/* -*- C++ -*- */ /* Copyright (C) 2002 MySQL AB This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _SP_HEAD_H_ #define _SP_HEAD_H_ #ifdef USE_PRAGMA_INTERFACE #pragma interface /* gcc class implementation */ #endif #include <stddef.h> // Values for the type enum. This reflects the order of the enum declaration // in the CREATE TABLE command. #define TYPE_ENUM_FUNCTION 1 #define TYPE_ENUM_PROCEDURE 2 #define TYPE_ENUM_TRIGGER 3 Item_result sp_map_result_type(enum enum_field_types type); Item::Type sp_map_item_type(enum enum_field_types type); uint sp_get_flags_for_command(LEX *lex); struct sp_label; class sp_instr; class sp_instr_opt_meta; class sp_instr_jump_if_not; struct sp_cond_type; struct sp_variable; class sp_name : public Sql_alloc { public: LEX_STRING m_db; LEX_STRING m_name; LEX_STRING m_qname; /* Key representing routine in the set of stored routines used by statement. Consists of 1-byte routine type and m_qname (which usually refences to same buffer). Note that one must complete initialization of the key by calling set_routine_type(). */ LEX_STRING m_sroutines_key; bool m_explicit_name; /**< Prepend the db name? */ sp_name(LEX_STRING db, LEX_STRING name, bool use_explicit_name) : m_db(db), m_name(name), m_explicit_name(use_explicit_name) { m_qname.str= m_sroutines_key.str= 0; m_qname.length= m_sroutines_key.length= 0; } /* Creates temporary sp_name object from key, used mainly for SP-cache lookups. */ sp_name(char *key, uint key_len) { m_sroutines_key.str= key; m_sroutines_key.length= key_len; m_name.str= m_qname.str= key + 1; m_name.length= m_qname.length= key_len - 1; m_db.str= 0; m_db.length= 0; m_explicit_name= false; } // Init. the qualified name from the db and name. void init_qname(THD *thd); // thd for memroot allocation void set_routine_type(char type) { m_sroutines_key.str[0]= type; } ~sp_name() {} }; bool check_routine_name(LEX_STRING *ident); class sp_head :private Query_arena { sp_head(const sp_head &); /* Prevent use of these */ void operator=(sp_head &); MEM_ROOT main_mem_root; public: /* Possible values of m_flags */ enum { HAS_RETURN= 1, // For FUNCTIONs only: is set if has RETURN MULTI_RESULTS= 8, // Is set if a procedure with SELECT(s) CONTAINS_DYNAMIC_SQL= 16, // Is set if a procedure with PREPARE/EXECUTE IS_INVOKED= 32, // Is set if this sp_head is being used HAS_SET_AUTOCOMMIT_STMT= 64,// Is set if a procedure with 'set autocommit' /* Is set if a procedure with COMMIT (implicit or explicit) | ROLLBACK */ HAS_COMMIT_OR_ROLLBACK= 128, LOG_SLOW_STATEMENTS= 256, // Used by events LOG_GENERAL_LOG= 512, // Used by events BINLOG_ROW_BASED_IF_MIXED= 1024, HAS_SQLCOM_RESET= 2048, HAS_SQLCOM_FLUSH= 4096 }; /* TYPE_ENUM_FUNCTION, TYPE_ENUM_PROCEDURE or TYPE_ENUM_TRIGGER */ int m_type; uint m_flags; // Boolean attributes of a stored routine create_field m_return_field_def; /* This is used for FUNCTIONs only. */ const char *m_tmp_query; // Temporary pointer to sub query string st_sp_chistics *m_chistics; ulong m_sql_mode; // For SHOW CREATE and execution LEX_STRING m_qname; // db.name LEX_STRING m_db; LEX_STRING m_name; LEX_STRING m_params; LEX_STRING m_body; LEX_STRING m_defstr; LEX_STRING m_definer_user; LEX_STRING m_definer_host; longlong m_created; longlong m_modified; /* Recursion level of the current SP instance. The levels are numbered from 0 */ ulong m_recursion_level; /* A list of diferent recursion level instances for the same procedure. For every recursion level we have a sp_head instance. This instances connected in the list. The list ordered by increasing recursion level (m_recursion_level). */ sp_head *m_next_cached_sp; /* Pointer to the first element of the above list */ sp_head *m_first_instance; /* Pointer to the first free (non-INVOKED) routine in the list of cached instances for this SP. This pointer is set only for the first SP in the list of instences (see above m_first_cached_sp