# # Cython/Python language types # from __future__ import absolute_import import collections import copy import re try: reduce except NameError: from functools import reduce from Cython.Utils import cached_function from .Code import UtilityCode, LazyUtilityCode, TempitaUtilityCode from . import StringEncoding from . import Naming from .Errors import error, warning class BaseType(object): # # Base class for all Cython types including pseudo-types. # List of attribute names of any subtypes subtypes = [] _empty_declaration = None _specialization_name = None default_format_spec = None def can_coerce_to_pyobject(self, env): return False def can_coerce_from_pyobject(self, env): return False def can_coerce_to_pystring(self, env, format_spec=None): return False def convert_to_pystring(self, cvalue, code, format_spec=None): raise NotImplementedError("C types that support string formatting must override this method") def cast_code(self, expr_code): return "((%s)%s)" % (self.empty_declaration_code(), expr_code) def empty_declaration_code(self): if self._empty_declaration is None: self._empty_declaration = self.declaration_code('') return self._empty_declaration def specialization_name(self): if self._specialization_name is None: # This is not entirely robust. common_subs = (self.empty_declaration_code() .replace("unsigned ", "unsigned_") .replace("long long", "long_long") .replace(" ", "__")) self._specialization_name = re.sub( '[^a-zA-Z0-9_]', lambda x: '_%x_' % ord(x.group(0)), common_subs) return self._specialization_name def base_declaration_code(self, base_code, entity_code): if entity_code: return "%s %s" % (base_code, entity_code) else: return base_code def __deepcopy__(self, memo): """ Types never need to be copied, if we do copy, Unfortunate Things Will Happen! """ return self def get_fused_types(self, result=None, seen=None, subtypes=None): subtypes = subtypes or self.subtypes if not subtypes: return None if result is None: result = [] seen = set() for attr in subtypes: list_or_subtype = getattr(self, attr) if list_or_subtype: if isinstance(list_or_subtype, BaseType): list_or_subtype.get_fused_types(result, seen) else: for subtype in list_or_subtype: subtype.get_fused_types(result, seen) return result def specialize_fused(self, env): if env.fused_to_specific: return self.specialize(env.fused_to_specific) return self @property def is_fused(self): """ Whether this type or any of its subtypes is a fused type """ # Add this indirection for the is_fused property to allow overriding # get_fused_types in subclasses. return self.get_fused_types() def deduce_template_params(self, actual): """ Deduce any template params in this (argument) type given the actual argument type. http://en.cppreference.com/w/cpp/language/function_template#Template_argument_deduction """ return {} def __lt__(self, other): """ For sorting. The sorting order should correspond to the preference of conversion from Python types. Override to provide something sensible. This is only implemented so that python 3 doesn't trip """ return id(type(self)) < id(type(other)) def py_type_name(self): """ Return the name of the Python type that can coerce to this type. """ def typeof_name(self): """ Return the string with which fused python functions can be indexed. """ if self.is_builtin_type or self.py_type_name() == 'object': index_name = self.py_type_name() else: index_name = str(self) return index_name def check_for_null_code(self, cname): """ Return the code for a NULL-check in case an UnboundLocalError should be raised if an entry of this type is referenced before assignment. Returns None if no check should be performed. """ return None def invalid_value(self): """ Returns the most invalid value an object of this type can assume as a C expression string. Returns None if no such value exists. """ class PyrexType(BaseType): # # Base class for all Cython types # # is_pyobject boolean Is a Python object type # is_extension_type boolean Is a Python extension type # is_final_type boolean Is a final extension type # is_numeric boolean Is a C numeric type # is_int boolean Is a C integer type # is_float boolean Is a C floating point type # is_complex boolean Is a C complex type # is_void boolean Is the C void type # is_array boolean Is a C array type # is_ptr boolean Is a C pointer type # is_null_ptr boolean Is the type of NULL # is_reference boolean Is a C reference type # is_const boolean Is a C const type. # is_cfunction boolean Is a C function type # is_struct_or_union boolean Is a C struct or union type # is_struct boolean Is a C struct type # is_enum boolean Is a C enum type # is_typedef boolean Is a typedef type # is_string boolean Is a C char * type # is_pyunicode_ptr boolean Is a C PyUNICODE * type # is_cpp_string boolean Is a C++ std::string type # is_unicode_char boolean Is either Py_UCS4 or Py_UNICODE # is_returncode boolean Is used only to signal exceptions # is_error boolean Is the dummy error type # is_buffer boolean Is buffer access type # is_pythran_expr boolean Is Pythran expr # is_numpy_buffer boolean Is Numpy array buffer # has_attributes boolean Has C dot-selectable attributes # default_value string Initial value that can be assigned before first user assignment. # declaration_value string The value statically assigned on declaration (if any). # entry Entry The Entry for this type # # declaration_code(entity_code, # for_display = 0, dll_linkage = None, pyrex = 0) # Returns a code fragment for the declaration of an entity # of this type, given a code fragment for the entity. # * If for_display, this is for reading by a human in an error # message; otherwise it must be valid C code. # * If dll_linkage is not None, it must be 'DL_EXPORT' or # 'DL_IMPORT', and will be added to the base type part of # the declaration. # * If pyrex = 1, this is for use in a 'cdef extern' # statement of a Cython include file. # # assignable_from(src_type) # Tests whether a variable of this type can be # assigned a value of type src_type. # # same_as(other_type) # Tests whether this type represents the same type # as other_type. # # as_argument_type(): # Coerces array and C function types into pointer type for use as # a formal argument type. # is_pyobject = 0 is_unspecified = 0 is_extension_type = 0 is_final_type = 0 is_builtin_type = 0 is_numeric = 0 is_int = 0 is_float = 0 is_complex = 0 is_void = 0 is_array = 0 is_ptr = 0 is_null_ptr = 0 is_reference = 0 is_const = 0 is_cfunction = 0 is_struct_or_union = 0 is_cpp_class = 0 is_cpp_string = 0 is_struct = 0 is_enum = 0 is_typedef = 0 is_string = 0 is_pyunicode_ptr = 0 is_unicode_char = 0 is_returncode = 0 is_error = 0 is_buffer = 0 is_ctuple = 0 is_memoryviewslice = 0 is_pythran_expr = 0 is_numpy_buffer = 0 has_attributes = 0 default_value = "" declaration_value = "" def resolve(self): # If a typedef, returns the base type. return self def specialize(self, values): # TODO(danilo): Override wherever it makes sense. return self def literal_code(self, value): # Returns a C code fragment representing a literal # value of this type. return str(value) def __str__(self): return self.declaration_code("", for_display = 1).strip() def same_as(self, other_type, **kwds): return self.same_as_resolved_type(other_type.resolve(), **kwds) def same_as_resolved_type(self, other_type): return self == other_type or other_type is error_type def subtype_of(self, other_type): return self.subtype_of_resolved_type(other_type.resolve()) def subtype_of_resolved_type(self, other_type): return self.same_as(other_type) def assignable_from(self, src_type): return self.assignable_from_resolved_type(src_type.resolve()) def assignable_from_resolved_type(self, src_type): return self.same_as(src_type) def as_argument_type(self): return self def is_complete(self): # A type is incomplete if it is an unsized array, # a struct whose attributes are not defined, etc. return 1 def is_simple_buffer_dtype(self): return (self.is_int or self.is_float or self.is_complex or self.is_pyobject or self.is_extension_type or self.is_ptr) def struct_nesting_depth(self): # Returns the number levels of nested structs. This is # used for constructing a stack for walking the run-time # type information of the struct. return 1 def global_init_code(self, entry, code): # abstract pass def needs_nonecheck(self): return 0 def _assign_from_py_code(self, source_code, result_code, error_pos, code, from_py_function=None, error_condition=None, extra_args=None): args = ', ' + ', '.join('%s' % arg for arg in extra_args) if extra_args else '' convert_call = "%s(%s%s)" % ( from_py_function or self.from_py_function, source_code, args, ) if self.is_enum: convert_call = typecast(self, c_long_type, convert_call) return '%s = %s; %s' % ( result_code, convert_call, code.error_goto_if(error_condition or self.error_condition(result_code), error_pos)) def public_decl(base_code, dll_linkage): if dll_linkage: return "%s(%s)" % (dll_linkage, base_code.replace(',', ' __PYX_COMMA ')) else: return base_code def create_typedef_type(name, base_type, cname, is_external=0, namespace=None): is_fused = base_type.is_fused if base_type.is_complex or is_fused: if is_external: if is_fused: msg = "Fused" else: msg = "Complex" raise ValueError("%s external typedefs not supported" % msg) return base_type else: return CTypedefType(name, base_type, cname, is_external, namespace) class CTypedefType(BaseType): # # Pseudo-type defined with a ctypedef statement in a # 'cdef extern from' block. # Delegates most attribute lookups to the base type. # (Anything not defined here or in the BaseType is delegated.) # # qualified_name string # typedef_name string # typedef_cname string # typedef_base_type PyrexType # typedef_is_external bool is_typedef = 1 typedef_is_external = 0 to_py_utility_code = None from_py_utility_code = None subtypes = ['typedef_base_type'] def __init__(self, name, base_type, cname, is_external=0, namespace=None): assert not base_type.is_complex self.typedef_name = name self.typedef_cname = cname self.typedef_base_type = base_type self.typedef_is_external = is_external self.typedef_namespace = namespace def invalid_value(self): return self.typedef_base_type.invalid_value() def resolve(self): return self.typedef_base_type.resolve() def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: base_code = self.typedef_name else: base_code = public_decl(self.typedef_cname, dll_linkage) if self.typedef_namespace is not None and not pyrex: base_code = "%s::%s" % (self.typedef_namespace.empty_declaration_code(), base_code) return self.base_declaration_code(base_code, entity_code) def as_argument_type(self): return self def cast_code(self, expr_code): # If self is really an array (rather than pointer), we can't cast. # For example, the gmp mpz_t. if self.typedef_base_type.is_array: base_type = self.typedef_base_type.base_type return CPtrType(base_type).cast_code(expr_code) else: return BaseType.cast_code(self, expr_code) def specialize(self, values): base_type = self.typedef_base_type.specialize(values) namespace = self.typedef_namespace.specialize(values) if self.typedef_namespace else None if base_type is self.typedef_base_type and namespace is self.typedef_namespace: return self else: return create_typedef_type(self.typedef_name, base_type, self.typedef_cname, 0, namespace) def __repr__(self): return "<CTypedefType %s>" % self.typedef_cname def __str__(self): return self.typedef_name def _create_utility_code(self, template_utility_code, template_function_name): type_name = type_identifier(self.typedef_cname) utility_code = template_utility_code.specialize( type = self.typedef_cname, TypeName = type_name) function_name = template_function_name % type_name return utility_code, function_name def create_to_py_utility_code(self, env): if self.typedef_is_external: if not self.to_py_utility_code: base_type = self.typedef_base_type if type(base_type) is CIntType: self.to_py_function = "__Pyx_PyInt_From_" + self.specialization_name() env.use_utility_code(TempitaUtilityCode.load_cached( "CIntToPy", "TypeConversion.c", context={"TYPE": self.empty_declaration_code(), "TO_PY_FUNCTION": self.to_py_function})) return True elif base_type.is_float: pass # XXX implement! elif base_type.is_complex: pass # XXX implement! pass elif base_type.is_cpp_string: cname = "__pyx_convert_PyObject_string_to_py_%s" % type_identifier(self) context = { 'cname': cname, 'type': self.typedef_cname, } from .UtilityCode import CythonUtilityCode env.use_utility_code(CythonUtilityCode.load( "string.to_py", "CppConvert.pyx", context=context)) self.to_py_function = cname return True if self.to_py_utility_code: env.use_utility_code(self.to_py_utility_code) return True # delegation return self.typedef_base_type.create_to_py_utility_code(env) def create_from_py_utility_code(self, env): if self.typedef_is_external: if not self.from_py_utility_code: base_type = self.typedef_base_type if type(base_type) is CIntType: self.from_py_function = "__Pyx_PyInt_As_" + self.specialization_name() env.use_utility_code(TempitaUtilityCode.load_cached( "CIntFromPy", "TypeConversion.c", context={"TYPE": self.empty_declaration_code(), "FROM_PY_FUNCTION": self.from_py_function})) return True elif base_type.is_float: pass # XXX implement! elif base_type.is_complex: pass # XXX implement! elif base_type.is_cpp_string: cname = '__pyx_convert_string_from_py_%s' % type_identifier(self) context = { 'cname': cname, 'type': self.typedef_cname, } from .UtilityCode import CythonUtilityCode env.use_utility_code(CythonUtilityCode.load( "string.from_py", "CppConvert.pyx", context=context)) self.from_py_function = cname return True if self.from_py_utility_code: env.use_utility_code(self.from_py_utility_code) return True # delegation return self.typedef_base_type.create_from_py_utility_code(env) def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None): if to_py_function is None: to_py_function = self.to_py_function return self.typedef_base_type.to_py_call_code( source_code, result_code, result_type, to_py_function) def from_py_call_code(self, source_code, result_code, error_pos, code, from_py_function=None, error_condition=None): return self.typedef_base_type.from_py_call_code( source_code, result_code, error_pos, code, from_py_function or self.from_py_function, error_condition or self.error_condition(result_code) ) def overflow_check_binop(self, binop, env, const_rhs=False): env.use_utility_code(UtilityCode.load("Common", "Overflow.c")) type = self.empty_declaration_code() name = self.specialization_name() if binop == "lshift": env.use_utility_code(TempitaUtilityCode.load_cached( "LeftShift", "Overflow.c", context={'TYPE': type, 'NAME': name, 'SIGNED': self.signed})) else: if const_rhs: binop += "_const" _load_overflow_base(env) env.use_utility_code(TempitaUtilityCode.load_cached( "SizeCheck", "Overflow.c", context={'TYPE': type, 'NAME': name})) env.use_utility_code(TempitaUtilityCode.load_cached( "Binop", "Overflow.c", context={'TYPE': type, 'NAME': name, 'BINOP': binop})) return "__Pyx_%s_%s_checking_overflow" % (binop, name) def error_condition(self, result_code): if self.typedef_is_external: if self.exception_value: condition = "(%s == %s)" % ( result_code, self.cast_code(self.exception_value)) if self.exception_check: condition += " && PyErr_Occurred()" return condition # delegation return self.typedef_base_type.error_condition(result_code) def __getattr__(self, name): return getattr(self.typedef_base_type, name) def py_type_name(self): return self.typedef_base_type.py_type_name() def can_coerce_to_pyobject(self, env): return self.typedef_base_type.can_coerce_to_pyobject(env) def can_coerce_from_pyobject(self, env): return self.typedef_base_type.can_coerce_from_pyobject(env) class MemoryViewSliceType(PyrexType): is_memoryviewslice = 1 has_attributes = 1 scope = None # These are special cased in Defnode from_py_function = None to_py_function = None exception_value = None exception_check = True subtypes = ['dtype'] def __init__(self, base_dtype, axes): """ MemoryViewSliceType(base, axes) Base is the C base type; axes is a list of (access, packing) strings, where access is one of 'full', 'direct' or 'ptr' and packing is one of 'contig', 'strided' or 'follow'. There is one (access, packing) tuple for each dimension. the access specifiers determine whether the array data contains pointers that need to be dereferenced along that axis when retrieving/setting: 'direct' -- No pointers stored in this dimension. 'ptr' -- Pointer stored in this dimension. 'full' -- Check along this dimension, don't assume either. the packing specifiers specify how the array elements are layed-out in memory. 