Commit 16e2ea39 authored by Georgios Dagkakis's avatar Georgios Dagkakis

count total WIP of the model

parent 575b79d6
......@@ -8,7 +8,7 @@ import time
start=time.time()
# simulation time
maxSimTime=200
maxSimTime=10000
# the capacity of B123
capacity=42 #float('inf')
......@@ -28,16 +28,16 @@ class OpQueue(Queue):
return M2
return None
# calculate average buffer level
def postProcessing(self):
Queue.postProcessing(self, MaxSimtime=maxSimTime)
totalBufferLevel=0
for i in range(0,len(self.wipStatList)-1):
bufferLevel=self.wipStatList[i][1]
duration=self.wipStatList[i+1][0]-self.wipStatList[i][0]
totalBufferLevel+=bufferLevel*duration
averageBufferLevel=totalBufferLevel/maxSimTime
self.BufferLevel.append(averageBufferLevel)
# # calculate average buffer level
# def postProcessing(self):
# Queue.postProcessing(self, MaxSimtime=maxSimTime)
# totalBufferLevel=0
# for i in range(0,len(self.wipStatList)-1):
# bufferLevel=self.wipStatList[i][1]
# duration=self.wipStatList[i+1][0]-self.wipStatList[i][0]
# totalBufferLevel+=bufferLevel*duration
# averageBufferLevel=totalBufferLevel/maxSimTime
# self.BufferLevel.append(averageBufferLevel)
class OpExit(Exit):
# set numGoodParts=0 at every replication
......@@ -95,7 +95,9 @@ class OpMachine(Machine):
# method invoked by the generator at every time period
def controllerMethod():
# at the start of the simulation reset the G.totalWIP counter
if G.env.now==0:
G.totalWIP=0
# for every machine calculate the state (based on transition probabilities)
for M in [M1,M2,M3]:
rn1=createRandomNumber()
......@@ -166,6 +168,14 @@ def controllerMethod():
M2.locked=True
break
# count the total WIP for the machines and the Queue
for obj in [M1,M2,M3,B123]:
G.totalWIP+=len(obj.getActiveObjectQueue())
# at the end of the simulation append to the list that keeps for all replications
if G.env.now==G.maxSimTime-1:
G.AverageWIP.append(G.totalWIP/float(G.maxSimTime))
# returns a number from the uniform distribution (0,1)
def createRandomNumber():
return Rnd.uniform(0,1)
......@@ -200,12 +210,15 @@ for obj in objectList:
# GoodExits will keep the number of good parts produced in every replication
E.GoodExits=[]
# variables to keep the WIP
G.totalWIP=0
G.AverageWIP=[]
# GoodParts will keep the number of good parts a machine produced in every replication
for M in [M1,M2,M3]:
M.GoodExits=[]
# BufferLevel will keep the average buffer level for each replication
B123.BufferLevel=[]
# the transition probabilities for machines
M1.p=0.01
......@@ -222,21 +235,25 @@ M3.r=0.1
M3.f=0.2
# call the runSimulation giving the objects and the length of the experiment
runSimulation(objectList, maxSimTime, numberOfReplications=1,trace='No')
runSimulation(objectList, maxSimTime, numberOfReplications=20,trace='No')
#print the results
PRt=sum(E.Exits)/float(len(E.Exits))
PRg=sum(E.GoodExits)/float(len(E.GoodExits))
B123ABF=sum(B123.BufferLevel)/float(len(B123.BufferLevel))
# B123ABF=sum(B123.BufferLevel)/float(len(B123.BufferLevel))
print E.Exits
print E.GoodExits
print G.AverageWIP
print 'PRt=',PRt/float(maxSimTime)
print 'PRg=',PRg/float(maxSimTime)
print 'B123 average buffer level=',B123ABF
# print 'B123 average buffer level=',B123ABF
for M in [M1,M2,M3]:
GE=sum(M.GoodExits)/float(len(M.GoodExits))
print 'PRg'+M.id,'=',GE/float(maxSimTime)
AVGWIP=sum(G.AverageWIP)/float(len(G.AverageWIP))
print 'AVGWIP=',AVGWIP
# ExcelHandler.outputTrace('OperationalFailures')
print "running time=",time.time()-start
......@@ -246,26 +263,26 @@ from rpy2.robjects.packages import importr
from rpy2.rinterface import NA_Real
# to plot B123 if we want
base = importr("base")
stats = importr("stats")
grdevices = importr("grDevices")
graphics = importr("graphics")
graphWipStatList=list(B123.wipStatList)
index=0
for i in range(len(B123.wipStatList)-1):
if B123.wipStatList[i][0]==B123.wipStatList[i+1][0]:
del graphWipStatList[index]
else:
index+=1
simTime = [x[0] for x in graphWipStatList]
bufferLevel = [x[1] for x in graphWipStatList]
grdevices.png("B123 Buffer Level.png")
graphics.plot(simTime, bufferLevel, xlab="Simulation Time", ylab="Buffer Level", col="red", type="l", tck=1)
graphics.title("Buffer level time series")
grdevices.dev_off()
# # to plot B123 if we want
# base = importr("base")
# stats = importr("stats")
# grdevices = importr("grDevices")
# graphics = importr("graphics")
#
# graphWipStatList=list(B123.wipStatList)
# index=0
# for i in range(len(B123.wipStatList)-1):
# if B123.wipStatList[i][0]==B123.wipStatList[i+1][0]:
# del graphWipStatList[index]
# else:
# index+=1
#
#
# simTime = [x[0] for x in graphWipStatList]
# bufferLevel = [x[1] for x in graphWipStatList]
#
# grdevices.png("B123 Buffer Level.png")
# graphics.plot(simTime, bufferLevel, xlab="Simulation Time", ylab="Buffer Level", col="red", type="l", tck=1)
# graphics.title("Buffer level time series")
# grdevices.dev_off()
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment