Commit dc2a6e22 authored by unknown's avatar unknown

WL#2985 "Partition Pruning":

- post-...-post review fixes
- Added "integer range walking" that allows to do partition pruning for "a <=? t.field <=? b"
  by finding used partitions for a, a+1, a+2, ..., b-1, b. 


mysql-test/r/partition_pruning.result:
  WL#2985 "Partition Pruning": tests for "integer range walking"
mysql-test/t/partition.test:
  WL#2985 "Partition Pruning": post-review fixes
mysql-test/t/partition_pruning.test:
  WL#2985 "Partition Pruning": tests for "integer range walking"
sql/handler.h:
  WL#2985 "Partition Pruning": "integer range walking": 
  - class partition_info now has pointers to "partitioning interval analysis" functions
  - added "partition set iterator" definitions.
sql/opt_range.cc:
  WL#2985 "Partition Pruning": "integer range walking":
  - Switched to use "partitioning interval analysis" functions
  - Fixed two problems in find_used_partitions() that occur on complicated WHERE clauses.
sql/sql_partition.cc:
  WL#2985 "Partition Pruning": "integer range walking": 
  - Added "partitioning interval analysis" functions: get_part_iter_for_interval_via_mapping, 
    get_part_iter_for_interval_via_walking, 
  - Added appropriate partition-set-iterator implementations
  - Added a function to set up Partitioning Interval Analysis-related fields in partition_info.
sql/sql_select.cc:
  WL#2985 "Partition pruning": added comments.
parent 78d1abba
......@@ -274,3 +274,33 @@ id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE X p1,p2 ALL a NULL NULL NULL 4 Using where
1 SIMPLE Y p1,p2 ref a a 4 test.X.a 2
drop table t1;
create table t1 (a int) partition by hash(a) partitions 20;
insert into t1 values (1),(2),(3);
explain partitions select * from t1 where a > 1 and a < 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p2 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where a >= 1 and a < 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p1,p2 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where a > 1 and a <= 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p2,p3 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where a >= 1 and a <= 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p1,p2,p3 ALL NULL NULL NULL NULL 3 Using where
drop table t1;
create table t1 (a int, b int)
partition by list(a) subpartition by hash(b) subpartitions 20
(
partition p0 values in (0),
partition p1 values in (1),
partition p2 values in (2),
partition p3 values in (3)
);
insert into t1 values (1,1),(2,2),(3,3);
explain partitions select * from t1 where b > 1 and b < 3;
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p0_sp2,p1_sp2,p2_sp2,p3_sp2 ALL NULL NULL NULL NULL 3 Using where
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
id select_type table partitions type possible_keys key key_len ref rows Extra
1 SIMPLE t1 p1_sp2,p2_sp2 ALL NULL NULL NULL NULL 3 Using where
......@@ -209,7 +209,7 @@ create table t1 (a int not null, b int not null) partition by LIST (a+b) (
partition p0 values in (12),
partition p1 values in (14)
);
--error 1500
--error ER_NO_PARTITION_FOR_GIVEN_VALUE
insert into t1 values (10,1);
drop table t1;
......
......@@ -247,5 +247,28 @@ explain partitions
select * from t1 X, t1 Y where X.a = Y.a and (X.a=1 or X.a=2);
drop table t1;
# Tests for "short ranges"
create table t1 (a int) partition by hash(a) partitions 20;
insert into t1 values (1),(2),(3);
explain partitions select * from t1 where a > 1 and a < 3;
explain partitions select * from t1 where a >= 1 and a < 3;
explain partitions select * from t1 where a > 1 and a <= 3;
explain partitions select * from t1 where a >= 1 and a <= 3;
drop table t1;
create table t1 (a int, b int)
partition by list(a) subpartition by hash(b) subpartitions 20
(
partition p0 values in (0),
partition p1 values in (1),
partition p2 values in (2),
partition p3 values in (3)
);
insert into t1 values (1,1),(2,2),(3,3);
explain partitions select * from t1 where b > 1 and b < 3;
explain partitions select * from t1 where b > 1 and b < 3 and (a =1 or a =2);
# No tests for NULLs in RANGE(monotonic_expr()) - they depend on BUG#15447
# being fixed.
......@@ -474,6 +474,8 @@ typedef struct {
uint32 end_part;
bool use_bit_array;
} part_id_range;
/**
* An enum and a struct to handle partitioning and subpartitioning.