'contig' -- The data are contiguous in memory along this dimension. At most one dimension may be specified as 'contig'. 'strided' -- The data aren't contiguous along this dimenison. 'follow' -- Used for C/Fortran contiguous arrays, a 'follow' dimension has its stride automatically computed from extents of the other dimensions to ensure C or Fortran memory layout. C-contiguous memory has 'direct' as the access spec, 'contig' as the *last* axis' packing spec and 'follow' for all other packing specs. Fortran-contiguous memory has 'direct' as the access spec, 'contig' as the *first* axis' packing spec and 'follow' for all other packing specs. """ from . import Buffer, MemoryView self.dtype = base_dtype self.axes = axes self.ndim = len(axes) self.flags = MemoryView.get_buf_flags(self.axes) self.is_c_contig, self.is_f_contig = MemoryView.is_cf_contig(self.axes) assert not (self.is_c_contig and self.is_f_contig) self.mode = MemoryView.get_mode(axes) self.writable_needed = False if not self.dtype.is_fused: self.dtype_name = Buffer.mangle_dtype_name(self.dtype) def __hash__(self): return hash(self.__class__) ^ hash(self.dtype) ^ hash(tuple(self.axes)) def __eq__(self, other): if isinstance(other, BaseType): return self.same_as_resolved_type(other) else: return False def same_as_resolved_type(self, other_type): return ((other_type.is_memoryviewslice and #self.writable_needed == other_type.writable_needed and # FIXME: should be only uni-directional self.dtype.same_as(other_type.dtype) and self.axes == other_type.axes) or other_type is error_type) def needs_nonecheck(self): return True def is_complete(self): # incomplete since the underlying struct doesn't have a cython.memoryview object. return 0 def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): # XXX: we put these guards in for now... assert not pyrex assert not dll_linkage from . import MemoryView return self.base_declaration_code( MemoryView.memviewslice_cname, entity_code) def attributes_known(self): if self.scope is None: from . import Symtab self.scope = scope = Symtab.CClassScope( 'mvs_class_'+self.specialization_suffix(), None, visibility='extern') scope.parent_type = self scope.directives = {} scope.declare_var('_data', c_char_ptr_type, None, cname='data', is_cdef=1) return True def declare_attribute(self, attribute, env, pos): from . import MemoryView, Options scope = self.scope if attribute == 'shape': scope.declare_var('shape', c_array_type(c_py_ssize_t_type, Options.buffer_max_dims), pos, cname='shape', is_cdef=1) elif attribute == 'strides': scope.declare_var('strides', c_array_type(c_py_ssize_t_type, Options.buffer_max_dims), pos, cname='strides', is_cdef=1) elif attribute == 'suboffsets': scope.declare_var('suboffsets', c_array_type(c_py_ssize_t_type, Options.buffer_max_dims), pos, cname='suboffsets', is_cdef=1) elif attribute in ("copy", "copy_fortran"): ndim = len(self.axes) follow_dim = [('direct', 'follow')] contig_dim = [('direct', 'contig')] to_axes_c = follow_dim * (ndim - 1) + contig_dim to_axes_f = contig_dim + follow_dim * (ndim -1) to_memview_c = MemoryViewSliceType(self.dtype, to_axes_c) to_memview_f = MemoryViewSliceType(self.dtype, to_axes_f) for to_memview, cython_name in [(to_memview_c, "copy"), (to_memview_f, "copy_fortran")]: copy_func_type = CFuncType( to_memview, [CFuncTypeArg("memviewslice", self, None)]) copy_cname = MemoryView.copy_c_or_fortran_cname(to_memview) entry = scope.declare_cfunction( cython_name, copy_func_type, pos=pos, defining=1, cname=copy_cname) utility = MemoryView.get_copy_new_utility(pos, self, to_memview) env.use_utility_code(utility) MemoryView.use_cython_array_utility_code(env) elif attribute in ("is_c_contig", "is_f_contig"): # is_c_contig and is_f_contig functions for (c_or_f, cython_name) in (('C', 'is_c_contig'), ('F', 'is_f_contig')): is_contig_name = MemoryView.get_is_contig_func_name(c_or_f, self.ndim) cfunctype = CFuncType( return_type=c_bint_type, args=[CFuncTypeArg("memviewslice", self, None)], exception_value="-1", ) entry = scope.declare_cfunction(cython_name, cfunctype, pos=pos, defining=1, cname=is_contig_name) entry.utility_code_definition = MemoryView.get_is_contig_utility(c_or_f, self.ndim) return True def get_entry(self, node, cname=None, type=None): from . import MemoryView, Symtab if cname is None: assert node.is_simple() or node.is_temp or node.is_elemental cname = node.result() if type is None: type = node.type entry = Symtab.Entry(cname, cname, type, node.pos) return MemoryView.MemoryViewSliceBufferEntry(entry) def conforms_to(self, dst, broadcast=False, copying=False): """ Returns True if src conforms to dst, False otherwise. If conformable, the types are the same, the ndims are equal, and each axis spec is conformable. Any packing/access spec is conformable to itself. 'direct' and 'ptr' are conformable to 'full'. 'contig' and 'follow' are conformable to 'strided'. Any other combo is not conformable. """ from . import MemoryView src = self #if not copying and self.writable_needed and not dst.writable_needed: # return False src_dtype, dst_dtype = src.dtype, dst.dtype if dst_dtype.is_const: # Requesting read-only views is always ok => consider only the non-const base type. dst_dtype = dst_dtype.const_base_type if src_dtype.is_const: # When assigning between read-only views, compare only the non-const base types. src_dtype = src_dtype.const_base_type elif copying and src_dtype.is_const: # Copying by value => ignore const on source. src_dtype = src_dtype.const_base_type if src_dtype != dst_dtype: return False if src.ndim != dst.ndim: if broadcast: src, dst = MemoryView.broadcast_types(src, dst) else: return False for src_spec, dst_spec in zip(src.axes, dst.axes): src_access, src_packing = src_spec dst_access, dst_packing = dst_spec if src_access != dst_access and dst_access != 'full': return False if src_packing != dst_packing and dst_packing != 'strided' and not copying: return False return True def valid_dtype(self, dtype, i=0): """ Return whether type dtype can be used as the base type of a memoryview slice. We support structs, numeric types and objects """ if dtype.is_complex and dtype.real_type.is_int: return False if dtype.is_struct and dtype.kind == 'struct': for member in dtype.scope.var_entries: if not self.valid_dtype(member.type): return False return True return ( dtype.is_error or # Pointers are not valid (yet) # (dtype.is_ptr and valid_memslice_dtype(dtype.base_type)) or (dtype.is_array and i < 8 and self.valid_dtype(dtype.base_type, i + 1)) or dtype.is_numeric or dtype.is_pyobject or dtype.is_fused or # accept this as it will be replaced by specializations later (dtype.is_typedef and self.valid_dtype(dtype.typedef_base_type)) ) def validate_memslice_dtype(self, pos): if not self.valid_dtype(self.dtype): error(pos, "Invalid base type for memoryview slice: %s" % self.dtype) def assert_direct_dims(self, pos): for access, packing in self.axes: if access != 'direct': error(pos, "All dimensions must be direct") return False return True def transpose(self, pos): if not self.assert_direct_dims(pos): return error_type return MemoryViewSliceType(self.dtype, self.axes[::-1]) def specialization_name(self): return '%s_%s' % ( super(MemoryViewSliceType,self).specialization_name(), self.specialization_suffix()) def specialization_suffix(self): return "%s_%s" % (self.axes_to_name(), self.dtype_name) def can_coerce_to_pyobject(self, env): return True def can_coerce_from_pyobject(self, env): return True def check_for_null_code(self, cname): return cname + '.memview' def create_from_py_utility_code(self, env): from . import MemoryView, Buffer # We don't have 'code', so use a LazyUtilityCode with a callback. def lazy_utility_callback(code): context['dtype_typeinfo'] = Buffer.get_type_information_cname(code, self.dtype) return TempitaUtilityCode.load( "ObjectToMemviewSlice", "MemoryView_C.c", context=context) env.use_utility_code(MemoryView.memviewslice_init_code) env.use_utility_code(LazyUtilityCode(lazy_utility_callback)) if self.is_c_contig: c_or_f_flag = "__Pyx_IS_C_CONTIG" elif self.is_f_contig: c_or_f_flag = "__Pyx_IS_F_CONTIG" else: c_or_f_flag = "0" suffix = self.specialization_suffix() funcname = "__Pyx_PyObject_to_MemoryviewSlice_" + suffix context = dict( MemoryView.context, buf_flag = self.flags, ndim = self.ndim, axes_specs = ', '.join(self.axes_to_code()), dtype_typedecl = self.dtype.empty_declaration_code(), struct_nesting_depth = self.dtype.struct_nesting_depth(), c_or_f_flag = c_or_f_flag, funcname = funcname, ) self.from_py_function = funcname return True def from_py_call_code(self, source_code, result_code, error_pos, code, from_py_function=None, error_condition=None): # NOTE: auto-detection of readonly buffers is disabled: # writable = self.writable_needed or not self.dtype.is_const writable = not self.dtype.is_const return self._assign_from_py_code( source_code, result_code, error_pos, code, from_py_function, error_condition, extra_args=['PyBUF_WRITABLE' if writable else '0']) def create_to_py_utility_code(self, env): self._dtype_to_py_func, self._dtype_from_py_func = self.dtype_object_conversion_funcs(env) return True def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None): assert self._dtype_to_py_func assert self._dtype_from_py_func to_py_func = "(PyObject *(*)(char *)) " + self._dtype_to_py_func from_py_func = "(int (*)(char *, PyObject *)) " + self._dtype_from_py_func tup = (result_code, source_code, self.ndim, to_py_func, from_py_func, self.dtype.is_pyobject) return "%s = __pyx_memoryview_fromslice(%s, %s, %s, %s, %d);" % tup def dtype_object_conversion_funcs(self, env): get_function = "__pyx_memview_get_%s" % self.dtype_name set_function = "__pyx_memview_set_%s" % self.dtype_name context = dict( get_function = get_function, set_function = set_function, ) if self.dtype.is_pyobject: utility_name = "MemviewObjectToObject" else: self.dtype.create_to_py_utility_code(env) to_py_function = self.dtype.to_py_function from_py_function = None if not self.dtype.is_const: self.dtype.create_from_py_utility_code(env) from_py_function = self.dtype.from_py_function if not (to_py_function or from_py_function): return "NULL", "NULL" if not to_py_function: get_function = "NULL" if not from_py_function: set_function = "NULL" utility_name = "MemviewDtypeToObject" error_condition = (self.dtype.error_condition('value') or 'PyErr_Occurred()') context.update( to_py_function=to_py_function, from_py_function=from_py_function, dtype=self.dtype.empty_declaration_code(), error_condition=error_condition, ) utility = TempitaUtilityCode.load_cached( utility_name, "MemoryView_C.c", context=context) env.use_utility_code(utility) return get_function, set_function def axes_to_code(self): """Return a list of code constants for each axis""" from . import MemoryView d = MemoryView._spec_to_const return ["(%s | %s)" % (d[a], d[p]) for a, p in self.axes] def axes_to_name(self): """Return an abbreviated name for our axes""" from . import MemoryView d = MemoryView._spec_to_abbrev return "".join(["%s%s" % (d[a], d[p]) for a, p in self.axes]) def error_condition(self, result_code): return "!%s.memview" % result_code def __str__(self): from . import MemoryView axes_code_list = [] for idx, (access, packing) in enumerate(self.axes): flag = MemoryView.get_memoryview_flag(access, packing) if flag == "strided": axes_code_list.append(":") else: if flag == 'contiguous': have_follow = [p for a, p in self.axes[idx - 1:idx + 2] if p == 'follow'] if have_follow or self.ndim == 1: flag = '1' axes_code_list.append("::" + flag) if self.dtype.is_pyobject: dtype_name = self.dtype.name else: dtype_name = self.dtype return "%s[%s]" % (dtype_name, ", ".join(axes_code_list)) def specialize(self, values): """This does not validate the base type!!""" dtype = self.dtype.specialize(values) if dtype is not self.dtype: return MemoryViewSliceType(dtype, self.axes) return self def cast_code(self, expr_code): return expr_code class BufferType(BaseType): # # Delegates most attribute lookups to the base type. # (Anything not defined here or in the BaseType is delegated.) # # dtype PyrexType # ndim int # mode str # negative_indices bool # cast bool # is_buffer bool # writable bool is_buffer = 1 writable = True subtypes = ['dtype'] def __init__(self, base, dtype, ndim, mode, negative_indices, cast): self.base = base self.dtype = dtype self.ndim = ndim self.buffer_ptr_type = CPtrType(dtype) self.mode = mode self.negative_indices = negative_indices self.cast = cast self.is_numpy_buffer = self.base.name == "ndarray" def can_coerce_to_pyobject(self,env): return True def can_coerce_from_pyobject(self,env): return True def as_argument_type(self): return self def specialize(self, values): dtype = self.dtype.specialize(values) if dtype is not self.dtype: return BufferType(self.base, dtype, self.ndim, self.mode, self.negative_indices, self.cast) return self def get_entry(self, node): from . import Buffer assert node.is_name return Buffer.BufferEntry(node.entry) def __getattr__(self, name): return getattr(self.base, name) def __repr__(self): return "<BufferType %r>" % self.base def __str__(self): # avoid ', ', as fused functions split the signature string on ', ' cast_str = '' if self.cast: cast_str = ',cast=True' return "%s[%s,ndim=%d%s]" % (self.base, self.dtype, self.ndim, cast_str) def assignable_from(self, other_type): if other_type.is_buffer: return (self.same_as(other_type, compare_base=False) and self.base.assignable_from(other_type.base)) return self.base.assignable_from(other_type) def same_as(self, other_type, compare_base=True): if not other_type.is_buffer: return other_type.same_as(self.base) return (self.dtype.same_as(other_type.dtype) and self.ndim == other_type.ndim and self.mode == other_type.mode and self.cast == other_type.cast and (not compare_base or self.base.same_as(other_type.base))) class PyObjectType(PyrexType): # # Base class for all Python object types (reference-counted). # # buffer_defaults dict or None Default options for bu name = "object" is_pyobject = 1 default_value = "0" declaration_value = "0" buffer_defaults = None is_extern = False is_subclassed = False is_gc_simple = False def __str__(self): return "Python object" def __repr__(self): return "<PyObjectType>" def can_coerce_to_pyobject(self, env): return True def can_coerce_from_pyobject(self, env): return True def default_coerced_ctype(self): """The default C type that this Python type coerces to, or None.""" return None def assignable_from(self, src_type): # except for pointers, conversion will be attempted return not src_type.is_ptr or src_type.is_string or src_type.is_pyunicode_ptr def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: base_code = "object" else: base_code = public_decl("PyObject", dll_linkage) entity_code = "*%s" % entity_code return self.base_declaration_code(base_code, entity_code) def as_pyobject(self, cname): if (not self.is_complete()) or self.is_extension_type: return "(PyObject *)" + cname else: return cname def py_type_name(self): return "object" def __lt__(self, other): """ Make sure we sort highest, as instance checking on py_type_name ('object') is always true """ return False def global_init_code(self, entry, code): code.put_init_var_to_py_none(entry, nanny=False) def check_for_null_code(self, cname): return cname builtin_types_that_cannot_create_refcycles = set([ 'bool', 'int', 'long', 'float', 'complex', 'bytearray', 'bytes', 'unicode', 'str', 'basestring' ]) class BuiltinObjectType(PyObjectType): # objstruct_cname string Name of PyObject struct is_builtin_type = 1 has_attributes = 1 base_type = None module_name = '__builtin__' require_exact = 1 # fields that let it look like an extension type vtabslot_cname = None vtabstruct_cname = None vtabptr_cname = None typedef_flag = True is_external = True decl_type = 'PyObject' def __init__(self, name, cname, objstruct_cname=None): self.name = name self.cname = cname self.typeptr_cname = "(&%s)" % cname self.objstruct_cname = objstruct_cname self.is_gc_simple = name in builtin_types_that_cannot_create_refcycles if name == 'type': # Special case the type type, as many C API calls (and other # libraries) actually expect a PyTypeObject* for type arguments. self.decl_type = objstruct_cname if name == 'Exception': self.require_exact = 0 def set_scope(self, scope): self.scope = scope if scope: scope.parent_type = self def __str__(self): return "%s object" % self.name def __repr__(self): return "<%s>"% self.cname def default_coerced_ctype(self): if self.name in ('bytes', 'bytearray'): return c_char_ptr_type elif self.name == 'bool': return c_bint_type elif self.name == 'float': return c_double_type return None def assignable_from(self, src_type): if isinstance(src_type, BuiltinObjectType): if self.name == 'basestring': return src_type.name in ('str', 'unicode', 'basestring') else: return src_type.name == self.name elif src_type.is_extension_type: # FIXME: This is an ugly special case that we currently # keep supporting. It allows users to specify builtin # types as external extension types, while keeping them # compatible with the real builtin types. We already # generate a warning for it. Big TODO: remove! return (src_type.module_name == '__builtin__' and src_type.name == self.name) else: return True def typeobj_is_available(self): return True def attributes_known(self): return True def subtype_of(self, type): return type.is_pyobject and type.assignable_from(self) def type_check_function(self, exact=True): type_name = self.name if type_name == 'str': type_check = 'PyString_Check' elif type_name == 'basestring': type_check = '__Pyx_PyBaseString_Check' elif type_name == 'Exception': type_check = '__Pyx_PyException_Check' elif type_name == 'bytearray': type_check = 'PyByteArray_Check' elif type_name == 'frozenset': type_check = 'PyFrozenSet_Check' else: type_check = 'Py%s_Check' % type_name.capitalize() if exact and type_name not in ('bool', 'slice', 'Exception'): type_check += 'Exact' return type_check def isinstance_code(self, arg): return '%s(%s)' % (self.type_check_function(exact=False), arg) def type_test_code(self, arg, notnone=False, exact=True): type_check = self.type_check_function(exact=exact) check = 'likely(%s(%s))' % (type_check, arg) if not notnone: check += '||((%s) == Py_None)' % arg if self.name == 'basestring': name = '(PY_MAJOR_VERSION < 3 ? "basestring" : "str")' space_for_name = 16 else: name = '"%s"' % self.name # avoid wasting too much space but limit number of different format strings space_for_name = (len(self.name) // 16 + 1) * 16 error = '(PyErr_Format(PyExc_TypeError, "Expected %%.