/*****************************************************************************

Copyright (c) 1995, 2010, Innobase Oy. All Rights Reserved.
Copyright (c) 2008, 2009 Google Inc.
Copyright (c) 2009, Percona Inc.

Portions of this file contain modifications contributed and copyrighted by
Google, Inc. Those modifications are gratefully acknowledged and are described
briefly in the InnoDB documentation. The contributions by Google are
incorporated with their permission, and subject to the conditions contained in
the file COPYING.Google.

Portions of this file contain modifications contributed and copyrighted
by Percona Inc.. Those modifications are
gratefully acknowledged and are described briefly in the InnoDB
documentation. The contributions by Percona Inc. are incorporated with
their permission, and subject to the conditions contained in the file
COPYING.Percona.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

*****************************************************************************/

/**************************************************//**
@file srv/srv0srv.c
The database server main program

NOTE: SQL Server 7 uses something which the documentation
calls user mode scheduled threads (UMS threads). One such
thread is usually allocated per processor. Win32
documentation does not know any UMS threads, which suggests
that the concept is internal to SQL Server 7. It may mean that
SQL Server 7 does all the scheduling of threads itself, even
in i/o waits. We should maybe modify InnoDB to use the same
technique, because thread switches within NT may be too slow.

SQL Server 7 also mentions fibers, which are cooperatively
scheduled threads. They can boost performance by 5 %,
according to the Delaney and Soukup's book.

Windows 2000 will have something called thread pooling
(see msdn website), which we could possibly use.

Another possibility could be to use some very fast user space
thread library. This might confuse NT though.

Created 10/8/1995 Heikki Tuuri
*******************************************************/

/* Dummy comment */
#include "srv0srv.h"

#include "ut0mem.h"
#include "ut0ut.h"
#include "os0proc.h"
#include "mem0mem.h"
#include "mem0pool.h"
#include "sync0sync.h"
#include "thr0loc.h"
#include "que0que.h"
#include "srv0que.h"
#include "log0recv.h"
#include "pars0pars.h"
#include "usr0sess.h"
#include "lock0lock.h"
#include "trx0purge.h"
#include "ibuf0ibuf.h"
#include "buf0flu.h"
#include "buf0lru.h"
#include "btr0sea.h"
#include "dict0load.h"
#include "dict0boot.h"
#include "srv0start.h"
#include "row0mysql.h"
#include "ha_prototypes.h"
#include "trx0i_s.h"
#include "os0sync.h" /* for HAVE_ATOMIC_BUILTINS */

/* prototypes for new functions added to ha_innodb.cc */
ibool	innobase_get_slow_log();

/* This is set to TRUE if the MySQL user has set it in MySQL; currently
affects only FOREIGN KEY definition parsing */
UNIV_INTERN ibool	srv_lower_case_table_names	= FALSE;

/* The following counter is incremented whenever there is some user activity
in the server */
UNIV_INTERN ulint	srv_activity_count	= 0;

/* The following is the maximum allowed duration of a lock wait. */
UNIV_INTERN ulint	srv_fatal_semaphore_wait_threshold = 600;

/* How much data manipulation language (DML) statements need to be delayed,
in microseconds, in order to reduce the lagging of the purge thread. */
UNIV_INTERN ulint	srv_dml_needed_delay = 0;

UNIV_INTERN ibool	srv_lock_timeout_active = FALSE;
UNIV_INTERN ibool	srv_monitor_active = FALSE;
UNIV_INTERN ibool	srv_error_monitor_active = FALSE;

UNIV_INTERN const char*	srv_main_thread_op_info = "";

/** Prefix used by MySQL to indicate pre-5.1 table name encoding */
UNIV_INTERN const char	srv_mysql50_table_name_prefix[9] = "#mysql50#";

/* Server parameters which are read from the initfile */

/* The following three are dir paths which are catenated before file
names, where the file name itself may also contain a path */

UNIV_INTERN char*	srv_data_home	= NULL;
#ifdef UNIV_LOG_ARCHIVE
UNIV_INTERN char*	srv_arch_dir	= NULL;
#endif /* UNIV_LOG_ARCHIVE */

/** store to its own file each table created by an user; data
dictionary tables are in the system tablespace 0 */
UNIV_INTERN my_bool	srv_file_per_table;
/** The file format to use on new *.ibd files. */
UNIV_INTERN ulint	srv_file_format = 0;
/** Whether to check file format during startup.  A value of
DICT_TF_FORMAT_MAX + 1 means no checking ie. FALSE.  The default is to
set it to the highest format we support. */
UNIV_INTERN ulint	srv_check_file_format_at_startup = DICT_TF_FORMAT_MAX;

#if DICT_TF_FORMAT_51
# error "DICT_TF_FORMAT_51 must be 0!"
#endif
/** Place locks to records only i.e. do not use next-key locking except
on duplicate key checking and foreign key checking */
UNIV_INTERN ibool	srv_locks_unsafe_for_binlog = FALSE;

UNIV_INTERN ulint	srv_n_data_files = 0;
UNIV_INTERN char**	srv_data_file_names = NULL;
/* size in database pages */
UNIV_INTERN ulint*	srv_data_file_sizes = NULL;

UNIV_INTERN char*	srv_doublewrite_file = NULL;

UNIV_INTERN ibool	srv_extra_undoslots = FALSE;

UNIV_INTERN ibool	srv_recovery_stats = FALSE;

UNIV_INTERN ulint	srv_use_purge_thread = 0;

/* if TRUE, then we auto-extend the last data file */
UNIV_INTERN ibool	srv_auto_extend_last_data_file	= FALSE;
/* if != 0, this tells the max size auto-extending may increase the
last data file size */
UNIV_INTERN ulint	srv_last_file_size_max	= 0;
/* If the last data file is auto-extended, we add this
many pages to it at a time */
UNIV_INTERN ulong	srv_auto_extend_increment = 8;
UNIV_INTERN ulint*	srv_data_file_is_raw_partition = NULL;

/* If the following is TRUE we do not allow inserts etc. This protects
the user from forgetting the 'newraw' keyword to my.cnf */

UNIV_INTERN ibool	srv_created_new_raw	= FALSE;

UNIV_INTERN char**	srv_log_group_home_dirs = NULL;

UNIV_INTERN ulint	srv_n_log_groups	= ULINT_MAX;
UNIV_INTERN ulint	srv_n_log_files		= ULINT_MAX;
/* size in database pages */
UNIV_INTERN ulint	srv_log_file_size	= ULINT_MAX;
/* size in database pages */
UNIV_INTERN ulint	srv_log_buffer_size	= ULINT_MAX;
UNIV_INTERN ulong	srv_flush_log_at_trx_commit = 1;

/* Try to flush dirty pages so as to avoid IO bursts at
the checkpoints. */
UNIV_INTERN char	srv_adaptive_flushing	= TRUE;

UNIV_INTERN ulong	srv_show_locks_held	= 10;
UNIV_INTERN ulong	srv_show_verbose_locks	= 0;

/** Maximum number of times allowed to conditionally acquire
mutex before switching to blocking wait on the mutex */
#define MAX_MUTEX_NOWAIT	20

/** Check whether the number of failed nonblocking mutex
acquisition attempts exceeds maximum allowed value. If so,
srv_printf_innodb_monitor() will request mutex acquisition
with mutex_enter(), which will wait until it gets the mutex. */
#define MUTEX_NOWAIT(mutex_skipped)	((mutex_skipped) < MAX_MUTEX_NOWAIT)

/** The sort order table of the MySQL latin1_swedish_ci character set
collation */
UNIV_INTERN const byte*	srv_latin1_ordering;

/* use os/external memory allocator */
UNIV_INTERN my_bool	srv_use_sys_malloc	= TRUE;
/* requested size in kilobytes */
UNIV_INTERN ulint	srv_buf_pool_size	= ULINT_MAX;
/* previously requested size */
UNIV_INTERN ulint	srv_buf_pool_old_size;
/* current size in kilobytes */
UNIV_INTERN ulint	srv_buf_pool_curr_size	= 0;
/* size in bytes */
UNIV_INTERN ulint	srv_mem_pool_size	= ULINT_MAX;
UNIV_INTERN ulint	srv_lock_table_size	= ULINT_MAX;

/* key value for shm */
UNIV_INTERN uint	srv_buffer_pool_shm_key	= 0;
UNIV_INTERN ibool	srv_buffer_pool_shm_is_reused = FALSE;
UNIV_INTERN ibool	srv_buffer_pool_shm_checksum = TRUE;

/* This parameter is deprecated. Use srv_n_io_[read|write]_threads
instead. */
UNIV_INTERN ulint	srv_n_file_io_threads	= ULINT_MAX;
UNIV_INTERN ulint	srv_n_read_io_threads	= ULINT_MAX;
UNIV_INTERN ulint	srv_n_write_io_threads	= ULINT_MAX;

/* The universal page size of the database */
UNIV_INTERN ulint	srv_page_size_shift	= 0;
UNIV_INTERN ulint	srv_page_size		= 0;

/* The log block size */
UNIV_INTERN ulint	srv_log_block_size	= 0;

/* User settable value of the number of pages that must be present
in the buffer cache and accessed sequentially for InnoDB to trigger a
readahead request. */
UNIV_INTERN ulong	srv_read_ahead_threshold	= 56;

#ifdef UNIV_LOG_ARCHIVE
UNIV_INTERN ibool		srv_log_archive_on	= FALSE;
UNIV_INTERN ibool		srv_archive_recovery	= 0;
UNIV_INTERN ib_uint64_t	srv_archive_recovery_limit_lsn;
#endif /* UNIV_LOG_ARCHIVE */

/* This parameter is used to throttle the number of insert buffers that are
merged in a batch. By increasing this parameter on a faster disk you can
possibly reduce the number of I/O operations performed to complete the
merge operation. The value of this parameter is used as is by the
background loop when the system is idle (low load), on a busy system
the parameter is scaled down by a factor of 4, this is to avoid putting
a heavier load on the I/O sub system. */

UNIV_INTERN ulong	srv_insert_buffer_batch_size = 20;

UNIV_INTERN char*	srv_file_flush_method_str = NULL;
UNIV_INTERN ulint	srv_unix_file_flush_method = SRV_UNIX_FSYNC;
UNIV_INTERN ulint	srv_win_file_flush_method = SRV_WIN_IO_UNBUFFERED;

UNIV_INTERN ulint	srv_max_n_open_files	  = 300;

/* Number of IO operations per second the server can do */
UNIV_INTERN ulong	srv_io_capacity         = 200;

/* The InnoDB main thread tries to keep the ratio of modified pages
in the buffer pool to all database pages in the buffer pool smaller than
the following number. But it is not guaranteed that the value stays below
that during a time of heavy update/insert activity. */

UNIV_INTERN ulong	srv_max_buf_pool_modified_pct	= 75;

/* variable counts amount of data read in total (in bytes) */
UNIV_INTERN ulint srv_data_read = 0;

/* here we count the amount of data written in total (in bytes) */
UNIV_INTERN ulint srv_data_written = 0;

/* the number of the log write requests done */
UNIV_INTERN ulint srv_log_write_requests = 0;

/* the number of physical writes to the log performed */
UNIV_INTERN ulint srv_log_writes = 0;

/* amount of data written to the log files in bytes */
UNIV_INTERN ulint srv_os_log_written = 0;

/* amount of writes being done to the log files */
UNIV_INTERN ulint srv_os_log_pending_writes = 0;

/* we increase this counter, when there we don't have enough space in the
log buffer and have to flush it */
UNIV_INTERN ulint srv_log_waits = 0;

/* this variable counts the amount of times, when the doublewrite buffer
was flushed */
UNIV_INTERN ulint srv_dblwr_writes = 0;

/* here we store the number of pages that have been flushed to the
doublewrite buffer */
UNIV_INTERN ulint srv_dblwr_pages_written = 0;

/* in this variable we store the number of write requests issued */
UNIV_INTERN ulint srv_buf_pool_write_requests = 0;

/* here we store the number of times when we had to wait for a free page
in the buffer pool. It happens when the buffer pool is full and we need
to make a flush, in order to be able to read or create a page. */
UNIV_INTERN ulint srv_buf_pool_wait_free = 0;

/* variable to count the number of pages that were written from buffer
pool to the disk */
UNIV_INTERN ulint srv_buf_pool_flushed = 0;

/** Number of buffer pool reads that led to the
reading of a disk page */
UNIV_INTERN ulint srv_buf_pool_reads = 0;

/** Time in seconds between automatic buffer pool dumps */
UNIV_INTERN uint srv_auto_lru_dump = 0;

/* structure to pass status variables to MySQL */
UNIV_INTERN export_struc export_vars;

/* If the following is != 0 we do not allow inserts etc. This protects
the user from forgetting the innodb_force_recovery keyword to my.cnf */

UNIV_INTERN ulint	srv_force_recovery	= 0;
/*-----------------------*/
/* We are prepared for a situation that we have this many threads waiting for
a semaphore inside InnoDB. innobase_start_or_create_for_mysql() sets the
value. */

UNIV_INTERN ulint	srv_max_n_threads	= 0;

/* The following controls how many threads we let inside InnoDB concurrently:
threads waiting for locks are not counted into the number because otherwise
we could get a deadlock. MySQL creates a thread for each user session, and
semaphore contention and convoy problems can occur withput this restriction.
Value 10 should be good if there are less than 4 processors + 4 disks in the
computer. Bigger computers need bigger values. Value 0 will disable the
concurrency check. */

UNIV_INTERN ibool	srv_thread_concurrency_timer_based = FALSE;
UNIV_INTERN ulong	srv_thread_concurrency	= 0;

/* this mutex protects srv_conc data structures */
UNIV_INTERN os_fast_mutex_t	srv_conc_mutex;
/* number of transactions that have declared_to_be_inside_innodb set.
It used to be a non-error for this value to drop below zero temporarily.
This is no longer true. We'll, however, keep the lint datatype to add
assertions to catch any corner cases that we may have missed. */
UNIV_INTERN lint	srv_conc_n_threads	= 0;
/* number of OS threads waiting in the FIFO for a permission to enter
InnoDB */
UNIV_INTERN ulint	srv_conc_n_waiting_threads = 0;

typedef struct srv_conc_slot_struct	srv_conc_slot_t;
struct srv_conc_slot_struct{
	os_event_t			event;		/*!< event to wait */
	ibool				reserved;	/*!< TRUE if slot
							reserved */
	ibool				wait_ended;	/*!< TRUE when another
							thread has already set
							the event and the
							thread in this slot is
							free to proceed; but
							reserved may still be
							TRUE at that point */
	UT_LIST_NODE_T(srv_conc_slot_t)	srv_conc_queue;	/*!< queue node */
};

/* queue of threads waiting to get in */
UNIV_INTERN UT_LIST_BASE_NODE_T(srv_conc_slot_t)	srv_conc_queue;
/* array of wait slots */
UNIV_INTERN srv_conc_slot_t* srv_conc_slots;

/* Number of times a thread is allowed to enter InnoDB within the same
SQL query after it has once got the ticket at srv_conc_enter_innodb */
#define SRV_FREE_TICKETS_TO_ENTER srv_n_free_tickets_to_enter
#define SRV_THREAD_SLEEP_DELAY srv_thread_sleep_delay
/*-----------------------*/
/* If the following is set to 1 then we do not run purge and insert buffer
merge to completion before shutdown. If it is set to 2, do not even flush the
buffer pool to data files at the shutdown: we effectively 'crash'
InnoDB (but lose no committed transactions). */
UNIV_INTERN ulint	srv_fast_shutdown	= 0;

/* Generate a innodb_status.<pid> file */
UNIV_INTERN ibool	srv_innodb_status	= FALSE;

/* When estimating number of different key values in an index, sample
this many index pages */
UNIV_INTERN unsigned long long	srv_stats_sample_pages = 8;
UNIV_INTERN ulong	srv_stats_method = 0;
UNIV_INTERN ulong	srv_stats_auto_update = 1;
UNIV_INTERN ulint	srv_stats_update_need_lock = 1;
UNIV_INTERN ibool	srv_use_sys_stats_table = FALSE;

UNIV_INTERN ibool	srv_use_doublewrite_buf	= TRUE;
UNIV_INTERN ibool	srv_use_checksums = TRUE;
UNIV_INTERN ibool	srv_fast_checksum = FALSE;

UNIV_INTERN ibool	srv_set_thread_priorities = TRUE;
UNIV_INTERN int	srv_query_thread_priority = 0;

UNIV_INTERN ulong	srv_replication_delay		= 0;

UNIV_INTERN long long	srv_ibuf_max_size = 0;
UNIV_INTERN ulong	srv_ibuf_active_contract = 0; /* 0:disable 1:enable */
UNIV_INTERN ulong	srv_ibuf_accel_rate = 100;
#define PCT_IBUF_IO(pct) ((ulint) (srv_io_capacity * srv_ibuf_accel_rate * ((double) pct / 10000.0)))

UNIV_INTERN ulint	srv_checkpoint_age_target = 0;
UNIV_INTERN ulong	srv_flush_neighbor_pages = 1; /* 0:disable 1:enable */

UNIV_INTERN ulong	srv_deprecated_enable_unsafe_group_commit = 0;
UNIV_INTERN ulong	srv_read_ahead = 3; /* 1: random  2: linear  3: Both */
UNIV_INTERN ulong	srv_adaptive_checkpoint = 0; /* 0: none  1: reflex  2: estimate */

UNIV_INTERN ulong	srv_expand_import = 0; /* 0:disable 1:enable */
UNIV_INTERN ulint	srv_pass_corrupt_table = 0; /* 0:disable 1:enable */

UNIV_INTERN ulong	srv_extra_rsegments = 0; /* extra rseg for users */
UNIV_INTERN ulong	srv_dict_size_limit = 0;
/*-------------------------------------------*/
UNIV_INTERN ulong	srv_n_spin_wait_rounds	= 30;
UNIV_INTERN ulong	srv_n_free_tickets_to_enter = 500;
UNIV_INTERN ulong	srv_thread_sleep_delay = 10000;
UNIV_INTERN ulong	srv_spin_wait_delay	= 6;
UNIV_INTERN ibool	srv_priority_boost	= TRUE;

#ifdef UNIV_DEBUG
UNIV_INTERN ibool	srv_print_thread_releases	= FALSE;
UNIV_INTERN ibool	srv_print_lock_waits		= FALSE;
UNIV_INTERN ibool	srv_print_buf_io		= FALSE;
UNIV_INTERN ibool	srv_print_log_io		= FALSE;
UNIV_INTERN ibool	srv_print_latch_waits		= FALSE;
#endif /* UNIV_DEBUG */

UNIV_INTERN ulint		srv_n_rows_inserted		= 0;
UNIV_INTERN ulint		srv_n_rows_updated		= 0;
UNIV_INTERN ulint		srv_n_rows_deleted		= 0;
UNIV_INTERN ulint		srv_n_rows_read			= 0;

static ulint	srv_n_rows_inserted_old		= 0;
static ulint	srv_n_rows_updated_old		= 0;
static ulint	srv_n_rows_deleted_old		= 0;
static ulint	srv_n_rows_read_old		= 0;
UNIV_INTERN ulint               srv_n_lock_deadlock_count       = 0;
UNIV_INTERN ulint		srv_n_lock_wait_count		= 0;
UNIV_INTERN ulint		srv_n_lock_wait_current_count	= 0;
UNIV_INTERN ib_int64_t	srv_n_lock_wait_time		= 0;
UNIV_INTERN ulint		srv_n_lock_max_wait_time	= 0;


/*
  Set the following to 0 if you want InnoDB to write messages on
  stderr on startup/shutdown
*/
UNIV_INTERN ibool	srv_print_verbose_log		= TRUE;
UNIV_INTERN ibool	srv_print_innodb_monitor	= FALSE;
UNIV_INTERN ibool	srv_print_innodb_lock_monitor	= FALSE;
UNIV_INTERN ibool	srv_print_innodb_tablespace_monitor = FALSE;
UNIV_INTERN ibool	srv_print_innodb_table_monitor = FALSE;

/* Array of English strings describing the current state of an
i/o handler thread */

UNIV_INTERN const char* srv_io_thread_op_info[SRV_MAX_N_IO_THREADS];
UNIV_INTERN const char* srv_io_thread_function[SRV_MAX_N_IO_THREADS];

UNIV_INTERN time_t	srv_last_monitor_time;

UNIV_INTERN mutex_t	srv_innodb_monitor_mutex;

/* Mutex for locking srv_monitor_file */
UNIV_INTERN mutex_t	srv_monitor_file_mutex;
/* Temporary file for innodb monitor output */
UNIV_INTERN FILE*	srv_monitor_file;
/* Mutex for locking srv_dict_tmpfile.
This mutex has a very high rank; threads reserving it should not
be holding any InnoDB latches. */
UNIV_INTERN mutex_t	srv_dict_tmpfile_mutex;
/* Temporary file for output from the data dictionary */
UNIV_INTERN FILE*	srv_dict_tmpfile;
/* Mutex for locking srv_misc_tmpfile.
This mutex has a very low rank; threads reserving it should not
acquire any further latches or sleep before releasing this one. */
UNIV_INTERN mutex_t	srv_misc_tmpfile_mutex;
/* Temporary file for miscellanous diagnostic output */
UNIV_INTERN FILE*	srv_misc_tmpfile;

UNIV_INTERN ulint	srv_main_thread_process_no	= 0;
UNIV_INTERN ulint	srv_main_thread_id		= 0;

/* Release row locks already in the prepare phase */
UNIV_INTERN my_bool	innobase_release_locks_early	= FALSE;

/* The following count work done by srv_master_thread. */

/* Iterations by the 'once per second' loop. */
static ulint   srv_main_1_second_loops		= 0;
/* Calls to sleep by the 'once per second' loop. */
static ulint   srv_main_sleeps			= 0;
/* Iterations by the 'once per 10 seconds' loop. */
static ulint   srv_main_10_second_loops		= 0;
/* Iterations of the loop bounded by the 'background_loop' label. */
static ulint   srv_main_background_loops	= 0;
/* Iterations of the loop bounded by the 'flush_loop' label. */
static ulint   srv_main_flush_loops		= 0;
/* Log writes involving flush. */
static ulint   srv_log_writes_and_flush		= 0;

/* This is only ever touched by the master thread. It records the
time when the last flush of log file has happened. The master
thread ensures that we flush the log files at least once per
second. */
static time_t	srv_last_log_flush_time;

/* The master thread performs various tasks based on the current
state of IO activity and the level of IO utilization is past
intervals. Following macros define thresholds for these conditions. */
#define SRV_PEND_IO_THRESHOLD	(PCT_IO(3))
#define SRV_RECENT_IO_ACTIVITY	(PCT_IO(5))
#define SRV_PAST_IO_ACTIVITY	(PCT_IO(200))

/*
	IMPLEMENTATION OF THE SERVER MAIN PROGRAM
	=========================================

There is the following analogue between this database
server and an operating system kernel:

DB concept			equivalent OS concept
----------			---------------------
transaction		--	process;

query thread		--	thread;

lock			--	semaphore;

transaction set to
the rollback state	--	kill signal delivered to a process;

kernel			--	kernel;

query thread execution:
(a) without kernel mutex
reserved		--	process executing in user mode;
(b) with kernel mutex reserved
			--	process executing in kernel mode;

The server is controlled by a master thread which runs at
a priority higher than normal, that is, higher than user threads.
It sleeps most of the time, and wakes up, say, every 300 milliseconds,
to check whether there is anything happening in the server which
requires intervention of the master thread. Such situations may be,
for example, when flushing of dirty blocks is needed in the buffer
pool or old version of database rows have to be cleaned away.

The threads which we call user threads serve the queries of
the clients and input from the console of the server.
They run at normal priority. The server may have several
communications endpoints. A dedicated set of user threads waits
at each of these endpoints ready to receive a client request.
Each request is taken by a single user thread, which then starts
processing and, when the result is ready, sends it to the client
and returns to wait at the same endpoint the thread started from.

So, we do not have dedicated communication threads listening at
the endpoints and dealing the jobs to dedicated worker threads.
Our architecture saves one thread swithch per request, compared
to the solution with dedicated communication threads
which amounts to 15 microseconds on 100 MHz Pentium
running NT. If the client
is communicating over a network, this saving is negligible, but
if the client resides in the same machine, maybe in an SMP machine
on a different processor from the server thread, the saving
can be important as the threads can communicate over shared
memory with an overhead of a few microseconds.

We may later implement a dedicated communication thread solution
for those endpoints which communicate over a network.

Our solution with user threads has two problems: for each endpoint
there has to be a number of listening threads. If there are many
communication endpoints, it may be difficult to set the right number
of concurrent threads in the system, as many of the threads
may always be waiting at less busy endpoints. Another problem
is queuing of the messages, as the server internally does not
offer any queue for jobs.

Another group of user threads is intended for splitting the
queries and processing them in parallel. Let us call these
parallel communication threads. These threads are waiting for
parallelized tasks, suspended on event semaphores.

A single user thread waits for input from the console,
like a command to shut the database.

Utility threads are a different group of threads which takes
care of the buffer pool flushing and other, mainly background
operations, in the server.
Some of these utility threads always run at a lower than normal
priority, so that they are always in background. Some of them
may dynamically boost their priority by the pri_adjust function,
even to higher than normal priority, if their task becomes urgent.
The running of utilities is controlled by high- and low-water marks
of urgency. The urgency may be measured by the number of dirty blocks
in the buffer pool, in the case of the flush thread, for example.
When the high-water mark is exceeded, an utility starts running, until
the urgency drops under the low-water mark. Then the utility thread
suspend itself to wait for an event. The master thread is
responsible of signaling this event when the utility thread is
again needed.

For each individual type of utility, some threads always remain
at lower than normal priority. This is because pri_adjust is implemented
so that the threads at normal or higher priority control their
share of running time by calling sleep. Thus, if the load of the
system sudenly drops, these threads cannot necessarily utilize
the system fully. The background priority threads make up for this,
starting to run when the load drops.

When there is no activity in the system, also the master thread
suspends itself to wait for an event making
the server totally silent. The responsibility to signal this
event is on the user thread which again receives a message
from a client.

There is still one complication in our server design. If a
background utility thread obtains a resource (e.g., mutex) needed by a user
thread, and there is also some other user activity in the system,
the user thread may have to wait indefinitely long for the
resource, as the OS does not schedule a background thread if
there is some other runnable user thread. This problem is called
priority inversion in real-time programming.

One solution to the priority inversion problem would be to
keep record of which thread owns which resource and
in the above case boost the priority of the background thread
so that it will be scheduled and it can release the resource.
This solution is called priority inheritance in real-time programming.
A drawback of this solution is that the overhead of acquiring a mutex
increases slightly, maybe 0.2 microseconds on a 100 MHz Pentium, because
the thread has to call os_thread_get_curr_id.
This may be compared to 0.5 microsecond overhead for a mutex lock-unlock
pair. Note that the thread
cannot store the information in the resource, say mutex, itself,
because competing threads could wipe out the information if it is
stored before acquiring the mutex, and if it stored afterwards,
the information is outdated for the time of one machine instruction,
at least. (To be precise, the information could be stored to
lock_word in mutex if the machine supports atomic swap.)

The above solution with priority inheritance may become actual in the
future, but at the moment we plan to implement a more coarse solution,
which could be called a global priority inheritance. If a thread
has to wait for a long time, say 300 milliseconds, for a resource,
we just guess that it may be waiting for a resource owned by a background
thread, and boost the priority of all runnable background threads
to the normal level. The background threads then themselves adjust
their fixed priority back to background after releasing all resources
they had (or, at some fixed points in their program code).

What is the performance of the global priority inheritance solution?
We may weigh the length of the wait time 300 milliseconds, during
which the system processes some other thread
to the cost of boosting the priority of each runnable background
thread, rescheduling it, and lowering the priority again.
On 100 MHz Pentium + NT this overhead may be of the order 100
microseconds per thread. So, if the number of runnable background
threads is not very big, say < 100, the cost is tolerable.
Utility threads probably will access resources used by
user threads not very often, so collisions of user threads
to preempted utility threads should not happen very often.

The thread table contains
information of the current status of each thread existing in the system,
and also the event semaphores used in suspending the master thread
and utility and parallel communication threads when they have nothing to do.
The thread table can be seen as an analogue to the process table
in a traditional Unix implementation.

The thread table is also used in the global priority inheritance
scheme. This brings in one additional complication: threads accessing
the thread table must have at least normal fixed priority,
because the priority inheritance solution does not work if a background
thread is preempted while possessing the mutex protecting the thread table.
So, if a thread accesses the thread table, its priority has to be
boosted at least to normal. This priority requirement can be seen similar to
the privileged mode used when processing the kernel calls in traditional
Unix.*/

/* Thread slot in the thread table */
struct srv_slot_struct{
	os_thread_id_t	id;		/*!< thread id */
	os_thread_t	handle;		/*!< thread handle */
	unsigned	type:3;		/*!< thread type: user, utility etc. */
	unsigned	in_use:1;	/*!< TRUE if this slot is in use */
	unsigned	suspended:1;	/*!< TRUE if the thread is waiting
					for the event of this slot */
	ib_time_t	suspend_time;	/*!< time when the thread was
					suspended */
	os_event_t	event;		/*!< event used in suspending the
					thread when it has nothing to do */
	que_thr_t*	thr;		/*!< suspended query thread (only
					used for MySQL threads) */
};

/* Table for MySQL threads where they will be suspended to wait for locks */
UNIV_INTERN srv_slot_t*	srv_mysql_table = NULL;

UNIV_INTERN os_event_t	srv_lock_timeout_thread_event;

UNIV_INTERN os_event_t	srv_shutdown_event;

UNIV_INTERN srv_sys_t*	srv_sys	= NULL;

/* padding to prevent other memory update hotspots from residing on
the same memory cache line */
UNIV_INTERN byte	srv_pad1[64];
/* mutex protecting the server, trx structs, query threads, and lock table */
UNIV_INTERN mutex_t*	kernel_mutex_temp;
/* padding to prevent other memory update hotspots from residing on
the same memory cache line */
UNIV_INTERN byte	srv_pad2[64];

#if 0
/* The following three values measure the urgency of the jobs of
buffer, version, and insert threads. They may vary from 0 - 1000.
The server mutex protects all these variables. The low-water values
tell that the server can acquiesce the utility when the value
drops below this low-water mark. */

static ulint	srv_meter[SRV_MASTER + 1];
static ulint	srv_meter_low_water[SRV_MASTER + 1];
static ulint	srv_meter_high_water[SRV_MASTER + 1];
static ulint	srv_meter_high_water2[SRV_MASTER + 1];
static ulint	srv_meter_foreground[SRV_MASTER + 1];
#endif

/* The following values give info about the activity going on in
the database. They are protected by the server mutex. The arrays
are indexed by the type of the thread. */

UNIV_INTERN ulint	srv_n_threads_active[SRV_MASTER + 1];
UNIV_INTERN ulint	srv_n_threads[SRV_MASTER + 1];

/***********************************************************************
Prints counters for work done by srv_master_thread. */
static
void
srv_print_master_thread_info(
/*=========================*/
	FILE  *file)    /* in: output stream */
{
	fprintf(file, "srv_master_thread loops: %lu 1_second, %lu sleeps, "
		"%lu 10_second, %lu background, %lu flush\n",
		srv_main_1_second_loops, srv_main_sleeps,
		srv_main_10_second_loops, srv_main_background_loops,
		srv_main_flush_loops);
	fprintf(file, "srv_master_thread log flush and writes: %lu\n",
		      srv_log_writes_and_flush);
}

/*********************************************************************//**
Sets the info describing an i/o thread current state. */
UNIV_INTERN
void
srv_set_io_thread_op_info(
/*======================*/
	ulint		i,	/*!< in: the 'segment' of the i/o thread */
	const char*	str)	/*!< in: constant char string describing the
				state */
{
	ut_a(i < SRV_MAX_N_IO_THREADS);

	srv_io_thread_op_info[i] = str;
}

/*********************************************************************//**
Accessor function to get pointer to n'th slot in the server thread
table.
@return	pointer to the slot */
static
srv_slot_t*
srv_table_get_nth_slot(
/*===================*/
	ulint	index)		/*!< in: index of the slot */
{
	ut_a(index < OS_THREAD_MAX_N);

	return(srv_sys->threads + index);
}

/*********************************************************************//**
Gets the number of threads in the system.
@return	sum of srv_n_threads[] */
UNIV_INTERN
ulint
srv_get_n_threads(void)
/*===================*/
{
	ulint	i;
	ulint	n_threads	= 0;

	mutex_enter(&kernel_mutex);

	for (i = SRV_COM; i < SRV_MASTER + 1; i++) {

		n_threads += srv_n_threads[i];
	}

	mutex_exit(&kernel_mutex);

	return(n_threads);
}

/*********************************************************************//**
Reserves a slot in the thread table for the current thread. Also creates the
thread local storage struct for the current thread. NOTE! The server mutex
has to be reserved by the caller!
@return	reserved slot index */
static
ulint
srv_table_reserve_slot(
/*===================*/
	enum srv_thread_type	type)	/*!< in: type of the thread */
{
	srv_slot_t*	slot;
	ulint		i;

	ut_a(type > 0);
	ut_a(type <= SRV_MASTER);

	i = 0;
	slot = srv_table_get_nth_slot(i);

	while (slot->in_use) {
		i++;
		slot = srv_table_get_nth_slot(i);
	}

	ut_a(slot->in_use == FALSE);

	slot->in_use = TRUE;
	slot->suspended = FALSE;
	slot->type = type;
	slot->id = os_thread_get_curr_id();
	slot->handle = os_thread_get_curr();

	thr_local_create();

	thr_local_set_slot_no(os_thread_get_curr_id(), i);

	return(i);
}

/*********************************************************************//**
Suspends the calling thread to wait for the event in its thread slot.
NOTE! The server mutex has to be reserved by the caller!
@return	event for the calling thread to wait */
static
os_event_t
srv_suspend_thread(void)
/*====================*/
{
	srv_slot_t*		slot;
	os_event_t		event;
	ulint			slot_no;
	enum srv_thread_type	type;

	ut_ad(mutex_own(&kernel_mutex));

	slot_no = thr_local_get_slot_no(os_thread_get_curr_id());

	if (srv_print_thread_releases) {
		fprintf(stderr,
			"Suspending thread %lu to slot %lu\n",
			(ulong) os_thread_get_curr_id(), (ulong) slot_no);
	}

	slot = srv_table_get_nth_slot(slot_no);

	type = slot->type;

	ut_ad(type >= SRV_WORKER);
	ut_ad(type <= SRV_MASTER);

	event = slot->event;

	slot->suspended = TRUE;

	ut_ad(srv_n_threads_active[type] > 0);

	srv_n_threads_active[type]--;

	os_event_reset(event);

	return(event);
}

/*********************************************************************//**
Releases threads of the type given from suspension in the thread table.
NOTE! The server mutex has to be reserved by the caller!
@return number of threads released: this may be less than n if not
enough threads were suspended at the moment */
UNIV_INTERN
ulint
srv_release_threads(
/*================*/
	enum srv_thread_type	type,	/*!< in: thread type */
	ulint			n)	/*!< in: number of threads to release */
{
	srv_slot_t*	slot;
	ulint		i;
	ulint		count	= 0;

	ut_ad(type >= SRV_WORKER);
	ut_ad(type <= SRV_MASTER);
	ut_ad(n > 0);
	ut_ad(mutex_own(&kernel_mutex));

	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		slot = srv_table_get_nth_slot(i);

		if (slot->in_use && slot->type == type && slot->suspended) {

			slot->suspended = FALSE;

			srv_n_threads_active[type]++;

			os_event_set(slot->event);

			if (srv_print_thread_releases) {
				fprintf(stderr,
					"Releasing thread %lu type %lu"
					" from slot %lu\n",
					(ulong) slot->id, (ulong) type,
					(ulong) i);
			}

			count++;

			if (count == n) {
				break;
			}
		}
	}

	return(count);
}

/*********************************************************************//**
Returns the calling thread type.
@return	SRV_COM, ... */
UNIV_INTERN
enum srv_thread_type
srv_get_thread_type(void)
/*=====================*/
{
	ulint			slot_no;
	srv_slot_t*		slot;
	enum srv_thread_type	type;

	mutex_enter(&kernel_mutex);

	slot_no = thr_local_get_slot_no(os_thread_get_curr_id());

	slot = srv_table_get_nth_slot(slot_no);

	type = slot->type;

	ut_ad(type >= SRV_WORKER);
	ut_ad(type <= SRV_MASTER);

	mutex_exit(&kernel_mutex);

	return(type);
}

/*********************************************************************//**
Initializes the server. */
UNIV_INTERN
void
srv_init(void)
/*==========*/
{
	srv_conc_slot_t*	conc_slot;
	srv_slot_t*		slot;
	ulint			i;

	srv_sys = mem_alloc(sizeof(srv_sys_t));

	kernel_mutex_temp = mem_alloc(sizeof(mutex_t));
	mutex_create(&kernel_mutex, SYNC_KERNEL);

	mutex_create(&srv_innodb_monitor_mutex, SYNC_NO_ORDER_CHECK);

	srv_sys->threads = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_slot_t));

	for (i = 0; i < OS_THREAD_MAX_N; i++) {
		slot = srv_table_get_nth_slot(i);
		slot->in_use = FALSE;
		slot->type=0;	/* Avoid purify errors */
		slot->event = os_event_create(NULL);
		ut_a(slot->event);
	}

	srv_mysql_table = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_slot_t));

	for (i = 0; i < OS_THREAD_MAX_N; i++) {
		slot = srv_mysql_table + i;
		slot->in_use = FALSE;
		slot->type = 0;
		slot->event = os_event_create(NULL);
		ut_a(slot->event);
	}

	srv_lock_timeout_thread_event = os_event_create(NULL);
	srv_shutdown_event = os_event_create(NULL);

	for (i = 0; i < SRV_MASTER + 1; i++) {
		srv_n_threads_active[i] = 0;
		srv_n_threads[i] = 0;
#if 0
		srv_meter[i] = 30;
		srv_meter_low_water[i] = 50;
		srv_meter_high_water[i] = 100;
		srv_meter_high_water2[i] = 200;
		srv_meter_foreground[i] = 250;
#endif
	}

	UT_LIST_INIT(srv_sys->tasks);

	/* Create dummy indexes for infimum and supremum records */

	dict_ind_init();

	/* Init the server concurrency restriction data structures */

	os_fast_mutex_init(&srv_conc_mutex);

	UT_LIST_INIT(srv_conc_queue);

	srv_conc_slots = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_conc_slot_t));

	for (i = 0; i < OS_THREAD_MAX_N; i++) {
		conc_slot = srv_conc_slots + i;
		conc_slot->reserved = FALSE;
		conc_slot->event = os_event_create(NULL);
		ut_a(conc_slot->event);
	}

	/* Initialize some INFORMATION SCHEMA internal structures */
	trx_i_s_cache_init(trx_i_s_cache);
}

/*********************************************************************//**
Frees the data structures created in srv_init(). */
UNIV_INTERN
void
srv_free(void)
/*==========*/
{
	os_fast_mutex_free(&srv_conc_mutex);
	mem_free(srv_conc_slots);
	srv_conc_slots = NULL;

	mem_free(srv_sys->threads);
	mem_free(srv_sys);
	srv_sys = NULL;

	mem_free(kernel_mutex_temp);
	kernel_mutex_temp = NULL;
	mem_free(srv_mysql_table);
	srv_mysql_table = NULL;

	trx_i_s_cache_free(trx_i_s_cache);
}

/*********************************************************************//**
Initializes the synchronization primitives, memory system, and the thread
local storage. */
UNIV_INTERN
void
srv_general_init(void)
/*==================*/
{
	ut_mem_init();
	/* Reset the system variables in the recovery module. */
	recv_sys_var_init();
	os_sync_init();
	sync_init();
	mem_init(srv_mem_pool_size);
	thr_local_init();
}

/*======================= InnoDB Server FIFO queue =======================*/

/* Maximum allowable purge history length.  <=0 means 'infinite'. */
UNIV_INTERN ulong	srv_max_purge_lag		= 0;

/*********************************************************************//**
Puts an OS thread to wait if there are too many concurrent threads
(>= srv_thread_concurrency) inside InnoDB. The threads wait in a FIFO queue. */

#ifdef HAVE_ATOMIC_BUILTINS
static void
enter_innodb_with_tickets(trx_t* trx)
{
	trx->declared_to_be_inside_innodb = TRUE;
	trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER;
	return;
}

static void
srv_conc_enter_innodb_timer_based(trx_t* trx)
{
	lint	conc_n_threads;
	ibool	has_yielded = FALSE;
	ulint	has_slept = 0;

	if (trx->declared_to_be_inside_innodb) {
		ut_print_timestamp(stderr);
		fputs(
"  InnoDB: Error: trying to declare trx to enter InnoDB, but\n"
"InnoDB: it already is declared.\n", stderr);
		trx_print(stderr, trx, 0);
		putc('\n', stderr);
	}
retry:
	if (srv_conc_n_threads < (lint) srv_thread_concurrency) {
		conc_n_threads = os_atomic_increment_lint(&srv_conc_n_threads, 1);
		if (conc_n_threads <= (lint) srv_thread_concurrency) {
			enter_innodb_with_tickets(trx);
			return;
		}
		(void) os_atomic_increment_lint(&srv_conc_n_threads, -1);
	}
	if (!has_yielded)
	{
		has_yielded = TRUE;
		os_thread_yield();
		goto retry;
	}
	if (trx->has_search_latch
	    || NULL != UT_LIST_GET_FIRST(trx->trx_locks)) {

		conc_n_threads = os_atomic_increment_lint(&srv_conc_n_threads, 1);
		enter_innodb_with_tickets(trx);
		return;
	}
	if (has_slept < 2)
	{
		trx->op_info = "sleeping before entering InnoDB";
		os_thread_sleep(10000);
		trx->op_info = "";
		has_slept++;
	}
	conc_n_threads = os_atomic_increment_lint(&srv_conc_n_threads, 1);
	enter_innodb_with_tickets(trx);
	return;
}

static void
srv_conc_exit_innodb_timer_based(trx_t* trx)
{
        (void) os_atomic_increment_lint(&srv_conc_n_threads, -1);
	trx->declared_to_be_inside_innodb = FALSE;
	trx->n_tickets_to_enter_innodb = 0;
	return;
}
#endif

UNIV_INTERN
void
srv_conc_enter_innodb(
/*==================*/
	trx_t*	trx)	/*!< in: transaction object associated with the
			thread */
{
	ibool			has_slept = FALSE;
	srv_conc_slot_t*	slot	  = NULL;
	ulint			i;
	ib_uint64_t             start_time = 0L;
	ib_uint64_t             finish_time = 0L;
	ulint                   sec;
	ulint                   ms;

	if (trx->mysql_thd != NULL
	    && thd_is_replication_slave_thread(trx->mysql_thd)) {

		UT_WAIT_FOR(srv_conc_n_threads
			    < (lint)srv_thread_concurrency,
			    srv_replication_delay * 1000);

		return;
	}

	/* If trx has 'free tickets' to enter the engine left, then use one
	such ticket */

	if (trx->n_tickets_to_enter_innodb > 0) {
		trx->n_tickets_to_enter_innodb--;

		return;
	}

#ifdef HAVE_ATOMIC_BUILTINS
	if (srv_thread_concurrency_timer_based) {
		srv_conc_enter_innodb_timer_based(trx);
		return;
	}
#endif

	os_fast_mutex_lock(&srv_conc_mutex);
retry:
	if (trx->declared_to_be_inside_innodb) {
		ut_print_timestamp(stderr);
		fputs("  InnoDB: Error: trying to declare trx"
		      " to enter InnoDB, but\n"
		      "InnoDB: it already is declared.\n", stderr);
		trx_print(stderr, trx, 0);
		putc('\n', stderr);
		os_fast_mutex_unlock(&srv_conc_mutex);

		return;
	}

	ut_ad(srv_conc_n_threads >= 0);

	if (srv_conc_n_threads < (lint)srv_thread_concurrency) {

		srv_conc_n_threads++;
		trx->declared_to_be_inside_innodb = TRUE;
		trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER;

		os_fast_mutex_unlock(&srv_conc_mutex);

		return;
	}

	/* If the transaction is not holding resources, let it sleep
	for SRV_THREAD_SLEEP_DELAY microseconds, and try again then */

	if (!has_slept && !trx->has_search_latch
	    && NULL == UT_LIST_GET_FIRST(trx->trx_locks)) {

		has_slept = TRUE; /* We let it sleep only once to avoid
				  starvation */

		srv_conc_n_waiting_threads++;

		os_fast_mutex_unlock(&srv_conc_mutex);

		trx->op_info = "sleeping before joining InnoDB queue";

		/* Peter Zaitsev suggested that we take the sleep away
		altogether. But the sleep may be good in pathological
		situations of lots of thread switches. Simply put some
		threads aside for a while to reduce the number of thread
		switches. */
		if (SRV_THREAD_SLEEP_DELAY > 0) {
			os_thread_sleep(SRV_THREAD_SLEEP_DELAY);
			trx->innodb_que_wait_timer += SRV_THREAD_SLEEP_DELAY;
		}

		trx->op_info = "";

		os_fast_mutex_lock(&srv_conc_mutex);

		srv_conc_n_waiting_threads--;

		goto retry;
	}

	/* Too many threads inside: put the current thread to a queue */

	for (i = 0; i < OS_THREAD_MAX_N; i++) {
		slot = srv_conc_slots + i;

		if (!slot->reserved) {

			break;
		}
	}

	if (i == OS_THREAD_MAX_N) {
		/* Could not find a free wait slot, we must let the
		thread enter */

		srv_conc_n_threads++;
		trx->declared_to_be_inside_innodb = TRUE;
		trx->n_tickets_to_enter_innodb = 0;

		os_fast_mutex_unlock(&srv_conc_mutex);

		return;
	}

	/* Release possible search system latch this thread has */
	if (trx->has_search_latch) {
		trx_search_latch_release_if_reserved(trx);
	}

	/* Add to the queue */
	slot->reserved = TRUE;
	slot->wait_ended = FALSE;

	UT_LIST_ADD_LAST(srv_conc_queue, srv_conc_queue, slot);

	os_event_reset(slot->event);

	srv_conc_n_waiting_threads++;

	os_fast_mutex_unlock(&srv_conc_mutex);

	/* Go to wait for the event; when a thread leaves InnoDB it will
	release this thread */

	if (innobase_get_slow_log() && trx->take_stats) {
		ut_usectime(&sec, &ms);
		start_time = (ib_uint64_t)sec * 1000000 + ms;
	} else {
		start_time = 0;
	}

	trx->op_info = "waiting in InnoDB queue";

	os_event_wait(slot->event);

	trx->op_info = "";

	if (innobase_get_slow_log() && trx->take_stats && start_time) {
		ut_usectime(&sec, &ms);
		finish_time = (ib_uint64_t)sec * 1000000 + ms;
		trx->innodb_que_wait_timer += (ulint)(finish_time - start_time);
	}

	os_fast_mutex_lock(&srv_conc_mutex);

	srv_conc_n_waiting_threads--;

	/* NOTE that the thread which released this thread already
	incremented the thread counter on behalf of this thread */

	slot->reserved = FALSE;

	UT_LIST_REMOVE(srv_conc_queue, srv_conc_queue, slot);

	trx->declared_to_be_inside_innodb = TRUE;
	trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER;

	os_fast_mutex_unlock(&srv_conc_mutex);
}

/*********************************************************************//**
This lets a thread enter InnoDB regardless of the number of threads inside
InnoDB. This must be called when a thread ends a lock wait. */
UNIV_INTERN
void
srv_conc_force_enter_innodb(
/*========================*/
	trx_t*	trx)	/*!< in: transaction object associated with the
			thread */
{
	if (UNIV_LIKELY(!srv_thread_concurrency)) {

		return;
	}

	ut_ad(srv_conc_n_threads >= 0);
#ifdef HAVE_ATOMIC_BUILTINS
	if (srv_thread_concurrency_timer_based) {
                (void) os_atomic_increment_lint(&srv_conc_n_threads, 1);
		trx->declared_to_be_inside_innodb = TRUE;
		trx->n_tickets_to_enter_innodb = 1;
		return;
	}
#endif

	os_fast_mutex_lock(&srv_conc_mutex);

	srv_conc_n_threads++;
	trx->declared_to_be_inside_innodb = TRUE;
	trx->n_tickets_to_enter_innodb = 1;

	os_fast_mutex_unlock(&srv_conc_mutex);
}

/*********************************************************************//**
This must be called when a thread exits InnoDB in a lock wait or at the
end of an SQL statement. */
UNIV_INTERN
void
srv_conc_force_exit_innodb(
/*=======================*/
	trx_t*	trx)	/*!< in: transaction object associated with the
			thread */
{
	srv_conc_slot_t*	slot	= NULL;

	if (trx->mysql_thd != NULL
	    && thd_is_replication_slave_thread(trx->mysql_thd)) {

		return;
	}

	if (trx->declared_to_be_inside_innodb == FALSE) {

		return;
	}

#ifdef HAVE_ATOMIC_BUILTINS
	if (srv_thread_concurrency_timer_based) {
		srv_conc_exit_innodb_timer_based(trx);
		return;
	}
#endif

	os_fast_mutex_lock(&srv_conc_mutex);

	ut_ad(srv_conc_n_threads > 0);
	srv_conc_n_threads--;
	trx->declared_to_be_inside_innodb = FALSE;
	trx->n_tickets_to_enter_innodb = 0;

	if (srv_conc_n_threads < (lint)srv_thread_concurrency) {
		/* Look for a slot where a thread is waiting and no other
		thread has yet released the thread */

		slot = UT_LIST_GET_FIRST(srv_conc_queue);

		while (slot && slot->wait_ended == TRUE) {
			slot = UT_LIST_GET_NEXT(srv_conc_queue, slot);
		}

		if (slot != NULL) {
			slot->wait_ended = TRUE;

			/* We increment the count on behalf of the released
			thread */

			srv_conc_n_threads++;
		}
	}

	os_fast_mutex_unlock(&srv_conc_mutex);

	if (slot != NULL) {
		os_event_set(slot->event);
	}
}

/*********************************************************************//**
This must be called when a thread exits InnoDB. */
UNIV_INTERN
void
srv_conc_exit_innodb(
/*=================*/
	trx_t*	trx)	/*!< in: transaction object associated with the
			thread */
{
	if (trx->n_tickets_to_enter_innodb > 0) {
		/* We will pretend the thread is still inside InnoDB though it
		now leaves the InnoDB engine. In this way we save
		a lot of semaphore operations. srv_conc_force_exit_innodb is
		used to declare the thread definitely outside InnoDB. It
		should be called when there is a lock wait or an SQL statement
		ends. */

		return;
	}

	srv_conc_force_exit_innodb(trx);
}

/*========================================================================*/

/*********************************************************************//**
Normalizes init parameter values to use units we use inside InnoDB.
@return	DB_SUCCESS or error code */
static
ulint
srv_normalize_init_values(void)
/*===========================*/
{
	ulint	n;
	ulint	i;

	n = srv_n_data_files;

	for (i = 0; i < n; i++) {
		srv_data_file_sizes[i] = srv_data_file_sizes[i]
			* ((1024 * 1024) / UNIV_PAGE_SIZE);
	}

	srv_last_file_size_max = srv_last_file_size_max
		* ((1024 * 1024) / UNIV_PAGE_SIZE);

	srv_log_file_size = srv_log_file_size / UNIV_PAGE_SIZE;

	srv_log_buffer_size = srv_log_buffer_size / UNIV_PAGE_SIZE;

	srv_lock_table_size = 5 * (srv_buf_pool_size / UNIV_PAGE_SIZE);

	return(DB_SUCCESS);
}

/*********************************************************************//**
Boots the InnoDB server.
@return	DB_SUCCESS or error code */
UNIV_INTERN
ulint
srv_boot(void)
/*==========*/
{
	ulint	err;

	/* Transform the init parameter values given by MySQL to
	use units we use inside InnoDB: */

	err = srv_normalize_init_values();

	if (err != DB_SUCCESS) {
		return(err);
	}

	/* Initialize synchronization primitives, memory management, and thread
	local storage */

	srv_general_init();

	/* Initialize this module */

	srv_init();

	return(DB_SUCCESS);
}

/*********************************************************************//**
Reserves a slot in the thread table for the current MySQL OS thread.
NOTE! The kernel mutex has to be reserved by the caller!
@return	reserved slot */
static
srv_slot_t*
srv_table_reserve_slot_for_mysql(void)
/*==================================*/
{
	srv_slot_t*	slot;
	ulint		i;

	ut_ad(mutex_own(&kernel_mutex));

	i = 0;
	slot = srv_mysql_table + i;

	while (slot->in_use) {
		i++;

		if (i >= OS_THREAD_MAX_N) {

			ut_print_timestamp(stderr);

			fprintf(stderr,
				"  InnoDB: There appear to be %lu MySQL"
				" threads currently waiting\n"
				"InnoDB: inside InnoDB, which is the"
				" upper limit. Cannot continue operation.\n"
				"InnoDB: We intentionally generate"
				" a seg fault to print a stack trace\n"
				"InnoDB: on Linux. But first we print"
				" a list of waiting threads.\n", (ulong) i);

			for (i = 0; i < OS_THREAD_MAX_N; i++) {

				slot = srv_mysql_table + i;

				fprintf(stderr,
					"Slot %lu: thread id %lu, type %lu,"
					" in use %lu, susp %lu, time %lu\n",
					(ulong) i,
					(ulong) os_thread_pf(slot->id),
					(ulong) slot->type,
					(ulong) slot->in_use,
					(ulong) slot->suspended,
					(ulong) difftime(ut_time(),
							 slot->suspend_time));
			}

			ut_error;
		}

		slot = srv_mysql_table + i;
	}

	ut_a(slot->in_use == FALSE);

	slot->in_use = TRUE;
	slot->id = os_thread_get_curr_id();
	slot->handle = os_thread_get_curr();

	return(slot);
}

/***************************************************************//**
Puts a MySQL OS thread to wait for a lock to be released. If an error
occurs during the wait trx->error_state associated with thr is
!= DB_SUCCESS when we return. DB_LOCK_WAIT_TIMEOUT and DB_DEADLOCK
are possible errors. DB_DEADLOCK is returned if selective deadlock
resolution chose this transaction as a victim. */
UNIV_INTERN
void
srv_suspend_mysql_thread(
/*=====================*/
	que_thr_t*	thr)	/*!< in: query thread associated with the MySQL
				OS thread */
{
	srv_slot_t*	slot;
	os_event_t	event;
	double		wait_time;
	trx_t*		trx;
	ulint		had_dict_lock;
	ibool		was_declared_inside_innodb	= FALSE;
	ib_int64_t	start_time			= 0;
	ib_int64_t	finish_time;
	ulint		diff_time;
	ulint		sec;
	ulint		ms;
	ulong		lock_wait_timeout;

	ut_ad(!mutex_own(&kernel_mutex));

	trx = thr_get_trx(thr);

	os_event_set(srv_lock_timeout_thread_event);

	mutex_enter(&kernel_mutex);

	trx->error_state = DB_SUCCESS;

	if (thr->state == QUE_THR_RUNNING) {

		ut_ad(thr->is_active == TRUE);

		/* The lock has already been released or this transaction
		was chosen as a deadlock victim: no need to suspend */

		if (trx->was_chosen_as_deadlock_victim) {

			trx->error_state = DB_DEADLOCK;
			trx->was_chosen_as_deadlock_victim = FALSE;
		}

		mutex_exit(&kernel_mutex);

		return;
	}

	ut_ad(thr->is_active == FALSE);

	slot = srv_table_reserve_slot_for_mysql();

	event = slot->event;

	slot->thr = thr;

	os_event_reset(event);

	slot->suspend_time = ut_time();

	if (thr->lock_state == QUE_THR_LOCK_ROW) {
		srv_n_lock_wait_count++;
		srv_n_lock_wait_current_count++;

		if (ut_usectime(&sec, &ms) == -1) {
			start_time = -1;
		} else {
			start_time = (ib_int64_t) sec * 1000000 + ms;
		}
	}
	/* Wake the lock timeout monitor thread, if it is suspended */

	os_event_set(srv_lock_timeout_thread_event);

	mutex_exit(&kernel_mutex);

	if (trx->declared_to_be_inside_innodb) {

		was_declared_inside_innodb = TRUE;

		/* We must declare this OS thread to exit InnoDB, since a
		possible other thread holding a lock which this thread waits
		for must be allowed to enter, sooner or later */

		srv_conc_force_exit_innodb(trx);
	}

	had_dict_lock = trx->dict_operation_lock_mode;

	switch (had_dict_lock) {
	case RW_S_LATCH:
		/* Release foreign key check latch */
		row_mysql_unfreeze_data_dictionary(trx);
		break;
	case RW_X_LATCH:
		/* Release fast index creation latch */
		row_mysql_unlock_data_dictionary(trx);
		break;
	}

	ut_a(trx->dict_operation_lock_mode == 0);

	/* Suspend this thread and wait for the event. */

	os_event_wait(event);

	/* After resuming, reacquire the data dictionary latch if
	necessary. */

	switch (had_dict_lock) {
	case RW_S_LATCH:
		row_mysql_freeze_data_dictionary(trx);
		break;
	case RW_X_LATCH:
		row_mysql_lock_data_dictionary(trx);
		break;
	}

	if (was_declared_inside_innodb) {

		/* Return back inside InnoDB */

		srv_conc_force_enter_innodb(trx);
	}

	mutex_enter(&kernel_mutex);

	/* Release the slot for others to use */

	slot->in_use = FALSE;

	wait_time = ut_difftime(ut_time(), slot->suspend_time);

	if (thr->lock_state == QUE_THR_LOCK_ROW) {
		if (ut_usectime(&sec, &ms) == -1) {
			finish_time = -1;
		} else {
			finish_time = (ib_int64_t) sec * 1000000 + ms;
		}

		diff_time = (ulint) (finish_time - start_time);

		srv_n_lock_wait_current_count--;
		srv_n_lock_wait_time = srv_n_lock_wait_time + diff_time;
		if (diff_time > srv_n_lock_max_wait_time &&
		    /* only update the variable if we successfully
		    retrieved the start and finish times. See Bug#36819. */
		    start_time != -1 && finish_time != -1) {
			srv_n_lock_max_wait_time = diff_time;
		}
	}

	if (trx->was_chosen_as_deadlock_victim) {

		trx->error_state = DB_DEADLOCK;
		trx->was_chosen_as_deadlock_victim = FALSE;
	}

	mutex_exit(&kernel_mutex);

	/* InnoDB system transactions (such as the purge, and
	incomplete transactions that are being rolled back after crash
	recovery) will use the global value of
	innodb_lock_wait_timeout, because trx->mysql_thd == NULL. */
	lock_wait_timeout = thd_lock_wait_timeout(trx->mysql_thd);

	if (lock_wait_timeout < 100000000
	    && wait_time > (double) lock_wait_timeout) {

		trx->error_state = DB_LOCK_WAIT_TIMEOUT;
	}

	if (trx_is_interrupted(trx)) {

		trx->error_state = DB_INTERRUPTED;
	}
}

/********************************************************************//**
Releases a MySQL OS thread waiting for a lock to be released, if the
thread is already suspended. */
UNIV_INTERN
void
srv_release_mysql_thread_if_suspended(
/*==================================*/
	que_thr_t*	thr)	/*!< in: query thread associated with the
				MySQL OS thread	 */
{
	srv_slot_t*	slot;
	ulint		i;

	ut_ad(mutex_own(&kernel_mutex));

	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		slot = srv_mysql_table + i;

		if (slot->in_use && slot->thr == thr) {
			/* Found */

			os_event_set(slot->event);

			return;
		}
	}

	/* not found */
}

/******************************************************************//**
Refreshes the values used to calculate per-second averages. */
static
void
srv_refresh_innodb_monitor_stats(void)
/*==================================*/
{
	mutex_enter(&srv_innodb_monitor_mutex);

	srv_last_monitor_time = time(NULL);

	os_aio_refresh_stats();

	btr_cur_n_sea_old = btr_cur_n_sea;
	btr_cur_n_non_sea_old = btr_cur_n_non_sea;

	log_refresh_stats();

	buf_refresh_io_stats();

	srv_n_rows_inserted_old = srv_n_rows_inserted;
	srv_n_rows_updated_old = srv_n_rows_updated;
	srv_n_rows_deleted_old = srv_n_rows_deleted;
	srv_n_rows_read_old = srv_n_rows_read;

	mutex_exit(&srv_innodb_monitor_mutex);
}

/******************************************************************//**
Outputs to a file the output of the InnoDB Monitor.
@return FALSE if not all information printed
due to failure to obtain necessary mutex */
UNIV_INTERN
ibool
srv_printf_innodb_monitor(
/*======================*/
	FILE*	file,		/*!< in: output stream */
	ibool	nowait,		/*!< in: whether to wait for kernel mutex */
	ulint*	trx_start,	/*!< out: file position of the start of
				the list of active transactions */
	ulint*	trx_end)	/*!< out: file position of the end of
				the list of active transactions */
{
	double	time_elapsed;
	time_t	current_time;
	ulint	n_reserved;
	ibool	ret;

	ulint	btr_search_sys_subtotal;
	ulint	lock_sys_subtotal;
	ulint	recv_sys_subtotal;

	ulint	i;
	trx_t*	trx;

	mutex_enter(&srv_innodb_monitor_mutex);

	current_time = time(NULL);

	/* We add 0.001 seconds to time_elapsed to prevent division
	by zero if two users happen to call SHOW INNODB STATUS at the same
	time */

	time_elapsed = difftime(current_time, srv_last_monitor_time)
		+ 0.001;

	srv_last_monitor_time = time(NULL);

	fputs("\n=====================================\n", file);

	ut_print_timestamp(file);
	fprintf(file,
		" INNODB MONITOR OUTPUT\n"
		"=====================================\n"
		"Per second averages calculated from the last %lu seconds\n",
		(ulong)time_elapsed);

	fputs("-----------------\n"
	      "BACKGROUND THREAD\n"
	      "-----------------\n", file);
	srv_print_master_thread_info(file);

	fputs("----------\n"
	      "SEMAPHORES\n"
	      "----------\n", file);
	sync_print(file);

	/* Conceptually, srv_innodb_monitor_mutex has a very high latching
	order level in sync0sync.h, while dict_foreign_err_mutex has a very
	low level 135. Therefore we can reserve the latter mutex here without
	a danger of a deadlock of threads. */

	mutex_enter(&dict_foreign_err_mutex);

	if (ftell(dict_foreign_err_file) != 0L) {
		fputs("------------------------\n"
		      "LATEST FOREIGN KEY ERROR\n"
		      "------------------------\n", file);
		ut_copy_file(file, dict_foreign_err_file);
	}

	mutex_exit(&dict_foreign_err_mutex);

	fputs("--------\n"
	      "FILE I/O\n"
	      "--------\n", file);
	os_aio_print(file);

	fputs("-------------------------------------\n"
	      "INSERT BUFFER AND ADAPTIVE HASH INDEX\n"
	      "-------------------------------------\n", file);
	ibuf_print(file);

	ha_print_info(file, btr_search_sys->hash_index);

	fprintf(file,
		"%.2f hash searches/s, %.2f non-hash searches/s\n",
		(btr_cur_n_sea - btr_cur_n_sea_old)
		/ time_elapsed,
		(btr_cur_n_non_sea - btr_cur_n_non_sea_old)
		/ time_elapsed);
	btr_cur_n_sea_old = btr_cur_n_sea;
	btr_cur_n_non_sea_old = btr_cur_n_non_sea;

	fputs("---\n"
	      "LOG\n"
	      "---\n", file);
	log_print(file);

	fputs("----------------------\n"
	      "BUFFER POOL AND MEMORY\n"
	      "----------------------\n", file);
	fprintf(file,
			"Total memory allocated " ULINTPF
			"; in additional pool allocated " ULINTPF "\n",
			ut_total_allocated_memory,
			mem_pool_get_reserved(mem_comm_pool));
	/* Calcurate reserved memories */
	if (btr_search_sys && btr_search_sys->hash_index->heap) {
		btr_search_sys_subtotal = mem_heap_get_size(btr_search_sys->hash_index->heap);
	} else {
		btr_search_sys_subtotal = 0;
		for (i=0; i < btr_search_sys->hash_index->n_mutexes; i++) {
			btr_search_sys_subtotal += mem_heap_get_size(btr_search_sys->hash_index->heaps[i]);
		}
	}

	lock_sys_subtotal = 0;
	if (trx_sys) {
		mutex_enter(&kernel_mutex);
		trx = UT_LIST_GET_FIRST(trx_sys->mysql_trx_list);
		while (trx) {
			lock_sys_subtotal += ((trx->lock_heap) ? mem_heap_get_size(trx->lock_heap) : 0);
			trx = UT_LIST_GET_NEXT(mysql_trx_list, trx);
		}
		mutex_exit(&kernel_mutex);
	}

	recv_sys_subtotal = ((recv_sys && recv_sys->addr_hash)
			? mem_heap_get_size(recv_sys->heap) : 0);

	fprintf(file,
			"Internal hash tables (constant factor + variable factor)\n"
			"    Adaptive hash index %lu \t(%lu + %lu)\n"
			"    Page hash           %lu\n"
			"    Dictionary cache    %lu \t(%lu + %lu)\n"
			"    File system         %lu \t(%lu + %lu)\n"
			"    Lock system         %lu \t(%lu + %lu)\n"
			"    Recovery system     %lu \t(%lu + %lu)\n"
			"    Threads             %lu \t(%lu + %lu)\n",

			(ulong) (btr_search_sys
				? (btr_search_sys->hash_index->n_cells * sizeof(hash_cell_t)) : 0)
			+ btr_search_sys_subtotal,
			(ulong) (btr_search_sys
				? (btr_search_sys->hash_index->n_cells * sizeof(hash_cell_t)) : 0),
			(ulong) btr_search_sys_subtotal,

			(ulong) (buf_pool->page_hash->n_cells * sizeof(hash_cell_t)),

			(ulong) (dict_sys ? ((dict_sys->table_hash->n_cells
						+ dict_sys->table_id_hash->n_cells
						) * sizeof(hash_cell_t)
					+ dict_sys->size) : 0),
			(ulong) (dict_sys ? ((dict_sys->table_hash->n_cells
							+ dict_sys->table_id_hash->n_cells
							) * sizeof(hash_cell_t)) : 0),
			(ulong) (dict_sys ? (dict_sys->size) : 0),

			(ulong) (fil_system_hash_cells() * sizeof(hash_cell_t)
					+ fil_system_hash_nodes()),
			(ulong) (fil_system_hash_cells() * sizeof(hash_cell_t)),
			(ulong) fil_system_hash_nodes(),

			(ulong) ((lock_sys ? (lock_sys->rec_hash->n_cells * sizeof(hash_cell_t)) : 0)
					+ lock_sys_subtotal),
			(ulong) (lock_sys ? (lock_sys->rec_hash->n_cells * sizeof(hash_cell_t)) : 0),
			(ulong) lock_sys_subtotal,

			(ulong) (((recv_sys && recv_sys->addr_hash)
						? (recv_sys->addr_hash->n_cells * sizeof(hash_cell_t)) : 0)
					+ recv_sys_subtotal),
			(ulong) ((recv_sys && recv_sys->addr_hash)
					? (recv_sys->addr_hash->n_cells * sizeof(hash_cell_t)) : 0),
			(ulong) recv_sys_subtotal,

			(ulong) (thr_local_hash_cells() * sizeof(hash_cell_t)
					+ thr_local_hash_nodes()),
			(ulong) (thr_local_hash_cells() * sizeof(hash_cell_t)),
			(ulong) thr_local_hash_nodes());

	fprintf(file, "Dictionary memory allocated " ULINTPF "\n",
		dict_sys->size);

	buf_print_io(file);

	fputs("--------------\n"
	      "ROW OPERATIONS\n"
	      "--------------\n", file);
	fprintf(file, "%ld queries inside InnoDB, %lu queries in queue\n",
		(long) srv_conc_n_threads,
		(ulong) srv_conc_n_waiting_threads);

	fprintf(file, "%lu read views open inside InnoDB\n",
		UT_LIST_GET_LEN(trx_sys->view_list));

	n_reserved = fil_space_get_n_reserved_extents(0);
	if (n_reserved > 0) {
		fprintf(file,
			"%lu tablespace extents now reserved for"
			" B-tree split operations\n",
			(ulong) n_reserved);
	}

#ifdef UNIV_LINUX
	fprintf(file, "Main thread process no. %lu, id %lu, state: %s\n",
		(ulong) srv_main_thread_process_no,
		(ulong) srv_main_thread_id,
		srv_main_thread_op_info);
#else
	fprintf(file, "Main thread id %lu, state: %s\n",
		(ulong) srv_main_thread_id,
		srv_main_thread_op_info);
#endif
	fprintf(file,
		"Number of rows inserted " ULINTPF
		", updated " ULINTPF ", deleted " ULINTPF
		", read " ULINTPF "\n",
		srv_n_rows_inserted,
		srv_n_rows_updated,
		srv_n_rows_deleted,
		srv_n_rows_read);
	fprintf(file,
		"%.2f inserts/s, %.2f updates/s,"
		" %.2f deletes/s, %.2f reads/s\n",
		(srv_n_rows_inserted - srv_n_rows_inserted_old)
		/ time_elapsed,
		(srv_n_rows_updated - srv_n_rows_updated_old)
		/ time_elapsed,
		(srv_n_rows_deleted - srv_n_rows_deleted_old)
		/ time_elapsed,
		(srv_n_rows_read - srv_n_rows_read_old)
		/ time_elapsed);

	srv_n_rows_inserted_old = srv_n_rows_inserted;
	srv_n_rows_updated_old = srv_n_rows_updated;
	srv_n_rows_deleted_old = srv_n_rows_deleted;
	srv_n_rows_read_old = srv_n_rows_read;

	/* Only if lock_print_info_summary proceeds correctly,
	before we call the lock_print_info_all_transactions
	to print all the lock information. */
	ret = lock_print_info_summary(file, nowait);

	if (ret) {
		if (trx_start) {
			long	t = ftell(file);
			if (t < 0) {
				*trx_start = ULINT_UNDEFINED;
			} else {
				*trx_start = (ulint) t;
			}
		}
		lock_print_info_all_transactions(file);
		if (trx_end) {
			long	t = ftell(file);
			if (t < 0) {
				*trx_end = ULINT_UNDEFINED;
			} else {
				*trx_end = (ulint) t;
			}
		}
	}

	fputs("----------------------------\n"
	      "END OF INNODB MONITOR OUTPUT\n"
	      "============================\n", file);
	mutex_exit(&srv_innodb_monitor_mutex);
	fflush(file);

	return(ret);
}

/******************************************************************//**
Function to pass InnoDB status variables to MySQL */
UNIV_INTERN
void
srv_export_innodb_status(void)
/*==========================*/
{
	mutex_enter(&srv_innodb_monitor_mutex);

	export_vars.innodb_data_pending_reads
		= os_n_pending_reads;
	export_vars.innodb_data_pending_writes
		= os_n_pending_writes;
	export_vars.innodb_data_pending_fsyncs
		= fil_n_pending_log_flushes
		+ fil_n_pending_tablespace_flushes;
	export_vars.innodb_data_fsyncs = os_n_fsyncs;
	export_vars.innodb_data_read = srv_data_read;
	export_vars.innodb_data_reads = os_n_file_reads;
	export_vars.innodb_data_writes = os_n_file_writes;
	export_vars.innodb_data_written = srv_data_written;
	export_vars.innodb_dict_tables= (dict_sys ? UT_LIST_GET_LEN(dict_sys->table_LRU) : 0);
	export_vars.innodb_buffer_pool_read_requests = buf_pool->stat.n_page_gets;
	export_vars.innodb_buffer_pool_write_requests
		= srv_buf_pool_write_requests;
	export_vars.innodb_buffer_pool_wait_free = srv_buf_pool_wait_free;
	export_vars.innodb_buffer_pool_pages_flushed = srv_buf_pool_flushed;
	export_vars.innodb_buffer_pool_reads = srv_buf_pool_reads;
	export_vars.innodb_buffer_pool_read_ahead
		= buf_pool->stat.n_ra_pages_read;
	export_vars.innodb_buffer_pool_read_ahead_evicted
		= buf_pool->stat.n_ra_pages_evicted;
	export_vars.innodb_buffer_pool_pages_data
		= UT_LIST_GET_LEN(buf_pool->LRU);
	export_vars.innodb_buffer_pool_pages_dirty
		= UT_LIST_GET_LEN(buf_pool->flush_list);
	export_vars.innodb_buffer_pool_pages_free
		= UT_LIST_GET_LEN(buf_pool->free);
	export_vars.innodb_deadlocks
	        = srv_n_lock_deadlock_count;
#ifdef UNIV_DEBUG
	export_vars.innodb_buffer_pool_pages_latched
		= buf_get_latched_pages_number();
#endif /* UNIV_DEBUG */
	export_vars.innodb_buffer_pool_pages_total = buf_pool->curr_size;

	export_vars.innodb_buffer_pool_pages_misc = buf_pool->curr_size
		- UT_LIST_GET_LEN(buf_pool->LRU)
		- UT_LIST_GET_LEN(buf_pool->free);
#ifdef HAVE_ATOMIC_BUILTINS
	export_vars.innodb_have_atomic_builtins = 1;
#else
	export_vars.innodb_have_atomic_builtins = 0;
#endif
	export_vars.innodb_page_size = UNIV_PAGE_SIZE;
	export_vars.innodb_log_waits = srv_log_waits;
	export_vars.innodb_os_log_written = srv_os_log_written;
	export_vars.innodb_os_log_fsyncs = fil_n_log_flushes;
	export_vars.innodb_os_log_pending_fsyncs = fil_n_pending_log_flushes;
	export_vars.innodb_os_log_pending_writes = srv_os_log_pending_writes;
	export_vars.innodb_log_write_requests = srv_log_write_requests;
	export_vars.innodb_log_writes = srv_log_writes;
	export_vars.innodb_dblwr_pages_written = srv_dblwr_pages_written;
	export_vars.innodb_dblwr_writes = srv_dblwr_writes;
	export_vars.innodb_pages_created = buf_pool->stat.n_pages_created;
	export_vars.innodb_pages_read = buf_pool->stat.n_pages_read;
	export_vars.innodb_pages_written = buf_pool->stat.n_pages_written;
	export_vars.innodb_row_lock_waits = srv_n_lock_wait_count;
	export_vars.innodb_row_lock_current_waits
		= srv_n_lock_wait_current_count;
	export_vars.innodb_row_lock_time = srv_n_lock_wait_time / 1000;
	if (srv_n_lock_wait_count > 0) {
		export_vars.innodb_row_lock_time_avg = (ulint)
			(srv_n_lock_wait_time / 1000 / srv_n_lock_wait_count);
	} else {
		export_vars.innodb_row_lock_time_avg = 0;
	}
	export_vars.innodb_row_lock_time_max
		= srv_n_lock_max_wait_time / 1000;
	export_vars.innodb_rows_read = srv_n_rows_read;
	export_vars.innodb_rows_inserted = srv_n_rows_inserted;
	export_vars.innodb_rows_updated = srv_n_rows_updated;
	export_vars.innodb_rows_deleted = srv_n_rows_deleted;

	mutex_exit(&srv_innodb_monitor_mutex);
}

/*********************************************************************//**
A thread which prints the info output by various InnoDB monitors.
@return	a dummy parameter */
UNIV_INTERN
os_thread_ret_t
srv_monitor_thread(
/*===============*/
	void*	arg __attribute__((unused)))
			/*!< in: a dummy parameter required by
			os_thread_create */
{
	double		time_elapsed;
	time_t		current_time;
	time_t		last_table_monitor_time;
	time_t		last_tablespace_monitor_time;
	time_t		last_monitor_time;
	ulint		mutex_skipped;
	ibool		last_srv_print_monitor;

#ifdef UNIV_DEBUG_THREAD_CREATION
	fprintf(stderr, "Lock timeout thread starts, id %lu\n",
		os_thread_pf(os_thread_get_curr_id()));
#endif
	UT_NOT_USED(arg);
	srv_last_monitor_time = time(NULL);
	last_table_monitor_time = time(NULL);
	last_tablespace_monitor_time = time(NULL);
	last_monitor_time = time(NULL);
	mutex_skipped = 0;
	last_srv_print_monitor = srv_print_innodb_monitor;
loop:
	srv_monitor_active = TRUE;

	/* Wake up every 5 seconds to see if we need to print
	monitor information. */

	os_event_wait_time(srv_shutdown_event, 5000000);

	current_time = time(NULL);

	time_elapsed = difftime(current_time, last_monitor_time);

	if (time_elapsed > 15) {
		last_monitor_time = time(NULL);

		if (srv_print_innodb_monitor) {
			/* Reset mutex_skipped counter everytime
			srv_print_innodb_monitor changes. This is to
			ensure we will not be blocked by kernel_mutex
			for short duration information printing,
			such as requested by sync_array_print_long_waits() */
			if (!last_srv_print_monitor) {
				mutex_skipped = 0;
				last_srv_print_monitor = TRUE;
			}

			if (!srv_printf_innodb_monitor(stderr,
						MUTEX_NOWAIT(mutex_skipped),
						NULL, NULL)) {
				mutex_skipped++;
			} else {
				/* Reset the counter */
				mutex_skipped = 0;
			}
		} else {
			last_srv_print_monitor = FALSE;
		}


		if (srv_innodb_status) {
			mutex_enter(&srv_monitor_file_mutex);
			rewind(srv_monitor_file);
			if (!srv_printf_innodb_monitor(srv_monitor_file,
						MUTEX_NOWAIT(mutex_skipped),
						NULL, NULL)) {
				mutex_skipped++;
			} else {
				mutex_skipped = 0;
			}

			os_file_set_eof(srv_monitor_file);
			mutex_exit(&srv_monitor_file_mutex);
		}

		if (srv_print_innodb_tablespace_monitor
		    && difftime(current_time,
				last_tablespace_monitor_time) > 60) {
			last_tablespace_monitor_time = time(NULL);

			fputs("========================"
			      "========================\n",
			      stderr);

			ut_print_timestamp(stderr);

			fputs(" INNODB TABLESPACE MONITOR OUTPUT\n"
			      "========================"
			      "========================\n",
			      stderr);

			fsp_print(0);
			fputs("Validating tablespace\n", stderr);
			fsp_validate(0);
			fputs("Validation ok\n"
			      "---------------------------------------\n"
			      "END OF INNODB TABLESPACE MONITOR OUTPUT\n"
			      "=======================================\n",
			      stderr);
		}

		if (srv_print_innodb_table_monitor
		    && difftime(current_time, last_table_monitor_time) > 60) {

			last_table_monitor_time = time(NULL);

			fputs("===========================================\n",
			      stderr);

			ut_print_timestamp(stderr);

			fputs(" INNODB TABLE MONITOR OUTPUT\n"
			      "===========================================\n",
			      stderr);
			dict_print();

			fputs("-----------------------------------\n"
			      "END OF INNODB TABLE MONITOR OUTPUT\n"
			      "==================================\n",
			      stderr);
		}
	}

	if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) {
		goto exit_func;
	}

	if (srv_print_innodb_monitor
	    || srv_print_innodb_lock_monitor
	    || srv_print_innodb_tablespace_monitor
	    || srv_print_innodb_table_monitor) {
		goto loop;
	}

	srv_monitor_active = FALSE;

	goto loop;

exit_func:
	srv_monitor_active = FALSE;

	/* We count the number of threads in os_thread_exit(). A created
	thread should always use that to exit and not use return() to exit. */

	os_thread_exit(NULL);

	OS_THREAD_DUMMY_RETURN;
}

/*********************************************************************//**
A thread which wakes up threads whose lock wait may have lasted too long.
@return	a dummy parameter */
UNIV_INTERN
os_thread_ret_t
srv_lock_timeout_thread(
/*====================*/
	void*	arg __attribute__((unused)))
			/* in: a dummy parameter required by
			os_thread_create */
{
	srv_slot_t*	slot;
	ibool		some_waits;
	double		wait_time;
	ulint		i;

loop:
	/* When someone is waiting for a lock, we wake up every second
	and check if a timeout has passed for a lock wait */

	os_event_wait_time(srv_shutdown_event, 1000000);

	srv_lock_timeout_active = TRUE;

	mutex_enter(&kernel_mutex);

	some_waits = FALSE;

	/* Check of all slots if a thread is waiting there, and if it
	has exceeded the time limit */

	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		slot = srv_mysql_table + i;

		if (slot->in_use) {
			trx_t*	trx;
			ulong	lock_wait_timeout;

			some_waits = TRUE;

			wait_time = ut_difftime(ut_time(), slot->suspend_time);

			trx = thr_get_trx(slot->thr);
			lock_wait_timeout = thd_lock_wait_timeout(
				trx->mysql_thd);

			if (trx_is_interrupted(trx)
			    || (lock_wait_timeout < 100000000
				&& (wait_time > (double) lock_wait_timeout
				    || wait_time < 0))) {

				/* Timeout exceeded or a wrap-around in system
				time counter: cancel the lock request queued
				by the transaction and release possible
				other transactions waiting behind; it is
				possible that the lock has already been
				granted: in that case do nothing */

				if (trx->wait_lock) {
					lock_cancel_waiting_and_release(
						trx->wait_lock);
				}
			}
		}
	}

	os_event_reset(srv_lock_timeout_thread_event);

	mutex_exit(&kernel_mutex);

	if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) {
		goto exit_func;
	}

	if (some_waits) {
		goto loop;
	}

	srv_lock_timeout_active = FALSE;

#if 0
	/* The following synchronisation is disabled, since
	the InnoDB monitor output is to be updated every 15 seconds. */
	os_event_wait(srv_lock_timeout_thread_event);
#endif
	goto loop;

exit_func:
	srv_lock_timeout_active = FALSE;

	/* We count the number of threads in os_thread_exit(). A created
	thread should always use that to exit and not use return() to exit. */

	os_thread_exit(NULL);

	OS_THREAD_DUMMY_RETURN;
}

/*********************************************************************//**
A thread which prints warnings about semaphore waits which have lasted
too long. These can be used to track bugs which cause hangs.
@return	a dummy parameter */
UNIV_INTERN
os_thread_ret_t
srv_error_monitor_thread(
/*=====================*/
	void*	arg __attribute__((unused)))
			/*!< in: a dummy parameter required by
			os_thread_create */
{
	/* number of successive fatal timeouts observed */
	ulint		fatal_cnt	= 0;
	ib_uint64_t	old_lsn;
	ib_uint64_t	new_lsn;

	old_lsn = srv_start_lsn;

#ifdef UNIV_DEBUG_THREAD_CREATION
	fprintf(stderr, "Error monitor thread starts, id %lu\n",
		os_thread_pf(os_thread_get_curr_id()));
#endif
loop:
	srv_error_monitor_active = TRUE;

	/* Try to track a strange bug reported by Harald Fuchs and others,
	where the lsn seems to decrease at times */

	new_lsn = log_get_lsn();

	if (new_lsn < old_lsn) {
		ut_print_timestamp(stderr);
		fprintf(stderr,
			"  InnoDB: Error: old log sequence number %llu"
			" was greater\n"
			"InnoDB: than the new log sequence number %llu!\n"
			"InnoDB: Please submit a bug report"
			" to http://bugs.mysql.com\n",
			old_lsn, new_lsn);
	}

	old_lsn = new_lsn;

	if (difftime(time(NULL), srv_last_monitor_time) > 60) {
		/* We referesh InnoDB Monitor values so that averages are
		printed from at most 60 last seconds */

		srv_refresh_innodb_monitor_stats();
	}

	/* Update the statistics collected for deciding LRU
	eviction policy. */
	buf_LRU_stat_update();

	/* Update the statistics collected for flush rate policy. */
	buf_flush_stat_update();

	/* In case mutex_exit is not a memory barrier, it is
	theoretically possible some threads are left waiting though
	the semaphore is already released. Wake up those threads: */

	sync_arr_wake_threads_if_sema_free();

	if (sync_array_print_long_waits()) {
		fatal_cnt++;
		if (fatal_cnt > 10) {

			fprintf(stderr,
				"InnoDB: Error: semaphore wait has lasted"
				" > %lu seconds\n"
				"InnoDB: We intentionally crash the server,"
				" because it appears to be hung.\n",
				(ulong) srv_fatal_semaphore_wait_threshold);

			ut_error;
		}
	} else {
		fatal_cnt = 0;
	}

	/* Flush stderr so that a database user gets the output
	to possible MySQL error file */

	fflush(stderr);

	os_event_wait_time(srv_shutdown_event, 1000000);

	if (srv_shutdown_state < SRV_SHUTDOWN_CLEANUP) {

		goto loop;
	}

	srv_error_monitor_active = FALSE;

	/* We count the number of threads in os_thread_exit(). A created
	thread should always use that to exit and not use return() to exit. */

	os_thread_exit(NULL);

	OS_THREAD_DUMMY_RETURN;
}

/*********************************************************************//**
A thread which restores the buffer pool from a dump file on startup and does
periodic buffer pool dumps.
@return	a dummy parameter */
UNIV_INTERN
os_thread_ret_t
srv_LRU_dump_restore_thread(
/*====================*/
	void*	arg __attribute__((unused)))
			/*!< in: a dummy parameter required by
			os_thread_create */
{
	uint	auto_lru_dump;
	time_t	last_dump_time;
	time_t	time_elapsed;

#ifdef UNIV_DEBUG_THREAD_CREATION
	fprintf(stderr, "LRU dump/restore thread starts, id %lu\n",
		os_thread_pf(os_thread_get_curr_id()));
#endif

	if (srv_auto_lru_dump)
		buf_LRU_file_restore();

	last_dump_time = time(NULL);

loop:
	os_event_wait_time(srv_shutdown_event, 5000000);

	if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) {
		goto exit_func;
	}

	time_elapsed = time(NULL) - last_dump_time;
	auto_lru_dump = srv_auto_lru_dump;
	if (auto_lru_dump > 0 && (time_t) auto_lru_dump < time_elapsed) {
		last_dump_time = time(NULL);
		buf_LRU_file_dump();
	}

	goto loop;
exit_func:
	/* We count the number of threads in os_thread_exit(). A created
	thread should always use that to exit and not use return() to exit. */

	os_thread_exit(NULL);

	OS_THREAD_DUMMY_RETURN;
}

/*******************************************************************//**
Tells the InnoDB server that there has been activity in the database
and wakes up the master thread if it is suspended (not sleeping). Used
in the MySQL interface. Note that there is a small chance that the master
thread stays suspended (we do not protect our operation with the kernel
mutex, for performace reasons). */
UNIV_INTERN
void
srv_active_wake_master_thread(void)
/*===============================*/
{
	srv_activity_count++;

	if (srv_n_threads_active[SRV_MASTER] == 0) {

		mutex_enter(&kernel_mutex);

		srv_release_threads(SRV_MASTER, 1);

		mutex_exit(&kernel_mutex);
	}
}

/*******************************************************************//**
Wakes up the master thread if it is suspended or being suspended. */
UNIV_INTERN
void
srv_wake_master_thread(void)
/*========================*/
{
	srv_activity_count++;

	mutex_enter(&kernel_mutex);

	srv_release_threads(SRV_MASTER, 1);

	mutex_exit(&kernel_mutex);
}

/**********************************************************************
The master thread is tasked to ensure that flush of log file happens
once every second in the background. This is to ensure that not more
than one second of trxs are lost in case of crash when
innodb_flush_logs_at_trx_commit != 1 */
static
void
srv_sync_log_buffer_in_background(void)
/*===================================*/
{
	time_t	current_time = time(NULL);

	srv_main_thread_op_info = "flushing log";
	if (difftime(current_time, srv_last_log_flush_time) >= 1) {
		log_buffer_sync_in_background(TRUE);
		srv_last_log_flush_time = current_time;
		srv_log_writes_and_flush++;
	}
}

/*********************************************************************//**
The master thread controlling the server.
@return	a dummy parameter */
UNIV_INTERN
os_thread_ret_t
srv_master_thread(
/*==============*/
	void*	arg __attribute__((unused)))
			/*!< in: a dummy parameter required by
			os_thread_create */
{
	os_event_t	event;
	ulint		old_activity_count;
	ulint		n_pages_purged	= 0;
	ulint		n_bytes_merged;
	ulint		n_pages_flushed;
	ulint		n_pages_flushed_prev = 0;
	ulint		n_bytes_archived;
	ulint		n_tables_to_drop;
	ulint		n_ios;
	ulint		n_ios_old;
	ulint		n_ios_very_old;
	ulint		n_pend_ios;
	ulint		next_itr_time;
	ulint		prev_adaptive_checkpoint = ULINT_UNDEFINED;
	ulint		inner_loop = 0;
	ibool		skip_sleep	= FALSE;
	ulint		i;

	struct t_prev_flush_info_struct {
		ulint		count;
		unsigned	space:32;
		unsigned	offset:32;
		ib_uint64_t	oldest_modification;
	} prev_flush_info;

	ib_uint64_t	lsn_old;

	ib_uint64_t	oldest_lsn;

#ifdef UNIV_DEBUG_THREAD_CREATION
	fprintf(stderr, "Master thread starts, id %lu\n",
		os_thread_pf(os_thread_get_curr_id()));
#endif
	srv_main_thread_process_no = os_proc_get_number();
	srv_main_thread_id = os_thread_pf(os_thread_get_curr_id());


        memset(&prev_flush_info, 0, sizeof(prev_flush_info));
	mutex_enter(&kernel_mutex);

	srv_table_reserve_slot(SRV_MASTER);
	srv_n_threads_active[SRV_MASTER]++;

	mutex_exit(&kernel_mutex);

	mutex_enter(&(log_sys->mutex));
	lsn_old = log_sys->lsn;
	mutex_exit(&(log_sys->mutex));
loop:
	/*****************************************************************/
	/* ---- When there is database activity by users, we cycle in this
	loop */

	srv_main_thread_op_info = "reserving kernel mutex";

	n_ios_very_old = log_sys->n_log_ios + buf_pool->stat.n_pages_read
		+ buf_pool->stat.n_pages_written;
        n_pages_flushed= 0;

	mutex_enter(&kernel_mutex);

	/* Store the user activity counter at the start of this loop */
	old_activity_count = srv_activity_count;

	mutex_exit(&kernel_mutex);

	if (srv_force_recovery >= SRV_FORCE_NO_BACKGROUND) {

		goto suspend_thread;
	}

	/* ---- We run the following loop approximately once per second
	when there is database activity */

	srv_last_log_flush_time = time(NULL);
	skip_sleep = FALSE;

	next_itr_time = ut_time_ms() + 1000;

	for (i = 0; i < 10; i++) {
		ulint	cur_time = ut_time_ms();

		n_ios_old = log_sys->n_log_ios + buf_pool->stat.n_pages_read
			+ buf_pool->stat.n_pages_written;
		srv_main_thread_op_info = "sleeping";
		srv_main_1_second_loops++;

		if (!skip_sleep) {
		if (next_itr_time > cur_time) {

			os_event_wait_time(srv_shutdown_event, ut_min(1000000, (next_itr_time - cur_time) * 1000));
			srv_main_sleeps++;

			/*
			mutex_enter(&(log_sys->mutex));
			oldest_lsn = buf_pool_get_oldest_modification();
			ib_uint64_t	lsn = log_sys->lsn;
			mutex_exit(&(log_sys->mutex));

			if(oldest_lsn)
			fprintf(stderr,
				"InnoDB flush: age pct: %lu, lsn progress: %lu\n",
				(lsn - oldest_lsn) * 100 / log_sys->max_checkpoint_age,
				lsn - lsn_old);
			*/
		}

		/* Each iteration should happen at 1 second interval. */
		next_itr_time = ut_time_ms() + 1000;
		}

		skip_sleep = FALSE;

		/* ALTER TABLE in MySQL requires on Unix that the table handler
		can drop tables lazily after there no longer are SELECT
		queries to them. */

		srv_main_thread_op_info = "doing background drop tables";

		row_drop_tables_for_mysql_in_background();

		srv_main_thread_op_info = "";

		if (srv_fast_shutdown && srv_shutdown_state > 0) {

			goto background_loop;
		}

		/* Flush logs if needed */
		srv_sync_log_buffer_in_background();

		srv_main_thread_op_info = "making checkpoint";
		log_free_check();

		/* If i/os during one second sleep were less than 5% of
                capacity, we assume that there is free disk i/o capacity
                available, and it makes sense to do an insert buffer merge. */

		n_pend_ios = buf_get_n_pending_ios()
			+ log_sys->n_pending_writes;
		n_ios = log_sys->n_log_ios + buf_pool->stat.n_pages_read
			+ buf_pool->stat.n_pages_written;
		if (n_pend_ios < SRV_PEND_IO_THRESHOLD
		    && (n_ios - n_ios_old < SRV_RECENT_IO_ACTIVITY)) {
			srv_main_thread_op_info = "doing insert buffer merge";
			ibuf_contract_for_n_pages(FALSE, PCT_IBUF_IO(5));

			/* Flush logs if needed */
			srv_sync_log_buffer_in_background();
		}

		if (UNIV_UNLIKELY(buf_get_modified_ratio_pct()
				  > srv_max_buf_pool_modified_pct)) {

			/* Try to keep the number of modified pages in the
			buffer pool under the limit wished by the user */

			srv_main_thread_op_info =
				"flushing buffer pool pages";
			n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST,
							  PCT_IO(100),
							  IB_ULONGLONG_MAX);

			/* If we had to do the flush, it may have taken
			even more than 1 second, and also, there may be more
			to flush. Do not sleep 1 second during the next
			iteration of this loop. */

			skip_sleep = TRUE;

			mutex_enter(&(log_sys->mutex));
			lsn_old = log_sys->lsn;
			mutex_exit(&(log_sys->mutex));
			prev_adaptive_checkpoint = ULINT_UNDEFINED;
		} else if (srv_adaptive_flushing) {

			/* Try to keep the rate of flushing of dirty
			pages such that redo log generation does not
			produce bursts of IO at checkpoint time. */
			ulint n_flush = buf_flush_get_desired_flush_rate();

			if (n_flush) {
				srv_main_thread_op_info =
					"flushing buffer pool pages";
				n_flush = ut_min(PCT_IO(100), n_flush);
				n_pages_flushed =
					buf_flush_batch(
						BUF_FLUSH_LIST,
						n_flush,
						IB_ULONGLONG_MAX);

				if (n_flush == PCT_IO(100)) {
					skip_sleep = TRUE;
				}
			}

			mutex_enter(&(log_sys->mutex));
			lsn_old = log_sys->lsn;
			mutex_exit(&(log_sys->mutex));
			prev_adaptive_checkpoint = ULINT_UNDEFINED;
		} else if (srv_adaptive_checkpoint == 1) {
			/* adaptive_flushing option is prior to adaptive_checkpoint option, for now */

			/* Try to keep modified age not to exceed
			max_checkpoint_age * 7/8 line */

			mutex_enter(&(log_sys->mutex));
			lsn_old = log_sys->lsn;
			oldest_lsn = buf_pool_get_oldest_modification();
			if (oldest_lsn == 0) {

				mutex_exit(&(log_sys->mutex));

			} else {
				if ((log_sys->lsn - oldest_lsn)
				    > (log_sys->max_checkpoint_age) - ((log_sys->max_checkpoint_age) / 8)) {
					/* LOG_POOL_PREFLUSH_RATIO_ASYNC is exceeded. */
					/* We should not flush from here. */
					mutex_exit(&(log_sys->mutex));
				} else if ((log_sys->lsn - oldest_lsn)
				    > (log_sys->max_checkpoint_age) - ((log_sys->max_checkpoint_age) / 4)) {

					/* 2nd defence line (max_checkpoint_age * 3/4) */

					mutex_exit(&(log_sys->mutex));

					n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, PCT_IO(100),
									  IB_ULONGLONG_MAX);
					skip_sleep = TRUE;
				} else if ((log_sys->lsn - oldest_lsn)
					   > (log_sys->max_checkpoint_age)/2 ) {

					/* 1st defence line (max_checkpoint_age * 1/2) */

					mutex_exit(&(log_sys->mutex));

					n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, PCT_IO(10),
									  IB_ULONGLONG_MAX);
					skip_sleep = TRUE;
				} else {
					mutex_exit(&(log_sys->mutex));
				}
			}
			prev_adaptive_checkpoint = 1;
		} else if (srv_adaptive_checkpoint == 2) {

			/* Try to keep modified age not to exceed
			max_checkpoint_age * 7/8 line */

			mutex_enter(&(log_sys->mutex));

			oldest_lsn = buf_pool_get_oldest_modification();
			if (oldest_lsn == 0) {
				lsn_old = log_sys->lsn;
				mutex_exit(&(log_sys->mutex));

			} else {
				if ((log_sys->lsn - oldest_lsn)
				    > (log_sys->max_checkpoint_age) - ((log_sys->max_checkpoint_age) / 8)) {
					/* LOG_POOL_PREFLUSH_RATIO_ASYNC is exceeded. */
					/* We should not flush from here. */
					lsn_old = log_sys->lsn;
					mutex_exit(&(log_sys->mutex));
				} else if ((log_sys->lsn - oldest_lsn)
					   > (log_sys->max_checkpoint_age)/4 ) {

					/* defence line (max_checkpoint_age * 1/2) */
					ib_uint64_t	lsn = log_sys->lsn;

					ib_uint64_t level, bpl;
					buf_page_t* bpage;

					mutex_exit(&(log_sys->mutex));

					mutex_enter(&flush_list_mutex);

					level = 0;
					bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);

					while (bpage != NULL) {
						ib_uint64_t	oldest_modification = bpage->oldest_modification;
						if (oldest_modification != 0) {
							level += log_sys->max_checkpoint_age
								 - (lsn - oldest_modification);
						}
						bpage = UT_LIST_GET_NEXT(flush_list, bpage);
					}

					if (level) {
						bpl = ((ib_uint64_t) UT_LIST_GET_LEN(buf_pool->flush_list)
							* UT_LIST_GET_LEN(buf_pool->flush_list)
							* (lsn - lsn_old)) / level;
					} else {
						bpl = 0;
					}

					mutex_exit(&flush_list_mutex);

					if (!srv_use_doublewrite_buf) {
						/* flush is faster than when doublewrite */
						bpl = (bpl * 7) / 8;
					}

					if (bpl) {
retry_flush_batch:
						n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST,
									(ulint) bpl,
									oldest_lsn + (lsn - lsn_old));
						if (n_pages_flushed == ULINT_UNDEFINED) {
							os_thread_sleep(5000);
							goto retry_flush_batch;
						}
					}

					lsn_old = lsn;
					/*
					fprintf(stderr,
						"InnoDB flush: age pct: %lu, lsn progress: %lu, blocks to flush:%llu\n",
						(lsn - oldest_lsn) * 100 / log_sys->max_checkpoint_age,
						lsn - lsn_old, bpl);
					*/
				} else {
					lsn_old = log_sys->lsn;
					mutex_exit(&(log_sys->mutex));
				}
			}
			prev_adaptive_checkpoint = 2;
		} else if (srv_adaptive_checkpoint == 3) {
			buf_page_t*	bpage;
			ib_uint64_t	lsn;

			mutex_enter(&(log_sys->mutex));
			oldest_lsn = buf_pool_get_oldest_modification();
			lsn = log_sys->lsn;
			mutex_exit(&(log_sys->mutex));

			/* upper loop/sec. (x10) */
			next_itr_time -= 900; /* 1000 - 900 == 100 */
			inner_loop++;
			if (inner_loop < 10) {
				i--;
			} else {
				inner_loop = 0;
			}

			if (prev_adaptive_checkpoint == 3) {
				lint	n_flush;
				lint	blocks_sum, new_blocks_sum, flushed_blocks_sum;

				blocks_sum = new_blocks_sum = flushed_blocks_sum = 0;

				/* prev_flush_info should be the previous loop's */
				{
					lint	blocks_num, new_blocks_num, flushed_blocks_num;
					ibool	found;

					blocks_num = UT_LIST_GET_LEN(buf_pool->flush_list);
					bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);
					new_blocks_num = 0;

					found = FALSE;
					while (bpage != NULL) {
						if (prev_flush_info.space == bpage->space
						    && prev_flush_info.offset == bpage->offset
						    && prev_flush_info.oldest_modification
								== bpage->oldest_modification) {
							found = TRUE;
							break;
						}
						bpage = UT_LIST_GET_NEXT(flush_list, bpage);
						new_blocks_num++;
					}
					if (!found) {
						new_blocks_num = blocks_num;
					}

					flushed_blocks_num = new_blocks_num + prev_flush_info.count
								- blocks_num;
					if (flushed_blocks_num < 0) {
						flushed_blocks_num = 0;
					}

					bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);

					prev_flush_info.count = UT_LIST_GET_LEN(buf_pool->flush_list);
					if (bpage) {
						prev_flush_info.space = bpage->space;
						prev_flush_info.offset = bpage->offset;
						prev_flush_info.oldest_modification = bpage->oldest_modification;
					} else {
						prev_flush_info.space = 0;
						prev_flush_info.offset = 0;
						prev_flush_info.oldest_modification = 0;
					}

					new_blocks_sum += new_blocks_num;
					flushed_blocks_sum += flushed_blocks_num;
					blocks_sum += blocks_num;
				}

				n_flush = (lint) (blocks_sum * (lsn - lsn_old) / log_sys->max_modified_age_async);
				if ((ulint) flushed_blocks_sum > n_pages_flushed_prev) {
					n_flush -= (flushed_blocks_sum - n_pages_flushed_prev);
				}

				if (n_flush > 0) {
					n_flush++;
					n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST, n_flush,
									  oldest_lsn + (lsn - lsn_old));
				} else {
					n_pages_flushed = 0;
				}					
			} else {
				/* store previous first pages of the flush_list */
				{
					bpage = UT_LIST_GET_FIRST(buf_pool->flush_list);

					prev_flush_info.count = UT_LIST_GET_LEN(buf_pool->flush_list);
					if (bpage) {
						prev_flush_info.space = bpage->space;
						prev_flush_info.offset = bpage->offset;
						prev_flush_info.oldest_modification = bpage->oldest_modification;
					} else {
						prev_flush_info.space = 0;
						prev_flush_info.offset = 0;
						prev_flush_info.oldest_modification = 0;
					}
				}
				n_pages_flushed = 0;
			}

			lsn_old = lsn;
			prev_adaptive_checkpoint = 3;
		} else {
			mutex_enter(&(log_sys->mutex));
			lsn_old = log_sys->lsn;
			mutex_exit(&(log_sys->mutex));
			prev_adaptive_checkpoint = ULINT_UNDEFINED;
		}

		if (n_pages_flushed == ULINT_UNDEFINED) {
			n_pages_flushed_prev = 0;
		} else {
			n_pages_flushed_prev = n_pages_flushed;
		}

		if (srv_activity_count == old_activity_count) {

			/* There is no user activity at the moment, go to
			the background loop */

			goto background_loop;
		}
	}

	/* ---- We perform the following code approximately once per
	10 seconds when there is database activity */

#ifdef MEM_PERIODIC_CHECK
	/* Check magic numbers of every allocated mem block once in 10
	seconds */
	mem_validate_all_blocks();
#endif
	/* If i/os during the 10 second period were less than 200% of
	capacity, we assume that there is free disk i/o capacity
	available, and it makes sense to flush srv_io_capacity pages.

	Note that this is done regardless of the fraction of dirty
	pages relative to the max requested by the user. The one second
	loop above requests writes for that case. The writes done here
	are not required, and may be disabled. */

	n_pend_ios = buf_get_n_pending_ios() + log_sys->n_pending_writes;
	n_ios = log_sys->n_log_ios + buf_pool->stat.n_pages_read
		+ buf_pool->stat.n_pages_written;

	srv_main_10_second_loops++;
	if (n_pend_ios < SRV_PEND_IO_THRESHOLD
	    && (n_ios - n_ios_very_old < SRV_PAST_IO_ACTIVITY)) {

		srv_main_thread_op_info = "flushing buffer pool pages";
		buf_flush_batch(BUF_FLUSH_LIST, PCT_IO(100),
				IB_ULONGLONG_MAX);

		/* Flush logs if needed */
		srv_sync_log_buffer_in_background();
	}

	/* We run a batch of insert buffer merge every 10 seconds,
	even if the server were active */

	srv_main_thread_op_info = "doing insert buffer merge";
	ibuf_contract_for_n_pages(FALSE, PCT_IBUF_IO(5));

	/* Flush logs if needed */
	srv_sync_log_buffer_in_background();

	if (!srv_use_purge_thread) {
	/* We run a full purge every 10 seconds, even if the server
	were active */
	do {

		if (srv_fast_shutdown && srv_shutdown_state > 0) {

			goto background_loop;
		}

		srv_main_thread_op_info = "purging";
		n_pages_purged = trx_purge();

		/* Flush logs if needed */
		srv_sync_log_buffer_in_background();

	} while (n_pages_purged);
	}

	srv_main_thread_op_info = "flushing buffer pool pages";

	/* Flush a few oldest pages to make a new checkpoint younger */

	if (buf_get_modified_ratio_pct() > 70) {

		/* If there are lots of modified pages in the buffer pool
		(> 70 %), we assume we can afford reserving the disk(s) for
		the time it requires to flush 100 pages */

		n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST,
						  PCT_IO(100),
						  IB_ULONGLONG_MAX);
	} else {
		/* Otherwise, we only flush a small number of pages so that
		we do not unnecessarily use much disk i/o capacity from
		other work */

		n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST,
						  PCT_IO(10),
						  IB_ULONGLONG_MAX);
	}

	srv_main_thread_op_info = "making checkpoint";

	/* Make a new checkpoint about once in 10 seconds */

	log_checkpoint(TRUE, FALSE);

	srv_main_thread_op_info = "reserving kernel mutex";

	mutex_enter(&kernel_mutex);

	/* ---- When there is database activity, we jump from here back to
	the start of loop */

	if (srv_activity_count != old_activity_count) {
		mutex_exit(&kernel_mutex);
		goto loop;
	}

	mutex_exit(&kernel_mutex);

	/* If the database is quiet, we enter the background loop */

	/*****************************************************************/
background_loop:
	/* ---- In this loop we run background operations when the server
	is quiet from user activity. Also in the case of a shutdown, we
	loop here, flushing the buffer pool to the data files. */

	/* The server has been quiet for a while: start running background
	operations */
	srv_main_background_loops++;
	srv_main_thread_op_info = "doing background drop tables";

	n_tables_to_drop = row_drop_tables_for_mysql_in_background();

	if (n_tables_to_drop > 0) {
		/* Do not monopolize the CPU even if there are tables waiting
		in the background drop queue. (It is essentially a bug if
		MySQL tries to drop a table while there are still open handles
		to it and we had to put it to the background drop queue.) */

		os_thread_sleep(100000);
	}

	if (!srv_use_purge_thread) {
	srv_main_thread_op_info = "purging";

	/* Run a full purge */
	do {
		if (srv_fast_shutdown && srv_shutdown_state > 0) {

			break;
		}

		srv_main_thread_op_info = "purging";
		n_pages_purged = trx_purge();

		/* Flush logs if needed */
		srv_sync_log_buffer_in_background();

	} while (n_pages_purged);
	}

	srv_main_thread_op_info = "reserving kernel mutex";

	mutex_enter(&kernel_mutex);
	if (srv_activity_count != old_activity_count) {
		mutex_exit(&kernel_mutex);
		goto loop;
	}
	mutex_exit(&kernel_mutex);

	srv_main_thread_op_info = "doing insert buffer merge";

	if (srv_fast_shutdown && srv_shutdown_state > 0) {
		n_bytes_merged = 0;
	} else {
		/* This should do an amount of IO similar to the number of
		dirty pages that will be flushed in the call to
		buf_flush_batch below. Otherwise, the system favors
		clean pages over cleanup throughput. */
		n_bytes_merged = ibuf_contract_for_n_pages(FALSE,
							   PCT_IBUF_IO(100));
	}

	srv_main_thread_op_info = "reserving kernel mutex";

	mutex_enter(&kernel_mutex);
	if (srv_activity_count != old_activity_count) {
		mutex_exit(&kernel_mutex);
		goto loop;
	}
	mutex_exit(&kernel_mutex);

flush_loop:
	srv_main_thread_op_info = "flushing buffer pool pages";
	srv_main_flush_loops++;
	if (srv_fast_shutdown < 2) {
		n_pages_flushed = buf_flush_batch(BUF_FLUSH_LIST,
						  PCT_IO(100),
						  IB_ULONGLONG_MAX);
	} else {
		/* In the fastest shutdown we do not flush the buffer pool
		to data files: we set n_pages_flushed to 0 artificially. */

		n_pages_flushed = 0;
	}

	srv_main_thread_op_info = "reserving kernel mutex";

	mutex_enter(&kernel_mutex);
	if (srv_activity_count != old_activity_count) {
		mutex_exit(&kernel_mutex);
		goto loop;
	}
	mutex_exit(&kernel_mutex);

	srv_main_thread_op_info = "waiting for buffer pool flush to end";
	buf_flush_wait_batch_end(BUF_FLUSH_LIST);

	/* Flush logs if needed */
	srv_sync_log_buffer_in_background();

	srv_main_thread_op_info = "making checkpoint";

	log_checkpoint(TRUE, FALSE);

	if (buf_get_modified_ratio_pct() > srv_max_buf_pool_modified_pct) {

		/* Try to keep the number of modified pages in the
		buffer pool under the limit wished by the user */

		goto flush_loop;
	}

	srv_main_thread_op_info = "reserving kernel mutex";

	mutex_enter(&kernel_mutex);
	if (srv_activity_count != old_activity_count) {
		mutex_exit(&kernel_mutex);
		goto loop;
	}
	mutex_exit(&kernel_mutex);
	/*
	srv_main_thread_op_info = "archiving log (if log archive is on)";

	log_archive_do(FALSE, &n_bytes_archived);
	*/
	n_bytes_archived = 0;

	/* Keep looping in the background loop if still work to do */

	if (srv_fast_shutdown && srv_shutdown_state > 0) {
		if (n_tables_to_drop + n_pages_flushed
		    + n_bytes_archived != 0) {

			/* If we are doing a fast shutdown (= the default)
			we do not do purge or insert buffer merge. But we
			flush the buffer pool completely to disk.
			In a 'very fast' shutdown we do not flush the buffer
			pool to data files: we have set n_pages_flushed to
			0 artificially. */

			goto background_loop;
		}
	} else if (n_tables_to_drop
		   + n_pages_purged + n_bytes_merged + n_pages_flushed
		   + n_bytes_archived != 0) {
		/* In a 'slow' shutdown we run purge and the insert buffer
		merge to completion */

		goto background_loop;
	}

	/* There is no work for background operations either: suspend
	master thread to wait for more server activity */

suspend_thread:
	srv_main_thread_op_info = "suspending";

	mutex_enter(&kernel_mutex);

	if (row_get_background_drop_list_len_low() > 0) {
		mutex_exit(&kernel_mutex);

		goto loop;
	}

	event = srv_suspend_thread();

	mutex_exit(&kernel_mutex);

	/* DO NOT CHANGE THIS STRING. innobase_start_or_create_for_mysql()
	waits for database activity to die down when converting < 4.1.x
	databases, and relies on this string being exactly as it is. InnoDB
	manual also mentions this string in several places. */
	srv_main_thread_op_info = "waiting for server activity";

	os_event_wait(event);

	if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) {
		/* This is only extra safety, the thread should exit
		already when the event wait ends */

		os_thread_exit(NULL);
	}

	/* When there is user activity, InnoDB will set the event and the
	main thread goes back to loop. */

	goto loop;

	OS_THREAD_DUMMY_RETURN;	/* Not reached, avoid compiler warning */
}

/*************************************************************************
A thread which is devoted to purge, for take over the master thread's
purging */
UNIV_INTERN
os_thread_ret_t
srv_purge_thread(
/*=============*/
	void*	arg __attribute__((unused)))
			/* in: a dummy parameter required by os_thread_create */
{
	ulint	n_pages_purged;
	ulint	n_pages_purged_sum = 1; /* dummy */
	ulint	history_len;
	ulint	sleep_ms= 10000; /* initial: 10 sec. */
	ibool	can_be_last = FALSE;

#ifdef UNIV_DEBUG_THREAD_CREATION
	fprintf(stderr, "Purge thread starts, id %lu\n",
		os_thread_pf(os_thread_get_curr_id()));
#endif

	mutex_enter(&kernel_mutex);
	srv_table_reserve_slot(SRV_PURGE);
	srv_n_threads_active[SRV_PURGE]++;
	mutex_exit(&kernel_mutex);

loop:
	if (srv_shutdown_state > 0) {
		if (srv_fast_shutdown) {
			/* someone other should wait the end of the workers */
			goto exit_func;
		}

		mutex_enter(&kernel_mutex);
		if (srv_n_threads_active[SRV_PURGE_WORKER]) {
			can_be_last = FALSE;
		} else {
			can_be_last = TRUE;
		}
		mutex_exit(&kernel_mutex);

		sleep_ms = 10;
		os_event_reset(srv_shutdown_event);
	}

	os_event_wait_time(srv_shutdown_event, sleep_ms * 1000);

	history_len = trx_sys->rseg_history_len;
	if (history_len > 1000)
		sleep_ms /= 10;
	if (sleep_ms < 10)
		sleep_ms = 10;

	n_pages_purged_sum = 0;

	do {
		if (srv_fast_shutdown && srv_shutdown_state > 0) {
			goto exit_func;
		}
		n_pages_purged = trx_purge();
		n_pages_purged_sum += n_pages_purged;
	} while (n_pages_purged);

	if (srv_shutdown_state > 0 && can_be_last) {
		/* the last trx_purge() is executed without workers */
		goto exit_func;
	}

	if (n_pages_purged_sum) {
		srv_active_wake_master_thread();
	}

	if (n_pages_purged_sum == 0)
		sleep_ms *= 10;
	if (sleep_ms > 10000)
		sleep_ms = 10000;

	goto loop;

exit_func:
	trx_purge_worker_wake(); /* It may not make sense. for safety only */

	/* wake master thread to flush the pages */
	srv_wake_master_thread();

	mutex_enter(&kernel_mutex);
	srv_n_threads_active[SRV_PURGE]--;
	mutex_exit(&kernel_mutex);
	os_thread_exit(NULL);

	OS_THREAD_DUMMY_RETURN;
}

/*************************************************************************
A thread which is devoted to purge, for take over the master thread's
purging */
UNIV_INTERN
os_thread_ret_t
srv_purge_worker_thread(
/*====================*/
	void*	arg)
{
	ulint	worker_id; /* index for array */

	worker_id = *((ulint*)arg);

#ifdef UNIV_DEBUG_THREAD_CREATION
	fprintf(stderr, "Purge worker thread starts, id %lu\n",
		os_thread_pf(os_thread_get_curr_id()));
#endif
	mutex_enter(&kernel_mutex);
	srv_table_reserve_slot(SRV_PURGE_WORKER);
	srv_n_threads_active[SRV_PURGE_WORKER]++;
	mutex_exit(&kernel_mutex);

loop:
	/* purge worker threads only works when srv_shutdown_state==0 */
	/* for safety and exactness. */
	if (srv_shutdown_state > 0) {
		goto exit_func;
	}

	trx_purge_worker_wait();

	if (srv_shutdown_state > 0) {
		goto exit_func;
	}

	trx_purge_worker(worker_id);

	goto loop;

exit_func:
	mutex_enter(&kernel_mutex);
	srv_n_threads_active[SRV_PURGE_WORKER]--;
	mutex_exit(&kernel_mutex);
	os_thread_exit(NULL);

	OS_THREAD_DUMMY_RETURN;
}