pointer). The pointer equal to 0 if we have no free instances. For non-first instance value of this pointer meanless (point to itself); */ sp_head *m_first_free_instance; /* Pointer to the last element in the list of instances of the SP. For non-first instance value of this pointer meanless (point to itself); */ sp_head *m_last_cached_sp; /* Set containing names of stored routines used by this routine. Note that unlike elements of similar set for statement elements of this set are not linked in one list. Because of this we are able save memory by using for this set same objects that are used in 'sroutines' sets for statements of which this stored routine consists. */ HASH m_sroutines; // Pointers set during parsing const char *m_param_begin; const char *m_param_end; const char *m_body_begin; /* Security context for stored routine which should be run under definer privileges. */ Security_context m_security_ctx; static void * operator new(size_t size); static void operator delete(void *ptr, size_t size); sp_head(); // Initialize after we have reset mem_root void init(LEX *lex); /* Copy sp name from parser. */ void init_sp_name(THD *thd, sp_name *spname); // Initialize strings after parsing header void init_strings(THD *thd, LEX *lex); int create(THD *thd); virtual ~sp_head(); // Free memory void destroy(); bool execute_trigger(THD *thd, const char *db, const char *table, GRANT_INFO *grant_onfo); bool execute_function(THD *thd, Item **args, uint argcount, Field *return_fld); bool execute_procedure(THD *thd, List<Item> *args); bool show_create_routine(THD *thd, int type); void add_instr(sp_instr *instr); inline uint instructions() { return m_instr.elements; } inline sp_instr * last_instruction() { sp_instr *i; get_dynamic(&m_instr, (gptr)&i, m_instr.elements-1); return i; } // Resets lex in 'thd' and keeps a copy of the old one. void reset_lex(THD *thd); // Restores lex in 'thd' from our copy, but keeps some status from the // one in 'thd', like ptr, tables, fields, etc. void restore_lex(THD *thd); // Put the instruction on the backpatch list, associated with the label. void push_backpatch(sp_instr *, struct sp_label *); // Update all instruction with this label in the backpatch list to // the current position. void backpatch(struct sp_label *); // Start a new cont. backpatch level. If 'i' is NULL, the level is just incr. void new_cont_backpatch(sp_instr_opt_meta *i); // Add an instruction to the current level void add_cont_backpatch(sp_instr_opt_meta *i); // Backpatch (and pop) the current level to the current position. void do_cont_backpatch(); char *name(uint *lenp = 0) const { if (lenp) *lenp= m_name.length; return m_name.str; } char *create_string(THD *thd, ulong *lenp); Field *create_result_field(uint field_max_length, const char *field_name, TABLE *table); bool fill_field_definition(THD *thd, LEX *lex, enum enum_field_types field_type, create_field *field_def); void set_info(longlong created, longlong modified, st_sp_chistics *chistics, ulong sql_mode); void set_definer(const char *definer, uint definerlen); void set_definer(const LEX_STRING *user_name, const LEX_STRING *host_name); void reset_thd_mem_root(THD *thd); void restore_thd_mem_root(THD *thd); /** Optimize the code. */ void optimize(); /** Helper used during flow analysis during code optimization. See the implementation of <code>opt_mark()</code>. @param ip the instruction to add to the leads list @param leads the list of remaining paths to explore in the graph that represents the code, during flow analysis. */ void add_mark_lead(uint ip, List<sp_instr> *leads); void recursion_level_error(THD *thd); inline sp_instr * get_instr(uint i) { sp_instr *ip; if (i < m_instr.elements) get_dynamic(&m_instr, (gptr)&ip, i); else ip= NULL; return ip; } /* Add tables used by routine to the table list. */ bool add_used_tables_to_table_list(THD *thd, TABLE_LIST ***query_tables_last_ptr, TABLE_LIST *belong_to_view); /* Check if this stored routine contains statements disallowed in a stored function or trigger, and set an appropriate error message if this is the case. */ bool is_not_allowed_in_function(const char *where) { if (m_flags & CONTAINS_DYNAMIC_SQL) my_error(ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0), "Dynamic SQL"); else if (m_flags & MULTI_RESULTS) my_error(ER_SP_NO_RETSET, MYF(0), where); else if (m_flags & HAS_SET_AUTOCOMMIT_STMT) my_error(ER_SP_CANT_SET_AUTOCOMMIT, MYF(0)); else if (m_flags & HAS_COMMIT_OR_ROLLBACK) my_error(ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0)); else if (m_flags & HAS_SQLCOM_RESET) my_error(ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0), "RESET"); else if (m_flags & HAS_SQLCOM_FLUSH) my_error(ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0), "FLUSH"); return test(m_flags & (CONTAINS_DYNAMIC_SQL|MULTI_RESULTS|HAS_SET_AUTOCOMMIT_STMT| HAS_COMMIT_OR_ROLLBACK|HAS_SQLCOM_RESET|HAS_SQLCOM_FLUSH)); } #ifndef DBUG_OFF int show_routine_code(THD *thd); #endif /* This method is intended for attributes of a routine which need to propagate upwards to the LEX of the caller (when a property of a sp_head needs to "taint" the caller). */ void propagate_attributes(LEX *lex) { /* If this routine needs row-based binary logging, the entire top statement too (we cannot switch from statement-based to row-based only for this routine, as in statement-based the top-statement may be binlogged and the substatements not). */ if (m_flags & BINLOG_ROW_BASED_IF_MIXED) lex->binlog_row_based_if_mixed= TRUE; } private: MEM_ROOT *m_thd_root; // Temp. store for thd's mem_root THD *m_thd; // Set if we have reset mem_root sp_pcontext *m_pcont; // Parse context List<LEX> m_lex; // Temp. store for the other lex DYNAMIC_ARRAY m_instr; // The "instructions" typedef struct { struct sp_label *lab; sp_instr *instr; } bp_t; List<bp_t> m_backpatch; // Instructions needing backpatching /* We need a special list for backpatching of instructions with a continue destination (in the case of a continue handler catching an error in the test), since it would otherwise interfere with the normal backpatch mechanism - e.g. jump_if_not instructions have two different destinations which are to be patched differently. Since these occur in a more restricted way (always the same "level" in the code), we don't need the label. */ List<sp_instr_opt_meta> m_cont_backpatch; uint m_cont_level; // The current cont. backpatch level /* Multi-set representing optimized list of tables to be locked by this routine. Does not include tables which are used by invoked routines. Note: for prelocking-free SPs this multiset is constructed too. We do so because the same instance of sp_head may be called both in prelocked mode and in non-prelocked mode. */ HASH m_sptabs; bool execute(THD *thd); /** Perform a forward flow analysis in the generated code. Mark reachable instructions, for the optimizer. */ void opt_mark(); /* Merge the list of tables used by query into the multi-set of tables used by routine. */ bool merge_table_list(THD *thd, TABLE_LIST *table, LEX *lex_for_tmp_check); }; // class sp_head : public Sql_alloc // // "Instructions"... // class sp_instr :public Query_arena, public Sql_alloc { sp_instr(const sp_instr &); /* Prevent use of these */ void operator=(sp_instr &); public: uint marked; uint m_ip; // My index sp_pcontext *m_ctx; // My parse context // Should give each a name or type code for debugging purposes? sp_instr(uint ip, sp_pcontext *ctx) :Query_arena(0, INITIALIZED_FOR_SP), marked(0), m_ip(ip), m_ctx(ctx) {} virtual ~sp_instr() { free_items(); } /* Execute this instruction SYNOPSIS execute() thd Thread handle nextp OUT index of the next instruction to execute. (For most instructions this will be the instruction following this one). Note that this parameter is undefined in case of errors, use get_cont_dest() to find the continuation instruction for CONTINUE error handlers. RETURN 0 on success, other if some error occurred */ virtual int execute(THD *thd, uint *nextp) = 0; /** Execute <code>open_and_lock_tables()</code> for this statement. Open and lock the tables used by this statement, as a pre-requisite to execute the core logic of this instruction with <code>exec_core()</code>. @param thd the current thread @param tables the list of tables to open and lock @return zero on success, non zero on failure. */ int exec_open_and_lock_tables(THD *thd, TABLE_LIST *tables); /** Get the continuation destination of this instruction. @return the continuation destination */ virtual uint get_cont_dest(); /* Execute core function of instruction after all preparations (e.g. setting of proper LEX, saving part of the thread context have been done). Should be implemented for instructions using expressions or whole statements (thus having to have own LEX). Used in concert with sp_lex_keeper class and its descendants (there are none currently). */ virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str) = 0; virtual void backpatch(uint dest, sp_pcontext *dst_ctx) {} /* Mark this instruction as reachable during optimization and return the index to the next instruction. Jump instruction will add their destination to the leads list. */ virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads) { marked= 1; return m_ip+1; } /* Short-cut jumps to jumps during optimization. This is used by the jump instructions' opt_mark() methods. 'start' is the starting point, used to prevent the mark sweep from looping for ever. Return the end destination. */ virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start) { return m_ip; } /* Inform the instruction that it has been moved during optimization. Most instructions will simply update its index, but jump instructions must also take care of their destination pointers. Forward jumps get pushed to the backpatch list 'ibp'. */ virtual void opt_move(uint dst, List<sp_instr> *ibp) { m_ip= dst; } }; // class sp_instr : public Sql_alloc /* Auxilary class to which instructions delegate responsibility for handling LEX and preparations before executing statement or calculating complex expression. Exist mainly to avoid having double hierarchy between instruction classes. TODO: Add ability to not store LEX and do any preparations if expression used is simple. */ class sp_lex_keeper { /* Prevent use of these */ sp_lex_keeper(const sp_lex_keeper &); void operator=(sp_lex_keeper &); public: sp_lex_keeper(LEX *lex, bool lex_resp) : m_lex(lex), m_lex_resp(lex_resp), lex_query_tables_own_last(NULL) { lex->sp_lex_in_use= TRUE; } virtual ~sp_lex_keeper() { if (m_lex_resp) { lex_end(m_lex); delete m_lex; } } /* Prepare execution of instruction using LEX, if requested check whenever we have read access to tables used and open/lock them, call instruction's exec_core() method, perform cleanup afterwards. */ int reset_lex_and_exec_core(THD *thd, uint *nextp, bool open_tables, sp_instr* instr); inline uint sql_command() const { return (uint)m_lex->sql_command; } void disable_query_cache() { m_lex->safe_to_cache_query= 0; } private: LEX *m_lex; /* Indicates whenever this sp_lex_keeper instance responsible for LEX deletion. */ bool m_lex_resp; /* Support for being able to execute this statement in two modes: a) inside prelocked mode set by the calling procedure or its ancestor. b) outside of prelocked mode, when this statement enters/leaves prelocked mode itself. */ /* List of additional tables this statement needs to lock when it enters/leaves prelocked mode on its own. */ TABLE_LIST *prelocking_tables; /* The value m_lex->query_tables_own_last should be set to this when the statement enters/leaves prelocked mode on its own. */ TABLE_LIST **lex_query_tables_own_last; }; // // Call out to some prepared SQL statement. // class sp_instr_stmt : public sp_instr { sp_instr_stmt(const sp_instr_stmt &); /* Prevent use of these */ void operator=(sp_instr_stmt &); public: LEX_STRING m_query; // For thd->query sp_instr_stmt(uint ip, sp_pcontext *ctx, LEX *lex) : sp_instr(ip, ctx), m_lex_keeper(lex, TRUE) { m_query.str= 0; m_query.length= 0; } virtual ~sp_instr_stmt() {}; virtual int execute(THD *thd, uint *nextp); virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str); private: sp_lex_keeper m_lex_keeper; }; // class sp_instr_stmt : public sp_instr class sp_instr_set : public sp_instr { sp_instr_set(const sp_instr_set &); /* Prevent use of these */ void operator=(sp_instr_set &); public: sp_instr_set(uint ip, sp_pcontext *ctx, uint offset, Item *val, enum enum_field_types type_arg, LEX *lex, bool lex_resp) : sp_instr(ip, ctx), m_offset(offset), m_value(val), m_type(type_arg), m_lex_keeper(lex, lex_resp) {} virtual ~sp_instr_set() {} virtual int execute(THD *thd, uint *nextp); virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str); private: uint m_offset; // Frame offset Item *m_value; enum enum_field_types m_type; // The declared type sp_lex_keeper m_lex_keeper; }; // class sp_instr_set : public sp_instr /* Set NEW/OLD row field value instruction. Used in triggers. */ class sp_instr_set_trigger_field : public sp_instr { sp_instr_set_trigger_field(const sp_instr_set_trigger_field &); void operator=(sp_instr_set_trigger_field &); public: sp_instr_set_trigger_field(uint ip, sp_pcontext *ctx, Item_trigger_field *trg_fld, Item *val, LEX *lex) : sp_instr(ip, ctx), trigger_field(trg_fld), value(val), m_lex_keeper(lex, TRUE) {} virtual ~sp_instr_set_trigger_field() {} virtual int execute(THD *thd, uint *nextp); virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str); private: Item_trigger_field *trigger_field; Item *value; sp_lex_keeper m_lex_keeper; }; // class sp_instr_trigger_field : public sp_instr /* An abstract class for all instructions with destinations that needs to be updated by the optimizer. Even if not all subclasses will use both the normal destination and the continuation destination, we put them both here for simplicity. */ class sp_instr_opt_meta : public sp_instr { public: uint m_dest; // Where we will go uint m_cont_dest; // Where continue handlers will go sp_instr_opt_meta(uint ip, sp_pcontext *ctx) : sp_instr(ip, ctx), m_dest(0), m_cont_dest(0), m_optdest(0), m_cont_optdest(0) {} sp_instr_opt_meta(uint ip, sp_pcontext *ctx, uint dest) : sp_instr(ip, ctx), m_dest(dest), m_cont_dest(0), m_optdest(0), m_cont_optdest(0) {} virtual ~sp_instr_opt_meta() {} virtual void set_destination(uint old_dest, uint new_dest) = 0; virtual uint get_cont_dest(); protected: sp_instr *m_optdest; // Used during optimization sp_instr *m_cont_optdest; // Used during optimization }; // class sp_instr_opt_meta : public sp_instr class sp_instr_jump : public sp_instr_opt_meta { sp_instr_jump(const sp_instr_jump &); /* Prevent use of these */ void operator=(sp_instr_jump &); public: sp_instr_jump(uint ip, sp_pcontext *ctx) : sp_instr_opt_meta(ip, ctx) {} sp_instr_jump(uint ip, sp_pcontext *ctx, uint dest) : sp_instr_opt_meta(ip, ctx, dest) {} virtual ~sp_instr_jump() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads); virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start); virtual void opt_move(uint dst, List<sp_instr> *ibp); virtual void backpatch(uint dest, sp_pcontext *dst_ctx) { if (m_dest == 0) // Don't reset m_dest= dest; } /* Update the destination; used by the optimizer. */ virtual void set_destination(uint old_dest, uint new_dest) { if (m_dest == old_dest) m_dest= new_dest; } }; // class sp_instr_jump : public sp_instr_opt_meta class sp_instr_jump_if_not : public sp_instr_jump { sp_instr_jump_if_not(const sp_instr_jump_if_not &); /* Prevent use of these */ void operator=(sp_instr_jump_if_not &); public: sp_instr_jump_if_not(uint ip, sp_pcontext *ctx, Item *i, LEX *lex) : sp_instr_jump(ip, ctx), m_expr(i), m_lex_keeper(lex, TRUE) {} sp_instr_jump_if_not(uint ip, sp_pcontext *ctx, Item *i, uint dest, LEX *lex) : sp_instr_jump(ip, ctx, dest), m_expr(i), m_lex_keeper(lex, TRUE) {} virtual ~sp_instr_jump_if_not() {} virtual int execute(THD *thd, uint *nextp); virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str); virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads); /* Override sp_instr_jump's shortcut; we stop here */ virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start) { return m_ip; } virtual void opt_move(uint dst, List<sp_instr> *ibp); virtual void set_destination(uint old_dest, uint new_dest) { sp_instr_jump::set_destination(old_dest, new_dest); if (m_cont_dest == old_dest) m_cont_dest= new_dest; } private: Item *m_expr; // The condition sp_lex_keeper m_lex_keeper; }; // class sp_instr_jump_if_not : public sp_instr_jump class sp_instr_freturn : public sp_instr { sp_instr_freturn(const sp_instr_freturn &); /* Prevent use of these */ void operator=(sp_instr_freturn &); public: sp_instr_freturn(uint ip, sp_pcontext *ctx, Item *val, enum enum_field_types type_arg, LEX *lex) : sp_instr(ip, ctx), m_value(val), m_type(type_arg), m_lex_keeper(lex, TRUE) {} virtual ~sp_instr_freturn() {} virtual int execute(THD *thd, uint *nextp); virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str); virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads) { marked= 1; return UINT_MAX; } protected: Item *m_value; enum enum_field_types m_type; sp_lex_keeper m_lex_keeper; }; // class sp_instr_freturn : public sp_instr class sp_instr_hpush_jump : public sp_instr_jump { sp_instr_hpush_jump(const sp_instr_hpush_jump &); /* Prevent use of these */ void operator=(sp_instr_hpush_jump &); public: sp_instr_hpush_jump(uint ip, sp_pcontext *ctx, int htype, uint fp) : sp_instr_jump(ip, ctx), m_type(htype), m_frame(fp) { m_cond.empty(); } virtual ~sp_instr_hpush_jump() { m_cond.empty(); } virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads); /* Override sp_instr_jump's shortcut; we stop here. */ virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start) { return m_ip; } inline void add_condition(struct sp_cond_type *cond) { m_cond.push_front(cond); } private: int m_type; // Handler type uint m_frame; List<struct sp_cond_type> m_cond; }; // class sp_instr_hpush_jump : public sp_instr_jump class sp_instr_hpop : public sp_instr { sp_instr_hpop(const sp_instr_hpop &); /* Prevent use of these */ void operator=(sp_instr_hpop &); public: sp_instr_hpop(uint ip, sp_pcontext *ctx, uint count) : sp_instr(ip, ctx), m_count(count) {} virtual ~sp_instr_hpop() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); private: uint m_count; }; // class sp_instr_hpop : public sp_instr class sp_instr_hreturn : public sp_instr_jump { sp_instr_hreturn(const sp_instr_hreturn &); /* Prevent use of these */ void operator=(sp_instr_hreturn &); public: sp_instr_hreturn(uint ip, sp_pcontext *ctx, uint fp) : sp_instr_jump(ip, ctx), m_frame(fp) {} virtual ~sp_instr_hreturn() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); /* This instruction will not be short cut optimized. */ virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start) { return m_ip; } virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads); private: uint m_frame; }; // class sp_instr_hreturn : public sp_instr_jump /* This is DECLARE CURSOR */ class sp_instr_cpush : public sp_instr { sp_instr_cpush(const sp_instr_cpush &); /* Prevent use of these */ void operator=(sp_instr_cpush &); public: sp_instr_cpush(uint ip, sp_pcontext *ctx, LEX *lex, uint offset) : sp_instr(ip, ctx), m_lex_keeper(lex, TRUE), m_cursor(offset) {} virtual ~sp_instr_cpush() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); /* This call is used to cleanup the instruction when a sensitive cursor is closed. For now stored procedures always use materialized cursors and the call is not used. */ virtual void cleanup_stmt() { /* no op */ } private: sp_lex_keeper m_lex_keeper; uint m_cursor; /* Frame offset (for debugging) */ }; // class sp_instr_cpush : public sp_instr class sp_instr_cpop : public sp_instr { sp_instr_cpop(const sp_instr_cpop &); /* Prevent use of these */ void operator=(sp_instr_cpop &); public: sp_instr_cpop(uint ip, sp_pcontext *ctx, uint count) : sp_instr(ip, ctx), m_count(count) {} virtual ~sp_instr_cpop() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); private: uint m_count; }; // class sp_instr_cpop : public sp_instr class sp_instr_copen : public sp_instr { sp_instr_copen(const sp_instr_copen &); /* Prevent use of these */ void operator=(sp_instr_copen &); public: sp_instr_copen(uint ip, sp_pcontext *ctx, uint c) : sp_instr(ip, ctx), m_cursor(c) {} virtual ~sp_instr_copen() {} virtual int execute(THD *thd, uint *nextp); virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str); private: uint m_cursor; // Stack index }; // class sp_instr_copen : public sp_instr_stmt class sp_instr_cclose : public sp_instr { sp_instr_cclose(const sp_instr_cclose &); /* Prevent use of these */ void operator=(sp_instr_cclose &); public: sp_instr_cclose(uint ip, sp_pcontext *ctx, uint c) : sp_instr(ip, ctx), m_cursor(c) {} virtual ~sp_instr_cclose() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); private: uint m_cursor; }; // class sp_instr_cclose : public sp_instr class sp_instr_cfetch : public sp_instr { sp_instr_cfetch(const sp_instr_cfetch &); /* Prevent use of these */ void operator=(sp_instr_cfetch &); public: sp_instr_cfetch(uint ip, sp_pcontext *ctx, uint c) : sp_instr(ip, ctx), m_cursor(c) { m_varlist.empty(); } virtual ~sp_instr_cfetch() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); void add_to_varlist(struct sp_variable *var) { m_varlist.push_back(var); } private: uint m_cursor; List<struct sp_variable> m_varlist; }; // class sp_instr_cfetch : public sp_instr class sp_instr_error : public sp_instr { sp_instr_error(const sp_instr_error &); /* Prevent use of these */ void operator=(sp_instr_error &); public: sp_instr_error(uint ip, sp_pcontext *ctx, int errcode) : sp_instr(ip, ctx), m_errcode(errcode) {} virtual ~sp_instr_error() {} virtual int execute(THD *thd, uint *nextp); virtual void print(String *str); virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads) { marked= 1; return UINT_MAX; } private: int m_errcode; }; // class sp_instr_error : public sp_instr class sp_instr_set_case_expr : public sp_instr_opt_meta { public: sp_instr_set_case_expr(uint ip, sp_pcontext *ctx, uint case_expr_id, Item *case_expr, LEX *lex) : sp_instr_opt_meta(ip, ctx), m_case_expr_id(case_expr_id), m_case_expr(case_expr), m_lex_keeper(lex, TRUE) {} virtual ~sp_instr_set_case_expr() {} virtual int execute(THD *thd, uint *nextp); virtual int exec_core(THD *thd, uint *nextp); virtual void print(String *str); virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads); virtual void opt_move(uint dst, List<sp_instr> *ibp); virtual void set_destination(uint old_dest, uint new_dest) { if (m_cont_dest == old_dest) m_cont_dest= new_dest; } private: uint m_case_expr_id; Item *m_case_expr; sp_lex_keeper m_lex_keeper; }; // class sp_instr_set_case_expr : public sp_instr_opt_meta #ifndef NO_EMBEDDED_ACCESS_CHECKS bool sp_change_security_context(THD *thd, sp_head *sp, Security_context **backup); void sp_restore_security_context(THD *thd, Security_context *backup); bool set_routine_security_ctx(THD *thd, sp_head *sp, bool is_proc, Security_context **save_ctx); #endif /* NO_EMBEDDED_ACCESS_CHECKS */ TABLE_LIST * sp_add_to_query_tables(THD *thd, LEX *lex, const char *db, const char *name, thr_lock_type locktype); Item * sp_prepare_func_item(THD* thd, Item **it_addr); bool sp_eval_expr(THD *thd, Field *result_field, Item **expr_item_ptr); #endif /* _SP_HEAD_H_ */