%ds, got %%.200s", %s, Py_TYPE(%s)->tp_name), 0)' % ( space_for_name, name, arg) return check + '||' + error def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: base_code = self.name else: base_code = public_decl(self.decl_type, dll_linkage) entity_code = "*%s" % entity_code return self.base_declaration_code(base_code, entity_code) def as_pyobject(self, cname): if self.decl_type == 'PyObject': return cname else: return "(PyObject *)" + cname def cast_code(self, expr_code, to_object_struct = False): return "((%s*)%s)" % ( to_object_struct and self.objstruct_cname or self.decl_type, # self.objstruct_cname may be None expr_code) def py_type_name(self): return self.name class PyExtensionType(PyObjectType): # # A Python extension type. # # name string # scope CClassScope Attribute namespace # visibility string # typedef_flag boolean # base_type PyExtensionType or None # module_name string or None Qualified name of defining module # objstruct_cname string Name of PyObject struct # objtypedef_cname string Name of PyObject struct typedef # typeobj_cname string or None C code fragment referring to type object # typeptr_cname string or None Name of pointer to external type object # vtabslot_cname string Name of C method table member # vtabstruct_cname string Name of C method table struct # vtabptr_cname string Name of pointer to C method table # vtable_cname string Name of C method table definition # early_init boolean Whether to initialize early (as opposed to during module execution). # defered_declarations [thunk] Used to declare class hierarchies in order is_extension_type = 1 has_attributes = 1 early_init = 1 objtypedef_cname = None def __init__(self, name, typedef_flag, base_type, is_external=0): self.name = name self.scope = None self.typedef_flag = typedef_flag if base_type is not None: base_type.is_subclassed = True self.base_type = base_type self.module_name = None self.objstruct_cname = None self.typeobj_cname = None self.typeptr_cname = None self.vtabslot_cname = None self.vtabstruct_cname = None self.vtabptr_cname = None self.vtable_cname = None self.is_external = is_external self.defered_declarations = [] def set_scope(self, scope): self.scope = scope if scope: scope.parent_type = self def needs_nonecheck(self): return True def subtype_of_resolved_type(self, other_type): if other_type.is_extension_type or other_type.is_builtin_type: return self is other_type or ( self.base_type and self.base_type.subtype_of(other_type)) else: return other_type is py_object_type def typeobj_is_available(self): # Do we have a pointer to the type object? return self.typeptr_cname def typeobj_is_imported(self): # If we don't know the C name of the type object but we do # know which module it's defined in, it will be imported. return self.typeobj_cname is None and self.module_name is not None def assignable_from(self, src_type): if self == src_type: return True if isinstance(src_type, PyExtensionType): if src_type.base_type is not None: return self.assignable_from(src_type.base_type) if isinstance(src_type, BuiltinObjectType): # FIXME: This is an ugly special case that we currently # keep supporting. It allows users to specify builtin # types as external extension types, while keeping them # compatible with the real builtin types. We already # generate a warning for it. Big TODO: remove! return (self.module_name == '__builtin__' and self.name == src_type.name) return False def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0, deref = 0): if pyrex or for_display: base_code = self.name else: if self.typedef_flag: objstruct = self.objstruct_cname else: objstruct = "struct %s" % self.objstruct_cname base_code = public_decl(objstruct, dll_linkage) if deref: assert not entity_code else: entity_code = "*%s" % entity_code return self.base_declaration_code(base_code, entity_code) def type_test_code(self, py_arg, notnone=False): none_check = "((%s) == Py_None)" % py_arg type_check = "likely(__Pyx_TypeTest(%s, %s))" % ( py_arg, self.typeptr_cname) if notnone: return type_check else: return "likely(%s || %s)" % (none_check, type_check) def attributes_known(self): return self.scope is not None def __str__(self): return self.name def __repr__(self): return "<PyExtensionType %s%s>" % (self.scope.class_name, ("", " typedef")[self.typedef_flag]) def py_type_name(self): if not self.module_name: return self.name return "__import__(%r, None, None, ['']).%s" % (self.module_name, self.name) class CType(PyrexType): # # Base class for all C types (non-reference-counted). # # to_py_function string C function for converting to Python object # from_py_function string C function for constructing from Python object # to_py_function = None from_py_function = None exception_value = None exception_check = 1 def create_to_py_utility_code(self, env): return self.to_py_function is not None def create_from_py_utility_code(self, env): return self.from_py_function is not None def can_coerce_to_pyobject(self, env): return self.create_to_py_utility_code(env) def can_coerce_from_pyobject(self, env): return self.create_from_py_utility_code(env) def error_condition(self, result_code): conds = [] if self.is_string or self.is_pyunicode_ptr: conds.append("(!%s)" % result_code) elif self.exception_value is not None: conds.append("(%s == (%s)%s)" % (result_code, self.sign_and_name(), self.exception_value)) if self.exception_check: conds.append("PyErr_Occurred()") if len(conds) > 0: return " && ".join(conds) else: return 0 def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None): func = self.to_py_function if to_py_function is None else to_py_function assert func if self.is_string or self.is_cpp_string: if result_type.is_builtin_type: result_type_name = result_type.name if result_type_name in ('bytes', 'str', 'unicode'): func = func.replace("Object", result_type_name.title(), 1) elif result_type_name == 'bytearray': func = func.replace("Object", "ByteArray", 1) return '%s = %s(%s)' % ( result_code, func, source_code or 'NULL') def from_py_call_code(self, source_code, result_code, error_pos, code, from_py_function=None, error_condition=None): return self._assign_from_py_code( source_code, result_code, error_pos, code, from_py_function, error_condition) class PythranExpr(CType): # Pythran object of a given type to_py_function = "__Pyx_pythran_to_python" is_pythran_expr = True writable = True has_attributes = 1 def __init__(self, pythran_type, org_buffer=None): self.org_buffer = org_buffer self.pythran_type = pythran_type self.name = self.pythran_type self.cname = self.pythran_type self.from_py_function = "from_python<%s>" % (self.pythran_type) self.scope = None def declaration_code(self, entity_code, for_display=0, dll_linkage=None, pyrex=0): assert not pyrex return "%s %s" % (self.cname, entity_code) def attributes_known(self): if self.scope is None: from . import Symtab # FIXME: fake C scope, might be better represented by a struct or C++ class scope self.scope = scope = Symtab.CClassScope('', None, visibility="extern") scope.parent_type = self scope.directives = {} scope.declare_var("shape", CPtrType(c_long_type), None, cname="_shape", is_cdef=True) scope.declare_var("ndim", c_long_type, None, cname="value", is_cdef=True) return True def __eq__(self, other): return isinstance(other, PythranExpr) and self.pythran_type == other.pythran_type def __ne__(self, other): return not (isinstance(other, PythranExpr) and self.pythran_type == other.pythran_type) def __hash__(self): return hash(self.pythran_type) class CConstType(BaseType): is_const = 1 def __init__(self, const_base_type): self.const_base_type = const_base_type if const_base_type.has_attributes and const_base_type.scope is not None: from . import Symtab self.scope = Symtab.CConstScope(const_base_type.scope) def __repr__(self): return "<CConstType %s>" % repr(self.const_base_type) def __str__(self): return self.declaration_code("", for_display=1) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if for_display or pyrex: return "const " + self.const_base_type.declaration_code(entity_code, for_display, dll_linkage, pyrex) else: return self.const_base_type.declaration_code("const %s" % entity_code, for_display, dll_linkage, pyrex) def specialize(self, values): base_type = self.const_base_type.specialize(values) if base_type == self.const_base_type: return self else: return CConstType(base_type) def deduce_template_params(self, actual): return self.const_base_type.deduce_template_params(actual) def can_coerce_to_pyobject(self, env): return self.const_base_type.can_coerce_to_pyobject(env) def can_coerce_from_pyobject(self, env): return self.const_base_type.can_coerce_from_pyobject(env) def create_to_py_utility_code(self, env): if self.const_base_type.create_to_py_utility_code(env): self.to_py_function = self.const_base_type.to_py_function return True def __getattr__(self, name): return getattr(self.const_base_type, name) class FusedType(CType): """ Represents a Fused Type. All it needs to do is keep track of the types it aggregates, as it will be replaced with its specific version wherever needed. See http://wiki.cython.org/enhancements/fusedtypes types [PyrexType] is the list of types to be fused name str the name of the ctypedef """ is_fused = 1 exception_check = 0 def __init__(self, types, name=None): # Use list rather than set to preserve order (list should be short). flattened_types = [] for t in types: if t.is_fused: # recursively merge in subtypes for subtype in t.types: if subtype not in flattened_types: flattened_types.append(subtype) elif t not in flattened_types: flattened_types.append(t) self.types = flattened_types self.name = name def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: return self.name raise Exception("This may never happen, please report a bug") def __repr__(self): return 'FusedType(name=%r)' % self.name def specialize(self, values): return values[self] def get_fused_types(self, result=None, seen=None): if result is None: return [self] if self not in seen: result.append(self) seen.add(self) class CVoidType(CType): # # C "void" type # is_void = 1 to_py_function = "__Pyx_void_to_None" def __repr__(self): return "<CVoidType>" def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: base_code = "void" else: base_code = public_decl("void", dll_linkage) return self.base_declaration_code(base_code, entity_code) def is_complete(self): return 0 class InvisibleVoidType(CVoidType): # # For use with C++ constructors and destructors return types. # Acts like void, but does not print out a declaration. # def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: base_code = "[void]" else: base_code = public_decl("", dll_linkage) return self.base_declaration_code(base_code, entity_code) class CNumericType(CType): # # Base class for all C numeric types. # # rank integer Relative size # signed integer 0 = unsigned, 1 = unspecified, 2 = explicitly signed # is_numeric = 1 default_value = "0" has_attributes = True scope = None sign_words = ("unsigned ", "", "signed ") def __init__(self, rank, signed = 1): self.rank = rank if rank > 0 and signed == SIGNED: # Signed is meaningless for anything but char, and complicates # type promotion. signed = 1 self.signed = signed def sign_and_name(self): s = self.sign_words[self.signed] n = rank_to_type_name[self.rank] return s + n def __repr__(self): return "<CNumericType %s>" % self.sign_and_name() def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): type_name = self.sign_and_name() if pyrex or for_display: base_code = type_name.replace('PY_LONG_LONG', 'long long') else: base_code = public_decl(type_name, dll_linkage) return self.base_declaration_code(base_code, entity_code) def attributes_known(self): if self.scope is None: from . import Symtab self.scope = scope = Symtab.CClassScope( '', None, visibility="extern") scope.parent_type = self scope.directives = {} scope.declare_cfunction( "conjugate", CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True), pos=None, defining=1, cname=" ") return True def __lt__(self, other): """Sort based on rank, preferring signed over unsigned""" if other.is_numeric: return self.rank > other.rank and self.signed >= other.signed # Prefer numeric types over others return True def py_type_name(self): if self.rank <= 4: return "(int, long)" return "float" class ForbidUseClass: def __repr__(self): raise RuntimeError() def __str__(self): raise RuntimeError() ForbidUse = ForbidUseClass() class CIntLike(object): """Mixin for shared behaviour of C integers and enums. """ to_py_function = None from_py_function = None to_pyunicode_utility = None default_format_spec = 'd' def can_coerce_to_pyobject(self, env): return True def can_coerce_from_pyobject(self, env): return True def create_to_py_utility_code(self, env): if type(self).to_py_function is None: self.to_py_function = "__Pyx_PyInt_From_" + self.specialization_name() env.use_utility_code(TempitaUtilityCode.load_cached( "CIntToPy", "TypeConversion.c", context={"TYPE": self.empty_declaration_code(), "TO_PY_FUNCTION": self.to_py_function})) return True def create_from_py_utility_code(self, env): if type(self).from_py_function is None: self.from_py_function = "__Pyx_PyInt_As_" + self.specialization_name() env.use_utility_code(TempitaUtilityCode.load_cached( "CIntFromPy", "TypeConversion.c", context={"TYPE": self.empty_declaration_code(), "FROM_PY_FUNCTION": self.from_py_function})) return True @staticmethod def _parse_format(format_spec): padding = ' ' if not format_spec: return ('d', 0, padding) format_type = format_spec[-1] if format_type in ('o', 'd', 'x', 'X'): prefix = format_spec[:-1] elif format_type.isdigit(): format_type = 'd' prefix = format_spec else: return (None, 0, padding) if not prefix: return (format_type, 0, padding) if prefix[0] == '-': prefix = prefix[1:] if prefix and prefix[0] == '0': padding = '0' prefix = prefix.lstrip('0') if prefix.isdigit(): return (format_type, int(prefix), padding) return (None, 0, padding) def can_coerce_to_pystring(self, env, format_spec=None): format_type, width, padding = self._parse_format(format_spec) return format_type is not None and width <= 2**30 def convert_to_pystring(self, cvalue, code, format_spec=None): if self.to_pyunicode_utility is None: utility_code_name = "__Pyx_PyUnicode_From_" + self.specialization_name() to_pyunicode_utility = TempitaUtilityCode.load_cached( "CIntToPyUnicode", "TypeConversion.c", context={"TYPE": self.empty_declaration_code(), "TO_PY_FUNCTION": utility_code_name}) self.to_pyunicode_utility = (utility_code_name, to_pyunicode_utility) else: utility_code_name, to_pyunicode_utility = self.to_pyunicode_utility code.globalstate.use_utility_code(to_pyunicode_utility) format_type, width, padding_char = self._parse_format(format_spec) return "%s(%s, %d, '%s', '%s')" % (utility_code_name, cvalue, width, padding_char, format_type) class CIntType(CIntLike, CNumericType): is_int = 1 typedef_flag = 0 exception_value = -1 def get_to_py_type_conversion(self): if self.rank < list(rank_to_type_name).index('int'): # This assumes sizeof(short) < sizeof(int) return "PyInt_FromLong" else: # Py{Int|Long}_From[Unsigned]Long[Long] Prefix = "Int" SignWord = "" TypeName = "Long" if not self.signed: Prefix = "Long" SignWord = "Unsigned" if self.rank >= list(rank_to_type_name).index('PY_LONG_LONG'): Prefix = "Long" TypeName = "LongLong" return "Py%s_From%s%s" % (Prefix, SignWord, TypeName) def assignable_from_resolved_type(self, src_type): return src_type.is_int or src_type.is_enum or src_type is error_type def invalid_value(self): if rank_to_type_name[int(self.rank)] == 'char': return "'?'" else: # We do not really know the size of the type, so return # a 32-bit literal and rely on casting to final type. It will # be negative for signed ints, which is good. return "0xbad0bad0" def overflow_check_binop(self, binop, env, const_rhs=False): env.use_utility_code(UtilityCode.load("Common", "Overflow.c")) type = self.empty_declaration_code() name = self.specialization_name() if binop == "lshift": env.use_utility_code(TempitaUtilityCode.load_cached( "LeftShift", "Overflow.c", context={'TYPE': type, 'NAME': name, 'SIGNED': self.signed})) else: if const_rhs: binop += "_const" if type in ('int', 'long', 'long long'): env.use_utility_code(TempitaUtilityCode.load_cached( "BaseCaseSigned", "Overflow.c", context={'INT': type, 'NAME': name})) elif type in ('unsigned int', 'unsigned long', 'unsigned long long'): env.use_utility_code(TempitaUtilityCode.load_cached( "BaseCaseUnsigned", "Overflow.c", context={'UINT': type, 'NAME': name})) elif self.rank <= 1: # sizeof(short) < sizeof(int) return "__Pyx_%s_%s_no_overflow" % (binop, name) else: _load_overflow_base(env) env.use_utility_code(TempitaUtilityCode.load_cached( "SizeCheck", "Overflow.c", context={'TYPE': type, 'NAME': name})) env.use_utility_code(TempitaUtilityCode.load_cached( "Binop", "Overflow.c", context={'TYPE': type, 'NAME': name, 'BINOP': binop})) return "__Pyx_%s_%s_checking_overflow" % (binop, name) def _load_overflow_base(env): env.use_utility_code(UtilityCode.load("Common", "Overflow.c")) for type in ('int', 'long', 'long long'): env.use_utility_code(TempitaUtilityCode.load_cached( "BaseCaseSigned", "Overflow.c", context={'INT': type, 'NAME': type.replace(' ', '_')})) for type in ('unsigned int', 'unsigned long', 'unsigned long long'): env.use_utility_code(TempitaUtilityCode.load_cached( "BaseCaseUnsigned", "Overflow.c", context={'UINT': type, 'NAME': type.replace(' ', '_')})) class CAnonEnumType(CIntType): is_enum = 1 def sign_and_name(self): return 'int' class CReturnCodeType(CIntType): to_py_function = "__Pyx_Owned_Py_None" is_returncode = True exception_check = False default_format_spec = '' def can_coerce_to_pystring(self, env, format_spec=None): return not format_spec def convert_to_pystring(self, cvalue, code, format_spec=None): return "__Pyx_NewRef(%s)" % code.globalstate.get_py_string_const(StringEncoding.EncodedString("None")).cname class CBIntType(CIntType): to_py_function = "__Pyx_PyBool_FromLong" from_py_function = "__Pyx_PyObject_IsTrue" exception_check = 1 # for C++ bool default_format_spec = '' def can_coerce_to_pystring(self, env, format_spec=None): return not format_spec or super(CBIntType, self).can_coerce_to_pystring(env, format_spec) def convert_to_pystring(self, cvalue, code, format_spec=None): if format_spec: return super(CBIntType, self).convert_to_pystring(cvalue, code, format_spec) # NOTE: no caching here as the string constant cnames depend on the current module utility_code_name = "__Pyx_PyUnicode_FromBInt_" + self.specialization_name() to_pyunicode_utility = TempitaUtilityCode.load_cached( "CBIntToPyUnicode", "TypeConversion.c", context={ "TRUE_CONST": code.globalstate.get_py_string_const(StringEncoding.EncodedString("True")).cname, "FALSE_CONST": code.globalstate.get_py_string_const(StringEncoding.EncodedString("False")).cname, "TO_PY_FUNCTION": utility_code_name, }) code.globalstate.use_utility_code(to_pyunicode_utility) return "%s(%s)" % (utility_code_name, cvalue) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if for_display: base_code = 'bool' elif pyrex: base_code = 'bint' else: base_code = public_decl('int', dll_linkage) return self.base_declaration_code(base_code, entity_code) def __repr__(self): return "<CNumericType bint>" def __str__(self): return 'bint' def py_type_name(self): return "bool" class CPyUCS4IntType(CIntType): # Py_UCS4 is_unicode_char = True # Py_UCS4 coerces from and to single character unicode strings (or # at most two characters on 16bit Unicode builds), but we also # allow Python integers as input. The value range for Py_UCS4 # is 0..1114111, which is checked when converting from an integer # value. to_py_function = "PyUnicode_FromOrdinal" from_py_function = "__Pyx_PyObject_AsPy_UCS4" def can_coerce_to_pystring(self, env, format_spec=None): return False # does the right thing anyway def create_from_py_utility_code(self, env): env.use_utility_code(UtilityCode.load_cached("ObjectAsUCS4", "TypeConversion.c")) return True def sign_and_name(self): return "Py_UCS4" class CPyUnicodeIntType(CIntType): # Py_UNICODE is_unicode_char = True # Py_UNICODE coerces from and to single character unicode strings, # but we also allow Python integers as input. The value range for # Py_UNICODE is 0..1114111, which is checked when converting from # an integer value. to_py_function = "PyUnicode_FromOrdinal" from_py_function = "__Pyx_PyObject_AsPy_UNICODE" def can_coerce_to_pystring(self, env, format_spec=None): return False # does the right thing anyway def create_from_py_utility_code(self, env): env.use_utility_code(UtilityCode.load_cached("ObjectAsPyUnicode", "TypeConversion.c")) return True def sign_and_name(self): return "Py_UNICODE" class CPyHashTType(CIntType): to_py_function = "__Pyx_PyInt_FromHash_t" from_py_function = "__Pyx_PyInt_AsHash_t" def sign_and_name(self): return "Py_hash_t" class CPySSizeTType(CIntType): to_py_function = "PyInt_FromSsize_t" from_py_function = "__Pyx_PyIndex_AsSsize_t" def sign_and_name(self): return "Py_ssize_t" class CSSizeTType(CIntType): to_py_function = "PyInt_FromSsize_t" from_py_function = "PyInt_AsSsize_t" def sign_and_name(self): return "Py_ssize_t" class CSizeTType(CIntType): to_py_function = "__Pyx_PyInt_FromSize_t" def sign_and_name(self): return "size_t" class CPtrdiffTType(CIntType): def sign_and_name(self): return "ptrdiff_t" class CFloatType(CNumericType): is_float = 1 to_py_function = "PyFloat_FromDouble" from_py_function = "__pyx_PyFloat_AsDouble" exception_value = -1 def __init__(self, rank, math_h_modifier = ''): CNumericType.__init__(self, rank, 1) self.math_h_modifier = math_h_modifier if rank == RANK_FLOAT: self.from_py_function = "__pyx_PyFloat_AsFloat" def assignable_from_resolved_type(self, src_type): return (src_type.is_numeric and not src_type.is_complex) or src_type is error_type def invalid_value(self): return Naming.PYX_NAN class CComplexType(CNumericType): is_complex = 1 to_py_function = "__pyx_PyComplex_FromComplex" has_attributes = 1 scope = None def __init__(self, real_type): while real_type.is_typedef and not real_type.typedef_is_external: real_type = real_type.typedef_base_type self.funcsuffix = "_%s" % real_type.specialization_name() if real_type.is_float: self.math_h_modifier = real_type.math_h_modifier else: self.math_h_modifier = "_UNUSED" self.real_type = real_type CNumericType.__init__(self, real_type.rank + 0.5, real_type.signed) self.binops = {} self.from_parts = "%s_from_parts" % self.specialization_name() self.default_value = "%s(0, 0)" % self.from_parts def __eq__(self, other): if isinstance(self, CComplexType) and isinstance(other, CComplexType): return self.real_type == other.real_type else: return False def __ne__(self, other): if isinstance(self, CComplexType) and isinstance(other, CComplexType): return self.real_type != other.real_type else: return True def __lt__(self, other): if isinstance(self, CComplexType) and isinstance(other, CComplexType): return self.real_type < other.real_type else: # this is arbitrary, but it makes sure we always have # *some* kind of order return False def __hash__(self): return ~hash(self.real_type) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: real_code = self.real_type.declaration_code("", for_display, dll_linkage, pyrex) base_code = "%s complex" % real_code else: base_code = public_decl(self.sign_and_name(), dll_linkage) return self.base_declaration_code(base_code, entity_code) def sign_and_name(self): real_type_name = self.real_type.specialization_name() real_type_name = real_type_name.replace('long__double','long_double') real_type_name = real_type_name.replace('PY_LONG_LONG','long_long') return Naming.type_prefix + real_type_name + "_complex" def assignable_from(self, src_type): # Temporary hack/feature disabling, see #441 if (not src_type.is_complex and src_type.is_numeric and src_type.is_typedef and src_type.typedef_is_external): return False elif src_type.is_pyobject: return True else: return super(CComplexType, self).assignable_from(src_type) def assignable_from_resolved_type(self, src_type): return (src_type.is_complex and self.real_type.assignable_from_resolved_type(src_type.real_type) or src_type.is_numeric and self.real_type.assignable_from_resolved_type(src_type) or src_type is error_type) def attributes_known(self): if self.scope is None: from . import Symtab self.scope = scope = Symtab.CClassScope( '', None, visibility="extern") scope.parent_type = self scope.directives = {} scope.declare_var("real", self.real_type, None, cname="real", is_cdef=True) scope.declare_var("imag", self.real_type, None, cname="imag", is_cdef=True) scope.declare_cfunction( "conjugate", CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True), pos=None, defining=1, cname="__Pyx_c_conj%s" % self.funcsuffix) return True def _utility_code_context(self): return { 'type': self.empty_declaration_code(), 'type_name': self.specialization_name(), 'real_type': self.real_type.empty_declaration_code(), 'func_suffix': self.funcsuffix, 'm': self.math_h_modifier, 'is_float': int(self.real_type.is_float) } def create_declaration_utility_code(self, env): # This must always be run, because a single CComplexType instance can be shared # across multiple compilations (the one created in the module scope) env.use_utility_code(UtilityCode.load_cached('Header', 'Complex.c')) env.use_utility_code(UtilityCode.load_cached('RealImag', 'Complex.c')) env.use_utility_code(TempitaUtilityCode.load_cached( 'Declarations', 'Complex.c', self._utility_code_context())) env.use_utility_code(TempitaUtilityCode.load_cached( 'Arithmetic', 'Complex.c', self._utility_code_context())) return True def can_coerce_to_pyobject(self, env): return True def can_coerce_from_pyobject(self, env): return True def create_to_py_utility_code(self, env): env.use_utility_code(UtilityCode.load_cached('ToPy', 'Complex.c')) return True def create_from_py_utility_code(self, env): env.use_utility_code(TempitaUtilityCode.load_cached( 'FromPy', 'Complex.c', self._utility_code_context())) self.from_py_function = "__Pyx_PyComplex_As_" + self.specialization_name() return True def lookup_op(self, nargs, op): try: return self.binops[nargs, op] except KeyError: pass try: op_name = complex_ops[nargs, op] self.binops[nargs, op] = func_name = "__Pyx_c_%s%s" % (op_name, self.funcsuffix) return func_name except KeyError: return None def unary_op(self, op): return self.lookup_op(1, op) def binary_op(self, op): return self.lookup_op(2, op) def py_type_name(self): return "complex" def cast_code(self, expr_code): return expr_code complex_ops = { (1, '-'): 'neg', (1, 'zero'): 'is_zero', (2, '+'): 'sum', (2, '-'): 'diff', (2, '*'): 'prod', (2, '/'): 'quot', (2, '**'): 'pow', (2, '=='): 'eq', } class CPyTSSTType(CType): # # PEP-539 "Py_tss_t" type # declaration_value = "Py_tss_NEEDS_INIT" def __repr__(self): return "<Py_tss_t>" def declaration_code(self, entity_code, for_display=0, dll_linkage=None, pyrex=0): if pyrex or for_display: base_code = "Py_tss_t" else: base_code = public_decl("Py_tss_t", dll_linkage) return self.base_declaration_code(base_code, entity_code) class CPointerBaseType(CType): # common base type for pointer/array types # # base_type CType Reference type subtypes = ['base_type'] def __init__(self, base_type): self.base_type = base_type if base_type.is_const: base_type = base_type.const_base_type for char_type in (c_char_type, c_uchar_type, c_schar_type): if base_type.same_as(char_type): self.is_string = 1 break else: if base_type.same_as(c_py_unicode_type): self.is_pyunicode_ptr = 1 if self.is_string and not base_type.is_error: if base_type.signed == 2: self.to_py_function = "__Pyx_PyObject_FromCString" if self.is_ptr: self.from_py_function = "__Pyx_PyObject_As%sSString" elif base_type.signed: self.to_py_function = "__Pyx_PyObject_FromString" if self.is_ptr: self.from_py_function = "__Pyx_PyObject_As%sString" else: self.to_py_function = "__Pyx_PyObject_FromCString" if self.is_ptr: self.from_py_function = "__Pyx_PyObject_As%sUString" if self.is_ptr: self.from_py_function %= '' if self.base_type.is_const else 'Writable' self.exception_value = "NULL" elif self.is_pyunicode_ptr and not base_type.is_error: self.to_py_function = "__Pyx_PyUnicode_FromUnicode" if self.is_ptr: self.from_py_function = "__Pyx_PyUnicode_AsUnicode" self.exception_value = "NULL" def py_type_name(self): if self.is_string: return "bytes" elif self.is_pyunicode_ptr: return "unicode" else: return super(CPointerBaseType, self).py_type_name() def literal_code(self, value): if self.is_string: assert isinstance(value, str) return '"%s"' % StringEncoding.escape_byte_string(value) class CArrayType(CPointerBaseType): # base_type CType Element type # size integer or None Number of elements is_array = 1 to_tuple_function = None def __init__(self, base_type, size): super(CArrayType, self).__init__(base_type) self.size = size def __eq__(self, other): if isinstance(other, CType) and other.is_array and self.size == other.size: return self.base_type.same_as(other.base_type) return False def __hash__(self): return hash(self.base_type) + 28 # arbitrarily chosen offset def __repr__(self): return "<CArrayType %s %s>" % (self.size, repr(self.base_type)) def same_as_resolved_type(self, other_type): return ((other_type.is_array and self.base_type.same_as(other_type.base_type)) or other_type is error_type) def assignable_from_resolved_type(self, src_type): # C arrays are assigned by value, either Python containers or C arrays/pointers if src_type.is_pyobject: return True if src_type.is_ptr or src_type.is_array: return self.base_type.assignable_from(src_type.base_type) return False def element_ptr_type(self): return c_ptr_type(self.base_type) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if self.size is not None: dimension_code = self.size else: dimension_code = "" if entity_code.startswith("*"): entity_code = "(%s)" % entity_code return self.base_type.declaration_code( "%s[%s]" % (entity_code, dimension_code), for_display, dll_linkage, pyrex) def as_argument_type(self): return c_ptr_type(self.base_type) def is_complete(self): return self.size is not None def specialize(self, values): base_type = self.base_type.specialize(values) if base_type == self.base_type: return self else: return CArrayType(base_type, self.size) def deduce_template_params(self, actual): if isinstance(actual, CArrayType): return self.base_type.deduce_template_params(actual.base_type) else: return {} def can_coerce_to_pyobject(self, env): return self.base_type.can_coerce_to_pyobject(env) def can_coerce_from_pyobject(self, env): return self.base_type.can_coerce_from_pyobject(env) def create_to_py_utility_code(self, env): if self.to_py_function is not None: return self.to_py_function if not self.base_type.create_to_py_utility_code(env): return False safe_typename = self.base_type.specialization_name() to_py_function = "__Pyx_carray_to_py_%s" % safe_typename to_tuple_function = "__Pyx_carray_to_tuple_%s" % safe_typename from .UtilityCode import CythonUtilityCode context = { 'cname': to_py_function, 'to_tuple_cname': to_tuple_function, 'base_type': self.base_type, } env.use_utility_code(CythonUtilityCode.load( "carray.to_py", "CConvert.pyx", outer_module_scope=env.global_scope(), # need access to types declared in module context=context, compiler_directives=dict(env.global_scope().directives))) self.to_tuple_function = to_tuple_function self.to_py_function = to_py_function return True def to_py_call_code(self, source_code, result_code, result_type, to_py_function=None): func = self.to_py_function if to_py_function is None else to_py_function if self.is_string or self.is_pyunicode_ptr: return '%s = %s(%s)' % ( result_code, func, source_code) target_is_tuple = result_type.is_builtin_type and result_type.name == 'tuple' return '%s = %s(%s, %s)' % ( result_code, self.to_tuple_function if target_is_tuple else func, source_code, self.size) def create_from_py_utility_code(self, env): if self.from_py_function is not None: return self.from_py_function if not self.base_type.create_from_py_utility_code(env): return False from_py_function = "__Pyx_carray_from_py_%s" % self.base_type.specialization_name() from .UtilityCode import CythonUtilityCode context = { 'cname': from_py_function, 'base_type': self.base_type, } env.use_utility_code(CythonUtilityCode.load( "carray.from_py", "CConvert.pyx", outer_module_scope=env.global_scope(), # need access to types declared in module context=context, compiler_directives=dict(env.global_scope().directives))) self.from_py_function = from_py_function return True def from_py_call_code(self, source_code, result_code, error_pos, code, from_py_function=None, error_condition=None): assert not error_condition, '%s: %s' % (error_pos, error_condition) call_code = "%s(%s, %s, %s)" % ( from_py_function or self.from_py_function, source_code, result_code, self.size) return code.error_goto_if_neg(call_code, error_pos) class CPtrType(CPointerBaseType): # base_type CType Reference type is_ptr = 1 default_value = "0" def __hash__(self): return hash(self.base_type) + 27 # arbitrarily chosen offset def __eq__(self, other): if isinstance(other, CType) and other.is_ptr: return self.base_type.same_as(other.base_type) return False def __ne__(self, other): return not (self == other) def __repr__(self): return "<CPtrType %s>" % repr(self.base_type) def same_as_resolved_type(self, other_type): return ((other_type.is_ptr and self.base_type.same_as(other_type.base_type)) or other_type is error_type) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): #print "CPtrType.declaration_code: pointer to", self.base_type ### return self.base_type.declaration_code( "*%s" % entity_code, for_display, dll_linkage, pyrex) def assignable_from_resolved_type(self, other_type): if other_type is error_type: return 1 if other_type.is_null_ptr: return 1 if self.base_type.is_const: self = CPtrType(self.base_type.const_base_type) if self.base_type.is_cfunction: if other_type.is_ptr: other_type = other_type.base_type.resolve() if other_type.is_cfunction: return self.base_type.pointer_assignable_from_resolved_type(other_type) else: return 0 if (self.base_type.is_cpp_class and other_type.is_ptr and other_type.base_type.is_cpp_class and other_type.base_type.is_subclass(self.base_type)): return 1 if other_type.is_array or other_type.is_ptr: return self.base_type.is_void or self.base_type.same_as(other_type.base_type) return 0 def specialize(self, values): base_type = self.base_type.specialize(values) if base_type == self.base_type: return self else: return CPtrType(base_type) def deduce_template_params(self, actual): if isinstance(actual, CPtrType): return self.base_type.deduce_template_params(actual.base_type) else: return {} def invalid_value(self): return "1" def find_cpp_operation_type(self, operator, operand_type=None): if self.base_type.is_cpp_class: return self.base_type.find_cpp_operation_type(operator, operand_type) return None class CNullPtrType(CPtrType): is_null_ptr = 1 class CReferenceType(BaseType): is_reference = 1 is_fake_reference = 0 def __init__(self, base_type): self.ref_base_type = base_type def __repr__(self): return "<CReferenceType %s>" % repr(self.ref_base_type) def __str__(self): return "%s &" % self.ref_base_type def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): #print "CReferenceType.declaration_code: pointer to", self.base_type ### return self.ref_base_type.declaration_code( "&%s" % entity_code, for_display, dll_linkage, pyrex) def specialize(self, values): base_type = self.ref_base_type.specialize(values) if base_type == self.ref_base_type: return self else: return type(self)(base_type) def deduce_template_params(self, actual): return self.ref_base_type.deduce_template_params(actual) def __getattr__(self, name): return getattr(self.ref_base_type, name) class CFakeReferenceType(CReferenceType): is_fake_reference = 1 def __repr__(self): return "<CFakeReferenceType %s>" % repr(self.ref_base_type) def __str__(self): return "%s [&]" % self.ref_base_type def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): #print "CReferenceType.declaration_code: pointer to", self.base_type ### return "__Pyx_FakeReference<%s> %s" % (self.ref_base_type.empty_declaration_code(), entity_code) class CFuncType(CType): # return_type CType # args [CFuncTypeArg] # has_varargs boolean # exception_value string # exception_check boolean True if PyErr_Occurred check needed # calling_convention string Function calling convention # nogil boolean Can be called without gil # with_gil boolean Acquire gil around function body # templates [string] or None # cached_specialized_types [CFuncType] cached specialized versions of the CFuncType if defined in a pxd # from_fused boolean Indicates whether this is a specialized # C function # is_strict_signature boolean function refuses to accept coerced arguments # (used for optimisation overrides) # is_const_method boolean # is_static_method boolean is_cfunction = 1 original_sig = None cached_specialized_types = None from_fused = False is_const_method = False subtypes = ['return_type', 'args'] def __init__(self, return_type, args, has_varargs = 0, exception_value = None, exception_check = 0, calling_convention = "", nogil = 0, with_gil = 0, is_overridable = 0, optional_arg_count = 0, is_const_method = False, is_static_method=False, templates = None, is_strict_signature = False): self.return_type = return_type self.args = args self.has_varargs = has_varargs self.optional_arg_count = optional_arg_count self.exception_value = exception_value self.exception_check = exception_check self.calling_convention = calling_convention self.nogil = nogil self.with_gil = with_gil self.is_overridable = is_overridable self.is_const_method = is_const_method self.is_static_method = is_static_method self.templates = templates self.is_strict_signature = is_strict_signature def __repr__(self): arg_reprs = list(map(repr, self.args)) if self.has_varargs: arg_reprs.append("...") if self.exception_value: except_clause = " %r" % self.exception_value else: except_clause = "" if self.exception_check: except_clause += "?" return "<CFuncType %s %s[%s]%s>" % ( repr(self.return_type), self.calling_convention_prefix(), ",".join(arg_reprs), except_clause) def with_with_gil(self, with_gil): if with_gil == self.with_gil: return self else: return CFuncType( self.return_type, self.args, self.has_varargs, self.exception_value, self.exception_check, self.calling_convention, self.nogil, with_gil, self.is_overridable, self.optional_arg_count, self.is_const_method, self.is_static_method, self.templates, self.is_strict_signature) def calling_convention_prefix(self): cc = self.calling_convention if cc: return cc + " " else: return "" def as_argument_type(self): return c_ptr_type(self) def same_c_signature_as(self, other_type, as_cmethod = 0): return self.same_c_signature_as_resolved_type( other_type.resolve(), as_cmethod) def same_c_signature_as_resolved_type(self, other_type, as_cmethod=False, as_pxd_definition=False, exact_semantics=True): # If 'exact_semantics' is false, allow any equivalent C signatures # if the Cython semantics are compatible, i.e. the same or wider for 'other_type'. #print "CFuncType.same_c_signature_as_resolved_type:", \ # self, other_type, "as_cmethod =", as_cmethod ### if other_type is error_type: return 1 if not other_type.is_cfunction: return 0 if self.is_overridable != other_type.is_overridable: return 0 nargs = len(self.args) if nargs != len(other_type.args): return 0 # When comparing C method signatures, the first argument # is exempt from compatibility checking (the proper check # is performed elsewhere). for i in range(as_cmethod, nargs): if not self.args[i].type.same_as(other_type.args[i].type): return 0 if self.has_varargs != other_type.has_varargs: return 0 if self.optional_arg_count != other_type.optional_arg_count: return 0 if as_pxd_definition: # A narrowing of the return type declared in the pxd is allowed. if not self.return_type.subtype_of_resolved_type(other_type.return_type): return 0 else: if not self.return_type.same_as(other_type.return_type): return 0 if not self.same_calling_convention_as(other_type): return 0 if exact_semantics: if self.exception_check != other_type.exception_check: return 0 if not self._same_exception_value(other_type.exception_value): return 0 elif not self._is_exception_compatible_with(other_type): return 0 return 1 def _same_exception_value(self, other_exc_value): if self.exception_value == other_exc_value: return 1 if self.exception_check != '+': return 0 if not self.exception_value or not other_exc_value: return 0 if self.exception_value.type != other_exc_value.type: return 0 if self.exception_value.entry and other_exc_value.entry: if self.exception_value.entry.cname != other_exc_value.entry.cname: return 0 if self.exception_value.name != other_exc_value.name: return 0 return 1 def compatible_signature_with(self, other_type, as_cmethod = 0): return self.compatible_signature_with_resolved_type(other_type.resolve(), as_cmethod) def compatible_signature_with_resolved_type(self, other_type, as_cmethod): #print "CFuncType.same_c_signature_as_resolved_type:", \ # self, other_type, "as_cmethod =", as_cmethod ### if other_type is error_type: return 1 if not other_type.is_cfunction: return 0 if not self.is_overridable and other_type.is_overridable: return 0 nargs = len(self.args) if nargs - self.optional_arg_count != len(other_type.args) - other_type.optional_arg_count: return 0 if self.optional_arg_count < other_type.optional_arg_count: return 0 # When comparing C method signatures, the first argument # is exempt from compatibility checking (the proper check # is performed elsewhere). for i in range(as_cmethod, len(other_type.args)): if not self.args[i].type.same_as( other_type.args[i].type): return 0 if self.has_varargs != other_type.has_varargs: return 0 if not self.return_type.subtype_of_resolved_type(other_type.return_type): return 0 if not self.same_calling_convention_as(other_type): return 0 if self.nogil != other_type.nogil: return 0 if not self._is_exception_compatible_with(other_type): return 0 self.original_sig = other_type.original_sig or other_type return 1 def _is_exception_compatible_with(self, other_type): # narrower exception checks are ok, but prevent mismatches if self.exception_check == '+' and other_type.exception_check != '+': # must catch C++ exceptions if we raise them return 0 if not other_type.exception_check or other_type.exception_value is not None: # if other does not *always* check exceptions, self must comply if not self._same_exception_value(other_type.exception_value): return 0 if self.exception_check and self.exception_check != other_type.exception_check: # a redundant exception check doesn't make functions incompatible, but a missing one does return 0 return 1 def narrower_c_signature_than(self, other_type, as_cmethod = 0): return self.narrower_c_signature_than_resolved_type(other_type.resolve(), as_cmethod) def narrower_c_signature_than_resolved_type(self, other_type, as_cmethod): if other_type is error_type: return 1 if not other_type.is_cfunction: return 0 nargs = len(self.args) if nargs != len(other_type.args): return 0 for i in range(as_cmethod, nargs): if not self.args[i].type.subtype_of_resolved_type(other_type.args[i].type): return 0 else: self.args[i].needs_type_test = other_type.args[i].needs_type_test \ or not self.args[i].type.same_as(other_type.args[i].type) if self.has_varargs != other_type.has_varargs: return 0 if self.optional_arg_count != other_type.optional_arg_count: return 0 if not self.return_type.subtype_of_resolved_type(other_type.return_type): return 0 if not self.exception_check and other_type.exception_check: # a redundant exception check doesn't make functions incompatible, but a missing one does return 0 if not self._same_exception_value(other_type.exception_value): return 0 return 1 def same_calling_convention_as(self, other): ## XXX Under discussion ... ## callspec_words = ("__stdcall", "__cdecl", "__fastcall") ## cs1 = self.calling_convention ## cs2 = other.calling_convention ## if (cs1 in callspec_words or ## cs2 in callspec_words): ## return cs1 == cs2 ## else: ## return True sc1 = self.calling_convention == '__stdcall' sc2 = other.calling_convention == '__stdcall' return sc1 == sc2 def same_as_resolved_type(self, other_type, as_cmethod=False): return self.same_c_signature_as_resolved_type(other_type, as_cmethod=as_cmethod) \ and self.nogil == other_type.nogil def pointer_assignable_from_resolved_type(self, rhs_type): # Accept compatible exception/nogil declarations for the RHS. if rhs_type is error_type: return 1 if not rhs_type.is_cfunction: return 0 return rhs_type.same_c_signature_as_resolved_type(self, exact_semantics=False) \ and not (self.nogil and not rhs_type.nogil) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0, with_calling_convention = 1): arg_decl_list = [] for arg in self.args[:len(self.args)-self.optional_arg_count]: arg_decl_list.append( arg.type.declaration_code("", for_display, pyrex = pyrex)) if self.is_overridable: arg_decl_list.append("int %s" % Naming.skip_dispatch_cname) if self.optional_arg_count: arg_decl_list.append(self.op_arg_struct.declaration_code(Naming.optional_args_cname)) if self.has_varargs: arg_decl_list.append("...") arg_decl_code = ", ".join(arg_decl_list) if not arg_decl_code and not pyrex: arg_decl_code = "void" trailer = "" if (pyrex or for_display) and not self.return_type.is_pyobject: if self.exception_value and self.exception_check: trailer = " except? %s" % self.exception_value elif self.exception_value: trailer = " except %s" % self.exception_value elif self.exception_check == '+': trailer = " except +" elif self.exception_check and for_display: # not spelled out by default, unless for human eyes trailer = " except *" if self.nogil: trailer += " nogil" if not with_calling_convention: cc = '' else: cc = self.calling_convention_prefix() if (not entity_code and cc) or entity_code.startswith("*"): entity_code = "(%s%s)" % (cc, entity_code) cc = "" if self.is_const_method: trailer += " const" return self.return_type.declaration_code( "%s%s(%s)%s" % (cc, entity_code, arg_decl_code, trailer), for_display, dll_linkage, pyrex) def function_header_code(self, func_name, arg_code): if self.is_const_method: trailer = " const" else: trailer = "" return "%s%s(%s)%s" % (self.calling_convention_prefix(), func_name, arg_code, trailer) def signature_string(self): s = self.empty_declaration_code() return s def signature_cast_string(self): s = self.declaration_code("(*)", with_calling_convention=False) return '(%s)' % s def specialize(self, values): result = CFuncType(self.return_type.specialize(values), [arg.specialize(values) for arg in self.args], has_varargs = self.has_varargs, exception_value = self.exception_value, exception_check = self.exception_check, calling_convention = self.calling_convention, nogil = self.nogil, with_gil = self.with_gil, is_overridable = self.is_overridable, optional_arg_count = self.optional_arg_count, is_const_method = self.is_const_method, is_static_method = self.is_static_method, templates = self.templates) result.from_fused = self.is_fused return result def opt_arg_cname(self, arg_name): return self.op_arg_struct.base_type.scope.lookup(arg_name).cname # Methods that deal with Fused Types # All but map_with_specific_entries should be called only on functions # with fused types (and not on their corresponding specific versions). def get_all_specialized_permutations(self, fused_types=None): """ Permute all the types. For every specific instance of a fused type, we want all other specific instances of all other fused types. It returns an iterable of two-tuples of the cname that should prefix the cname of the function, and a dict mapping any fused types to their respective specific types. """ assert self.is_fused if fused_types is None: fused_types = self.get_fused_types() return get_all_specialized_permutations(fused_types) def get_all_specialized_function_types(self): """ Get all the specific function types of this one. """ assert self.is_fused if self.entry.fused_cfunction: return [n.type for n in self.entry.fused_cfunction.nodes] elif self.cached_specialized_types is not None: return self.cached_specialized_types result = [] permutations = self.get_all_specialized_permutations() new_cfunc_entries = [] for cname, fused_to_specific in permutations: new_func_type = self.entry.type.specialize(fused_to_specific) if self.optional_arg_count: # Remember, this method is set by CFuncDeclaratorNode self.declare_opt_arg_struct(new_func_type, cname) new_entry = copy.deepcopy(self.entry) new_func_type.specialize_entry(new_entry, cname) new_entry.type = new_func_type new_func_type.entry = new_entry result.append(new_func_type) new_cfunc_entries.append(new_entry) cfunc_entries = self.entry.scope.cfunc_entries try: cindex = cfunc_entries.index(self.entry) except ValueError: cfunc_entries.extend(new_cfunc_entries) else: cfunc_entries[cindex:cindex+1] = new_cfunc_entries self.cached_specialized_types = result return result def get_fused_types(self, result=None, seen=None, subtypes=None): """Return fused types in the order they appear as parameter types""" return super(CFuncType, self).get_fused_types(result, seen, subtypes=['args']) def specialize_entry(self, entry, cname): assert not self.is_fused specialize_entry(entry, cname) def can_coerce_to_pyobject(self, env): # duplicating the decisions from create_to_py_utility_code() here avoids writing out unused code if self.has_varargs or self.optional_arg_count: return False if self.to_py_function is not None: return self.to_py_function for arg in self.args: if not arg.type.is_pyobject and not arg.type.can_coerce_to_pyobject(env): return False if not self.return_type.is_pyobject and not self.return_type.can_coerce_to_pyobject(env): return False return True def create_to_py_utility_code(self, env): # FIXME: it seems we're trying to coerce in more cases than we should if self.to_py_function is not None: return self.to_py_function if not self.can_coerce_to_pyobject(env): return False from .UtilityCode import CythonUtilityCode safe_typename = re.sub('[^a-zA-Z0-9]', '__', self.declaration_code("", pyrex=1)) to_py_function = "__Pyx_CFunc_%s_to_py" % safe_typename for arg in self.args: if not arg.type.is_pyobject and not arg.type.create_from_py_utility_code(env): return False if not self.return_type.is_pyobject and not self.return_type.create_to_py_utility_code(env): return False def declared_type(ctype): type_displayname = str(ctype.declaration_code("", for_display=True)) if ctype.is_pyobject: arg_ctype = type_name = type_displayname if ctype.is_builtin_type: arg_ctype = ctype.name elif not ctype.is_extension_type: type_name = 'object' type_displayname = None else: type_displayname = repr(type_displayname) elif ctype is c_bint_type: type_name = arg_ctype = 'bint' else: type_name = arg_ctype = type_displayname if ctype is c_double_type: type_displayname = 'float' else: type_displayname = repr(type_displayname) return type_name, arg_ctype, type_displayname class Arg(object): def __init__(self, arg_name, arg_type): self.name = arg_name self.type = arg_type self.type_cname, self.ctype, self.type_displayname = declared_type(arg_type) if self.return_type.is_void: except_clause = 'except *' elif self.return_type.is_pyobject: except_clause = '' elif self.exception_value: except_clause = ('except? %s' if self.exception_check else 'except %s') % self.exception_value else: except_clause = 'except *' context = { 'cname': to_py_function, 'args': [Arg(arg.name or 'arg%s' % ix, arg.type) for ix, arg in enumerate(self.args)], 'return_type': Arg('return', self.return_type), 'except_clause': except_clause, } # FIXME: directives come from first defining environment and do not adapt for reuse env.use_utility_code(CythonUtilityCode.load( "cfunc.to_py", "CConvert.pyx", outer_module_scope=env.global_scope(), # need access to types declared in module context=context, compiler_directives=dict(env.global_scope().directives))) self.to_py_function = to_py_function return True def specialize_entry(entry, cname): """ Specialize an entry of a copied fused function or method """ entry.is_fused_specialized = True entry.name = get_fused_cname(cname, entry.name) if entry.is_cmethod: entry.cname = entry.name if entry.is_inherited: entry.cname = StringEncoding.EncodedString( "%s.%s" % (Naming.obj_base_cname, entry.cname)) else: entry.cname = get_fused_cname(cname, entry.cname) if entry.func_cname: entry.func_cname = get_fused_cname(cname, entry.func_cname) def get_fused_cname(fused_cname, orig_cname): """ Given the fused cname id and an original cname, return a specialized cname """ assert fused_cname and orig_cname return StringEncoding.EncodedString('%s%s%s' % (Naming.fused_func_prefix, fused_cname, orig_cname)) def unique(somelist): seen = set() result = [] for obj in somelist: if obj not in seen: result.append(obj) seen.add(obj) return result def get_all_specialized_permutations(fused_types): return _get_all_specialized_permutations(unique(fused_types)) def _get_all_specialized_permutations(fused_types, id="", f2s=()): fused_type, = fused_types[0].get_fused_types() result = [] for newid, specific_type in enumerate(fused_type.types): # f2s = dict(f2s, **{ fused_type: specific_type }) f2s = dict(f2s) f2s.update({ fused_type: specific_type }) if id: cname = '%s_%s' % (id, newid) else: cname = str(newid) if len(fused_types) > 1: result.extend(_get_all_specialized_permutations( fused_types[1:], cname, f2s)) else: result.append((cname, f2s)) return result def specialization_signature_string(fused_compound_type, fused_to_specific): """ Return the signature for a specialization of a fused type. e.g. floating[:] -> 'float' or 'double' cdef fused ft: float[:] double[:] ft -> 'float[:]' or 'double[:]' integral func(floating) -> 'int (*func)(float)' or ... """ fused_types = fused_compound_type.get_fused_types() if len(fused_types) == 1: fused_type = fused_types[0] else: fused_type = fused_compound_type return fused_type.specialize(fused_to_specific).typeof_name() def get_specialized_types(type): """ Return a list of specialized types in their declared order. """ assert type.is_fused if isinstance(type, FusedType): result = list(type.types) for specialized_type in result: specialized_type.specialization_string = specialized_type.typeof_name() else: result = [] for cname, f2s in get_all_specialized_permutations(type.get_fused_types()): specialized_type = type.specialize(f2s) specialized_type.specialization_string = ( specialization_signature_string(type, f2s)) result.append(specialized_type) return result class CFuncTypeArg(BaseType): # name string # cname string # type PyrexType # pos source file position # FIXME: is this the right setup? should None be allowed here? not_none = False or_none = False accept_none = True accept_builtin_subtypes = False annotation = None subtypes = ['type'] def __init__(self, name, type, pos, cname=None, annotation=None): self.name = name if cname is not None: self.cname = cname else: self.cname = Naming.var_prefix + name if annotation is not None: self.annotation = annotation self.type = type self.pos = pos self.needs_type_test = False # TODO: should these defaults be set in analyse_types()? def __repr__(self): return "%s:%s" % (self.name, repr(self.type)) def declaration_code(self, for_display = 0): return self.type.declaration_code(self.cname, for_display) def specialize(self, values): return CFuncTypeArg(self.name, self.type.specialize(values), self.pos, self.cname) class ToPyStructUtilityCode(object): requires = None def __init__(self, type, forward_decl, env): self.type = type self.header = "static PyObject* %s(%s)" % (type.to_py_function, type.declaration_code('s')) self.forward_decl = forward_decl self.env = env def __eq__(self, other): return isinstance(other, ToPyStructUtilityCode) and self.header == other.header def __hash__(self): return hash(self.header) def get_tree(self, **kwargs): pass def put_code(self, output): code = output['utility_code_def'] proto = output['utility_code_proto'] code.putln("%s {" % self.header) code.putln("PyObject* res;") code.putln("PyObject* member;") code.putln("res = __Pyx_PyDict_NewPresized(%d); if (unlikely(!res)) return NULL;" % len(self.type.scope.var_entries)) for member in self.type.scope.var_entries: nameconst_cname = code.get_py_string_const(member.name, identifier=True) code.putln("%s; if (unlikely(!member)) goto bad;" % ( member.type.to_py_call_code('s.%s' % member.cname, 'member', member.type))) code.putln("if (unlikely(PyDict_SetItem(res, %s, member) < 0)) goto bad;" % nameconst_cname) code.putln("Py_DECREF(member);") code.putln("return res;") code.putln("bad:") code.putln("Py_XDECREF(member);") code.putln("Py_DECREF(res);") code.putln("return NULL;") code.putln("}") # This is a bit of a hack, we need a forward declaration # due to the way things are ordered in the module... if self.forward_decl: proto.putln(self.type.empty_declaration_code() + ';') proto.putln(self.header + ";") def inject_tree_and_scope_into(self, module_node): pass class CStructOrUnionType(CType): # name string # cname string # kind string "struct" or "union" # scope StructOrUnionScope, or None if incomplete # typedef_flag boolean # packed boolean # entry Entry is_struct_or_union = 1 has_attributes = 1 exception_check = True def __init__(self, name, kind, scope, typedef_flag, cname, packed=False): self.name = name self.cname = cname self.kind = kind self.scope = scope self.typedef_flag = typedef_flag self.is_struct = kind == 'struct' self.to_py_function = "%s_to_py_%s" % ( Naming.convert_func_prefix, self.specialization_name()) self.from_py_function = "%s_from_py_%s" % ( Naming.convert_func_prefix, self.specialization_name()) self.exception_check = True self._convert_to_py_code = None self._convert_from_py_code = None self.packed = packed def can_coerce_to_pyobject(self, env): if self._convert_to_py_code is False: return None # tri-state-ish if env.outer_scope is None: return False if self._convert_to_py_code is None: is_union = not self.is_struct unsafe_union_types = set() safe_union_types = set() for member in self.scope.var_entries: member_type = member.type if not member_type.can_coerce_to_pyobject(env): self.to_py_function = None self._convert_to_py_code = False return False if is_union: if member_type.is_ptr or member_type.is_cpp_class: unsafe_union_types.add(member_type) else: safe_union_types.add(member_type) if unsafe_union_types and (safe_union_types or len(unsafe_union_types) > 1): # unsafe mix of safe and unsafe to convert types self.from_py_function = None self._convert_from_py_code = False return False return True def create_to_py_utility_code(self, env): if not self.can_coerce_to_pyobject(env): return False if self._convert_to_py_code is None: for member in self.scope.var_entries: member.type.create_to_py_utility_code(env) forward_decl = self.entry.visibility != 'extern' and not self.typedef_flag self._convert_to_py_code = ToPyStructUtilityCode(self, forward_decl, env) env.use_utility_code(self._convert_to_py_code) return True def can_coerce_from_pyobject(self, env): if env.outer_scope is None or self._convert_from_py_code is False: return False for member in self.scope.var_entries: if not member.type.can_coerce_from_pyobject(env): return False return True def create_from_py_utility_code(self, env): if env.outer_scope is None: return False if self._convert_from_py_code is False: return None # tri-state-ish if self._convert_from_py_code is None: if not self.scope.var_entries: # There are obviously missing fields; don't allow instantiation # where absolutely no content is provided. return False for member in self.scope.var_entries: if not member.type.create_from_py_utility_code(env): self.from_py_function = None self._convert_from_py_code = False return False context = dict( struct_type=self, var_entries=self.scope.var_entries, funcname=self.from_py_function, ) from .UtilityCode import CythonUtilityCode self._convert_from_py_code = CythonUtilityCode.load( "FromPyStructUtility" if self.is_struct else "FromPyUnionUtility", "CConvert.pyx", outer_module_scope=env.global_scope(), # need access to types declared in module context=context) env.use_utility_code(self._convert_from_py_code) return True def __repr__(self): return "<CStructOrUnionType %s %s%s>" % ( self.name, self.cname, ("", " typedef")[self.typedef_flag]) def declaration_code(self, entity_code, for_display=0, dll_linkage=None, pyrex=0): if pyrex or for_display: base_code = self.name else: if self.typedef_flag: base_code = self.cname else: base_code = "%s %s" % (self.kind, self.cname) base_code = public_decl(base_code, dll_linkage) return self.base_declaration_code(base_code, entity_code) def __eq__(self, other): try: return (isinstance(other, CStructOrUnionType) and self.name == other.name) except AttributeError: return False def __lt__(self, other): try: return self.name < other.name except AttributeError: # this is arbitrary, but it makes sure we always have # *some* kind of order return False def __hash__(self): return hash(self.cname) ^ hash(self.kind) def is_complete(self): return self.scope is not None def attributes_known(self): return self.is_complete() def can_be_complex(self): # Does the struct consist of exactly two identical floats? fields = self.scope.var_entries if len(fields) != 2: return False a, b = fields return (a.type.is_float and b.type.is_float and a.type.empty_declaration_code() == b.type.empty_declaration_code()) def struct_nesting_depth(self): child_depths = [x.type.struct_nesting_depth() for x in self.scope.var_entries] return max(child_depths) + 1 def cast_code(self, expr_code): if self.is_struct: return expr_code return super(CStructOrUnionType, self).cast_code(expr_code) cpp_string_conversions = ("std::string",) builtin_cpp_conversions = { # type element template params "std::pair": 2, "std::vector": 1, "std::list": 1, "std::set": 1, "std::unordered_set": 1, "std::map": 2, "std::unordered_map": 2, "std::complex": 1, } class CppClassType(CType): # name string # cname string # scope CppClassScope # templates [string] or None is_cpp_class = 1 has_attributes = 1 exception_check = True namespace = None # For struct-like declaration. kind = "struct" packed = False typedef_flag = False subtypes = ['templates'] def __init__(self, name, scope, cname, base_classes, templates=None, template_type=None): self.name = name self.cname = cname self.scope = scope self.base_classes = base_classes self.operators = [] self.templates = templates self.template_type = template_type self.num_optional_templates = sum(is_optional_template_param(T) for T in templates or ()) if templates: self.specializations = {tuple(zip(templates, templates)): self} else: self.specializations = {} self.is_cpp_string = cname in cpp_string_conversions def use_conversion_utility(self, from_or_to): pass def maybe_unordered(self): if 'unordered' in self.cname: return 'unordered_' else: return '' def can_coerce_from_pyobject(self, env): if self.cname in builtin_cpp_conversions: template_count = builtin_cpp_conversions[self.cname] for ix, T in enumerate(self.templates or []): if ix >= template_count: break if T.is_pyobject or not T.can_coerce_from_pyobject(env): return False return True elif self.cname in cpp_string_conversions: return True return False def create_from_py_utility_code(self, env): if self.from_py_function is not None: return True if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions: X = "XYZABC" tags = [] context = {} for ix, T in enumerate(self.templates or []): if ix >= builtin_cpp_conversions[self.cname]: break if T.is_pyobject or not T.create_from_py_utility_code(env): return False tags.append(T.specialization_name()) context[X[ix]] = T if self.cname in cpp_string_conversions: cls = 'string' tags = type_identifier(self), else: cls = self.cname[5:] cname = '__pyx_convert_%s_from_py_%s' % (cls, '__and_'.join(tags)) context.update({ 'cname': cname, 'maybe_unordered': self.maybe_unordered(), 'type': self.cname, }) from .UtilityCode import CythonUtilityCode env.use_utility_code(CythonUtilityCode.load( cls.replace('unordered_', '') + ".from_py", "CppConvert.pyx", context=context, compiler_directives=env.directives)) self.from_py_function = cname return True def can_coerce_to_pyobject(self, env): if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions: for ix, T in enumerate(self.templates or []): if ix >= builtin_cpp_conversions[self.cname]: break if T.is_pyobject or not T.can_coerce_to_pyobject(env): return False return True def create_to_py_utility_code(self, env): if self.to_py_function is not None: return True if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions: X = "XYZABC" tags = [] context = {} for ix, T in enumerate(self.templates or []): if ix >= builtin_cpp_conversions[self.cname]: break if not T.create_to_py_utility_code(env): return False tags.append(T.specialization_name()) context[X[ix]] = T if self.cname in cpp_string_conversions: cls = 'string' prefix = 'PyObject_' # gets specialised by explicit type casts in CoerceToPyTypeNode tags = type_identifier(self), else: cls = self.cname[5:] prefix = '' cname = "__pyx_convert_%s%s_to_py_%s" % (prefix, cls, "____".join(tags)) context.update({ 'cname': cname, 'maybe_unordered': self.maybe_unordered(), 'type': self.cname, }) from .UtilityCode import CythonUtilityCode env.use_utility_code(CythonUtilityCode.load( cls.replace('unordered_', '') + ".to_py", "CppConvert.pyx", context=context, compiler_directives=env.directives)) self.to_py_function = cname return True def is_template_type(self): return self.templates is not None and self.template_type is None def get_fused_types(self, result=None, seen=None): if result is None: result = [] seen = set() if self.namespace: self.namespace.get_fused_types(result, seen) if self.templates: for T in self.templates: T.get_fused_types(result, seen) return result def specialize_here(self, pos, template_values=None): if not self.is_template_type(): error(pos, "'%s' type is not a template" % self) return error_type if len(self.templates) - self.num_optional_templates <= len(template_values) < len(self.templates): num_defaults = len(self.templates) - len(template_values) partial_specialization = self.declaration_code('', template_params=template_values) # Most of the time we don't need to declare anything typed to these # default template arguments, but when we do there's no way in C++ # to reference this directly. However, it is common convention to # provide a typedef in the template class that resolves to each # template type. For now, allow the user to specify this name as # the template parameter. # TODO: Allow typedefs in cpp classes and search for it in this # classes scope as a concrete name we could use. template_values = template_values + [ TemplatePlaceholderType( "%s::%s" % (partial_specialization, param.name), True) for param in self.templates[-num_defaults:]] if len(self.templates) != len(template_values): error(pos, "%s templated type receives %d arguments, got %d" % (self.name, len(self.templates), len(template_values))) return error_type has_object_template_param = False for value in template_values: if value.is_pyobject: has_object_template_param = True error(pos, "Python object type '%s' cannot be used as a template argument" % value) if has_object_template_param: return error_type return self.specialize(dict(zip(self.templates, template_values))) def specialize(self, values): if not self.templates and not self.namespace: return self if self.templates is None: self.templates = [] key = tuple(values.items()) if key in self.specializations: return self.specializations[key] template_values = [t.specialize(values) for t in self.templates] specialized = self.specializations[key] = \ CppClassType(self.name, None, self.cname, [], template_values, template_type=self) # Need to do these *after* self.specializations[key] is set # to avoid infinite recursion on circular references. specialized.base_classes = [b.specialize(values) for b in self.base_classes] if self.namespace is not None: specialized.namespace = self.namespace.specialize(values) specialized.scope = self.scope.specialize(values, specialized) if self.cname == 'std::vector': # vector<bool> is special cased in the C++ standard, and its # accessors do not necessarily return references to the underlying # elements (which may be bit-packed). # http://www.cplusplus.com/reference/vector/vector-bool/ # Here we pretend that the various methods return bool values # (as the actual returned values are coercable to such, and # we don't support call expressions as lvalues). T = values.get(self.templates[0], None) if T and not T.is_fused and T.empty_declaration_code() == 'bool': for bit_ref_returner in ('at', 'back', 'front'): if bit_ref_returner in specialized.scope.entries: specialized.scope.entries[bit_ref_returner].type.return_type = T return specialized def deduce_template_params(self, actual): if actual.is_const: actual = actual.const_base_type if actual.is_reference: actual = actual.ref_base_type if self == actual: return {} elif actual.is_cpp_class: self_template_type = self while getattr(self_template_type, 'template_type', None): self_template_type = self_template_type.template_type def all_bases(cls): yield cls for parent in cls.base_classes: for base in all_bases(parent): yield base for actual_base in all_bases(actual): template_type = actual_base while getattr(template_type, 'template_type', None): template_type = template_type.template_type if (self_template_type.empty_declaration_code() == template_type.empty_declaration_code()): return reduce( merge_template_deductions, [formal_param.deduce_template_params(actual_param) for (formal_param, actual_param) in zip(self.templates, actual_base.templates)], {}) else: return {} def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0, template_params = None): if template_params is None: template_params = self.templates if self.templates: template_strings = [param.declaration_code('', for_display, None, pyrex) for param in template_params if not is_optional_template_param(param) and not param.is_fused] if for_display: brackets = "[%s]" else: brackets = "<%s> " templates = brackets % ",".join(template_strings) else: templates = "" if pyrex or for_display: base_code = "%s%s" % (self.name, templates) else: base_code = "%s%s" % (self.cname, templates) if self.namespace is not None: base_code = "%s::%s" % (self.namespace.empty_declaration_code(), base_code) base_code = public_decl(base_code, dll_linkage) return self.base_declaration_code(base_code, entity_code) def is_subclass(self, other_type): if self.same_as_resolved_type(other_type): return 1 for base_class in self.base_classes: if base_class.is_subclass(other_type): return 1 return 0 def subclass_dist(self, super_type): if self.same_as_resolved_type(super_type): return 0 elif not self.base_classes: return float('inf') else: return 1 + min(b.subclass_dist(super_type) for b in self.base_classes) def same_as_resolved_type(self, other_type): if other_type.is_cpp_class: if self == other_type: return 1 # This messy logic is needed due to GH Issue #1852. elif (self.cname == other_type.cname and (self.template_type and other_type.template_type or self.templates or other_type.templates)): if self.templates == other_type.templates: return 1 for t1, t2 in zip(self.templates, other_type.templates): if is_optional_template_param(t1) and is_optional_template_param(t2): break if not t1.same_as_resolved_type(t2): return 0 return 1 return 0 def assignable_from_resolved_type(self, other_type): # TODO: handle operator=(...) here? if other_type is error_type: return True elif other_type.is_cpp_class: return other_type.is_subclass(self) elif other_type.is_string and self.cname in cpp_string_conversions: return True def attributes_known(self): return self.scope is not None def find_cpp_operation_type(self, operator, operand_type=None): operands = [self] if operand_type is not None: operands.append(operand_type) # pos == None => no errors operator_entry = self.scope.lookup_operator_for_types(None, operator, operands) if not operator_entry: return None func_type = operator_entry.type if func_type.is_ptr: func_type = func_type.base_type return func_type.return_type def check_nullary_constructor(self, pos, msg="stack allocated"): constructor = self.scope.lookup(u'<init>') if constructor is not None and best_match([], constructor.all_alternatives()) is None: error(pos, "C++ class must have a nullary constructor to be %s" % msg) class TemplatePlaceholderType(CType): def __init__(self, name, optional=False): self.name = name self.optional = optional def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if entity_code: return self.name + " " + entity_code else: return self.name def specialize(self, values): if self in values: return values[self] else: return self def deduce_template_params(self, actual): return {self: actual} def same_as_resolved_type(self, other_type): if isinstance(other_type, TemplatePlaceholderType): return self.name == other_type.name else: return 0 def __hash__(self): return hash(self.name) def __cmp__(self, other): if isinstance(other, TemplatePlaceholderType): return cmp(self.name, other.name) else: return cmp(type(self), type(other)) def __eq__(self, other): if isinstance(other, TemplatePlaceholderType): return self.name == other.name else: return False def is_optional_template_param(type): return isinstance(type, TemplatePlaceholderType) and type.optional class CEnumType(CIntLike, CType): # name string # cname string or None # typedef_flag boolean # values [string], populated during declaration analysis is_enum = 1 signed = 1 rank = -1 # Ranks below any integer type def __init__(self, name, cname, typedef_flag, namespace=None): self.name = name self.cname = cname self.values = [] self.typedef_flag = typedef_flag self.namespace = namespace self.default_value = "(%s) 0" % self.empty_declaration_code() def __str__(self): return self.name def __repr__(self): return "<CEnumType %s %s%s>" % (self.name, self.cname, ("", " typedef")[self.typedef_flag]) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: base_code = self.name else: if self.namespace: base_code = "%s::%s" % ( self.namespace.empty_declaration_code(), self.cname) elif self.typedef_flag: base_code = self.cname else: base_code = "enum %s" % self.cname base_code = public_decl(base_code, dll_linkage) return self.base_declaration_code(base_code, entity_code) def specialize(self, values): if self.namespace: namespace = self.namespace.specialize(values) if namespace != self.namespace: return CEnumType( self.name, self.cname, self.typedef_flag, namespace) return self def create_type_wrapper(self, env): from .UtilityCode import CythonUtilityCode env.use_utility_code(CythonUtilityCode.load( "EnumType", "CpdefEnums.pyx", context={"name": self.name, "items": tuple(self.values)}, outer_module_scope=env.global_scope())) class CTupleType(CType): # components [PyrexType] is_ctuple = True def __init__(self, cname, components): self.cname = cname self.components = components self.size = len(components) self.to_py_function = "%s_to_py_%s" % (Naming.convert_func_prefix, self.cname) self.from_py_function = "%s_from_py_%s" % (Naming.convert_func_prefix, self.cname) self.exception_check = True self._convert_to_py_code = None self._convert_from_py_code = None def __str__(self): return "(%s)" % ", ".join(str(c) for c in self.components) def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): if pyrex or for_display: return str(self) else: return self.base_declaration_code(self.cname, entity_code) def can_coerce_to_pyobject(self, env): for component in self.components: if not component.can_coerce_to_pyobject(env): return False return True def can_coerce_from_pyobject(self, env): for component in self.components: if not component.can_coerce_from_pyobject(env): return False return True def create_to_py_utility_code(self, env): if self._convert_to_py_code is False: return None # tri-state-ish if self._convert_to_py_code is None: for component in self.components: if not component.create_to_py_utility_code(env): self.to_py_function = None self._convert_to_py_code = False return False context = dict( struct_type_decl=self.empty_declaration_code(), components=self.components, funcname=self.to_py_function, size=len(self.components) ) self._convert_to_py_code = TempitaUtilityCode.load( "ToPyCTupleUtility", "TypeConversion.c", context=context) env.use_utility_code(self._convert_to_py_code) return True def create_from_py_utility_code(self, env): if self._convert_from_py_code is False: return None # tri-state-ish if self._convert_from_py_code is None: for component in self.components: if not component.create_from_py_utility_code(env): self.from_py_function = None self._convert_from_py_code = False return False context = dict( struct_type_decl=self.empty_declaration_code(), components=self.components, funcname=self.from_py_function, size=len(self.components) ) self._convert_from_py_code = TempitaUtilityCode.load( "FromPyCTupleUtility", "TypeConversion.c", context=context) env.use_utility_code(self._convert_from_py_code) return True def c_tuple_type(components): components = tuple(components) cname = Naming.ctuple_type_prefix + type_list_identifier(components) tuple_type = CTupleType(cname, components) return tuple_type class UnspecifiedType(PyrexType): # Used as a placeholder until the type can be determined. is_unspecified = 1 def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): return "<unspecified>" def same_as_resolved_type(self, other_type): return False class ErrorType(PyrexType): # Used to prevent propagation of error messages. is_error = 1 exception_value = "0" exception_check = 0 to_py_function = "dummy" from_py_function = "dummy" def create_to_py_utility_code(self, env): return True def create_from_py_utility_code(self, env): return True def declaration_code(self, entity_code, for_display = 0, dll_linkage = None, pyrex = 0): return "<error>" def same_as_resolved_type(self, other_type): return 1 def error_condition(self, result_code): return "dummy" rank_to_type_name = ( "char", # 0 "short", # 1 "int", # 2 "long", # 3 "PY_LONG_LONG", # 4 "float", # 5 "double", # 6 "long double", # 7 ) _rank_to_type_name = list(rank_to_type_name) RANK_INT = _rank_to_type_name.index('int') RANK_LONG = _rank_to_type_name.index('long') RANK_FLOAT = _rank_to_type_name.index('float') UNSIGNED = 0 SIGNED = 2 error_type = ErrorType() unspecified_type = UnspecifiedType() py_object_type = PyObjectType() c_void_type = CVoidType() c_uchar_type = CIntType(0, UNSIGNED) c_ushort_type = CIntType(1, UNSIGNED) c_uint_type = CIntType(2, UNSIGNED) c_ulong_type = CIntType(3, UNSIGNED) c_ulonglong_type = CIntType(4, UNSIGNED) c_char_type = CIntType(0) c_short_type = CIntType(1) c_int_type = CIntType(2) c_long_type = CIntType(3) c_longlong_type = CIntType(4) c_schar_type = CIntType(0, SIGNED) c_sshort_type = CIntType(1, SIGNED) c_sint_type = CIntType(2, SIGNED) c_slong_type = CIntType(3, SIGNED) c_slonglong_type = CIntType(4, SIGNED) c_float_type = CFloatType(5, math_h_modifier='f') c_double_type = CFloatType(6) c_longdouble_type = CFloatType(7, math_h_modifier='l') c_float_complex_type = CComplexType(c_float_type) c_double_complex_type = CComplexType(c_double_type) c_longdouble_complex_type = CComplexType(c_longdouble_type) c_anon_enum_type = CAnonEnumType(-1) c_returncode_type = CReturnCodeType(RANK_INT) c_bint_type = CBIntType(RANK_INT) c_py_unicode_type = CPyUnicodeIntType(RANK_INT-0.5, UNSIGNED) c_py_ucs4_type = CPyUCS4IntType(RANK_LONG-0.5, UNSIGNED) c_py_hash_t_type = CPyHashTType(RANK_LONG+0.5, SIGNED) c_py_ssize_t_type = CPySSizeTType(RANK_LONG+0.5, SIGNED) c_ssize_t_type = CSSizeTType(RANK_LONG+0.5, SIGNED) c_size_t_type = CSizeTType(RANK_LONG+0.5, UNSIGNED) c_ptrdiff_t_type = CPtrdiffTType(RANK_LONG+0.75, SIGNED) c_null_ptr_type = CNullPtrType(c_void_type) c_void_ptr_type = CPtrType(c_void_type) c_void_ptr_ptr_type = CPtrType(c_void_ptr_type) c_char_ptr_type = CPtrType(c_char_type) c_const_char_ptr_type = CPtrType(CConstType(c_char_type)) c_uchar_ptr_type = CPtrType(c_uchar_type) c_const_uchar_ptr_type = CPtrType(CConstType(c_uchar_type)) c_char_ptr_ptr_type = CPtrType(c_char_ptr_type) c_int_ptr_type = CPtrType(c_int_type) c_py_unicode_ptr_type = CPtrType(c_py_unicode_type) c_const_py_unicode_ptr_type = CPtrType(CConstType(c_py_unicode_type)) c_py_ssize_t_ptr_type = CPtrType(c_py_ssize_t_type) c_ssize_t_ptr_type = CPtrType(c_ssize_t_type) c_size_t_ptr_type = CPtrType(c_size_t_type) # GIL state c_gilstate_type = CEnumType("PyGILState_STATE", "PyGILState_STATE", True) c_threadstate_type = CStructOrUnionType("PyThreadState", "struct", None, 1, "PyThreadState") c_threadstate_ptr_type = CPtrType(c_threadstate_type) # PEP-539 "Py_tss_t" type c_pytss_t_type = CPyTSSTType() # the Py_buffer type is defined in Builtin.py c_py_buffer_type = CStructOrUnionType("Py_buffer", "struct", None, 1, "Py_buffer") c_py_buffer_ptr_type = CPtrType(c_py_buffer_type) # Not sure whether the unsigned versions and 'long long' should be in there # long long requires C99 and might be slow, and would always get preferred # when specialization happens through calling and not indexing cy_integral_type = FusedType([c_short_type, c_int_type, c_long_type], name="integral") # Omitting long double as it might be slow cy_floating_type = FusedType([c_float_type, c_double_type], name="floating") cy_numeric_type = FusedType([c_short_type, c_int_type, c_long_type, c_float_type, c_double_type, c_float_complex_type, c_double_complex_type], name="numeric") # buffer-related structs c_buf_diminfo_type = CStructOrUnionType("__Pyx_Buf_DimInfo", "struct", None, 1, "__Pyx_Buf_DimInfo") c_pyx_buffer_type = CStructOrUnionType("__Pyx_Buffer", "struct", None, 1, "__Pyx_Buffer") c_pyx_buffer_ptr_type = CPtrType(c_pyx_buffer_type) c_pyx_buffer_nd_type = CStructOrUnionType("__Pyx_LocalBuf_ND", "struct", None, 1, "__Pyx_LocalBuf_ND") cython_memoryview_type = CStructOrUnionType("__pyx_memoryview_obj", "struct", None, 0, "__pyx_memoryview_obj") memoryviewslice_type = CStructOrUnionType("memoryviewslice", "struct", None, 1, "__Pyx_memviewslice") modifiers_and_name_to_type = { #(signed, longness, name) : type (0, 0, "char"): c_uchar_type, (1, 0, "char"): c_char_type, (2, 0, "char"): c_schar_type, (0, -1, "int"): c_ushort_type, (0, 0, "int"): c_uint_type, (0, 1, "int"): c_ulong_type, (0, 2, "int"): c_ulonglong_type, (1, -1, "int"): c_short_type, (1, 0, "int"): c_int_type, (1, 1, "int"): c_long_type, (1, 2, "int"): c_longlong_type, (2, -1, "int"): c_sshort_type, (2, 0, "int"): c_sint_type, (2, 1, "int"): c_slong_type, (2, 2, "int"): c_slonglong_type, (1, 0, "float"): c_float_type, (1, 0, "double"): c_double_type, (1, 1, "double"): c_longdouble_type, (1, 0, "complex"): c_double_complex_type, # C: float, Python: double => Python wins (1, 0, "floatcomplex"): c_float_complex_type, (1, 0, "doublecomplex"): c_double_complex_type, (1, 1, "doublecomplex"): c_longdouble_complex_type, # (1, 0, "void"): c_void_type, (1, 0, "Py_tss_t"): c_pytss_t_type, (1, 0, "bint"): c_bint_type, (0, 0, "Py_UNICODE"): c_py_unicode_type, (0, 0, "Py_UCS4"): c_py_ucs4_type, (2, 0, "Py_hash_t"): c_py_hash_t_type, (2, 0, "Py_ssize_t"): c_py_ssize_t_type, (2, 0, "ssize_t") : c_ssize_t_type, (0, 0, "size_t") : c_size_t_type, (2, 0, "ptrdiff_t") : c_ptrdiff_t_type, (1, 0, "object"): py_object_type, } def is_promotion(src_type, dst_type): # It's hard to find a hard definition of promotion, but empirical # evidence suggests that the below is all that's allowed. if src_type.is_numeric: if dst_type.same_as(c_int_type): unsigned = (not src_type.signed) return (src_type.is_enum or (src_type.is_int and unsigned + src_type.rank < dst_type.rank)) elif dst_type.same_as(c_double_type): return src_type.is_float and src_type.rank <= dst_type.rank return False def best_match(arg_types, functions, pos=None, env=None, args=None): """ Given a list args of arguments and a list of functions, choose one to call which seems to be the "best" fit for this list of arguments. This function is used, e.g., when deciding which overloaded method to dispatch for C++ classes. We first eliminate functions based on arity, and if only one function has the correct arity, we return it. Otherwise, we weight functions based on how much work must be done to convert the arguments, with the following priorities: * identical types or pointers to identical types * promotions * non-Python types That is, we prefer functions where no arguments need converted, and failing that, functions where only promotions are required, and so on. If no function is deemed a good fit, or if two or more functions have the same weight, we return None (as there is no best match). If pos is not None, we also generate an error. """ # TODO: args should be a list of types, not a list of Nodes. actual_nargs = len(arg_types) candidates = [] errors = [] for func in functions: error_mesg = "" func_type = func.type if func_type.is_ptr: func_type = func_type.base_type # Check function type if not func_type.is_cfunction: if not func_type.is_error and pos is not None: error_mesg = "Calling non-function type '%s'" % func_type errors.append((func, error_mesg)) continue # Check no. of args max_nargs = len(func_type.args) min_nargs = max_nargs - func_type.optional_arg_count if actual_nargs < min_nargs or \ (not func_type.has_varargs and actual_nargs > max_nargs): if max_nargs == min_nargs and not func_type.has_varargs: expectation = max_nargs elif actual_nargs < min_nargs: expectation = "at least %s" % min_nargs else: expectation = "at most %s" % max_nargs error_mesg = "Call with wrong number of arguments (expected %s, got %s)" \ % (expectation, actual_nargs) errors.append((func, error_mesg)) continue if func_type.templates: deductions = reduce( merge_template_deductions, [pattern.type.deduce_template_params(actual) for (pattern, actual) in zip(func_type.args, arg_types)], {}) if deductions is None: errors.append((func, "Unable to deduce type parameters for %s given (%s)" % (func_type, ', '.join(map(str, arg_types))))) elif len(deductions) < len(func_type.templates): errors.append((func, "Unable to deduce type parameter %s" % ( ", ".join([param.name for param in set(func_type.templates) - set(deductions.keys())])))) else: type_list = [deductions[param] for param in func_type.templates] from .Symtab import Entry specialization = Entry( name = func.name + "[%s]" % ",".join([str(t) for t in type_list]), cname = func.cname + "<%s>" % ",".join([t.empty_declaration_code() for t in type_list]), type = func_type.specialize(deductions), pos = func.pos) candidates.append((specialization, specialization.type)) else: candidates.append((func, func_type)) # Optimize the most common case of no overloading... if len(candidates) == 1: return candidates[0][0] elif len(candidates) == 0: if pos is not None: func, errmsg = errors[0] if len(errors) == 1 or [1 for func, e in errors if e == errmsg]: error(pos, errmsg) else: error(pos, "no suitable method found") return None possibilities = [] bad_types = [] needed_coercions = {} for index, (func, func_type) in enumerate(candidates): score = [0,0,0,0,0,0,0] for i in range(min(actual_nargs, len(func_type.args))): src_type = arg_types[i] dst_type = func_type.args[i].type assignable = dst_type.assignable_from(src_type) # Now take care of unprefixed string literals. So when you call a cdef # function that takes a char *, the coercion will mean that the # type will simply become bytes. We need to do this coercion # manually for overloaded and fused functions if not assignable: c_src_type = None if src_type.is_pyobject: if src_type.is_builtin_type and src_type.name == 'str' and dst_type.resolve().is_string: c_src_type = dst_type.resolve() else: c_src_type = src_type.default_coerced_ctype() elif src_type.is_pythran_expr: c_src_type = src_type.org_buffer if c_src_type is not None: assignable = dst_type.assignable_from(c_src_type) if assignable: src_type = c_src_type needed_coercions[func] = (i, dst_type) if assignable: if src_type == dst_type or dst_type.same_as(src_type): pass # score 0 elif func_type.is_strict_signature: break # exact match requested but not found elif is_promotion(src_type, dst_type): score[2] += 1 elif ((src_type.is_int and dst_type.is_int) or (src_type.is_float and dst_type.is_float)): score[2] += abs(dst_type.rank + (not dst_type.signed) - (src_type.rank + (not src_type.signed))) + 1 elif dst_type.is_ptr and src_type.is_ptr: if dst_type.base_type == c_void_type: score[4] += 1 elif src_type.base_type.is_cpp_class and src_type.base_type.is_subclass(dst_type.base_type): score[6] += src_type.base_type.subclass_dist(dst_type.base_type) else: score[5] += 1 elif not src_type.is_pyobject: score[1] += 1 else: score[0] += 1 else: error_mesg = "Invalid conversion from '%s' to '%s'" % (src_type, dst_type) bad_types.append((func, error_mesg)) break else: possibilities.append((score, index, func)) # so we can sort it if possibilities: possibilities.sort() if len(possibilities) > 1: score1 = possibilities[0][0] score2 = possibilities[1][0] if score1 == score2: if pos is not None: error(pos, "ambiguous overloaded method") return None function = possibilities[0][-1] if function in needed_coercions and env: arg_i, coerce_to_type = needed_coercions[function] args[arg_i] = args[arg_i].coerce_to(coerce_to_type, env) return function if pos is not None: if len(bad_types) == 1: error(pos, bad_types[0][1]) else: error(pos, "no suitable method found") return None def merge_template_deductions(a, b): if a is None or b is None: return None all = a for param, value in b.items(): if param in all: if a[param] != b[param]: return None else: all[param] = value return all def widest_numeric_type(type1, type2): """Given two numeric types, return the narrowest type encompassing both of them. """ if type1.is_reference: type1 = type1.ref_base_type if type2.is_reference: type2 = type2.ref_base_type if type1.is_const: type1 = type1.const_base_type if type2.is_const: type2 = type2.const_base_type if type1 == type2: widest_type = type1 elif type1.is_complex or type2.is_complex: def real_type(ntype): if ntype.is_complex: return ntype.real_type return ntype widest_type = CComplexType( widest_numeric_type( real_type(type1), real_type(type2))) elif type1.is_enum and type2.is_enum: widest_type = c_int_type elif type1.rank < type2.rank: widest_type = type2 elif type1.rank > type2.rank: widest_type = type1 elif type1.signed < type2.signed: widest_type = type1 elif type1.signed > type2.signed: widest_type = type2 elif type1.is_typedef > type2.is_typedef: widest_type = type1 else: widest_type = type2 return widest_type def numeric_type_fits(small_type, large_type): return widest_numeric_type(small_type, large_type) == large_type def independent_spanning_type(type1, type2): # Return a type assignable independently from both type1 and # type2, but do not require any interoperability between the two. # For example, in "True * 2", it is safe to assume an integer # result type (so spanning_type() will do the right thing), # whereas "x = True or 2" must evaluate to a type that can hold # both a boolean value and an integer, so this function works # better. if type1.is_reference ^ type2.is_reference: if type1.is_reference: type1 = type1.ref_base_type else: type2 = type2.ref_base_type if type1 == type2: return type1 elif (type1 is c_bint_type or type2 is c_bint_type) and (type1.is_numeric and type2.is_numeric): # special case: if one of the results is a bint and the other # is another C integer, we must prevent returning a numeric # type so that we do not lose the ability to coerce to a # Python bool if we have to. return py_object_type span_type = _spanning_type(type1, type2) if span_type is None: return error_type return span_type def spanning_type(type1, type2): # Return a type assignable from both type1 and type2, or # py_object_type if no better type is found. Assumes that the # code that calls this will try a coercion afterwards, which will # fail if the types cannot actually coerce to a py_object_type. if type1 == type2: return type1 elif type1 is py_object_type or type2 is py_object_type: return py_object_type elif type1 is c_py_unicode_type or type2 is c_py_unicode_type: # Py_UNICODE behaves more like a string than an int return py_object_type span_type = _spanning_type(type1, type2) if span_type is None: return py_object_type return span_type def _spanning_type(type1, type2): if type1.is_numeric and type2.is_numeric: return widest_numeric_type(type1, type2) elif type1.is_builtin_type and type1.name == 'float' and type2.is_numeric: return widest_numeric_type(c_double_type, type2) elif type2.is_builtin_type and type2.name == 'float' and type1.is_numeric: return widest_numeric_type(type1, c_double_type) elif type1.is_extension_type and type2.is_extension_type: return widest_extension_type(type1, type2) elif type1.is_pyobject or type2.is_pyobject: return py_object_type elif type1.assignable_from(type2): if type1.is_extension_type and type1.typeobj_is_imported(): # external types are unsafe, so we use PyObject instead return py_object_type return type1 elif type2.assignable_from(type1): if type2.is_extension_type and type2.typeobj_is_imported(): # external types are unsafe, so we use PyObject instead return py_object_type return type2 elif type1.is_ptr and type2.is_ptr: if type1.base_type.is_cpp_class and type2.base_type.is_cpp_class: common_base = widest_cpp_type(type1.base_type, type2.base_type) if common_base: return CPtrType(common_base) # incompatible pointers, void* will do as a result return c_void_ptr_type else: return None def widest_extension_type(type1, type2): if type1.typeobj_is_imported() or type2.typeobj_is_imported(): return py_object_type while True: if type1.subtype_of(type2): return type2 elif type2.subtype_of(type1): return type1 type1, type2 = type1.base_type, type2.base_type if type1 is None or type2 is None: return py_object_type def widest_cpp_type(type1, type2): @cached_function def bases(type): all = set() for base in type.base_classes: all.add(base) all.update(bases(base)) return all common_bases = bases(type1).intersection(bases(type2)) common_bases_bases = reduce(set.union, [bases(b) for b in common_bases], set()) candidates = [b for b in common_bases if b not in common_bases_bases] if len(candidates) == 1: return candidates[0] else: # Fall back to void* for now. return None def simple_c_type(signed, longness, name): # Find type descriptor for simple type given name and modifiers. # Returns None if arguments don't make sense. return modifiers_and_name_to_type.get((signed, longness, name)) def parse_basic_type(name): base = None if name.startswith('p_'): base = parse_basic_type(name[2:]) elif name.startswith('p'): base = parse_basic_type(name[1:]) elif name.endswith('*'): base = parse_basic_type(name[:-1]) if base: return CPtrType(base) # basic_type = simple_c_type(1, 0, name) if basic_type: return basic_type # signed = 1 longness = 0 if name == 'Py_UNICODE': signed = 0 elif name == 'Py_UCS4': signed = 0 elif name == 'Py_hash_t': signed = 2 elif name == 'Py_ssize_t': signed = 2 elif name == 'ssize_t': signed = 2 elif name == 'size_t': signed = 0 else: if name.startswith('u'): name = name[1:] signed = 0 elif (name.startswith('s') and not name.startswith('short')): name = name[1:] signed = 2 longness = 0 while name.startswith('short'): name = name.replace('short', '', 1).strip() longness -= 1 while name.startswith('long'): name = name.replace('long', '', 1).strip() longness += 1 if longness != 0 and not name: name = 'int' return simple_c_type(signed, longness, name) def c_array_type(base_type, size): # Construct a C array type. if base_type is error_type: return error_type else: return CArrayType(base_type, size) def c_ptr_type(base_type): # Construct a C pointer type. if base_type is error_type: return error_type elif base_type.is_reference: return CPtrType(base_type.ref_base_type) else: return CPtrType(base_type) def c_ref_type(base_type): # Construct a C reference type if base_type is error_type: return error_type else: return CReferenceType(base_type) def c_const_type(base_type): # Construct a C const type. if base_type is error_type: return error_type else: return CConstType(base_type) def same_type(type1, type2): return type1.same_as(type2) def assignable_from(type1, type2): return type1.assignable_from(type2) def typecast(to_type, from_type, expr_code): # Return expr_code cast to a C type which can be # assigned to to_type, assuming its existing C type # is from_type. if (to_type is from_type or (not to_type.is_pyobject and assignable_from(to_type, from_type))): return expr_code elif (to_type is py_object_type and from_type and from_type.is_builtin_type and from_type.name != 'type'): # no cast needed, builtins are PyObject* already return expr_code else: #print "typecast: to", to_type, "from", from_type ### return to_type.cast_code(expr_code) def type_list_identifier(types): return cap_length('__and_'.join(type_identifier(type) for type in types)) _type_identifier_cache = {} def type_identifier(type): decl = type.empty_declaration_code() safe = _type_identifier_cache.get(decl) if safe is None: safe = decl safe = re.sub(' +', ' ', safe) safe = re.sub(' ([^a-zA-Z0-9_])', r'\1', safe) safe = re.sub('([^a-zA-Z0-9_]) ', r'\1', safe) safe = (safe.replace('__', '__dunder') .replace('const ', '__const_') .replace(' ', '__space_') .replace('*', '__ptr') .replace('&', '__ref') .replace('[', '__lArr') .replace(']', '__rArr') .replace('<', '__lAng') .replace('>', '__rAng') .replace('(', '__lParen') .replace(')', '__rParen') .replace(',', '__comma_') .replace('::', '__in_')) safe = cap_length(re.sub('[^a-zA-Z0-9_]', lambda x: '__%X' % ord(x.group(0)), safe)) _type_identifier_cache[decl] = safe return safe def cap_length(s, max_prefix=63, max_len=1024): if len(s) <= max_prefix: return s else: return '%x__%s__etc' % (abs(hash(s)) % (1<<20), s[:max_len-17])