/* Copyright (C) 2000-2003 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause by replacing the aggregate expression with a constant. Given a table with a compound key on columns (a,b,c), the following types of queries are optimised (assuming the table handler supports the required methods) SELECT COUNT(*) FROM t1[,t2,t3,...] SELECT MIN(b) FROM t1 WHERE a=const SELECT MAX(c) FROM t1 WHERE a=const AND b=const SELECT MAX(b) FROM t1 WHERE a=const AND b<const SELECT MIN(b) FROM t1 WHERE a=const AND b>const SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const Instead of '<' one can use '<=', '>', '>=' and '=' as well. Instead of 'a=const' the condition 'a IS NULL' can be used. If all selected fields are replaced then we will also remove all involved tables and return the answer without any join. Thus, the following query will be replaced with a row of two constants: SELECT MAX(b), MIN(d) FROM t1,t2 WHERE a=const AND b<const AND d>const (assuming a index for column d of table t2 is defined) */ #include "mysql_priv.h" #include "sql_select.h" static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field, COND *cond, uint *range_fl, uint *key_prefix_length); static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field, COND *cond, uint range_fl, uint prefix_len); static int maxmin_in_range(bool max_fl, Field* field, COND *cond); /* Substitutes constants for some COUNT(), MIN() and MAX() functions. SYNOPSIS opt_sum_query() tables list of leaves of join table tree all_fields All fields to be returned conds WHERE clause NOTE: This function is only called for queries with sum functions and no GROUP BY part. RETURN VALUES 0 no errors 1 if all items were resolved HA_ERR_KEY_NOT_FOUND on impossible conditions OR an error number from my_base.h HA_ERR_... if a deadlock or a lock wait timeout happens, for example */ int opt_sum_query(TABLE_LIST *tables, List<Item> &all_fields,COND *conds) { List_iterator_fast<Item> it(all_fields); int const_result= 1; bool recalc_const_item= 0; longlong count= 1; bool is_exact_count= TRUE; table_map removed_tables= 0, outer_tables= 0, used_tables= 0; table_map where_tables= 0; Item *item; int error; if (conds) where_tables= conds->used_tables(); /* Analyze outer join dependencies, and, if possible, compute the number of returned rows. */ for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf) { TABLE_LIST *embedded; for (embedded= tl ; embedded; embedded= embedded->embedding) { if (embedded->on_expr) break; } if (embedded) /* Don't replace expression on a table that is part of an outer join */ { outer_tables|= tl->table->map; /* We can't optimise LEFT JOIN in cases where the WHERE condition restricts the table that is used, like in: SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition WHERE t2.field IS NULL; */ if (tl->table->map & where_tables) return 0; } else used_tables|= tl->table->map; /* If the storage manager of 'tl' gives exact row count, compute the total number of rows. If there are no outer table dependencies, this count may be used as the real count. Schema tables are filled after this function is invoked, so we can't get row count */ if ((tl->table->file->table_flags() & HA_NOT_EXACT_COUNT) || tl->schema_table) { is_exact_count= FALSE; count= 1; // ensure count != 0 } else { error= tl->table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK); if(error) { tl->table->file->print_error(error, MYF(0)); return error; } count*= tl->table->file->records; } } /* Iterate through all items in the SELECT clause and replace COUNT(), MIN() and MAX() with constants (if possible). */ while ((item= it++)) { if (item->type() == Item::SUM_FUNC_ITEM) { Item_sum *item_sum= (((Item_sum*) item)); switch (item_sum->sum_func()) { case Item_sum::COUNT_FUNC: /* If the expr in COUNT(expr) can never be null we can change this to the number of rows in the tables if this number is exact and there are no outer joins. */ if (!conds && !((Item_sum_count*) item)->args[0]->maybe_null && !outer_tables && is_exact_count) { ((Item_sum_count*) item)->make_const(count); recalc_const_item= 1; } else const_result= 0; break; case Item_sum::MIN_FUNC: { /* If MIN(expr) is the first part of a key or if all previous parts of the key is found in the COND, then we can use indexes to find the key. */ Item *expr=item_sum->args[0]; if (expr->real_item()->type() == Item::FIELD_ITEM) { byte key_buff[MAX_KEY_LENGTH]; TABLE_REF ref; uint range_fl, prefix_len; ref.key_buff= key_buff; Item_field *item_field= (Item_field*) (expr->real_item()); TABLE *table= item_field->field->table; /* Look for a partial key that can be used for optimization. If we succeed, ref.key_length will contain the length of this key, while prefix_len will contain the length of the beginning of this key without field used in MIN(). Type of range for the key part for this field will be returned in range_fl. */ if (table->file->inited || (outer_tables & table->map) || !find_key_for_maxmin(0, &ref, item_field->field, conds, &range_fl, &prefix_len)) { const_result= 0; break; } error= table->file->ha_index_init((uint) ref.key); if (!ref.key_length) error= table->file->index_first(table->record[0]); else { /* Use index to replace MIN/MAX functions with their values according to the following rules: 1) Insert the minimum non-null values where the WHERE clause still matches, or 2) a NULL value if there are only NULL values for key_part_k. 3) Fail, producing a row of nulls Implementation: Read the smallest value using the search key. If the interval is open, read the next value after the search key. If read fails, and we're looking for a MIN() value for a nullable column, test if there is an exact match for the key. */ if (!(range_fl & NEAR_MIN)) /* Closed interval: Either The MIN argument is non-nullable, or we have a >= predicate for the MIN argument. */ error= table->file->index_read(table->record[0], ref.key_buff, ref.key_length, HA_READ_KEY_OR_NEXT); else { /* Open interval: There are two cases: 1) We have only MIN() and the argument column is nullable, or 2) there is a > predicate on it, nullability is irrelevant. We need to scan the next bigger record first. */ error= table->file->index_read(table->record[0], ref.key_buff, ref.key_length, HA_READ_AFTER_KEY); /* If the found record is outside the group formed by the search prefix, or there is no such record at all, check if all records in that group have NULL in the MIN argument column. If that is the case return that NULL. Check if case 1 from above holds. If it does, we should read the skipped tuple. */ if (ref.key_buff[prefix_len] == 1 && /* Last keypart (i.e. the argument to MIN) is set to NULL by find_key_for_maxmin only if all other keyparts are bound to constants in a conjunction of equalities. Hence, we can detect this by checking only if the last keypart is NULL. */ (error == HA_ERR_KEY_NOT_FOUND || key_cmp_if_same(table, ref.key_buff, ref.key, prefix_len))) { DBUG_ASSERT(item_field->field->real_maybe_null()); error= table->file->index_read(table->record[0], ref.key_buff, ref.key_length, HA_READ_KEY_EXACT); } } } /* Verify that the read tuple indeed matches the search key */ if (!error && reckey_in_range(0, &ref, item_field->field, conds, range_fl, prefix_len)) error= HA_ERR_KEY_NOT_FOUND; if (table->key_read) { table->key_read= 0; table->file->extra(HA_EXTRA_NO_KEYREAD); } table->file->ha_index_end(); if (error) { if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE) return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE /* HA_ERR_LOCK_DEADLOCK or some other error */ table->file->print_error(error, MYF(0)); return(error); } removed_tables|= table->map; } else if (!expr->const_item() || !is_exact_count) { /* The optimization is not applicable in both cases: (a) 'expr' is a non-constant expression. Then we can't replace 'expr' by a constant. (b) 'expr' is a costant. According to ANSI, MIN/MAX must return NULL if the query does not return any rows. Thus, if we are not able to determine if the query returns any rows, we can't apply the optimization and replace MIN/MAX with a constant. */ const_result= 0; break; } if (!count) { /* If count == 0, then we know that is_exact_count == TRUE. */ ((Item_sum_min*) item_sum)->clear(); /* Set to NULL. */ } else ((Item_sum_min*) item_sum)->reset(); /* Set to the constant value. */ ((Item_sum_min*) item_sum)->make_const(); recalc_const_item= 1; break; } case Item_sum::MAX_FUNC: { /* If MAX(expr) is the first part of a key or if all previous parts of the key is found in the COND, then we can use indexes to find the key. */ Item *expr=item_sum->args[0]; if (expr->real_item()->type() == Item::FIELD_ITEM) { byte key_buff[MAX_KEY_LENGTH]; TABLE_REF ref; uint range_fl, prefix_len; ref.key_buff= key_buff; Item_field *item_field= (Item_field*) (expr->real_item()); TABLE *table= item_field->field->table; /* Look for a partial key that can be used for optimization. If we succeed, ref.key_length will contain the length of this key, while prefix_len will contain the length of the beginning of this key without field used in MAX(). Type of range for the key part for this field will be returned in range_fl. */ if (table->file->inited || (outer_tables & table->map) || !find_key_for_maxmin(1, &ref, item_field->field, conds, &range_fl, &prefix_len)) { const_result= 0; break; } error= table->file->ha_index_init((uint) ref.key); if (!ref.key_length) error= table->file->index_last(table->record[0]); else error= table->file->index_read(table->record[0], key_buff, ref.key_length, range_fl & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV); if (!error && reckey_in_range(1, &ref, item_field->field, conds, range_fl, prefix_len)) error= HA_ERR_KEY_NOT_FOUND; if (table->key_read) { table->key_read=0; table->file->extra(HA_EXTRA_NO_KEYREAD); } table->file->ha_index_end(); if (error) { if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE) return HA_ERR_KEY_NOT_FOUND; // No rows matching WHERE /* HA_ERR_LOCK_DEADLOCK or some other error */ table->file->print_error(error, MYF(0)); return(error); } removed_tables|= table->map; } else if (!expr->const_item() || !is_exact_count) { /* The optimization is not applicable in both cases: (a) 'expr' is a non-constant expression. Then we can't replace 'expr' by a constant. (b) 'expr' is a costant. According to ANSI, MIN/MAX must return NULL if the query does not return any rows. Thus, if we are not able to determine if the query returns any rows, we can't apply the optimization and replace MIN/MAX with a constant. */ const_result= 0; break; } if (!count) { /* If count != 1, then we know that is_exact_count == TRUE. */ ((Item_sum_max*) item_sum)->clear(); /* Set to NULL. */ } else ((Item_sum_max*) item_sum)->reset(); /* Set to the constant value. */ ((Item_sum_max*) item_sum)->make_const(); recalc_const_item= 1; break; } default: const_result= 0; break; } } else if (const_result) { if (recalc_const_item) item->update_used_tables(); if (!item->const_item()) const_result= 0; } } /* If we have a where clause, we can only ignore searching in the tables if MIN/MAX optimisation replaced all used tables We do not use replaced values in case of: SELECT MIN(key) FROM table_1, empty_table removed_tables is != 0 if we have used MIN() or MAX(). */ if (removed_tables && used_tables != removed_tables) const_result= 0; // We didn't remove all tables return const_result; } /* Test if the predicate compares a field with constants SYNOPSIS simple_pred() func_item Predicate item args out: Here we store the field followed by constants inv_order out: Is set to 1 if the predicate is of the form 'const op field' RETURN 0 func_item is a simple predicate: a field is compared with constants 1 Otherwise */ bool simple_pred(Item_func *func_item, Item **args, bool *inv_order) { Item *item; *inv_order= 0; switch (func_item->argument_count()) { case 0: /* MULT_EQUAL_FUNC */ { Item_equal *item_equal= (Item_equal *) func_item; Item_equal_iterator it(*item_equal); args[0]= it++; if (it++) return 0; if (!(args[1]= item_equal->get_const())) return 0; } break; case 1: /* field IS NULL */ item= func_item->arguments()[0]; if (item->type() != Item::FIELD_ITEM) return 0; args[0]= item; break; case 2: /* 'field op const' or 'const op field' */ item= func_item->arguments()[0]; if (item->type() == Item::FIELD_ITEM) { args[0]= item; item= func_item->arguments()[1]; if (!item->const_item()) return 0; args[1]= item; } else if (item->const_item()) { args[1]= item; item= func_item->arguments()[1]; if (item->type() != Item::FIELD_ITEM) return 0; args[0]= item; *inv_order= 1; } else return 0; break; case 3: /* field BETWEEN const AND const */ item= func_item->arguments()[0]; if (item->type() == Item::FIELD_ITEM) { args[0]= item; for (int i= 1 ; i <= 2; i++) { item= func_item->arguments()[i]; if (!item->const_item()) return 0; args[i]= item; } } else return 0; } return 1; } /* Check whether a condition matches a key to get {MAX|MIN}(field): SYNOPSIS matching_cond() max_fl in: Set to 1 if we are optimising MAX() ref in/out: Reference to the structure we store the key value keyinfo in Reference to the key info field_part in: Pointer to the key part for the field cond in WHERE condition key_part_used in/out: Map of matchings parts range_fl in/out: Says whether including key will be used prefix_len out: Length of common key part for the range where MAX/MIN is searched for DESCRIPTION For the index specified by the keyinfo parameter, index that contains field as its component (field_part), the function checks whether the condition cond is a conjunction and all its conjuncts referring to the columns of the same table as column field are one of the following forms: - f_i= const_i or const_i= f_i or f_i is null, where f_i is part of the index - field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field - field between const1 and const2 RETURN 0 Index can't be used. 1 We can use index to get MIN/MAX value */ static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo, KEY_PART_INFO *field_part, COND *cond, key_part_map *key_part_used, uint *range_fl, uint *prefix_len) { if (!cond) return 1; Field *field= field_part->field; if (!(cond->used_tables() & field->table->map)) { /* Condition doesn't restrict the used table */ return 1; } if (cond->type() == Item::COND_ITEM) { if (((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC) return 0; /* AND */ List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item= li++)) { if (!matching_cond(max_fl, ref, keyinfo, field_part, item, key_part_used, range_fl, prefix_len)) return 0; } return 1; } if (cond->type() != Item::FUNC_ITEM) return 0; // Not operator, can't optimize bool eq_type= 0; // =, <=> or IS NULL bool noeq_type= 0; // < or > bool less_fl= 0; // < or <= bool is_null= 0; bool between= 0; switch (((Item_func*) cond)->functype()) { case Item_func::ISNULL_FUNC: is_null= 1; /* fall through */ case Item_func::EQ_FUNC: case Item_func::EQUAL_FUNC: eq_type= 1; break; case Item_func::LT_FUNC: noeq_type= 1; /* fall through */ case Item_func::LE_FUNC: less_fl= 1; break; case Item_func::GT_FUNC: noeq_type= 1; /* fall through */ case Item_func::GE_FUNC: break; case Item_func::BETWEEN: between= 1; break; case Item_func::MULT_EQUAL_FUNC: eq_type= 1; break; default: return 0; // Can't optimize function } Item *args[3]; bool inv; /* Test if this is a comparison of a field and constant */ if (!simple_pred((Item_func*) cond, args, &inv)) return 0; if (inv && !eq_type) less_fl= 1-less_fl; // Convert '<' -> '>' (etc) /* Check if field is part of the tested partial key */ byte *key_ptr= ref->key_buff; KEY_PART_INFO *part; for (part= keyinfo->key_part; ; key_ptr+= part++->store_length) { if (part > field_part) return 0; // Field is beyond the tested parts if (part->field->eq(((Item_field*) args[0])->field)) break; // Found a part od the key for the field } bool is_field_part= part == field_part; if (!(is_field_part || eq_type)) return 0; key_part_map org_key_part_used= *key_part_used; if (eq_type || between || max_fl == less_fl) { uint length= (key_ptr-ref->key_buff)+part->store_length; if (ref->key_length < length) /* Ultimately ref->key_length will contain the length of the search key */ ref->key_length= length; if (!*prefix_len && part+1 == field_part) *prefix_len= length; if (is_field_part && eq_type) *prefix_len= ref->key_length; *key_part_used|= (key_part_map) 1 << (part - keyinfo->key_part); } if (org_key_part_used != *key_part_used || (is_field_part && (between || eq_type || max_fl == less_fl) && !cond->val_int())) { /* It's the first predicate for this part or a predicate of the following form that moves upper/lower bounds for max/min values: - field BETWEEN const AND const - field = const - field {<|<=} const, when searching for MAX - field {>|>=} const, when searching for MIN */ if (is_null) { part->field->set_null(); *key_ptr= (byte) 1; } else { store_val_in_field(part->field, args[between && max_fl ? 2 : 1], CHECK_FIELD_IGNORE); if (part->null_bit) *key_ptr++= (byte) test(part->field->is_null()); part->field->get_key_image((char*) key_ptr, part->length, Field::itRAW); } if (is_field_part) { if (between || eq_type) *range_fl&= ~(NO_MAX_RANGE | NO_MIN_RANGE); else { *range_fl&= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE); if (noeq_type) *range_fl|= (max_fl ? NEAR_MAX : NEAR_MIN); else *range_fl&= ~(max_fl ? NEAR_MAX : NEAR_MIN); } } } else if (eq_type) { if (!is_null && !cond->val_int() || is_null && !test(part->field->is_null())) return 0; // Impossible test } else if (is_field_part) *range_fl&= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE); return 1; } /* Check whether we can get value for {max|min}(field) by using a key. SYNOPSIS find_key_for_maxmin() max_fl in: 0 for MIN(field) / 1 for MAX(field) ref in/out Reference to the structure we store the key value field in: Field used inside MIN() / MAX() cond in: WHERE condition range_fl out: Bit flags for how to search if key is ok prefix_len out: Length of prefix for the search range DESCRIPTION If where condition is not a conjunction of 0 or more conjuct the function returns false, otherwise it checks whether there is an index including field as its k-th component/part such that: 1. for each previous component f_i there is one and only one conjunct of the form: f_i= const_i or const_i= f_i or f_i is null 2. references to field occur only in conjucts of the form: field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or field BETWEEN const1 AND const2 3. all references to the columns from the same table as column field occur only in conjucts mentioned above. 4. each of k first components the index is not partial, i.e. is not defined on a fixed length proper prefix of the field. If such an index exists the function through the ref parameter returns the key value to find max/min for the field using the index, the length of first (k-1) components of the key and flags saying how to apply the key for the search max/min value. (if we have a condition field = const, prefix_len contains the length of the whole search key) NOTE This function may set table->key_read to 1, which must be reset after index is used! (This can only happen when function returns 1) RETURN 0 Index can not be used to optimize MIN(field)/MAX(field) 1 Can use key to optimize MIN()/MAX() In this case ref, range_fl and prefix_len are updated */ static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field, COND *cond, uint *range_fl, uint *prefix_len) { if (!(field->flags & PART_KEY_FLAG)) return 0; // Not key field TABLE *table= field->table; uint idx= 0; KEY *keyinfo,*keyinfo_end; for (keyinfo= table->key_info, keyinfo_end= keyinfo+table->s->keys ; keyinfo != keyinfo_end; keyinfo++,idx++) { KEY_PART_INFO *part,*part_end; key_part_map key_part_to_use= 0; /* Perform a check if index is not disabled by ALTER TABLE or IGNORE INDEX. */ if (!table->keys_in_use_for_query.is_set(idx)) continue; uint jdx= 0; *prefix_len= 0; for (part= keyinfo->key_part, part_end= part+keyinfo->key_parts ; part != part_end ; part++, jdx++, key_part_to_use= (key_part_to_use << 1) | 1) { if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER)) return 0; /* Check whether the index component is partial */ Field *part_field= table->field[part->fieldnr-1]; if ((part_field->flags & BLOB_FLAG) || part->length < part_field->key_length()) break; if (field->eq(part->field)) { ref->key= idx; ref->key_length= 0; key_part_map key_part_used= 0; *range_fl= NO_MIN_RANGE | NO_MAX_RANGE; if (matching_cond(max_fl, ref, keyinfo, part, cond, &key_part_used, range_fl, prefix_len) && !(key_part_to_use & ~key_part_used)) { if (!max_fl && key_part_used == key_part_to_use && part->null_bit) { /* The query is on this form: SELECT MIN(key_part_k) FROM t1 WHERE key_part_1 = const and ... and key_part_k-1 = const If key_part_k is nullable, we want to find the first matching row where key_part_k is not null. The key buffer is now {const, ..., NULL}. This will be passed to the handler along with a flag indicating open interval. If a tuple is read that does not match these search criteria, an attempt will be made to read an exact match for the key buffer. */ /* Set the first byte of key_part_k to 1, that means NULL */ ref->key_buff[ref->key_length]= 1; ref->key_length+= part->store_length; *range_fl&= ~NO_MIN_RANGE; *range_fl|= NEAR_MIN; // Open interval } /* The following test is false when the key in the key tree is converted (for example to upper case) */ if (field->part_of_key.is_set(idx)) { table->key_read= 1; table->file->extra(HA_EXTRA_KEYREAD); } return 1; } } } } return 0; } /* Check whether found key is in range specified by conditions SYNOPSIS reckey_in_range() max_fl in: 0 for MIN(field) / 1 for MAX(field) ref in: Reference to the key value and info field in: Field used the MIN/MAX expression cond in: WHERE condition range_fl in: Says whether there is a condition to to be checked prefix_len in: Length of the constant part of the key RETURN 0 ok 1 WHERE was not true for the found row */ static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field, COND *cond, uint range_fl, uint prefix_len) { if (key_cmp_if_same(field->table, ref->key_buff, ref->key, prefix_len)) return 1; if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE))) return 0; return maxmin_in_range(max_fl, field, cond); } /* Check whether {MAX|MIN}(field) is in range specified by conditions SYNOPSIS maxmin_in_range() max_fl in: 0 for MIN(field) / 1 for MAX(field) field in: Field used the MIN/MAX expression cond in: WHERE condition RETURN 0 ok 1 WHERE was not true for the found row */ static int maxmin_in_range(bool max_fl, Field* field, COND *cond) { /* If AND/OR condition */ if (cond->type() == Item::COND_ITEM) { List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); Item *item; while ((item= li++)) { if (maxmin_in_range(max_fl, field, item)) return 1; } return 0; } if (cond->used_tables() != field->table->map) return 0; bool less_fl= 0; switch (((Item_func*) cond)->functype()) { case Item_func::BETWEEN: return cond->val_int() == 0; // Return 1 if WHERE is false case Item_func::LT_FUNC: case Item_func::LE_FUNC: less_fl= 1; case Item_func::GT_FUNC: case Item_func::GE_FUNC: { Item *item= ((Item_func*) cond)->arguments()[1]; /* In case of 'const op item' we have to swap the operator */ if (!item->const_item()) less_fl= 1-less_fl; /* We only have to check the expression if we are using an expression like SELECT MAX(b) FROM t1 WHERE a=const AND b>const not for SELECT MAX(b) FROM t1 WHERE a=const AND b<const */ if (max_fl != less_fl) return cond->val_int() == 0; // Return 1 if WHERE is false return 0; } case Item_func::EQ_FUNC: case Item_func::EQUAL_FUNC: break; default: // Keep compiler happy DBUG_ASSERT(1); // Impossible break; } return 0; }