*/
......@@ -537,7 +539,109 @@ typedef bool (*get_part_id_func)(partition_info *part_info,
uint32 *part_id);
typedef uint32 (*get_subpart_id_func)(partition_info *part_info);
class partition_info :public Sql_alloc {
struct st_partition_iter;
#define NOT_A_PARTITION_ID ((uint32)-1)
/*
A "Get next" function for partition iterator.
SYNOPSIS
partition_iter_func()
part_iter Partition iterator, you call only "iter.get_next(&iter)"
RETURN
NOT_A_PARTITION_ID if there are no more partitions.
[sub]partition_id of the next partition
*/
typedef uint32 (*partition_iter_func)(st_partition_iter* part_iter);
/*
Partition set iterator. Used to enumerate a set of [sub]partitions
obtained in partition interval analysis (see get_partitions_in_range_iter).
For the user, the only meaningful field is get_next, which may be used as
follows:
part_iterator.get_next(&part_iterator);
Initialization is done by any of the following calls:
- get_partitions_in_range_iter-type function call
- init_single_partition_iterator()
- init_all_partitions_iterator()
Cleanup is not needed.
*/
typedef struct st_partition_iter
{
partition_iter_func get_next;
union {
struct {
uint32 start_part_num;
uint32 end_part_num;
};
struct {
longlong start_val;
longlong end_val;
};
bool null_returned;
};
partition_info *part_info;
} PARTITION_ITERATOR;
/*
Get an iterator for set of partitions that match given field-space interval
SYNOPSIS
get_partitions_in_range_iter()
part_info Partitioning info
is_subpart
min_val Left edge, field value in opt_range_key format.
max_val Right edge, field value in opt_range_key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Functions with this signature are used to perform "Partitioning Interval
Analysis". This analysis is applicable for any type of [sub]partitioning
by some function of a single fieldX. The idea is as follows:
Given an interval "const1 <=? fieldX <=? const2", find a set of partitions
that may contain records with value of fieldX within the given interval.
The min_val, max_val and flags parameters specify the interval.
The set of partitions is returned by initializing an iterator in *part_iter
NOTES
There are currently two functions of this type:
- get_part_iter_for_interval_via_walking
- get_part_iter_for_interval_via_mapping
RETURN
0 - No matching partitions, iterator not initialized
1 - Some partitions would match, iterator intialized for traversing them
-1 - All partitions would match, iterator not initialized
*/
typedef int (*get_partitions_in_range_iter)(partition_info *part_info,
bool is_subpart,
byte *min_val, byte *max_val,
uint flags,
PARTITION_ITERATOR *part_iter);
/* Initialize the iterator to return a single partition with given part_id */
inline void init_single_partition_iterator(uint32 part_id,
PARTITION_ITERATOR *part_iter);
/* Initialize the iterator to enumerate all partitions */
inline void init_all_partitions_iterator(partition_info *part_info,
PARTITION_ITERATOR *part_iter);
class partition_info : public Sql_alloc
{
public:
/*
* Here comes a set of definitions needed for partitioned table handlers.
......@@ -598,6 +702,39 @@ public:
longlong *range_int_array;
LIST_PART_ENTRY *list_array;
};
/********************************************
* INTERVAL ANALYSIS
********************************************/
/*
Partitioning interval analysis function for partitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_part_iter_for_interval;
/*
Partitioning interval analysis function for subpartitioning, or NULL if
interval analysis is not supported for this kind of partitioning.
*/
get_partitions_in_range_iter get_subpart_iter_for_interval;
/*
Valid iff
get_part_iter_for_interval=get_part_iter_for_interval_via_walking:
controls how we'll process "field < C" and "field > C" intervals.
If the partitioning function F is strictly increasing, then for any x, y
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
we can perform partition pruning on the equivalent "F(field) < F(C)".
If the partitioning function not strictly increasing (it is simply
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
i.e. for interval "field < C" we can perform partition pruning for
"F(field) <= F(C)".
*/
bool range_analysis_include_bounds;
/********************************************
* INTERVAL ANALYSIS ENDS
********************************************/
char* part_info_string;
char *part_func_string;
......@@ -681,6 +818,25 @@ public:
#ifdef WITH_PARTITION_STORAGE_ENGINE
uint32 get_next_partition_id_range(struct st_partition_iter* part_iter);
inline void init_single_partition_iterator(uint32 part_id,
PARTITION_ITERATOR *part_iter)
{
part_iter->start_part_num= part_id;
part_iter->end_part_num= part_id+1;
part_iter->get_next= get_next_partition_id_range;
}
inline
void init_all_partitions_iterator(partition_info *part_info,
PARTITION_ITERATOR *part_iter)
{
part_iter->start_part_num= 0;
part_iter->end_part_num= part_info->no_parts;
part_iter->get_next= get_next_partition_id_range;
}
/*
Answers the question if subpartitioning is used for a certain table
SYNOPSIS
......
......@@ -2070,7 +2070,7 @@ int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
}
/****************************************************************************
* Partition pruning starts
* Partition pruning module
****************************************************************************/
#ifdef WITH_PARTITION_STORAGE_ENGINE
......@@ -2159,10 +2159,6 @@ struct st_part_prune_param;
struct st_part_opt_info;
typedef void (*mark_full_part_func)(partition_info*, uint32);
typedef uint32 (*part_num_to_partition_id_func)(struct st_part_prune_param*,
uint32);
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
bool include_endpoint);
/*
Partition pruning operation context
......@@ -2199,32 +2195,6 @@ typedef struct st_part_prune_param
int last_part_partno;
int last_subpart_partno; /* Same as above for supartitioning */
/*
Function to be used to analyze non-singlepoint intervals (Can be pointer
to one of two functions - for RANGE and for LIST types). NULL means
partitioning type and/or expression doesn't allow non-singlepoint interval
analysis.
See get_list_array_idx_for_endpoint (or get_range_...) for description of
what the function does.
*/
get_endpoint_func get_endpoint;
/* Maximum possible value that can be returned by get_endpoint function */
uint32 max_endpoint_val;
/*
For RANGE partitioning, part_num_to_part_id_range, for LIST partitioning,
part_num_to_part_id_list. Just to avoid the if-else clutter.
*/
part_num_to_partition_id_func endpoints_walk_func;
/*
If true, process "key < const" as "part_func(key) < part_func(const)",
otherwise as "part_func(key) <= part_func(const)". Same for '>' and '>='.
This is defined iff get_endpoint != NULL.
*/
bool force_include_bounds;
/*
is_part_keypart[i] == test(keypart #i in partitioning index is a member
used in partitioning)
......@@ -2244,24 +2214,11 @@ typedef struct st_part_prune_param
/* Same as cur_part_fields, but for subpartitioning */
uint cur_subpart_fields;
/***************************************************************
Following fields are used to store an 'iterator' that can be
used to obtain a set of used partitions.
**************************************************************/
/*
Start and end+1 partition "numbers". They can have two meanings depending
of the value of part_num_to_part_id:
part_num_to_part_id_range - numbers are partition ids
part_num_to_part_id_list - numbers are indexes in part_info->list_array
*/
uint32 start_part_num;
uint32 end_part_num;
/* Iterator to be used to obtain the "current" set of used partitions */
PARTITION_ITERATOR part_iter;
/*
A function that should be used to convert two above "partition numbers"
to partition_ids.
*/
part_num_to_partition_id_func part_num_to_part_id;
/* Initialized bitmap of no_subparts size */
MY_BITMAP subparts_bitmap;
} PART_PRUNE_PARAM;
static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
......@@ -2377,9 +2334,7 @@ bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
prune_param.arg_stack_end= prune_param.arg_stack;
prune_param.cur_part_fields= 0;
prune_param.cur_subpart_fields= 0;
prune_param.part_num_to_part_id= part_num_to_part_id_range;
prune_param.start_part_num= 0;
prune_param.end_part_num= prune_param.part_info->no_parts;
init_all_partitions_iterator(part_info, &prune_param.part_iter);
if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
tree->keys[0]))))
goto all_used;
......@@ -2451,7 +2406,7 @@ end:
format.
*/
static void store_key_image_to_rec(Field *field, char *ptr, uint len)
void store_key_image_to_rec(Field *field, char *ptr, uint len)
{
/* Do the same as print_key() does */
if (field->real_maybe_null())
......@@ -2512,19 +2467,6 @@ static void mark_full_partition_used_with_parts(partition_info *part_info,
bitmap_set_bit(&part_info->used_partitions, start);
}
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
static uint32 part_num_to_part_id_range(PART_PRUNE_PARAM* ppar, uint32 num)
{
return num;
}
/* See comment in PART_PRUNE_PARAM::part_num_to_part_id about what this is */
static uint32 part_num_to_part_id_list(PART_PRUNE_PARAM* ppar, uint32 num)
{
return ppar->part_info->list_array[num].partition_id;
}
/*
Find the set of used partitions for List<SEL_IMERGE>
SYNOPSIS
......@@ -2612,9 +2554,7 @@ int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
ppar->arg_stack_end= ppar->arg_stack;
ppar->cur_part_fields= 0;
ppar->cur_subpart_fields= 0;
ppar->part_num_to_part_id= part_num_to_part_id_range;
ppar->start_part_num= 0;
ppar->end_part_num= ppar->part_info->no_parts;
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
if (-1 == (res |= find_used_partitions(ppar, (*ptree)->keys[0])))
return -1;
}
......@@ -2683,58 +2623,29 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
if (key_tree->type == SEL_ARG::KEY_RANGE)
{
if (partno == 0 && (NULL != ppar->get_endpoint))
if (partno == 0 && (NULL != ppar->part_info->get_part_iter_for_interval))
{
/*
Partitioning is done by RANGE|INTERVAL(monotonic_expr(fieldX)), and
we got "const1 CMP fieldX CMP const2" interval
we got "const1 CMP fieldX CMP const2" interval <-- psergey-todo: change
*/
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
ppar->range_param.
key_parts););
/* Find minimum */
if (key_tree->min_flag & NO_MIN_RANGE)
ppar->start_part_num= 0;
else
{
/*
Store the interval edge in the record buffer, and call the
function that maps the edge in table-field space to an edge
in ordered-set-of-partitions (for RANGE partitioning) or
indexes-in-ordered-array-of-list-constants (for LIST) space.
*/
store_key_image_to_rec(key_tree->field, key_tree->min_value,
ppar->range_param.key_parts[0].length);
bool include_endp= ppar->force_include_bounds ||
!test(key_tree->min_flag & NEAR_MIN);
ppar->start_part_num= ppar->get_endpoint(ppar->part_info, 1,
include_endp);
if (ppar->start_part_num == ppar->max_endpoint_val)
{
res= 0; /* No satisfying partitions */
goto pop_and_go_right;
}
}
/* Find maximum, do the same as above but for right interval bound */
if (key_tree->max_flag & NO_MAX_RANGE)
ppar->end_part_num= ppar->max_endpoint_val;
else
{
store_key_image_to_rec(key_tree->field, key_tree->max_value,
ppar->range_param.key_parts[0].length);
bool include_endp= ppar->force_include_bounds ||
!test(key_tree->max_flag & NEAR_MAX);
ppar->end_part_num= ppar->get_endpoint(ppar->part_info, 0,
include_endp);
if (ppar->start_part_num == ppar->end_part_num)
res= ppar->part_info->
get_part_iter_for_interval(ppar->part_info,
FALSE,
key_tree->min_value,
key_tree->max_value,
key_tree->min_flag | key_tree->max_flag,
&ppar->part_iter);
if (!res)
goto go_right; /* res=0 --> no satisfying partitions */
if (res == -1)
{
res= 0; /* No satisfying partitions */
goto pop_and_go_right;
}
//get a full range iterator
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
}
ppar->part_num_to_part_id= ppar->endpoints_walk_func;
/*
Save our intent to mark full partition as used if we will not be able
to obtain further limits on subpartitions
......@@ -2743,6 +2654,42 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
goto process_next_key_part;
}
if (partno == ppar->last_subpart_partno &&
(NULL != ppar->part_info->get_subpart_iter_for_interval))
{
PARTITION_ITERATOR subpart_iter;
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
ppar->range_param.
key_parts););
res= ppar->part_info->
get_subpart_iter_for_interval(ppar->part_info,
TRUE,
key_tree->min_value,
key_tree->max_value,
key_tree->min_flag | key_tree->max_flag,
&subpart_iter);
DBUG_ASSERT(res); /* We can't get "no satisfying subpartitions" */
if (res == -1)
return -1; /* all subpartitions satisfy */
uint32 subpart_id;
bitmap_clear_all(&ppar->subparts_bitmap);
while ((subpart_id= subpart_iter.get_next(&subpart_iter)) != NOT_A_PARTITION_ID)
bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
/* Mark each partition as used in each subpartition. */
uint32 part_id;
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
NOT_A_PARTITION_ID)
{
for (uint i= 0; i < ppar->part_info->no_subparts; i++)
if (bitmap_is_set(&ppar->subparts_bitmap, i))
bitmap_set_bit(&ppar->part_info->used_partitions,
part_id * ppar->part_info->no_subparts + i);
}
goto go_right;
}
if (key_tree->is_singlepoint())
{
pushed= TRUE;
......@@ -2768,9 +2715,7 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
goto pop_and_go_right;
}
/* Rembember the limit we got - single partition #part_id */
ppar->part_num_to_part_id= part_num_to_part_id_range;
ppar->start_part_num= part_id;
ppar->end_part_num= part_id + 1;
init_single_partition_iterator(part_id, &ppar->part_iter);
/*
If there are no subpartitions/we fail to get any limit for them,
......@@ -2780,7 +2725,8 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
goto process_next_key_part;
}
if (partno == ppar->last_subpart_partno)
if (partno == ppar->last_subpart_partno &&
ppar->cur_subpart_fields == ppar->subpart_fields)
{
/*
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
......@@ -2796,12 +2742,12 @@ int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
uint32 subpart_id= part_info->get_subpartition_id(part_info);
/* Mark this partition as used in each subpartition. */
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
num++)
uint32 part_id;
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
NOT_A_PARTITION_ID)
{
bitmap_set_bit(&part_info->used_partitions,
ppar->part_num_to_part_id(ppar, num) *
part_info->no_subparts + subpart_id);
part_id * part_info->no_subparts + subpart_id);
}
res= 1; /* Some partitions were marked as used */
goto pop_and_go_right;
......@@ -2825,31 +2771,25 @@ process_next_key_part:
else
res= -1;
if (res == -1) /* Got "full range" for key_tree->next_key_part call */
{
if (set_full_part_if_bad_ret)
{
for (uint32 num= ppar->start_part_num; num != ppar->end_part_num;
num++)
if (res == -1)
{
ppar->mark_full_partition_used(ppar->part_info,
ppar->part_num_to_part_id(ppar, num));
}
res= 1;
/* Got "full range" for subpartitioning fields */
uint32 part_id;
bool found= FALSE;
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) != NOT_A_PARTITION_ID)
{
ppar->mark_full_partition_used(ppar->part_info, part_id);
found= TRUE;
}
else
return -1;
res= test(found);
}
if (set_full_part_if_bad_ret)
{
/*
Restore the "used partitions iterator" to the default setting that
specifies iteration over all partitions.
*/
ppar->part_num_to_part_id= part_num_to_part_id_range;
ppar->start_part_num= 0;
ppar->end_part_num= ppar->part_info->no_parts;
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
}
if (pushed)
......@@ -2861,6 +2801,9 @@ pop_and_go_right:
ppar->cur_subpart_fields-= ppar->is_subpart_keypart[partno];
}
if (res == -1)
return -1;
go_right:
if (key_tree->right != &null_element)
{
if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
......@@ -2967,38 +2910,6 @@ static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
ppar->get_top_partition_id_func= part_info->get_partition_id;
}
enum_monotonicity_info minfo;
ppar->get_endpoint= NULL;
if (part_info->part_expr &&
(minfo= part_info->part_expr->get_monotonicity_info()) != NON_MONOTONIC)
{
/*
ppar->force_include_bounds controls how we'll process "field < C" and
"field > C" intervals.
If the partitioning function F is strictly increasing, then for any x, y
"x < y" => "F(x) < F(y)" (*), i.e. when we get interval "field < C"
we can perform partition pruning on the equivalent "F(field) < F(C)".
If the partitioning function not strictly increasing (it is simply
increasing), then instead of (*) we get "x < y" => "F(x) <= F(y)"
i.e. for interval "field < C" we can perform partition pruning for
"F(field) <= F(C)".
*/
ppar->force_include_bounds= test(minfo == MONOTONIC_INCREASING);
if (part_info->part_type == RANGE_PARTITION)
{
ppar->get_endpoint= get_partition_id_range_for_endpoint;
ppar->endpoints_walk_func= part_num_to_part_id_range;
ppar->max_endpoint_val= part_info->no_parts;
}
else if (part_info->part_type == LIST_PARTITION)
{
ppar->get_endpoint= get_list_array_idx_for_endpoint;
ppar->endpoints_walk_func= part_num_to_part_id_list;
ppar->max_endpoint_val= part_info->no_list_values;
}
}
KEY_PART *key_part;
MEM_ROOT *alloc= range_par->mem_root;
if (!total_parts ||
......@@ -3012,10 +2923,18 @@ static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
total_parts)))
return TRUE;
if (ppar->subpart_fields)
{
uint32 *buf;
uint32 bufsize= bitmap_buffer_size(ppar->part_info->no_subparts);
if (!(buf= (uint32*)alloc_root(alloc, bufsize)))
return TRUE;
bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->no_subparts, FALSE);
}
range_par->key_parts= key_part;
Field **field= (ppar->part_fields)? part_info->part_field_array :
part_info->subpart_field_array;
bool subpart_fields= FALSE;
bool in_subpart_fields= FALSE;
for (uint part= 0; part < total_parts; part++, key_part++)
{
key_part->key= 0;
......@@ -3036,13 +2955,13 @@ static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
key_part->image_type = Field::itRAW;
/* We don't set key_parts->null_bit as it will not be used */
ppar->is_part_keypart[part]= !subpart_fields;
ppar->is_subpart_keypart[part]= subpart_fields;
ppar->is_part_keypart[part]= !in_subpart_fields;
ppar->is_subpart_keypart[part]= in_subpart_fields;
if (!*(++field))
{
field= part_info->subpart_field_array;
subpart_fields= TRUE;
in_subpart_fields= TRUE;
}
}
range_par->key_parts_end= key_part;
......
......@@ -91,6 +91,21 @@ uint32 get_partition_id_linear_hash_sub(partition_info *part_info);
uint32 get_partition_id_linear_key_sub(partition_info *part_info);
#endif
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter);
int get_part_iter_for_interval_via_walking(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter);
static void set_up_range_analysis_info(partition_info *part_info);
/*
A routine used by the parser to decide whether we are specifying a full
......@@ -1811,6 +1826,7 @@ bool fix_partition_func(THD *thd, const char *name, TABLE *table)
check_range_capable_PF(table);
set_up_partition_key_maps(table, part_info);
set_up_partition_func_pointers(part_info);
set_up_range_analysis_info(part_info);
result= FALSE;
end:
thd->set_query_id= save_set_query_id;
......@@ -3489,7 +3505,7 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
uint partition_id= 0;
List_iterator<partition_element> it(part_info->partitions);
if (part_info->subpart_type != NOT_A_PARTITION)
if (is_sub_partitioned(part_info))
{
partition_element *head_pe;
while ((head_pe= it++))
......@@ -3529,3 +3545,437 @@ void make_used_partitions_str(partition_info *part_info, String *parts_str)
}
}
/****************************************************************************
* Partition interval analysis support
***************************************************************************/
/*
Setup partition_info::* members related to partitioning range analysis
SYNOPSIS
set_up_partition_func_pointers()
part_info Partitioning info structure
DESCRIPTION
Assuming that passed partition_info structure already has correct values
for members that specify [sub]partitioning type, table fields, and
functions, set up partition_info::* members that are related to
Partitioning Interval Analysis (see get_partitions_in_range_iter for its
definition)
IMPLEMENTATION
There are two available interval analyzer functions:
(1) get_part_iter_for_interval_via_mapping
(2) get_part_iter_for_interval_via_walking
They both have limited applicability:
(1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
func is a monotonic function.
(2) is applicable for
"[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
If both are applicable, (1) is preferred over (2).
This function sets part_info::get_part_iter_for_interval according to
this criteria, and also sets some auxilary fields that the function
uses.
*/
static void set_up_range_analysis_info(partition_info *part_info)
{
enum_monotonicity_info minfo;
/* Set the catch-all default */
part_info->get_part_iter_for_interval= NULL;
part_info->get_subpart_iter_for_interval= NULL;
/*
Check if get_part_iter_for_interval_via_mapping() can be used for
partitioning
*/
switch (part_info->part_type) {
case RANGE_PARTITION:
case LIST_PARTITION:
minfo= part_info->part_expr->get_monotonicity_info();
if (minfo != NON_MONOTONIC)
{
part_info->range_analysis_include_bounds=
test(minfo == MONOTONIC_INCREASING);
part_info->get_part_iter_for_interval=
get_part_iter_for_interval_via_mapping;
goto setup_subparts;
}
default:
;
}
/*
Check get_part_iter_for_interval_via_walking() can be used for
partitioning
*/
if (part_info->no_part_fields == 1)
{
Field *field= part_info->part_field_array[0];
switch (field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
part_info->get_part_iter_for_interval=
get_part_iter_for_interval_via_walking;
break;
default:
;
}
}
setup_subparts:
/*
Check get_part_iter_for_interval_via_walking() can be used for
subpartitioning
*/
if (part_info->no_subpart_fields == 1)
{
Field *field= part_info->subpart_field_array[0];
switch (field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
part_info->get_subpart_iter_for_interval=
get_part_iter_for_interval_via_walking;
break;
default:
;
}
}
}
typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
bool include_endpoint);
/*
Partitioning Interval Analysis: Initialize the iterator for "mapping" case
SYNOPSIS
get_part_iter_for_interval_via_mapping()
part_info Partition info
is_subpart TRUE - act for subpartitioning
FALSE - act for partitioning
min_value minimum field value, in opt_range key format.
max_value minimum field value, in opt_range key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Initialize partition set iterator to walk over the interval in
ordered-list-of-partitions (for RANGE partitioning) or
ordered-list-of-list-constants (for LIST partitioning) space.
IMPLEMENTATION
This function is applied when partitioning is done by
<RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
t.field space into a sub-array of partition_info::range_int_array or
partition_info::list_array (see get_partition_id_range_for_endpoint,
get_list_array_idx_for_endpoint for details).
The function performs this interval mapping, and sets the iterator to
traverse the sub-array and return appropriate partitions.
RETURN
0 - No matching partitions (iterator not initialized)
1 - Ok, iterator intialized for traversal of matching partitions.
-1 - All partitions would match (iterator not initialized)
*/
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter)
{
DBUG_ASSERT(!is_subpart);
Field *field= part_info->part_field_array[0];
uint32 max_endpoint_val;
get_endpoint_func get_endpoint;
uint field_len= field->pack_length_in_rec();
if (part_info->part_type == RANGE_PARTITION)
{
get_endpoint= get_partition_id_range_for_endpoint;
max_endpoint_val= part_info->no_parts;
part_iter->get_next= get_next_partition_id_range;
}
else if (part_info->part_type == LIST_PARTITION)
{
get_endpoint= get_list_array_idx_for_endpoint;
max_endpoint_val= part_info->no_list_values;
part_iter->get_next= get_next_partition_id_list;
part_iter->part_info= part_info;
}
else
DBUG_ASSERT(0);
/* Find minimum */
if (flags & NO_MIN_RANGE)
part_iter->start_part_num= 0;
else
{
/*
Store the interval edge in the record buffer, and call the
function that maps the edge in table-field space to an edge
in ordered-set-of-partitions (for RANGE partitioning) or
index-in-ordered-array-of-list-constants (for LIST) space.
*/
store_key_image_to_rec(field, min_value, field_len);
bool include_endp= part_info->range_analysis_include_bounds ||
!test(flags & NEAR_MIN);
part_iter->start_part_num= get_endpoint(part_info, 1, include_endp);
if (part_iter->start_part_num == max_endpoint_val)
return 0; /* No partitions */
}
/* Find maximum, do the same as above but for right interval bound */
if (flags & NO_MAX_RANGE)
part_iter->end_part_num= max_endpoint_val;
else
{
store_key_image_to_rec(field, max_value, field_len);
bool include_endp= part_info->range_analysis_include_bounds ||
!test(flags & NEAR_MAX);
part_iter->end_part_num= get_endpoint(part_info, 0, include_endp);
if (part_iter->start_part_num == part_iter->end_part_num)
return 0; /* No partitions */
}
return 1; /* Ok, iterator initialized */
}
/* See get_part_iter_for_interval_via_walking for definition of what this is */
#define MAX_RANGE_TO_WALK 10
/*
Partitioning Interval Analysis: Initialize iterator to walk integer interval
SYNOPSIS
get_part_iter_for_interval_via_walking()
part_info Partition info
is_subpart TRUE - act for subpartitioning
FALSE - act for partitioning
min_value minimum field value, in opt_range key format.
max_value minimum field value, in opt_range key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Initialize partition set iterator to walk over interval in integer field
space. That is, for "const1 <=? t.field <=? const2" interval, initialize
the iterator to do this:
get partition id for t.field = const1, return it
get partition id for t.field = const1+1, return it
... t.field = const1+2, ...
... ... ...
... t.field = const2 ...
IMPLEMENTATION
See get_partitions_in_range_iter for general description of interval
analysis. We support walking over the following intervals:
"t.field IS NULL"
"c1 <=? t.field <=? c2", where c1 and c2 are finite.
Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
that is more tricky and I don't have time to do it right now.
Additionally we have these requirements:
* number of values in the interval must be less then number of
[sub]partitions, and
* Number of values in the interval must be less then MAX_RANGE_TO_WALK.
The rationale behind these requirements is that if they are not met
we're likely to hit most of the partitions and traversing the interval
will only add overhead. So it's better return "all partitions used" in
this case.
RETURN
0 - No matching partitions, iterator not initialized
1 - Some partitions would match, iterator intialized for traversing them
-1 - All partitions would match, iterator not initialized
*/
int get_part_iter_for_interval_via_walking(partition_info *part_info,
bool is_subpart,
byte *min_value, byte *max_value,
uint flags,
PARTITION_ITERATOR *part_iter)
{
Field *field;
uint total_parts;
partition_iter_func get_next_func;
if (is_subpart)
{
field= part_info->subpart_field_array[0];
total_parts= part_info->no_subparts;
get_next_func= get_next_subpartition_via_walking;
}
else
{
field= part_info->part_field_array[0];
total_parts= part_info->no_parts;
get_next_func= get_next_partition_via_walking;
}
/* Handle the "t.field IS NULL" interval, it is a special case */
if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
*min_value && *max_value)
{
/*
We don't have a part_iter->get_next() function that would find which
partition "t.field IS NULL" belongs to, so find partition that contains
NULL right here, and return an iterator over singleton set.
*/
uint32 part_id;
field->set_null();
if (is_subpart)
{
part_id= part_info->get_subpartition_id(part_info);
init_single_partition_iterator(part_id, part_iter);
return 1; /* Ok, iterator initialized */
}
else
{
if (!part_info->get_partition_id(part_info, &part_id))
{
init_single_partition_iterator(part_id, part_iter);
return 1; /* Ok, iterator initialized */
}
}
return 0; /* No partitions match */
}
if (flags & (NO_MIN_RANGE | NO_MAX_RANGE))
return -1; /* Can't handle this interval, have to use all partitions */
/* Get integers for left and right interval bound */
longlong a, b;
uint len= field->pack_length_in_rec();
store_key_image_to_rec(field, min_value, len);
a= field->val_int();
store_key_image_to_rec(field, max_value, len);
b= field->val_int();
a += test(flags & NEAR_MIN);
b += test(!(flags & NEAR_MAX));
uint n_values= b - a;
if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
return -1;
part_iter->start_val= a;
part_iter->end_val= b;
part_iter->part_info= part_info;
part_iter->get_next= get_next_func;
return 1;
}
/*
PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
SYNOPSIS
get_next_partition_id_list()
part_iter Partition set iterator structure
DESCRIPTION
This is implementation of PARTITION_ITERATOR::get_next() that returns
[sub]partition ids in [min_partition_id, max_partition_id] range.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitions
*/
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
{
if (part_iter->start_part_num == part_iter->end_part_num)
return NOT_A_PARTITION_ID;
else
return part_iter->start_part_num++;
}
/*
PARTITION_ITERATOR::get_next implementation for LIST partitioning
SYNOPSIS
get_next_partition_id_list()
part_iter Partition set iterator structure
DESCRIPTION
This is special implementation of PARTITION_ITERATOR::get_next() for
LIST partitioning: it enumerates partition ids in
part_info->list_array[i] where i runs over [min_idx, max_idx] interval.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitions
*/
uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
{
if (part_iter->start_part_num == part_iter->end_part_num)
return NOT_A_PARTITION_ID;
else
return part_iter->part_info->list_array[part_iter->
start_part_num++].partition_id;
}
/*
PARTITION_ITERATOR::get_next implementation: walk over integer interval
SYNOPSIS
get_next_partition_via_walking()
part_iter Partitioning iterator
DESCRIPTION
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitioning.
*/
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
{
uint32 part_id;
Field *field= part_iter->part_info->part_field_array[0];
while (part_iter->start_val != part_iter->end_val)
{
field->store(part_iter->start_val, FALSE);
part_iter->start_val++;
if (!part_iter->part_info->get_partition_id(part_iter->part_info,
&part_id))
return part_id;
}
return NOT_A_PARTITION_ID;
}
/* Same as get_next_partition_via_walking, but for subpartitions */
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
{
uint32 part_id;
Field *field= part_iter->part_info->subpart_field_array[0];
if (part_iter->start_val == part_iter->end_val)
return NOT_A_PARTITION_ID;
field->store(part_iter->start_val, FALSE);
part_iter->start_val++;
return part_iter->part_info->get_subpartition_id(part_iter->part_info);
}
......@@ -638,6 +638,11 @@ JOIN::optimize()
TABLE_LIST *tbl;
for (tbl= select_lex->leaf_tables; tbl; tbl= tbl->next_leaf)
{
/*
If tbl->embedding!=NULL that means that this table is in the inner
part of the nested outer join, and we can't do partition pruning
(TODO: check if this limitation can be lifted)
*/
if (!tbl->embedding)
{
Item *prune_cond= tbl->on_expr? tbl->on_expr : conds;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment