Commit 59baf97d authored by Igor Babaev's avatar Igor Babaev

Post-review fixes.

parent ecba0ec8
......@@ -37,7 +37,6 @@ C_MODE_START
#define MAX_KEY_CACHE_PARTITIONS 64
/* The structure to get statistical data about a key cache */
typedef struct st_key_cache_statistics
......@@ -53,6 +52,8 @@ typedef struct st_key_cache_statistics
ulonglong writes; /* number of actual writes from buffers into files */
} KEY_CACHE_STATISTICS;
#define NO_LONG_KEY_CACHE_STAT_VARIABLES 3
/* The type of a key cache object */
typedef enum key_cache_type
{
......@@ -61,45 +62,79 @@ typedef enum key_cache_type
} KEY_CACHE_TYPE;
/*
An object of the type KEY_CACHE_FUNCS contains pointers to all functions
from the key cache interface.
Currently a key cache can be of two types: simple and partitioned.
For each of them its own static structure of the type KEY_CACHE_FUNCS is
defined . The structures contain the pointers to the implementations of
the interface functions used by simple key caches and partitioned key
caches respectively. Pointers to these structures are assigned to key cache
objects at the time of their creation.
*/
typedef struct st_key_cache_funcs
{
int (*init) (void *, uint key_cache_block_size,
typedef
int (*INIT_KEY_CACHE)
(void *, uint key_cache_block_size,
size_t use_mem, uint division_limit, uint age_threshold);
int (*resize) (void *, uint key_cache_block_size,
typedef
int (*RESIZE_KEY_CACHE)
(void *, uint key_cache_block_size,
size_t use_mem, uint division_limit, uint age_threshold);
void (*change_param) (void *keycache_cb,
typedef
void (*CHANGE_KEY_CACHE_PARAM)
(void *keycache_cb,
uint division_limit, uint age_threshold);
uchar* (*read) (void *keycache_cb,
typedef
uchar* (*KEY_CACHE_READ)
(void *keycache_cb,
File file, my_off_t filepos, int level,
uchar *buff, uint length,
uint block_length, int return_buffer);
int (*insert) (void *keycache_cb,
typedef
int (*KEY_CACHE_INSERT)
(void *keycache_cb,
File file, my_off_t filepos, int level,
uchar *buff, uint length);
int (*write) (void *keycache_cb,
typedef
int (*KEY_CACHE_WRITE)
(void *keycache_cb,
File file, void *file_extra,
my_off_t filepos, int level,
uchar *buff, uint length,
uint block_length, int force_write);
int (*flush) (void *keycache_cb,
typedef
int (*FLUSH_KEY_BLOCKS)
(void *keycache_cb,
int file, void *file_extra,
enum flush_type type);
int (*reset_counters) (const char *name, void *keycache_cb);
void (*end) (void *keycache_cb, my_bool cleanup);
void (*get_stats) (void *keycache_cb, uint partition_no,
typedef
int (*RESET_KEY_CACHE_COUNTERS)
(const char *name, void *keycache_cb);
typedef
void (*END_KEY_CACHE)
(void *keycache_cb, my_bool cleanup);
typedef
void (*GET_KEY_CACHE_STATISTICS)
(void *keycache_cb, uint partition_no,
KEY_CACHE_STATISTICS *key_cache_stats);
ulonglong (*get_stat_val) (void *keycache_cb, uint var_no);
typedef
ulonglong (*GET_KEY_CACHE_STAT_VALUE)
(void *keycache_cb, uint var_no);
/*
An object of the type KEY_CACHE_FUNCS contains pointers to all functions
from the key cache interface.
Currently a key cache can be of two types: simple and partitioned.
For each of them its own static structure of the type KEY_CACHE_FUNCS is
defined . The structures contain the pointers to the implementations of
the interface functions used by simple key caches and partitioned key
caches respectively. Pointers to these structures are assigned to key cache
objects at the time of their creation.
*/
typedef struct st_key_cache_funcs
{
INIT_KEY_CACHE init;
RESIZE_KEY_CACHE resize;
CHANGE_KEY_CACHE_PARAM change_param;
KEY_CACHE_READ read;
KEY_CACHE_INSERT insert;
KEY_CACHE_WRITE write;
FLUSH_KEY_BLOCKS flush;
RESET_KEY_CACHE_COUNTERS reset_counters;
END_KEY_CACHE end;
GET_KEY_CACHE_STATISTICS get_stats;
GET_KEY_CACHE_STAT_VALUE get_stat_val;
} KEY_CACHE_FUNCS;
......
......@@ -672,12 +672,12 @@ insert into t2 values (2000, 3, 'yyyy');
select * from information_schema.key_caches where key_cache_name like "keycache2"
and partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
keycache2 NULL NULL 1048576 1024 0 # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 6 # 0 6 6 3 3
select * from information_schema.key_caches where key_cache_name like "key%"
and partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
keycache1 7 NULL 262143 2048 25 # 0 2082 25 1071 19
keycache2 NULL NULL 1048576 1024 0 # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 6 # 0 6 6 3 3
cache index t2 in keycache1;
Table Op Msg_type Msg_text
test.t2 assign_to_keycache status OK
......@@ -718,7 +718,7 @@ KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUS
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache1 7 NULL 262143 2048 # # 0 3201 43 1594 30
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_cache_block_size=2*1024;
insert into t2 values (7000, 3, 'yyyy');
select * from information_schema.key_caches where partition_number is null;
......@@ -726,66 +726,72 @@ KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUS
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache1 7 NULL 262143 2048 # # 0 6 6 3 3
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_cache_block_size=8*1024;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache1 3 NULL 262143 8192 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
insert into t2 values (8000, 3, 'yyyy');
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache1 3 NULL 262143 8192 # # 0 6 5 3 3
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_buffer_size=64*1024;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_cache_block_size=2*1024;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache1 3 NULL 65535 2048 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_cache_block_size=8*1024;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_buffer_size=0;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_cache_block_size=8*1024;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_buffer_size=0;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_buffer_size=128*1024;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache1 1 NULL 131072 8192 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
set global keycache1.key_cache_block_size=1024;
select * from information_schema.key_caches where partition_number is null;
KEY_CACHE_NAME PARTITIONS PARTITION_NUMBER FULL_SIZE BLOCK_SIZE USED_BLOCKS UNUSED_BLOCKS DIRTY_BLOCKS READ_REQUESTS READS WRITE_REQUESTS WRITES
default 2 NULL 32768 1024 # # 0 3172 24 1552 18
small NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache1 7 NULL 131068 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 0 0 0 0
keycache2 NULL NULL 1048576 1024 # # 0 6 6 3 3
drop table t1,t2;
set global keycache1.key_buffer_size=0;
set global keycache2.key_buffer_size=0;
......
......@@ -469,6 +469,8 @@ insert into t2 values (7000, 3, 'yyyy');
select * from information_schema.key_caches where partition_number is null;
set global keycache1.key_cache_block_size=8*1024;
--replace_column 6 # 7 #
select * from information_schema.key_caches where partition_number is null;
insert into t2 values (8000, 3, 'yyyy');
--replace_column 6 # 7 #
select * from information_schema.key_caches where partition_number is null;
......
......@@ -49,6 +49,7 @@
One cache can handle many files.
It must contain buffers of the same blocksize.
init_key_cache() should be used to init cache handler.
The free list (free_block_list) is a stack like structure.
......@@ -151,7 +152,7 @@ typedef struct st_keycache_wqueue
/* Control block for a simple (non-partitioned) key cache */
typedef struct st_s_key_cache_cb
typedef struct st_simple_key_cache_cb
{
my_bool key_cache_inited; /* <=> control block is allocated */
my_bool in_resize; /* true during resize operation */
......@@ -202,7 +203,7 @@ typedef struct st_s_key_cache_cb
int blocks; /* max number of blocks in the cache */
uint hash_factor; /* factor used to calculate hash function */
my_bool in_init; /* Set to 1 in MySQL during init/resize */
} S_KEY_CACHE_CB;
} SIMPLE_KEY_CACHE_CB;
/*
Some compilation flags have been added specifically for this module
......@@ -314,12 +315,8 @@ KEY_CACHE *dflt_key_cache= &dflt_key_cache_var;
#define FLUSH_CACHE 2000 /* sort this many blocks at once */
static int flush_all_key_blocks(S_KEY_CACHE_CB *keycache);
/*
static void s_change_key_cache_param(void *keycache_cb, uint division_limit,
uint age_threshold);
*/
static void s_end_key_cache(void *keycache_cb, my_bool cleanup);
static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache);
static void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup);
#ifdef THREAD
static void wait_on_queue(KEYCACHE_WQUEUE *wqueue,
pthread_mutex_t *mutex);
......@@ -328,9 +325,9 @@ static void release_whole_queue(KEYCACHE_WQUEUE *wqueue);
#define wait_on_queue(wqueue, mutex) do {} while (0)
#define release_whole_queue(wqueue) do {} while (0)
#endif
static void free_block(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block);
static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block);
#if !defined(DBUG_OFF)
static void test_key_cache(S_KEY_CACHE_CB *keycache,
static void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
const char *where, my_bool lock);
#endif
#define KEYCACHE_BASE_EXPR(f, pos) \
......@@ -433,7 +430,7 @@ static int keycache_pthread_cond_signal(pthread_cond_t *cond);
#define inline /* disabled inline for easier debugging */
static int fail_block(BLOCK_LINK *block);
static int fail_hlink(HASH_LINK *hlink);
static int cache_empty(S_KEY_CACHE_CB *keycache);
static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache);
#endif
......@@ -447,8 +444,8 @@ static inline uint next_power(uint value)
Initialize a simple key cache
SYNOPSIS
s_init_key_cache()
keycache_cb pointer to the control block of a simple key cache
init_simple_key_cache()
keycache pointer to the control block of a simple key cache
key_cache_block_size size of blocks to keep cached data
use_mem memory to use for the key cache buferrs/structures
division_limit division limit (may be zero)
......@@ -458,8 +455,8 @@ static inline uint next_power(uint value)
This function is the implementation of the init_key_cache interface
function that is employed by simple (non-partitioned) key caches.
The function builds a simple key cache and initializes the control block
structure of the type S_KEY_CACHE_CB that is used for this key cache.
The parameter keycache_cb is supposed to point to this structure.
structure of the type SIMPLE_KEY_CACHE_CB that is used for this key cache.
The parameter keycache is supposed to point to this structure.
The parameter key_cache_block_size specifies the size of the blocks in
the key cache to be built. The parameters division_limit and age_threshhold
determine the initial values of those characteristics of the key cache
......@@ -478,19 +475,17 @@ static inline uint next_power(uint value)
It's assumed that no two threads call this function simultaneously
referring to the same key cache handle.
*/
static
int s_init_key_cache(void *keycache_cb, uint key_cache_block_size,
int init_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, uint key_cache_block_size,
size_t use_mem, uint division_limit,
uint age_threshold)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
ulong blocks, hash_links;
size_t length;
int error;
DBUG_ENTER("init_key_cache");
DBUG_ENTER("init_simple_key_cache");
DBUG_ASSERT(key_cache_block_size >= 512);
KEYCACHE_DEBUG_OPEN;
......@@ -653,16 +648,16 @@ err:
Prepare for resizing a simple key cache
SYNOPSIS
s_prepare_resize_key_cache()
keycache_cb pointer to the control block of a simple key cache
prepare_resize_simple_key_cache()
keycache pointer to the control block of a simple key cache
with_resize_queue <=> resize queue is used
release_lock <=> release the key cache lock before return
DESCRIPTION
This function flushes all dirty pages from a simple key cache and after
this it destroys the key cache calling s_end_key_cache. The function
considers the parameter keycache_cb as a pointer to the control block
structure of the type S_KEY_CACHE_CB for this key cache.
this it destroys the key cache calling end_simple_key_cache. The function
takes the parameter keycache as a pointer to the control block
structure of the type SIMPLE_KEY_CACHE_CB for this key cache.
The parameter with_resize_queue determines weather the resize queue is
involved (MySQL server never uses this queue). The parameter release_lock
says weather the key cache lock must be released before return from
......@@ -673,19 +668,18 @@ err:
1 - otherwise.
NOTES
This function is the called by s_resize_key_cache and p_resize_key_cache
that resize simple and partitioned key caches respectively.
This function is the called by resize_simple_key_cache and
resize_partitioned_key_cache that resize simple and partitioned key caches
respectively.
*/
static
int s_prepare_resize_key_cache(void *keycache_cb,
int prepare_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
my_bool with_resize_queue,
my_bool release_lock)
{
int res= 0;
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
DBUG_ENTER("s_prepare_resize_key_cache");
DBUG_ENTER("prepare_resize_simple_key_cache");
keycache_pthread_mutex_lock(&keycache->cache_lock);
......@@ -749,7 +743,7 @@ int s_prepare_resize_key_cache(void *keycache_cb,
KEYCACHE_DBUG_ASSERT(keycache->cnt_for_resize_op == 0);
#endif
s_end_key_cache(keycache_cb, 0);
end_simple_key_cache(keycache, 0);
finish:
if (release_lock)
......@@ -762,16 +756,16 @@ finish:
Finalize resizing a simple key cache
SYNOPSIS
s_finish_resize_key_cache()
keycache_cb pointer to the control block of a simple key cache
finish_resize_simple_key_cache()
keycache pointer to the control block of a simple key cache
with_resize_queue <=> resize queue is used
acquire_lock <=> acquire the key cache lock at start
DESCRIPTION
This function performs finalizing actions for the operation of
resizing a simple key cache. The function considers the parameter
keycache_cb as a pointer to the control block structure of the type
S_KEY_CACHE_CB for this key cache. The function sets the flag
resizing a simple key cache. The function takes the parameter
keycache as a pointer to the control block structure of the type
SIMPLE_KEY_CACHE_CB for this key cache. The function sets the flag
in_resize in this structure to FALSE.
The parameter with_resize_queue determines weather the resize queue
is involved (MySQL server never uses this queue).
......@@ -782,22 +776,23 @@ finish:
none
NOTES
This function is the called by s_resize_key_cache and p_resize_key_cache
that resize simple and partitioned key caches respectively.
This function is the called by resize_simple_key_cache and
resize_partitioned_key_cache that resize simple and partitioned key caches
respectively.
*/
static
void s_finish_resize_key_cache(void *keycache_cb,
void finish_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
my_bool with_resize_queue,
my_bool acquire_lock)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
DBUG_ENTER("s_finish_resize_key_cache");
DBUG_ENTER("finish_resize_simple_key_cache");
if (acquire_lock)
keycache_pthread_mutex_lock(&keycache->cache_lock);
safe_mutex_assert_owner(&keycache->cache_lock);
/*
Mark the resize finished. This allows other threads to start a
resize or to request new cache blocks.
......@@ -820,8 +815,8 @@ void s_finish_resize_key_cache(void *keycache_cb,
Resize a simple key cache
SYNOPSIS
s_resize_key_cache()
keycache_cb pointer to the control block of a simple key cache
resize_simple_key_cache()
keycache pointer to the control block of a simple key cache
key_cache_block_size size of blocks to keep cached data
use_mem memory to use for the key cache buffers/structures
division_limit new division limit (if not zero)
......@@ -830,8 +825,8 @@ void s_finish_resize_key_cache(void *keycache_cb,
DESCRIPTION
This function is the implementation of the resize_key_cache interface
function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for the simple key
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key
cache to be resized.
The parameter key_cache_block_size specifies the new size of the blocks in
the key cache. The parameters division_limit and age_threshold
......@@ -845,47 +840,45 @@ void s_finish_resize_key_cache(void *keycache_cb,
0 - otherwise.
NOTES.
The function first calls the function s_prepare_resize_key_cache
The function first calls the function prepare_resize_simple_key_cache
to flush all dirty blocks from key cache, to free memory used
for key cache blocks and auxiliary structures. After this the
function builds a new key cache with new parameters.
This implementation doesn't block the calls and executions of other
functions from the key cache interface. However it assumes that the
calls of s_resize_key_cache itself are serialized.
calls of resize_simple_key_cache itself are serialized.
The function starts the operation only when all other threads
performing operations with the key cache let her to proceed
(when cnt_for_resize=0).
*/
static
int s_resize_key_cache(void *keycache_cb, uint key_cache_block_size,
int resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, uint key_cache_block_size,
size_t use_mem, uint division_limit,
uint age_threshold)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
int blocks= 0;
DBUG_ENTER("s_resize_key_cache");
DBUG_ENTER("resize_simple_key_cache");
if (!keycache->key_cache_inited)
DBUG_RETURN(keycache->disk_blocks);
DBUG_RETURN(blocks);
/*
Note that the cache_lock mutex and the resize_queue are left untouched.
We do not lose the cache_lock and will release it only at the end of
this function.
*/
if (s_prepare_resize_key_cache(keycache_cb, 1, 0))
if (prepare_resize_simple_key_cache(keycache, 1, 0))
goto finish;
/* The following will work even if use_mem is 0 */
blocks= s_init_key_cache(keycache, key_cache_block_size, use_mem,
blocks= init_simple_key_cache(keycache, key_cache_block_size, use_mem,
division_limit, age_threshold);
finish:
s_finish_resize_key_cache(keycache_cb, 1, 0);
finish_resize_simple_key_cache(keycache, 1, 0);
DBUG_RETURN(blocks);
}
......@@ -894,7 +887,7 @@ finish:
/*
Increment counter blocking resize key cache operation
*/
static inline void inc_counter_for_resize_op(S_KEY_CACHE_CB *keycache)
static inline void inc_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache)
{
keycache->cnt_for_resize_op++;
}
......@@ -904,7 +897,7 @@ static inline void inc_counter_for_resize_op(S_KEY_CACHE_CB *keycache)
Decrement counter blocking resize key cache operation;
Signal the operation to proceed when counter becomes equal zero
*/
static inline void dec_counter_for_resize_op(S_KEY_CACHE_CB *keycache)
static inline void dec_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache)
{
if (!--keycache->cnt_for_resize_op)
release_whole_queue(&keycache->waiting_for_resize_cnt);
......@@ -915,16 +908,16 @@ static inline void dec_counter_for_resize_op(S_KEY_CACHE_CB *keycache)
Change key cache parameters of a simple key cache
SYNOPSIS
s_change_key_cache_param()
keycache_cb pointer to the control block of a simple key cache
change_simple_key_cache_param()
keycache pointer to the control block of a simple key cache
division_limit new division limit (if not zero)
age_threshold new age threshold (if not zero)
DESCRIPTION
This function is the implementation of the change_key_cache_param interface
function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for the simple key
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key
cache where new values of the division limit and the age threshold used
for midpoint insertion strategy are to be set. The parameters
division_limit and age_threshold provide these new values.
......@@ -938,15 +931,13 @@ static inline void dec_counter_for_resize_op(S_KEY_CACHE_CB *keycache)
This function changes some parameters of a given key cache without
reformatting it. The function does not touch the contents the key
cache blocks.
*/
static
void s_change_key_cache_param(void *keycache_cb, uint division_limit,
void change_simple_key_cache_param(SIMPLE_KEY_CACHE_CB *keycache, uint division_limit,
uint age_threshold)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
DBUG_ENTER("s_change_key_cache_param");
DBUG_ENTER("change_simple_key_cache_param");
keycache_pthread_mutex_lock(&keycache->cache_lock);
if (division_limit)
keycache->min_warm_blocks= (keycache->disk_blocks *
......@@ -963,15 +954,15 @@ void s_change_key_cache_param(void *keycache_cb, uint division_limit,
Destroy a simple key cache
SYNOPSIS
s_end_key_cache()
keycache_cb pointer to the control block of a simple key cache
end_simple_key_cache()
keycache pointer to the control block of a simple key cache
cleanup <=> complete free (free also mutex for key cache)
DESCRIPTION
This function is the implementation of the end_key_cache interface
function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for the simple key
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key
cache to be destroyed.
The function frees the memory allocated for the key cache blocks and
auxiliary structures. If the value of the parameter cleanup is TRUE
......@@ -982,10 +973,9 @@ void s_change_key_cache_param(void *keycache_cb, uint division_limit,
*/
static
void s_end_key_cache(void *keycache_cb, my_bool cleanup)
void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
DBUG_ENTER("s_end_key_cache");
DBUG_ENTER("end_simple_key_cache");
DBUG_PRINT("enter", ("key_cache: 0x%lx", (long) keycache));
if (!keycache->key_cache_inited)
......@@ -1276,7 +1266,7 @@ static inline void link_changed(BLOCK_LINK *block, BLOCK_LINK **phead)
void
*/
static void link_to_file_list(S_KEY_CACHE_CB *keycache,
static void link_to_file_list(SIMPLE_KEY_CACHE_CB *keycache,
BLOCK_LINK *block, int file,
my_bool unlink_block)
{
......@@ -1317,7 +1307,7 @@ static void link_to_file_list(S_KEY_CACHE_CB *keycache,
void
*/
static void link_to_changed_list(S_KEY_CACHE_CB *keycache,
static void link_to_changed_list(SIMPLE_KEY_CACHE_CB *keycache,
BLOCK_LINK *block)
{
DBUG_ASSERT(block->status & BLOCK_IN_USE);
......@@ -1372,8 +1362,8 @@ static void link_to_changed_list(S_KEY_CACHE_CB *keycache,
not linked in the LRU ring.
*/
static void link_block(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block, my_bool hot,
my_bool at_end)
static void link_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block,
my_bool hot, my_bool at_end)
{
BLOCK_LINK *ins;
BLOCK_LINK **pins;
......@@ -1493,7 +1483,7 @@ static void link_block(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block, my_bool hot,
See NOTES for link_block
*/
static void unlink_block(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block)
static void unlink_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block)
{
DBUG_ASSERT((block->status & ~BLOCK_CHANGED) == (BLOCK_READ | BLOCK_IN_USE));
DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/
......@@ -1551,7 +1541,8 @@ static void unlink_block(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block)
RETURN
void
*/
static void reg_requests(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block, int count)
static void reg_requests(SIMPLE_KEY_CACHE_CB *keycache,
BLOCK_LINK *block, int count)
{
DBUG_ASSERT(block->status & BLOCK_IN_USE);
DBUG_ASSERT(block->hash_link);
......@@ -1594,7 +1585,7 @@ static void reg_requests(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block, int count)
not linked in the LRU ring.
*/
static void unreg_request(S_KEY_CACHE_CB *keycache,
static void unreg_request(SIMPLE_KEY_CACHE_CB *keycache,
BLOCK_LINK *block, int at_end)
{
DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
......@@ -1683,7 +1674,7 @@ static void remove_reader(BLOCK_LINK *block)
signals on its termination
*/
static void wait_for_readers(S_KEY_CACHE_CB *keycache,
static void wait_for_readers(SIMPLE_KEY_CACHE_CB *keycache,
BLOCK_LINK *block)
{
#ifdef THREAD
......@@ -1732,7 +1723,7 @@ static inline void link_hash(HASH_LINK **start, HASH_LINK *hash_link)
Remove a hash link from the hash table
*/
static void unlink_hash(S_KEY_CACHE_CB *keycache, HASH_LINK *hash_link)
static void unlink_hash(SIMPLE_KEY_CACHE_CB *keycache, HASH_LINK *hash_link)
{
KEYCACHE_DBUG_PRINT("unlink_hash", ("fd: %u pos_ %lu #requests=%u",
(uint) hash_link->file,(ulong) hash_link->diskpos, hash_link->requests));
......@@ -1788,7 +1779,7 @@ static void unlink_hash(S_KEY_CACHE_CB *keycache, HASH_LINK *hash_link)
Get the hash link for a page
*/
static HASH_LINK *get_hash_link(S_KEY_CACHE_CB *keycache,
static HASH_LINK *get_hash_link(SIMPLE_KEY_CACHE_CB *keycache,
int file, my_off_t filepos)
{
reg1 HASH_LINK *hash_link, **start;
......@@ -1909,7 +1900,7 @@ restart:
waits until first of this operations links any block back.
*/
static BLOCK_LINK *find_key_block(S_KEY_CACHE_CB *keycache,
static BLOCK_LINK *find_key_block(SIMPLE_KEY_CACHE_CB *keycache,
File file, my_off_t filepos,
int init_hits_left,
int wrmode, int *page_st)
......@@ -2669,7 +2660,7 @@ restart:
portion is less than read_length, but not less than min_length.
*/
static void read_block(S_KEY_CACHE_CB *keycache,
static void read_block(SIMPLE_KEY_CACHE_CB *keycache,
BLOCK_LINK *block, uint read_length,
uint min_length, my_bool primary)
{
......@@ -2761,8 +2752,8 @@ static void read_block(S_KEY_CACHE_CB *keycache,
SYNOPSIS
s_key_cache_read()
keycache_cb pointer to the control block of a simple key cache
simple_key_cache_read()
keycache pointer to the control block of a simple key cache
file handler for the file for the block of data to be read
filepos position of the block of data in the file
level determines the weight of the data
......@@ -2774,8 +2765,8 @@ static void read_block(S_KEY_CACHE_CB *keycache,
DESCRIPTION
This function is the implementation of the key_cache_read interface
function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for a simple key
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
cache.
In a general case the function reads a block of data from the key cache
into the buffer buff of the size specified by the parameter length. The
......@@ -2799,20 +2790,18 @@ static void read_block(S_KEY_CACHE_CB *keycache,
NOTES
Filepos must be a multiple of 'block_length', but it doesn't
have to be a multiple of key_cache_block_size;
*/
uchar *s_key_cache_read(void *keycache_cb,
uchar *simple_key_cache_read(SIMPLE_KEY_CACHE_CB *keycache,
File file, my_off_t filepos, int level,
uchar *buff, uint length,
uint block_length __attribute__((unused)),
int return_buffer __attribute__((unused)))
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
my_bool locked_and_incremented= FALSE;
int error=0;
uchar *start= buff;
DBUG_ENTER("s_key_cache_read");
DBUG_ENTER("simple_key_cache_read");
DBUG_PRINT("enter", ("fd: %u pos: %lu length: %u",
(uint) file, (ulong) filepos, length));
......@@ -3010,8 +2999,8 @@ end:
Insert a block of file data from a buffer into a simple key cache
SYNOPSIS
s_key_cache_insert()
keycache_cb pointer to the control block of a simple key cache
simple_key_cache_insert()
keycache pointer to the control block of a simple key cache
file handler for the file to insert data from
filepos position of the block of data in the file to insert
level determines the weight of the data
......@@ -3021,8 +3010,8 @@ end:
DESCRIPTION
This function is the implementation of the key_cache_insert interface
function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for a simple key
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
cache.
The function writes a block of file data from a buffer into the key cache.
The buffer is specified with the parameters buff and length - the pointer
......@@ -3045,11 +3034,10 @@ end:
*/
static
int s_key_cache_insert(void *keycache_cb,
int simple_key_cache_insert(SIMPLE_KEY_CACHE_CB *keycache,
File file, my_off_t filepos, int level,
uchar *buff, uint length)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
int error= 0;
DBUG_ENTER("key_cache_insert");
DBUG_PRINT("enter", ("fd: %u pos: %lu length: %u",
......@@ -3272,8 +3260,8 @@ int s_key_cache_insert(void *keycache_cb,
SYNOPSIS
s_key_cache_write()
keycache_cb pointer to the control block of a simple key cache
simple_key_cache_write()
keycache pointer to the control block of a simple key cache
file handler for the file to write data to
file_extra maps of key cache partitions containing
dirty pages from file
......@@ -3287,8 +3275,8 @@ int s_key_cache_insert(void *keycache_cb,
DESCRIPTION
This function is the implementation of the key_cache_write interface
function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for a simple key
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
cache.
In a general case the function copies data from a buffer into the key
cache. The buffer is specified with the parameters buff and length -
......@@ -3304,7 +3292,8 @@ int s_key_cache_insert(void *keycache_cb,
The parameter file_extra currently makes sense only for simple key caches
that are elements of a partitioned key cache. It provides a pointer to the
shared bitmap of the partitions that may contains dirty pages for the file.
This bitmap is used to optimize the function p_flush_key_blocks.
This bitmap is used to optimize the function
flush_partitioned_key_cache_blocks.
RETURN VALUE
0 if a success, 1 - otherwise.
......@@ -3312,21 +3301,19 @@ int s_key_cache_insert(void *keycache_cb,
NOTES
This implementation exploits the fact that the function is called only
when a thread has got an exclusive lock for the key file.
*/
static
int s_key_cache_write(void *keycache_cb,
int simple_key_cache_write(SIMPLE_KEY_CACHE_CB *keycache,
File file, void *file_extra __attribute__((unused)),
my_off_t filepos, int level,
uchar *buff, uint length,
uint block_length __attribute__((unused)),
int dont_write)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
my_bool locked_and_incremented= FALSE;
int error=0;
DBUG_ENTER("s_key_cache_write");
DBUG_ENTER("simple_key_cache_write");
DBUG_PRINT("enter",
("fd: %u pos: %lu length: %u block_length: %u"
" key_block_length: %u",
......@@ -3641,7 +3628,7 @@ end:
Block must have a request registered on it.
*/
static void free_block(S_KEY_CACHE_CB *keycache, BLOCK_LINK *block)
static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block)
{
KEYCACHE_THREAD_TRACE("free block");
KEYCACHE_DBUG_PRINT("free_block",
......@@ -3781,7 +3768,7 @@ static int cmp_sec_link(BLOCK_LINK **a, BLOCK_LINK **b)
free used blocks if requested
*/
static int flush_cached_blocks(S_KEY_CACHE_CB *keycache,
static int flush_cached_blocks(SIMPLE_KEY_CACHE_CB *keycache,
File file, BLOCK_LINK **cache,
BLOCK_LINK **end,
enum flush_type type)
......@@ -3909,7 +3896,7 @@ static int flush_cached_blocks(S_KEY_CACHE_CB *keycache,
1 error
*/
static int flush_key_blocks_int(S_KEY_CACHE_CB *keycache,
static int flush_key_blocks_int(SIMPLE_KEY_CACHE_CB *keycache,
File file, enum flush_type type)
{
BLOCK_LINK *cache_buff[FLUSH_CACHE],**cache;
......@@ -4349,8 +4336,8 @@ err:
SYNOPSIS
s_flush_key_blocks()
keycache_cb pointer to the control block of a simple key cache
flush_simple_key_blocks()
keycache pointer to the control block of a simple key cache
file handler for the file to flush to
file_extra maps of key cache partitions containing
dirty pages from file (not used)
......@@ -4359,7 +4346,7 @@ err:
DESCRIPTION
This function is the implementation of the flush_key_blocks interface
function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
The function takes the parameter keycache as a pointer to the
control block structure of the type S_KEY_CACHE_CB for a simple key
cache.
In a general case the function flushes the data from all dirty key
......@@ -4378,16 +4365,14 @@ err:
NOTES
This implementation exploits the fact that the function is called only
when a thread has got an exclusive lock for the key file.
*/
static
int s_flush_key_blocks(void *keycache_cb,
int flush_simple_key_cache_blocks(SIMPLE_KEY_CACHE_CB *keycache,
File file,
void *file_extra __attribute__((unused)),
enum flush_type type)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
int res= 0;
DBUG_ENTER("flush_key_blocks");
DBUG_PRINT("enter", ("keycache: 0x%lx", (long) keycache));
......@@ -4440,7 +4425,7 @@ int s_flush_key_blocks(void *keycache_cb,
!= 0 Error
*/
static int flush_all_key_blocks(S_KEY_CACHE_CB *keycache)
static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache)
{
BLOCK_LINK *block;
uint total_found;
......@@ -4546,14 +4531,14 @@ static int flush_all_key_blocks(S_KEY_CACHE_CB *keycache)
Reset the counters of a simple key cache
SYNOPSIS
s_reset_key_cache_counters()
reset_simple_key_cache_counters()
name the name of a key cache
keycache_cb pointer to the control block of a simple key cache
keycache pointer to the control block of a simple key cache
DESCRIPTION
This function is the implementation of the reset_key_cache_counters
interface function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
The function takes the parameter keycache as a pointer to the
control block structure of the type S_KEY_CACHE_CB for a simple key cache.
This function resets the values of all statistical counters for the key
cache to 0.
......@@ -4561,15 +4546,13 @@ static int flush_all_key_blocks(S_KEY_CACHE_CB *keycache)
RETURN
0 on success (always because it can't fail)
*/
static
int s_reset_key_cache_counters(const char *name __attribute__((unused)),
void *keycache_cb)
int reset_simple_key_cache_counters(const char *name __attribute__((unused)),
SIMPLE_KEY_CACHE_CB *keycache)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
DBUG_ENTER("s_reset_key_cache_counters");
DBUG_ENTER("reset_simple_key_cache_counters");
if (!keycache->key_cache_inited)
{
DBUG_PRINT("info", ("Key cache %s not initialized.", name));
......@@ -4590,7 +4573,8 @@ int s_reset_key_cache_counters(const char *name __attribute__((unused)),
/*
Test if disk-cache is ok
*/
static void test_key_cache(S_KEY_CACHE_CB *keycache __attribute__((unused)),
static
void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache __attribute__((unused)),
const char *where __attribute__((unused)),
my_bool lock __attribute__((unused)))
{
......@@ -4604,7 +4588,7 @@ static void test_key_cache(S_KEY_CACHE_CB *keycache __attribute__((unused)),
#define MAX_QUEUE_LEN 100
static void keycache_dump(S_KEY_CACHE_CB *keycache)
static void keycache_dump(SIMPLE_KEY_CACHE_CB *keycache)
{
FILE *keycache_dump_file=fopen(KEYCACHE_DUMP_FILE, "w");
struct st_my_thread_var *last;
......@@ -4844,7 +4828,7 @@ static int fail_hlink(HASH_LINK *hlink)
return 0; /* Let the assert fail. */
}
static int cache_empty(S_KEY_CACHE_CB *keycache)
static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache)
{
int errcnt= 0;
int idx;
......@@ -4887,54 +4871,57 @@ static int cache_empty(S_KEY_CACHE_CB *keycache)
Get statistics for a simple key cache
SYNOPSIS
get_key_cache_statistics()
keycache_cb pointer to the control block of a simple key cache
get_simple_key_cache_statistics()
keycache pointer to the control block of a simple key cache
partition_no partition number (not used)
key_cache_stats OUT pointer to the structure for the returned statistics
DESCRIPTION
This function is the implementation of the get_key_cache_statistics
interface function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for a simple key cache.
This function returns the statistical data for the key cache.
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
cache. This function returns the statistical data for the key cache.
The parameter partition_no is not used by this function.
RETURN
none
*/
static
void s_get_key_cache_statistics(void *keycache_cb,
void get_simple_key_cache_statistics(SIMPLE_KEY_CACHE_CB *keycache,
uint partition_no __attribute__((unused)),
KEY_CACHE_STATISTICS *key_cache_stats)
KEY_CACHE_STATISTICS *keycache_stats)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
DBUG_ENTER("s_get_key_cache_statistics");
key_cache_stats->mem_size= (longlong) keycache->key_cache_mem_size;
key_cache_stats->block_size= (longlong) keycache->key_cache_block_size;
key_cache_stats->blocks_used= keycache->blocks_used;
key_cache_stats->blocks_unused= keycache->blocks_unused;
key_cache_stats->blocks_changed= keycache->global_blocks_changed;
key_cache_stats->read_requests= keycache->global_cache_r_requests;
key_cache_stats->reads= keycache->global_cache_read;
key_cache_stats->write_requests= keycache->global_cache_w_requests;
key_cache_stats->writes= keycache->global_cache_write;
DBUG_ENTER("simple_get_key_cache_statistics");
keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size;
keycache_stats->block_size= (longlong) keycache->key_cache_block_size;
keycache_stats->blocks_used= keycache->blocks_used;
keycache_stats->blocks_unused= keycache->blocks_unused;
keycache_stats->blocks_changed= keycache->global_blocks_changed;
keycache_stats->read_requests= keycache->global_cache_r_requests;
keycache_stats->reads= keycache->global_cache_read;
keycache_stats->write_requests= keycache->global_cache_w_requests;
keycache_stats->writes= keycache->global_cache_write;
DBUG_VOID_RETURN;
}
static size_t s_key_cache_stat_var_offsets[]=
/*
Offsets of the statistical values in the control block for a simple key cache
The first NO_LONG_KEY_CACHE_STAT_VARIABLES=3 are of the ulong type while the
remaining are of the ulonglong type.
*/
static size_t simple_key_cache_stat_var_offsets[]=
{
offsetof(S_KEY_CACHE_CB, blocks_used),
offsetof(S_KEY_CACHE_CB, blocks_unused),
offsetof(S_KEY_CACHE_CB, global_blocks_changed),
offsetof(S_KEY_CACHE_CB, global_cache_w_requests),
offsetof(S_KEY_CACHE_CB, global_cache_write),
offsetof(S_KEY_CACHE_CB, global_cache_r_requests),
offsetof(S_KEY_CACHE_CB, global_cache_read)
offsetof(SIMPLE_KEY_CACHE_CB, blocks_used),
offsetof(SIMPLE_KEY_CACHE_CB, blocks_unused),
offsetof(SIMPLE_KEY_CACHE_CB, global_blocks_changed),
offsetof(SIMPLE_KEY_CACHE_CB, global_cache_w_requests),
offsetof(SIMPLE_KEY_CACHE_CB, global_cache_write),
offsetof(SIMPLE_KEY_CACHE_CB, global_cache_r_requests),
offsetof(SIMPLE_KEY_CACHE_CB, global_cache_read)
};
......@@ -4942,16 +4929,16 @@ static size_t s_key_cache_stat_var_offsets[]=
Get the value of a statistical variable for a simple key cache
SYNOPSIS
s_get_key_cache_stat_value()
keycache_cb pointer to the control block of a simple key cache
get_simple_key_cache_stat_value()
keycache pointer to the control block of a simple key cache
var_no the ordered number of a statistical variable
DESCRIPTION
This function is the implementation of the s_get_key_cache_stat_value
This function is the implementation of the get_simple_key_cache_stat_value
interface function that is employed by simple (non-partitioned) key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type S_KEY_CACHE_CB for a simple key cache.
This function returns the value of the statistical variable var_no
The function takes the parameter keycache as a pointer to the
control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
cache. This function returns the value of the statistical variable var_no
for this key cache. The variables are numbered starting from 0 to 6.
RETURN
......@@ -4960,12 +4947,12 @@ static size_t s_key_cache_stat_var_offsets[]=
*/
static
ulonglong s_get_key_cache_stat_value(void *keycache_cb, uint var_no)
ulonglong get_simple_key_cache_stat_value(SIMPLE_KEY_CACHE_CB *keycache,
uint var_no)
{
S_KEY_CACHE_CB *keycache= (S_KEY_CACHE_CB *) keycache_cb;
size_t var_ofs= s_key_cache_stat_var_offsets[var_no];
size_t var_ofs= simple_key_cache_stat_var_offsets[var_no];
ulonglong res= 0;
DBUG_ENTER("s_get_key_cache_stat_value");
DBUG_ENTER("get_simple_key_cache_stat_value");
if (var_no < 3)
res= (ulonglong) (*(long *) ((char *) keycache + var_ofs));
......@@ -4985,19 +4972,19 @@ ulonglong s_get_key_cache_stat_value(void *keycache_cb, uint var_no)
the MySQL server code directly. We don't do it though.
*/
static KEY_CACHE_FUNCS s_key_cache_funcs =
static KEY_CACHE_FUNCS simple_key_cache_funcs =
{
s_init_key_cache,
s_resize_key_cache,
s_change_key_cache_param,
s_key_cache_read,
s_key_cache_insert,
s_key_cache_write,
s_flush_key_blocks,
s_reset_key_cache_counters,
s_end_key_cache,
s_get_key_cache_statistics,
s_get_key_cache_stat_value
(INIT_KEY_CACHE) init_simple_key_cache,
(RESIZE_KEY_CACHE) resize_simple_key_cache,
(CHANGE_KEY_CACHE_PARAM) change_simple_key_cache_param,
(KEY_CACHE_READ) simple_key_cache_read,
(KEY_CACHE_INSERT) simple_key_cache_insert,
(KEY_CACHE_WRITE) simple_key_cache_write,
(FLUSH_KEY_BLOCKS) flush_simple_key_cache_blocks,
(RESET_KEY_CACHE_COUNTERS) reset_simple_key_cache_counters,
(END_KEY_CACHE) end_simple_key_cache,
(GET_KEY_CACHE_STATISTICS) get_simple_key_cache_statistics,
(GET_KEY_CACHE_STAT_VALUE) get_simple_key_cache_stat_value
};
......@@ -5038,17 +5025,22 @@ static KEY_CACHE_FUNCS s_key_cache_funcs =
/* Control block for a partitioned key cache */
typedef struct st_p_key_cache_cb
typedef struct st_partitioned_key_cache_cb
{
my_bool key_cache_inited; /*<=> control block is allocated */
S_KEY_CACHE_CB **partition_array; /* array of the key cache partitions */
uint partitions; /* number of partitions in the key cache */
SIMPLE_KEY_CACHE_CB **partition_array; /* the key cache partitions */
size_t key_cache_mem_size; /* specified size of the cache memory */
uint key_cache_block_size; /* size of the page buffer of a cache block */
} P_KEY_CACHE_CB;
uint partitions; /* number of partitions in the key cache */
} PARTITIONED_KEY_CACHE_CB;
static
void p_end_key_cache(void *keycache_cb, my_bool cleanup);
void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache,
my_bool cleanup);
static int
reset_partitioned_key_cache_counters(const char *name,
PARTITIONED_KEY_CACHE_CB *keycache);
/*
Determine the partition to which the index block to read is ascribed
......@@ -5071,10 +5063,11 @@ void p_end_key_cache(void *keycache_cb, my_bool cleanup);
*/
static
S_KEY_CACHE_CB *get_key_cache_partition(P_KEY_CACHE_CB *keycache,
SIMPLE_KEY_CACHE_CB *
get_key_cache_partition(PARTITIONED_KEY_CACHE_CB *keycache,
File file, my_off_t filepos)
{
uint i= KEYCACHE_BASE_EXPR( file, filepos) % keycache->partitions;
uint i= KEYCACHE_BASE_EXPR(file, filepos) % keycache->partitions;
return keycache->partition_array[i];
}
......@@ -5101,8 +5094,8 @@ S_KEY_CACHE_CB *get_key_cache_partition(P_KEY_CACHE_CB *keycache,
file block is ascribed.
*/
static
S_KEY_CACHE_CB *get_key_cache_partition_for_write(P_KEY_CACHE_CB *keycache,
static SIMPLE_KEY_CACHE_CB
*get_key_cache_partition_for_write(PARTITIONED_KEY_CACHE_CB *keycache,
File file, my_off_t filepos,
ulonglong* dirty_part_map)
{
......@@ -5116,8 +5109,8 @@ S_KEY_CACHE_CB *get_key_cache_partition_for_write(P_KEY_CACHE_CB *keycache,
Initialize a partitioned key cache
SYNOPSIS
p_init_key_cache()
keycache_cb pointer to the control block of a partitioned key cache
init_partitioned_key_cache()
keycache pointer to the control block of a partitioned key cache
key_cache_block_size size of blocks to keep cached data
use_mem total memory to use for all key cache partitions
division_limit division limit (may be zero)
......@@ -5127,17 +5120,17 @@ S_KEY_CACHE_CB *get_key_cache_partition_for_write(P_KEY_CACHE_CB *keycache,
This function is the implementation of the init_key_cache interface function
that is employed by partitioned key caches.
The function builds and initializes an array of simple key caches, and then
initializes the control block structure of the type P_KEY_CACHE_CB that is
used for a partitioned key cache. The parameter keycache_cb is supposed to
point to this structure. The number of partitions in the partitioned key
cache to be built must be passed through the field 'partitions' of this
structure. The parameter key_cache_block_size specifies the size of the
blocks in the the simple key caches to be built. The parameters
division_limit and age_threshold determine the initial values of those
characteristics of the simple key caches that are used for midpoint
insertion strategy. The parameter use_mem specifies the total amount of
memory to be allocated for the key cache blocks in all simple key caches
and for all auxiliary structures.
initializes the control block structure of the type PARTITIONED_KEY_CACHE_CB
that is used for a partitioned key cache. The parameter keycache is
supposed to point to this structure. The number of partitions in the
partitioned key cache to be built must be passed through the field
'partitions' of this structure. The parameter key_cache_block_size specifies
the size of the blocks in the the simple key caches to be built.
The parameters division_limit and age_threshold determine the initial
values of those characteristics of the simple key caches that are used for
midpoint insertion strategy. The parameter use_mem specifies the total
amount of memory to be allocated for the key cache blocks in all simple key
caches and for all auxiliary structures.
RETURN VALUE
total number of blocks in key cache partitions, if successful,
......@@ -5152,19 +5145,19 @@ S_KEY_CACHE_CB *get_key_cache_partition_for_write(P_KEY_CACHE_CB *keycache,
*/
static
int p_init_key_cache(void *keycache_cb, uint key_cache_block_size,
int init_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache,
uint key_cache_block_size,
size_t use_mem, uint division_limit,
uint age_threshold)
{
int i;
size_t mem_per_cache;
int cnt;
S_KEY_CACHE_CB *partition;
S_KEY_CACHE_CB **partition_ptr;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
SIMPLE_KEY_CACHE_CB *partition;
SIMPLE_KEY_CACHE_CB **partition_ptr;
uint partitions= keycache->partitions;
int blocks= -1;
DBUG_ENTER("p_init_key_cache");
int blocks= 0;
DBUG_ENTER("partitioned_init_key_cache");
keycache->key_cache_block_size = key_cache_block_size;
......@@ -5173,9 +5166,9 @@ int p_init_key_cache(void *keycache_cb, uint key_cache_block_size,
else
{
if(!(partition_ptr=
(S_KEY_CACHE_CB **) my_malloc(sizeof(S_KEY_CACHE_CB *) * partitions,
MYF(0))))
DBUG_RETURN(blocks);
(SIMPLE_KEY_CACHE_CB **) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB *) *
partitions, MYF(MY_WME))))
DBUG_RETURN(-1);
keycache->partition_array= partition_ptr;
}
......@@ -5188,36 +5181,35 @@ int p_init_key_cache(void *keycache_cb, uint key_cache_block_size,
partition= *partition_ptr;
else
{
if (!(partition= (S_KEY_CACHE_CB *) my_malloc(sizeof(S_KEY_CACHE_CB),
MYF(0))))
if (!(partition=
(SIMPLE_KEY_CACHE_CB *) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB),
MYF(MY_WME))))
continue;
partition->key_cache_inited= 0;
}
if ((cnt= s_init_key_cache(partition,
if ((cnt= init_simple_key_cache(partition,
key_cache_block_size, mem_per_cache,
division_limit, age_threshold)) <= 0)
{
s_end_key_cache(partition, 1);
my_free((uchar *) partition, MYF(0));
end_simple_key_cache(partition, 1);
my_free(partition, MYF(0));
partition= 0;
if (key_cache_inited)
{
memmove(partition_ptr, partition_ptr+1,
sizeof(partition_ptr)*(partitions-i-1));
}
if (!--partitions)
break;
if (i == 0)
{
i--;
partitions--;
if (partitions)
mem_per_cache = use_mem / partitions;
}
continue;
}
}
if (blocks < 0)
blocks= 0;
blocks+= cnt;
*partition_ptr++= partition;
}
......@@ -5229,6 +5221,9 @@ int p_init_key_cache(void *keycache_cb, uint key_cache_block_size,
keycache->key_cache_inited= 1;
if (!partitions)
blocks= -1;
DBUG_RETURN(blocks);
}
......@@ -5237,8 +5232,8 @@ int p_init_key_cache(void *keycache_cb, uint key_cache_block_size,
Resize a partitioned key cache
SYNOPSIS
p_resize_key_cache()
keycache_cb pointer to the control block of a partitioned key cache
resize_partitioned_key_cache()
keycache pointer to the control block of a partitioned key cache
key_cache_block_size size of blocks to keep cached data
use_mem total memory to use for the new key cache
division_limit new division limit (if not zero)
......@@ -5247,9 +5242,9 @@ int p_init_key_cache(void *keycache_cb, uint key_cache_block_size,
DESCRIPTION
This function is the implementation of the resize_key_cache interface
function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for the partitioned
key cache to be resized.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for the
partitioned key cache to be resized.
The parameter key_cache_block_size specifies the new size of the blocks in
the simple key caches that comprise the partitioned key cache.
The parameters division_limit and age_threshold determine the new initial
......@@ -5263,48 +5258,47 @@ int p_init_key_cache(void *keycache_cb, uint key_cache_block_size,
0 - otherwise.
NOTES.
The function first calls s_prepare_resize_key_cache for each simple
The function first calls prepare_resize_simple_key_cache for each simple
key cache effectively flushing all dirty pages from it and destroying
the key cache. Then p_init_key cache is called. This call builds all
the new array of simple key caches containing the same number of
elements as the old one. After this the function calls the function
s_finish_resize_key_cache for each simple key cache from this array.
the key cache. Then init_partitioned_key_cache is called. This call builds
a new array of simple key caches containing the same number of elements
as the old one. After this the function calls the function
finish_resize_simple_key_cache for each simple key cache from this array.
This implementation doesn't block the calls and executions of other
functions from the key cache interface. However it assumes that the
calls of s_resize_key_cache itself are serialized.
calls of resize_partitioned_key_cache itself are serialized.
*/
static
int p_resize_key_cache(void *keycache_cb, uint key_cache_block_size,
int resize_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache,
uint key_cache_block_size,
size_t use_mem, uint division_limit,
uint age_threshold)
{
uint i;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint partitions= keycache->partitions;
my_bool cleanup= use_mem == 0;
int blocks= -1;
int err= 0;
DBUG_ENTER("p_resize_key_cache");
if (use_mem == 0)
DBUG_ENTER("partitioned_resize_key_cache");
if (cleanup)
{
p_end_key_cache(keycache_cb, 0);
DBUG_RETURN(blocks);
end_partitioned_key_cache(keycache, 0);
DBUG_RETURN(-1);
}
for (i= 0; i < partitions; i++)
{
err|= s_prepare_resize_key_cache(keycache->partition_array[i], 0, 1);
err|= prepare_resize_simple_key_cache(keycache->partition_array[i], 0, 1);
}
if (!err && use_mem)
blocks= p_init_key_cache(keycache_cb, key_cache_block_size, use_mem,
division_limit, age_threshold);
if (blocks > 0 && !cleanup)
if (!err)
blocks= init_partitioned_key_cache(keycache, key_cache_block_size,
use_mem, division_limit, age_threshold);
if (blocks > 0)
{
for (i= 0; i < partitions; i++)
{
s_finish_resize_key_cache(keycache->partition_array[i], 0, 1);
finish_resize_simple_key_cache(keycache->partition_array[i], 0, 1);
}
}
DBUG_RETURN(blocks);
......@@ -5315,17 +5309,17 @@ int p_resize_key_cache(void *keycache_cb, uint key_cache_block_size,
Change key cache parameters of a partitioned key cache
SYNOPSIS
p_change_key_cache_param()
keycache_cb pointer to the control block of a partitioned key cache
partitioned_change_key_cache_param()
keycache pointer to the control block of a partitioned key cache
division_limit new division limit (if not zero)
age_threshold new age threshold (if not zero)
DESCRIPTION
This function is the implementation of the change_key_cache_param interface
function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for the simple key
cache where new values of the division limit and the age threshold used
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for the simple
key cache where new values of the division limit and the age threshold used
for midpoint insertion strategy are to be set. The parameters
division_limit and age_threshold provide these new values.
......@@ -5333,22 +5327,21 @@ int p_resize_key_cache(void *keycache_cb, uint key_cache_block_size,
none
NOTES
The function just calls s_change_key_cache_param for each element from the
array of simple caches that comprise the partitioned key cache.
The function just calls change_simple_key_cache_param for each element from
the array of simple caches that comprise the partitioned key cache.
*/
static
void p_change_key_cache_param(void *keycache_cb, uint division_limit,
void change_partitioned_key_cache_param(PARTITIONED_KEY_CACHE_CB *keycache,
uint division_limit,
uint age_threshold)
{
uint i;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint partitions= keycache->partitions;
DBUG_ENTER("p_change_key_cache_param");
DBUG_ENTER("partitioned_change_key_cache_param");
for (i= 0; i < partitions; i++)
{
s_change_key_cache_param(keycache->partition_array[i], division_limit,
change_simple_key_cache_param(keycache->partition_array[i], division_limit,
age_threshold);
}
DBUG_VOID_RETURN;
......@@ -5359,17 +5352,17 @@ void p_change_key_cache_param(void *keycache_cb, uint division_limit,
Destroy a partitioned key cache
SYNOPSIS
p_end_key_cache()
keycache_cb pointer to the control block of a partitioned key cache
end_partitioned_key_cache()
keycache pointer to the control block of a partitioned key cache
cleanup <=> complete free (free also control block structures
for all simple key caches)
DESCRIPTION
This function is the implementation of the end_key_cache interface
function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for the partitioned
key cache to be destroyed.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for the
partitioned key cache to be destroyed.
The function frees the memory allocated for the cache blocks and
auxiliary structures used by simple key caches that comprise the
partitioned key cache. If the value of the parameter cleanup is TRUE
......@@ -5378,23 +5371,23 @@ void p_change_key_cache_param(void *keycache_cb, uint division_limit,
RETURN VALUE
none
*/
static
void p_end_key_cache(void *keycache_cb, my_bool cleanup)
void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache,
my_bool cleanup)
{
uint i;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint partitions= keycache->partitions;
DBUG_ENTER("p_end_key_cache");
DBUG_ENTER("partitioned_end_key_cache");
DBUG_PRINT("enter", ("key_cache: 0x%lx", (long) keycache));
for (i= 0; i < partitions; i++)
{
s_end_key_cache(keycache->partition_array[i], cleanup);
end_simple_key_cache(keycache->partition_array[i], cleanup);
}
if (cleanup) {
if (cleanup)
{
for (i= 0; i < partitions; i++)
my_free((uchar*) keycache->partition_array[i], MYF(0));
my_free((uchar*) keycache->partition_array, MYF(0));
......@@ -5409,8 +5402,8 @@ void p_end_key_cache(void *keycache_cb, my_bool cleanup)
SYNOPSIS
p_key_cache_read()
keycache_cb pointer to the control block of a partitioned key cache
partitioned_key_cache_read()
keycache pointer to the control block of a partitioned key cache
file handler for the file for the block of data to be read
filepos position of the block of data in the file
level determines the weight of the data
......@@ -5422,9 +5415,9 @@ void p_end_key_cache(void *keycache_cb, my_bool cleanup)
DESCRIPTION
This function is the implementation of the key_cache_read interface
function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for a partitioned
key cache.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for a
partitioned key cache.
In a general case the function reads a block of data from the key cache
into the buffer buff of the size specified by the parameter length. The
beginning of the block of data to be read is specified by the parameters
......@@ -5432,7 +5425,7 @@ void p_end_key_cache(void *keycache_cb, my_bool cleanup)
of the buffer. The data is read into the buffer in key_cache_block_size
increments. To read each portion the function first finds out in what
partition of the key cache this portion(page) is to be saved, and calls
s_key_cache_read with the pointer to the corresponding simple key as
simple_key_cache_read with the pointer to the corresponding simple key as
its first parameter.
If the parameter return_buffer is not ignored and its value is TRUE, and
the data to be read of the specified size block_length can be read from one
......@@ -5445,21 +5438,19 @@ void p_end_key_cache(void *keycache_cb, my_bool cleanup)
RETURN VALUE
Returns address from where the data is placed if successful, 0 - otherwise.
*/
static
uchar *p_key_cache_read(void *keycache_cb,
uchar *partitioned_key_cache_read(PARTITIONED_KEY_CACHE_CB *keycache,
File file, my_off_t filepos, int level,
uchar *buff, uint length,
uint block_length __attribute__((unused)),
int return_buffer __attribute__((unused)))
{
uint r_length;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint offset= (uint) (filepos % keycache->key_cache_block_size);
uchar *start= buff;
DBUG_ENTER("p_key_cache_read");
DBUG_ENTER("partitioned_key_cache_read");
DBUG_PRINT("enter", ("fd: %u pos: %lu length: %u",
(uint) file, (ulong) filepos, length));
......@@ -5471,12 +5462,12 @@ uchar *p_key_cache_read(void *keycache_cb,
/* Read data in key_cache_block_size increments */
do
{
S_KEY_CACHE_CB *partition= get_key_cache_partition(keycache,
SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache,
file, filepos);
uchar *ret_buff= 0;
r_length= length;
set_if_smaller(r_length, keycache->key_cache_block_size - offset);
ret_buff= s_key_cache_read((void *) partition,
ret_buff= simple_key_cache_read((void *) partition,
file, filepos, level,
buff, r_length,
block_length, return_buffer);
......@@ -5500,8 +5491,8 @@ uchar *p_key_cache_read(void *keycache_cb,
Insert a block of file data from a buffer into a partitioned key cache
SYNOPSIS
p_key_cache_insert()
keycache_cb pointer to the control block of a partitioned key cache
partitioned_key_cache_insert()
keycache pointer to the control block of a partitioned key cache
file handler for the file to insert data from
filepos position of the block of data in the file to insert
level determines the weight of the data
......@@ -5511,9 +5502,9 @@ uchar *p_key_cache_read(void *keycache_cb,
DESCRIPTION
This function is the implementation of the key_cache_insert interface
function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for a partitioned key
cache.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for a
partitioned key cache.
The function writes a block of file data from a buffer into the key cache.
The buffer is specified with the parameters buff and length - the pointer
to the beginning of the buffer and its size respectively. It's assumed
......@@ -5521,8 +5512,8 @@ uchar *p_key_cache_read(void *keycache_cb,
filepos. The data is copied from the buffer in key_cache_block_size
increments. For every portion of data the function finds out in what simple
key cache from the array of partitions the data must be stored, and after
this calls s_key_cache_insert to copy the data into a key buffer of this
simple key cache.
this calls simple_key_cache_insert to copy the data into a key buffer of
this simple key cache.
The parameter level is used to set one characteristic for the key buffers
loaded with the data from buff. The characteristic is used only by the
midpoint insertion strategy.
......@@ -5534,18 +5525,16 @@ uchar *p_key_cache_read(void *keycache_cb,
The function is used by MyISAM to move all blocks from a index file to
the key cache. It can be performed in parallel with reading the file data
from the key buffers by other threads.
*/
static
int p_key_cache_insert(void *keycache_cb,
int partitioned_key_cache_insert(PARTITIONED_KEY_CACHE_CB *keycache,
File file, my_off_t filepos, int level,
uchar *buff, uint length)
{
uint w_length;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint offset= (uint) (filepos % keycache->key_cache_block_size);
DBUG_ENTER("p_key_cache_insert");
DBUG_ENTER("partitioned_key_cache_insert");
DBUG_PRINT("enter", ("fd: %u pos: %lu length: %u",
(uint) file,(ulong) filepos, length));
......@@ -5553,11 +5542,11 @@ int p_key_cache_insert(void *keycache_cb,
/* Write data in key_cache_block_size increments */
do
{
S_KEY_CACHE_CB *partition= get_key_cache_partition(keycache,
SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache,
file, filepos);
w_length= length;
set_if_smaller(w_length, keycache->key_cache_block_size);
if (s_key_cache_insert((void *) partition,
set_if_smaller(w_length, keycache->key_cache_block_size - offset);
if (simple_key_cache_insert((void *) partition,
file, filepos, level,
buff, w_length))
DBUG_RETURN(1);
......@@ -5576,8 +5565,8 @@ int p_key_cache_insert(void *keycache_cb,
SYNOPSIS
p_key_cache_write()
keycache_cb pointer to the control block of a partitioned key cache
partitioned_key_cache_write()
keycache pointer to the control block of a partitioned key cache
file handler for the file to write data to
filepos position in the file to write data to
level determines the weight of the data
......@@ -5591,9 +5580,9 @@ int p_key_cache_insert(void *keycache_cb,
DESCRIPTION
This function is the implementation of the key_cache_write interface
function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for a partitioned
key cache.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for a
partitioned key cache.
In a general case the function copies data from a buffer into the key
cache. The buffer is specified with the parameters buff and length -
the pointer to the beginning of the buffer and its size respectively.
......@@ -5601,8 +5590,8 @@ int p_key_cache_insert(void *keycache_cb,
starting from the position filepos. The data is copied from the buffer
in key_cache_block_size increments. For every portion of data the
function finds out in what simple key cache from the array of partitions
the data must be stored, and after this calls s_key_cache_write to copy
the data into a key buffer of this simple key cache.
the data must be stored, and after this calls simple_key_cache_write to
copy the data into a key buffer of this simple key cache.
If the value of the parameter dont_write is FALSE then the function
also writes the data into file.
The parameter level is used to set one characteristic for the key buffers
......@@ -5610,7 +5599,7 @@ int p_key_cache_insert(void *keycache_cb,
the midpoint insertion strategy.
The parameter file_expra provides a pointer to the shared bitmap of
the partitions that may contains dirty pages for the file. This bitmap
is used to optimize the function p_flush_key_blocks.
is used to optimize the function flush_partitioned_key_cache_blocks.
RETURN VALUE
0 if a success, 1 - otherwise.
......@@ -5618,11 +5607,10 @@ int p_key_cache_insert(void *keycache_cb,
NOTES
This implementation exploits the fact that the function is called only
when a thread has got an exclusive lock for the key file.
*/
static
int p_key_cache_write(void *keycache_cb,
int partitioned_key_cache_write(PARTITIONED_KEY_CACHE_CB *keycache,
File file, void *file_extra,
my_off_t filepos, int level,
uchar *buff, uint length,
......@@ -5631,9 +5619,8 @@ int p_key_cache_write(void *keycache_cb,
{
uint w_length;
ulonglong *part_map= (ulonglong *) file_extra;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint offset= (uint) (filepos % keycache->key_cache_block_size);
DBUG_ENTER("p_key_cache_write");
DBUG_ENTER("partitioned_key_cache_write");
DBUG_PRINT("enter",
("fd: %u pos: %lu length: %u block_length: %u"
" key_block_length: %u",
......@@ -5644,12 +5631,13 @@ int p_key_cache_write(void *keycache_cb,
/* Write data in key_cache_block_size increments */
do
{
S_KEY_CACHE_CB *partition= get_key_cache_partition_for_write(keycache,
file, filepos,
SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition_for_write(keycache,
file,
filepos,
part_map);
w_length = length;
set_if_smaller(w_length, keycache->key_cache_block_size );
if (s_key_cache_write(partition,
set_if_smaller(w_length, keycache->key_cache_block_size - offset );
if (simple_key_cache_write(partition,
file, 0, filepos, level,
buff, w_length, block_length,
dont_write))
......@@ -5669,8 +5657,8 @@ int p_key_cache_write(void *keycache_cb,
SYNOPSIS
p_flush_key_blocks()
keycache_cb pointer to the control block of a partitioned key cache
flush_partitioned_key_cache_blocks()
keycache pointer to the control block of a partitioned key cache
file handler for the file to flush to
file_extra maps of key cache partitions containing
dirty pages from file (not used)
......@@ -5679,9 +5667,9 @@ int p_key_cache_write(void *keycache_cb,
DESCRIPTION
This function is the implementation of the flush_key_blocks interface
function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for a partitioned
key cache.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for a
partitioned key cache.
In a general case the function flushes the data from all dirty key
buffers related to the file 'file' into this file. The function does
exactly this if the value of the parameter type is FLUSH_KEEP. If the
......@@ -5689,12 +5677,12 @@ int p_key_cache_write(void *keycache_cb,
releases the key buffers containing data from 'file' for new usage.
If the value of the parameter type is FLUSH_IGNORE_CHANGED the function
just releases the key buffers containing data from 'file'.
The function performs the operation by calling s_flush_key_blocks
for the elements of the array of the simple key caches that comprise
the partitioned key_cache. If the value of the parameter type is
FLUSH_KEEP s_flush_key_blocks is called only for the partitions with
possibly dirty pages marked in the bitmap pointed to by the parameter
file_extra.
The function performs the operation by calling the function
flush_simple_key_cache_blocks for the elements of the array of the
simple key caches that comprise the partitioned key_cache. If the value
of the parameter type is FLUSH_KEEP s_flush_key_blocks is called only
for the partitions with possibly dirty pages marked in the bitmap
pointed to by the parameter file_extra.
RETURN
0 ok
......@@ -5703,35 +5691,30 @@ int p_key_cache_write(void *keycache_cb,
NOTES
This implementation exploits the fact that the function is called only
when a thread has got an exclusive lock for the key file.
*/
static
int p_flush_key_blocks(void *keycache_cb,
int flush_partitioned_key_cache_blocks(PARTITIONED_KEY_CACHE_CB *keycache,
File file, void *file_extra,
enum flush_type type)
{
uint i;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint partitions= keycache->partitions;
int err= 0;
ulonglong *dirty_part_map= (ulonglong *) file_extra;
DBUG_ENTER("p_flush_key_blocks");
DBUG_ENTER("partitioned_flush_key_blocks");
DBUG_PRINT("enter", ("keycache: 0x%lx", (long) keycache));
for (i= 0; i < partitions; i++)
{
S_KEY_CACHE_CB *partition= keycache->partition_array[i];
SIMPLE_KEY_CACHE_CB *partition= keycache->partition_array[i];
if ((type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE) &&
!((*dirty_part_map) & (1<<i)))
!((*dirty_part_map) & ((ulonglong) 1 << i)))
continue;
err+= test(s_flush_key_blocks(partition, file, 0, type));
err|= test(flush_simple_key_cache_blocks(partition, file, 0, type));
}
*dirty_part_map= 0;
if (err > 0)
err= 1;
DBUG_RETURN(err);
}
......@@ -5740,38 +5723,36 @@ int p_flush_key_blocks(void *keycache_cb,
Reset the counters of a partitioned key cache
SYNOPSIS
p_reset_key_cache_counters()
reset_partitioned_key_cache_counters()
name the name of a key cache
keycache_cb pointer to the control block of a partitioned key cache
keycache pointer to the control block of a partitioned key cache
DESCRIPTION
This function is the implementation of the reset_key_cache_counters
interface function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for a partitioned
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for a partitioned
key cache.
This function resets the values of the statistical counters of the simple
key caches comprising partitioned key cache to 0. It does it by calling
s_reset_key_cache_counters for each key cache partition.
reset_simple_key_cache_counters for each key cache partition.
The parameter name is currently not used.
RETURN
0 on success (always because it can't fail)
*/
static
int p_reset_key_cache_counters(const char *name __attribute__((unused)),
void *keycache_cb)
static int
reset_partitioned_key_cache_counters(const char *name __attribute__((unused)),
PARTITIONED_KEY_CACHE_CB *keycache)
{
uint i;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint partitions= keycache->partitions;
DBUG_ENTER("p_reset_key_cache_counters");
DBUG_ENTER("partitioned_reset_key_cache_counters");
for (i = 0; i < partitions; i++)
{
s_reset_key_cache_counters(name, keycache->partition_array[i]);
reset_simple_key_cache_counters(name, keycache->partition_array[i]);
}
DBUG_RETURN(0);
}
......@@ -5781,17 +5762,17 @@ int p_reset_key_cache_counters(const char *name __attribute__((unused)),
Get statistics for a partition key cache
SYNOPSIS
p_get_key_cache_statistics()
keycache_cb pointer to the control block of a partitioned key cache
get_partitioned_key_cache_statistics()
keycache pointer to the control block of a partitioned key cache
partition_no partition number to get statistics for
key_cache_stats OUT pointer to the structure for the returned statistics
DESCRIPTION
This function is the implementation of the get_key_cache_statistics
interface function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for a partitioned
key cache.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for
a partitioned key cache.
If the value of the parameter partition_no is equal to 0 then aggregated
statistics for all partitions is returned in the fields of the
structure key_cache_stat of the type KEY_CACHE_STATISTICS . Otherwise
......@@ -5801,37 +5782,38 @@ int p_reset_key_cache_counters(const char *name __attribute__((unused)),
RETURN
none
*/
static
void p_get_key_cache_statistics(void *keycache_cb, uint partition_no,
KEY_CACHE_STATISTICS *key_cache_stats)
void
get_partitioned_key_cache_statistics(PARTITIONED_KEY_CACHE_CB *keycache,
uint partition_no,
KEY_CACHE_STATISTICS *keycache_stats)
{
uint i;
S_KEY_CACHE_CB *partition;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
SIMPLE_KEY_CACHE_CB *partition;
uint partitions= keycache->partitions;
DBUG_ENTER("p_get_key_cache_statistics_");
DBUG_ENTER("get_partitioned_key_cache_statistics");
if (partition_no != 0)
{
partition= keycache->partition_array[partition_no-1];
s_get_key_cache_statistics((void *) partition, 0, key_cache_stats);
get_simple_key_cache_statistics((void *) partition, 0, keycache_stats);
DBUG_VOID_RETURN;
}
key_cache_stats->mem_size= (longlong) keycache->key_cache_mem_size;
key_cache_stats->block_size= (longlong) keycache->key_cache_block_size;
bzero(keycache_stats, sizeof(KEY_CACHE_STATISTICS));
keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size;
keycache_stats->block_size= (longlong) keycache->key_cache_block_size;
for (i = 0; i < partitions; i++)
{
partition= keycache->partition_array[i];
key_cache_stats->blocks_used+= partition->blocks_used;
key_cache_stats->blocks_unused+= partition->blocks_unused;
key_cache_stats->blocks_changed+= partition->global_blocks_changed;
key_cache_stats->read_requests+= partition->global_cache_r_requests;
key_cache_stats->reads+= partition->global_cache_read;
key_cache_stats->write_requests+= partition->global_cache_w_requests;
key_cache_stats->writes+= partition->global_cache_write;
keycache_stats->blocks_used+= partition->blocks_used;
keycache_stats->blocks_unused+= partition->blocks_unused;
keycache_stats->blocks_changed+= partition->global_blocks_changed;
keycache_stats->read_requests+= partition->global_cache_r_requests;
keycache_stats->reads+= partition->global_cache_read;
keycache_stats->write_requests+= partition->global_cache_w_requests;
keycache_stats->writes+= partition->global_cache_write;
}
DBUG_VOID_RETURN;
}
......@@ -5840,16 +5822,16 @@ void p_get_key_cache_statistics(void *keycache_cb, uint partition_no,
Get the value of a statistical variable for a partitioned key cache
SYNOPSIS
p_get_key_cache_stat_value()
keycache_cb pointer to the control block of a partitioned key cache
get_partitioned_key_cache_stat_value()
keycache pointer to the control block of a partitioned key cache
var_no the ordered number of a statistical variable
DESCRIPTION
This function is the implementation of the get_key_cache_stat_value
interface function that is employed by partitioned key caches.
The function considers the parameter keycache_cb as a pointer to the
control block structure of the type P_KEY_CACHE_CB for a partitioned
key cache.
The function takes the parameter keycache as a pointer to the
control block structure of the type PARTITIONED_KEY_CACHE_CB for a
partitioned key cache.
This function returns the value of the statistical variable var_no
for this key cache. The variables are numbered starting from 0 to 6.
The returned value is calculated as the sum of the values of the
......@@ -5858,24 +5840,24 @@ void p_get_key_cache_statistics(void *keycache_cb, uint partition_no,
RETURN
The value of the specified statistical variable
*/
static
ulonglong p_get_key_cache_stat_value(void *keycache_cb, uint var_no)
ulonglong
get_partitioned_key_cache_stat_value(PARTITIONED_KEY_CACHE_CB *keycache,
uint var_no)
{
uint i;
P_KEY_CACHE_CB *keycache= (P_KEY_CACHE_CB *) keycache_cb;
uint partitions= keycache->partitions;
size_t var_ofs= s_key_cache_stat_var_offsets[var_no];
size_t var_ofs= simple_key_cache_stat_var_offsets[var_no];
ulonglong res= 0;
DBUG_ENTER("p_get_key_cache_stat_value");
DBUG_ENTER("get_partitioned_key_cache_stat_value");
if (var_no < 3)
if (var_no < NO_LONG_KEY_CACHE_STAT_VARIABLES)
{
for (i = 0; i < partitions; i++)
{
S_KEY_CACHE_CB *partition= keycache->partition_array[i];
SIMPLE_KEY_CACHE_CB *partition= keycache->partition_array[i];
res+= (ulonglong) (*(long *) ((char *) partition + var_ofs));
}
}
......@@ -5883,7 +5865,7 @@ ulonglong p_get_key_cache_stat_value(void *keycache_cb, uint var_no)
{
for (i = 0; i < partitions; i++)
{
S_KEY_CACHE_CB *partition= keycache->partition_array[i];
SIMPLE_KEY_CACHE_CB *partition= keycache->partition_array[i];
res+= *(ulonglong *) ((char *) partition + var_ofs);
}
}
......@@ -5901,19 +5883,19 @@ ulonglong p_get_key_cache_stat_value(void *keycache_cb, uint var_no)
wrappers must be used for this purpose.
*/
static KEY_CACHE_FUNCS p_key_cache_funcs =
static KEY_CACHE_FUNCS partitioned_key_cache_funcs =
{
p_init_key_cache,
p_resize_key_cache,
p_change_key_cache_param,
p_key_cache_read,
p_key_cache_insert,
p_key_cache_write,
p_flush_key_blocks,
p_reset_key_cache_counters,
p_end_key_cache,
p_get_key_cache_statistics,
p_get_key_cache_stat_value
(INIT_KEY_CACHE) init_partitioned_key_cache,
(RESIZE_KEY_CACHE) resize_partitioned_key_cache,
(CHANGE_KEY_CACHE_PARAM) change_partitioned_key_cache_param,
(KEY_CACHE_READ) partitioned_key_cache_read,
(KEY_CACHE_INSERT) partitioned_key_cache_insert,
(KEY_CACHE_WRITE) partitioned_key_cache_write,
(FLUSH_KEY_BLOCKS) flush_partitioned_key_cache_blocks,
(RESET_KEY_CACHE_COUNTERS) reset_partitioned_key_cache_counters,
(END_KEY_CACHE) end_partitioned_key_cache,
(GET_KEY_CACHE_STATISTICS) get_partitioned_key_cache_statistics,
(GET_KEY_CACHE_STAT_VALUE) get_partitioned_key_cache_stat_value
};
......@@ -5926,12 +5908,12 @@ static KEY_CACHE_FUNCS p_key_cache_funcs =
partitioned key caches. Each type (class) has its own implementation of the
basic key cache operations used the MyISAM storage engine. The pointers
to the implementation functions are stored in two static structures of the
type KEY_CACHE_FUNC: s_key_cache_funcs - for simple key caches, and
p_key_cache_funcs - for partitioned key caches. When a key cache object is
created the constructor procedure init_key_cache places a pointer to the
corresponding table into one of its fields. The procedure also initializes
a control block for the key cache oject and saves the pointer to this
block in another field of the key cache object.
type KEY_CACHE_FUNC: simple_key_cache_funcs - for simple key caches, and
partitioned_key_cache_funcs - for partitioned key caches. When a key cache
object is created the constructor procedure init_key_cache places a pointer
to the corresponding table into one of its fields. The procedure also
initializes a control block for the key cache oject and saves the pointer
to this block in another field of the key cache object.
When a key cache wrapper function is invoked for a key cache object to
perform a basic key cache operation it looks into the interface table
associated with the key cache oject and calls the corresponding
......@@ -5982,7 +5964,6 @@ static KEY_CACHE_FUNCS p_key_cache_funcs =
It's assumed that no two threads call this function simultaneously
referring to the same key cache handle.
*/
int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
......@@ -5997,19 +5978,21 @@ int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
{
if (partitions == 0)
{
if (!(keycache_cb= (void *) my_malloc(sizeof(S_KEY_CACHE_CB), MYF(0))))
if (!(keycache_cb= (void *) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB),
MYF(0))))
return 0;
((S_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0;
((SIMPLE_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0;
keycache->key_cache_type= SIMPLE_KEY_CACHE;
keycache->interface_funcs= &s_key_cache_funcs;
keycache->interface_funcs= &simple_key_cache_funcs;
}
else
{
if (!(keycache_cb= (void *) my_malloc(sizeof(P_KEY_CACHE_CB), MYF(0))))
if (!(keycache_cb= (void *) my_malloc(sizeof(PARTITIONED_KEY_CACHE_CB),
MYF(0))))
return 0;
((P_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0;
((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0;
keycache->key_cache_type= PARTITIONED_KEY_CACHE;
keycache->interface_funcs= &p_key_cache_funcs;
keycache->interface_funcs= &partitioned_key_cache_funcs;
}
keycache->keycache_cb= keycache_cb;
keycache->key_cache_inited= 1;
......@@ -6017,14 +6000,15 @@ int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
if (partitions != 0)
{
((P_KEY_CACHE_CB *) keycache_cb)->partitions= partitions;
((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions= partitions;
}
keycache->can_be_used= 0;
blocks= keycache->interface_funcs->init(keycache_cb, key_cache_block_size,
use_mem, division_limit,
age_threshold);
keycache->partitions= partitions ?
((P_KEY_CACHE_CB *) keycache_cb)->partitions : 0;
((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions :
0;
DBUG_ASSERT(partitions <= MAX_KEY_CACHE_PARTITIONS);
if (blocks > 0)
keycache->can_be_used= 1;
......@@ -6064,7 +6048,6 @@ int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
Currently the function is called when the values of the variables
key_buffer_size and/or key_cache_block_size are being reset for
the key cache keycache.
*/
int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
......@@ -6074,7 +6057,7 @@ int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
if (keycache->key_cache_inited)
{
if ((uint) keycache->param_partitions != keycache->partitions && use_mem)
blocks= repartition_key_cache (keycache,
blocks= repartition_key_cache(keycache,
key_cache_block_size, use_mem,
division_limit, age_threshold,
(uint) keycache->param_partitions);
......@@ -6087,10 +6070,10 @@ int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
if (keycache->partitions)
keycache->partitions=
((P_KEY_CACHE_CB *)(keycache->keycache_cb))->partitions;
((PARTITIONED_KEY_CACHE_CB *)(keycache->keycache_cb))->partitions;
}
if (blocks <= 0)
keycache->can_be_used= 0;
keycache->can_be_used= (blocks >= 0);
}
return blocks;
}
......@@ -6117,7 +6100,6 @@ int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
Currently the function is called when the values of the variables
key_cache_division_limit and/or key_cache_age_threshold are being reset
for the key cache keycache.
*/
void change_key_cache_param(KEY_CACHE *keycache, uint division_limit,
......@@ -6262,7 +6244,6 @@ uchar *key_cache_read(KEY_CACHE *keycache,
the key cache.
It is assumed that it may be performed in parallel with reading the file
data from the key buffers by other threads.
*/
int key_cache_insert(KEY_CACHE *keycache,
......@@ -6316,7 +6297,6 @@ int key_cache_insert(KEY_CACHE *keycache,
NOTES
This implementation may exploit the fact that the function is called only
when a thread has got an exclusive lock for the key file.
*/
int key_cache_write(KEY_CACHE *keycache,
......@@ -6373,7 +6353,6 @@ int key_cache_write(KEY_CACHE *keycache,
NOTES
Any implementation of the function may exploit the fact that the function
is called only when a thread has got an exclusive lock for the key file.
*/
int flush_key_blocks(KEY_CACHE *keycache,
......@@ -6406,7 +6385,6 @@ int flush_key_blocks(KEY_CACHE *keycache,
NOTES
This procedure is used by process_key_caches() to reset the counters of all
currently used key caches, both the default one and the named ones.
*/
int reset_key_cache_counters(const char *name __attribute__((unused)),
......@@ -6441,13 +6419,11 @@ int reset_key_cache_counters(const char *name __attribute__((unused)),
RETURN
none
*/
void get_key_cache_statistics(KEY_CACHE *keycache, uint partition_no,
KEY_CACHE_STATISTICS *key_cache_stats)
{
bzero(key_cache_stats, sizeof(KEY_CACHE_STATISTICS));
if (keycache->key_cache_inited)
{
keycache->interface_funcs->get_stats(keycache->keycache_cb,
......@@ -6484,7 +6460,6 @@ void get_key_cache_statistics(KEY_CACHE *keycache, uint partition_no,
reads 4
write_requests 5
writes 6
*/
ulonglong get_key_cache_stat_value(KEY_CACHE *keycache, uint var_no)
......@@ -6534,7 +6509,6 @@ ulonglong get_key_cache_stat_value(KEY_CACHE *keycache, uint var_no)
Currently the function is called when the value of the variable
key_cache_partitions is being reset for the key cache keycache.
*/
int repartition_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
......
......@@ -2235,7 +2235,8 @@ static void update_key_cache_stat_var(KEY_CACHE *key_cache, size_t ofs)
case offsetof(KEY_CACHE, global_cache_read):
case offsetof(KEY_CACHE, global_cache_w_requests):
case offsetof(KEY_CACHE, global_cache_write):
var_no= 3+(ofs-offsetof(KEY_CACHE, global_cache_w_requests))/
var_no= NO_LONG_KEY_CACHE_STAT_VARIABLES +
(ofs-offsetof(KEY_CACHE, global_cache_w_requests))/
sizeof(ulonglong);
*(ulonglong *)((char *) key_cache + ofs)=
get_key_cache_stat_value(key_cache, var_no);
......@@ -6643,13 +6644,13 @@ int store_key_cache_table_record(THD *thd, TABLE *table,
KEY_CACHE *key_cache,
uint partitions, uint partition_no)
{
KEY_CACHE_STATISTICS key_cache_stats;
KEY_CACHE_STATISTICS keycache_stats;
uint err;
DBUG_ENTER("store_key_cache_table_record");
get_key_cache_statistics(key_cache, partition_no, &key_cache_stats);
get_key_cache_statistics(key_cache, partition_no, &keycache_stats);
if (key_cache_stats.mem_size == 0)
if (!key_cache->key_cache_inited || keycache_stats.mem_size == 0)
DBUG_RETURN(0);
restore_record(table, s->default_values);
......@@ -6669,15 +6670,15 @@ int store_key_cache_table_record(THD *thd, TABLE *table,
table->field[2]->set_notnull();
table->field[2]->store((long) partition_no, TRUE);
}
table->field[3]->store(key_cache_stats.mem_size, TRUE);
table->field[4]->store(key_cache_stats.block_size, TRUE);
table->field[5]->store(key_cache_stats.blocks_used, TRUE);
table->field[6]->store(key_cache_stats.blocks_unused, TRUE);
table->field[7]->store(key_cache_stats.blocks_changed, TRUE);
table->field[8]->store(key_cache_stats.read_requests, TRUE);
table->field[9]->store(key_cache_stats.reads, TRUE);
table->field[10]->store(key_cache_stats.write_requests, TRUE);
table->field[11]->store(key_cache_stats.writes, TRUE);
table->field[3]->store(keycache_stats.mem_size, TRUE);
table->field[4]->store(keycache_stats.block_size, TRUE);
table->field[5]->store(keycache_stats.blocks_used, TRUE);
table->field[6]->store(keycache_stats.blocks_unused, TRUE);
table->field[7]->store(keycache_stats.blocks_changed, TRUE);
table->field[8]->store(keycache_stats.read_requests, TRUE);
table->field[9]->store(keycache_stats.reads, TRUE);
table->field[10]->store(keycache_stats.write_requests, TRUE);
table->field[11]->store(keycache_stats.writes, TRUE);
err= schema_table_store_record(thd, table);
DBUG_RETURN(err);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment