_elem))))
{
subpart_elem->engine_type= part_info->default_engine_type;
subpart_elem->partition_name= name_ptr;
name_ptr+= MAX_PART_NAME_SIZE;
}
else
{
mem_alloc_error(sizeof(partition_element));
goto end;
}
} while (++j < no_subparts);
} while (++i < no_parts);
result= FALSE;
end:
DBUG_RETURN(result);
}
/*
Support routine for check_partition_info
SYNOPSIS
set_up_defaults_for_partitioning()
part_info The reference to all partition information
file A reference to a handler of the table
max_rows Maximum number of rows stored in the table
start_no Starting partition number
RETURN VALUE
TRUE Error, attempted default values not possible
FALSE Ok, default partitions set-up
DESCRIPTION
Set up defaults for partition or subpartition (cannot set-up for both,
this will return an error.
*/
bool set_up_defaults_for_partitioning(partition_info *part_info,
handler *file,
ulonglong max_rows, uint start_no)
{
DBUG_ENTER("set_up_defaults_for_partitioning");
if (!part_info->default_partitions_setup)
{
part_info->default_partitions_setup= TRUE;
if (part_info->use_default_partitions)
DBUG_RETURN(set_up_default_partitions(part_info, file, max_rows,
start_no));
if (is_sub_partitioned(part_info) && part_info->use_default_subpartitions)
DBUG_RETURN(set_up_default_subpartitions(part_info, file, max_rows));
}
DBUG_RETURN(FALSE);
}
/*
......@@ -967,7 +679,7 @@ bool check_partition_info(partition_info *part_info,handlerton **eng_type,
char *same_name;
DBUG_ENTER("check_partition_info");
if (unlikely(is_sub_partitioned(part_info) &&
if (unlikely(part_info->is_sub_partitioned() &&
(!(part_info->part_type == RANGE_PARTITION ||
part_info->part_type == LIST_PARTITION))))
{
......@@ -975,17 +687,17 @@ bool check_partition_info(partition_info *part_info,handlerton **eng_type,
my_error(ER_SUBPARTITION_ERROR, MYF(0));
goto end;
}
if (unlikely(set_up_defaults_for_partitioning(part_info, file,
max_rows, (uint)0)))
if (unlikely(part_info->set_up_defaults_for_partitioning(file,
max_rows,
(uint)0)))
goto end;
tot_partitions= get_tot_partitions(part_info);
tot_partitions= part_info->get_tot_partitions();
if (unlikely(tot_partitions > MAX_PARTITIONS))
{
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto end;
}
if (((same_name= are_partitions_in_table(part_info,
part_info))))
if (same_name= part_info->has_unique_names())
{
my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name);
goto end;
......@@ -1001,7 +713,7 @@ bool check_partition_info(partition_info *part_info,handlerton **eng_type,
do
{
partition_element *part_elem= part_it++;
if (!is_sub_partitioned(part_info))
if (!part_info->is_sub_partitioned())
{
if (part_elem->engine_type == NULL)
part_elem->engine_type= part_info->default_engine_type;
......@@ -1194,7 +906,7 @@ static bool create_full_part_field_array(TABLE *table,
bool result= FALSE;
DBUG_ENTER("create_full_part_field_array");
if (!is_sub_partitioned(part_info))
if (!part_info->is_sub_partitioned())
{
part_info->full_part_field_array= part_info->part_field_array;
part_info->no_full_part_fields= part_info->no_part_fields;
......@@ -1751,7 +1463,7 @@ static void set_up_partition_key_maps(TABLE *table,
part_info->all_fields_in_PF.set_bit(i);
if (some_fields)
part_info->some_fields_in_PF.set_bit(i);
if (is_sub_partitioned(part_info))
if (part_info->is_sub_partitioned())
{
check_fields_in_PF(part_info->part_field_array,
&all_fields, &some_fields);
......@@ -1789,7 +1501,7 @@ static void set_up_partition_func_pointers(partition_info *part_info)
{
DBUG_ENTER("set_up_partition_func_pointers");
if (is_sub_partitioned(part_info))
if (part_info->is_sub_partitioned())
{
if (part_info->part_type == RANGE_PARTITION)
{
......@@ -2011,7 +1723,7 @@ bool fix_partition_func(THD *thd, const char* name, TABLE *table,
DBUG_RETURN(TRUE);
}
}
if (is_sub_partitioned(part_info))
if (part_info->is_sub_partitioned())
{
DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
/*
......@@ -2442,7 +2154,7 @@ char *generate_partition_syntax(partition_info *part_info,
err+= add_int(fptr, part_info->no_parts);
err+= add_space(fptr);
}
if (is_sub_partitioned(part_info))
if (part_info->is_sub_partitioned())
{
err+= add_subpartition_by(fptr);
/* Must be hash partitioning for subpartitioning */
......@@ -2528,9 +2240,9 @@ char *generate_partition_syntax(partition_info *part_info,
err+= add_string(fptr, part_elem->partition_name);
err+= add_space(fptr);
err+= add_partition_values(fptr, part_info, part_elem);
if (!is_sub_partitioned(part_info))
if (!part_info->is_sub_partitioned())
err+= add_partition_options(fptr, part_elem);
if (is_sub_partitioned(part_info) &&
if (part_info->is_sub_partitioned() &&
(write_all || (!part_info->use_default_subpartitions)))
{
err+= add_space(fptr);
......@@ -3680,7 +3392,7 @@ void get_partition_set(const TABLE *table, byte *buf, const uint index,
const key_range *key_spec, part_id_range *part_spec)
{
partition_info *part_info= table->part_info;
uint no_parts= get_tot_partitions(part_info);
uint no_parts= part_info->get_tot_partitions();
uint i, part_id;
uint sub_part= no_parts;
uint32 part_part= no_parts;
......@@ -3720,7 +3432,7 @@ void get_partition_set(const TABLE *table, byte *buf, const uint index,
prune_partition_set(table, part_spec);
DBUG_VOID_RETURN;
}
else if (is_sub_partitioned(part_info))
else if (part_info->is_sub_partitioned())
{
if (part_info->all_fields_in_SPF.is_set(index))
sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
......@@ -3766,7 +3478,7 @@ void get_partition_set(const TABLE *table, byte *buf, const uint index,
prune_partition_set(table, part_spec);
DBUG_VOID_RETURN;
}
else if (is_sub_partitioned(part_info))
else if (part_info->is_sub_partitioned())
{
if (check_part_func_bound(part_info->subpart_field_array))
sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
......@@ -4187,7 +3899,7 @@ static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
do
{
partition_element *part_elem= part_it++;
if (is_sub_partitioned(part_info) &&
if (part_info->is_sub_partitioned() &&
part_elem->subpartitions.elements)
{
uint no_subparts= part_elem->subpartitions.elements;
......@@ -4377,7 +4089,7 @@ uint prep_alter_part_table(THD *thd, TABLE *table, ALTER_INFO *alter_info,
my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
DBUG_RETURN(TRUE);
}
if (is_sub_partitioned(tab_part_info))
if (tab_part_info->is_sub_partitioned())
{
if (alt_part_info->no_subparts == 0)
alt_part_info->no_subparts= tab_part_info->no_subparts;
......@@ -4395,10 +4107,9 @@ uint prep_alter_part_table(THD *thd, TABLE *table, ALTER_INFO *alter_info,
DBUG_RETURN(TRUE);
}
alt_part_info->part_type= tab_part_info->part_type;
if (set_up_defaults_for_partitioning(alt_part_info,
table->file,
ULL(0),
tab_part_info->no_parts))
if (alt_part_info->set_up_defaults_for_partitioning(table->file,
ULL(0),
tab_part_info->no_parts))
{
DBUG_RETURN(TRUE);
}
......@@ -5606,7 +5317,7 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
uint partition_id= 0;
List_iterator<partition_element> it(part_info->partitions);
if (is_sub_partitioned(part_info))
if (part_info->is_sub_partitioned())
{
partition_element *head_pe;
while ((head_pe= it++))
......
/* Copyright (C) 2005 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef __GNUC__
#pragma interface /* gcc class implementation */
#endif
/* Flags for partition handlers */
#define HA_CAN_PARTITION (1 << 0) /* Partition support */
#define HA_CAN_UPDATE_PARTITION_KEY (1 << 1)
#define HA_CAN_PARTITION_UNIQUE (1 << 2)
#define HA_USE_AUTO_PARTITION (1 << 3)
/*
HA_PARTITION_FUNCTION_SUPPORTED indicates that the function is
supported at all.
HA_FAST_CHANGE_PARTITION means that optimised variants of the changes
exists but they are not necessarily done online.
HA_ONLINE_DOUBLE_WRITE means that the handler supports writing to both
the new partition and to the old partitions when updating through the
old partitioning schema while performing a change of the partitioning.
This means that we can support updating of the table while performing
the copy phase of the change. For no lock at all also a double write
from new to old must exist and this is not required when this flag is
set.
This is actually removed even before it was introduced the first time.
The new idea is that handlers will handle the lock level already in
store_lock for ALTER TABLE partitions.
HA_PARTITION_ONE_PHASE is a flag that can be set by handlers that take
care of changing the partitions online and in one phase. Thus all phases
needed to handle the change are implemented inside the storage engine.
The storage engine must also support auto-discovery since the frm file
is changed as part of the change and this change must be controlled by
the storage engine. A typical engine to support this is NDB (through
WL #2498).
*/
#define HA_PARTITION_FUNCTION_SUPPORTED (1L << 12)
#define HA_FAST_CHANGE_PARTITION (1L << 13)
#define HA_PARTITION_ONE_PHASE (1L << 14)
/*typedef struct {
ulonglong data_file_length;
ulonglong max_data_file_length;
ulonglong index_file_length;
ulonglong delete_length;
ha_rows records;
ulong mean_rec_length;
time_t create_time;
time_t check_time;
time_t update_time;
ulonglong check_sum;
} PARTITION_INFO;
*/
typedef struct {
longlong list_value;
uint32 partition_id;
} LIST_PART_ENTRY;
typedef struct {
uint32 start_part;
uint32 end_part;
} part_id_range;
struct st_partition_iter;
#define NOT_A_PARTITION_ID ((uint32)-1)
bool is_partition_in_list(char *part_name, List<char> list_part_names);
char *are_partitions_in_table(partition_info *new_part_info,
partition_info *old_part_info);
bool check_reorganise_list(partition_info *new_part_info,
partition_info *old_part_info,
List<char> list_part_names);
handler *get_ha_partition(partition_info *part_info);
int get_parts_for_update(const byte *old_data, byte *new_data,
const byte *rec0, partition_info *part_info,
uint32 *old_part_id, uint32 *new_part_id,
longlong *func_value);
int get_part_for_delete(const byte *buf, const byte *rec0,
partition_info *part_info, uint32 *part_id);
bool check_partition_info(partition_info *part_info,handlerton **eng_type,
handler *file, ulonglong max_rows);
bool fix_partition_func(THD *thd, const char *name, TABLE *table,
bool create_table_ind);
char *generate_partition_syntax(partition_info *part_info,
uint *buf_length, bool use_sql_alloc,
bool write_all);
bool partition_key_modified(TABLE *table, List<Item> &fields);
void get_partition_set(const TABLE *table, byte *buf, const uint index,
const key_range *key_spec,
part_id_range *part_spec);
void get_full_part_id_from_key(const TABLE *table, byte *buf,
KEY *key_info,
const key_range *key_spec,
part_id_range *part_spec);
bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
uint part_info_len,
uchar *part_state, uint part_state_len,
TABLE *table, bool is_create_table_ind,
handlerton *default_db_type);
void make_used_partitions_str(partition_info *part_info, String *parts_str);
uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint);
uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint);
/*
A "Get next" function for partition iterator.
SYNOPSIS
partition_iter_func()
part_iter Partition iterator, you call only "iter.get_next(&iter)"
RETURN
NOT_A_PARTITION_ID if there are no more partitions.
[sub]partition_id of the next partition
*/
typedef uint32 (*partition_iter_func)(st_partition_iter* part_iter);
/*
Partition set iterator. Used to enumerate a set of [sub]partitions
obtained in partition interval analysis (see get_partitions_in_range_iter).
For the user, the only meaningful field is get_next, which may be used as
follows:
part_iterator.get_next(&part_iterator);
Initialization is done by any of the following calls:
- get_partitions_in_range_iter-type function call
- init_single_partition_iterator()
- init_all_partitions_iterator()
Cleanup is not needed.
*/
typedef struct st_partition_iter
{
partition_iter_func get_next;
struct st_part_num_range
{
uint32 start;
uint32 end;
};
struct st_field_value_range
{
longlong start;
longlong end;
};
union
{
struct st_part_num_range part_nums;
struct st_field_value_range field_vals;
};
partition_info *part_info;
} PARTITION_ITERATOR;
/*
Get an iterator for set of partitions that match given field-space interval
SYNOPSIS
get_partitions_in_range_iter()
part_info Partitioning info
is_subpart
min_val Left edge, field value in opt_range_key format.
max_val Right edge, field value in opt_range_key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Functions with this signature are used to perform "Partitioning Interval
Analysis". This analysis is applicable for any type of [sub]partitioning
by some function of a single fieldX. The idea is as follows:
Given an interval "const1 <=? fieldX <=? const2", find a set of partitions
that may contain records with value of fieldX within the given interval.
The min_val, max_val and flags parameters specify the interval.
The set of partitions is returned by initializing an iterator in *part_iter
NOTES
There are currently two functions of this type:
- get_part_iter_for_interval_via_walking
- get_part_iter_for_interval_via_mapping
RETURN
0 - No matching partitions, iterator not initialized
1 - Some partitions would match, iterator intialized for traversing them
-1 - All partitions would match, iterator not initialized
*/
typedef int (*get_partitions_in_range_iter)(partition_info *part_info,
bool is_subpart,
char *min_val, char *max_val,
uint flags,
PARTITION_ITERATOR *part_iter);
#include "partition_info.h"
......@@ -3770,7 +3770,7 @@ static int get_schema_partitions_record(THD *thd, struct st_table_list *tables,
table->field[9]->set_notnull();
}
if (is_sub_partitioned(part_info))
if (part_info->is_sub_partitioned())
{
/* Subpartition method */
if (part_info->list_of_subpart_fields)
......
......@@ -40,7 +40,7 @@ ADD_EXECUTABLE(mysqld ../sql-common/client.c derror.cc des_key_file.cc discover.
sql_state.c sql_string.cc sql_table.cc sql_test.cc sql_trigger.cc sql_udf.cc sql_union.cc
sql_update.cc sql_view.cc sql_yacc.h sql_yacc.cc strfunc.cc table.cc thr_malloc.cc time.cc tztime.cc
uniques.cc unireg.cc item_xmlfunc.cc rpl_tblmap.cc sql_binlog.cc event_executor.cc
event_timed.cc sql_tablespace.cc event.cc ../sql-common/my_user.c
event_timed.cc sql_tablespace.cc event.cc ../sql-common/my_user.c partition_info.cpp
${PROJECT_SOURCE_DIR}/sql/sql_yacc.cc
${PROJECT_SOURCE_DIR}/sql/sql_yacc.h
${PROJECT_SOURCE_DIR}/include/mysqld_error.h
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment