Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
dream
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
dream
Commits
3b5a2c7d
Commit
3b5a2c7d
authored
Nov 03, 2015
by
Georgios Dagkakis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
new plugin updated to use pheromone correctly
parent
f179c737
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
72 additions
and
54 deletions
+72
-54
dream/plugins/Batches/BatchesStochasticACO.py
dream/plugins/Batches/BatchesStochasticACO.py
+72
-54
No files found.
dream/plugins/Batches/BatchesStochasticACO.py
View file @
3b5a2c7d
...
@@ -36,8 +36,7 @@ class BatchesStochasticACO(BatchesACO):
...
@@ -36,8 +36,7 @@ class BatchesStochasticACO(BatchesACO):
def
run
(
self
,
data
):
def
run
(
self
,
data
):
"""Preprocess the data.
"""Preprocess the data.
"""
"""
print
'I am in'
print
'I am IN'
distributor_url
=
data
[
'general'
].
get
(
'distributorURL'
)
distributor_url
=
data
[
'general'
].
get
(
'distributorURL'
)
distributor
=
None
distributor
=
None
if
distributor_url
:
if
distributor_url
:
...
@@ -52,7 +51,10 @@ class BatchesStochasticACO(BatchesACO):
...
@@ -52,7 +51,10 @@ class BatchesStochasticACO(BatchesACO):
assert
collated
assert
collated
max_results
=
int
(
data
[
'general'
].
get
(
'numberOfSolutions'
,
1
))
max_results
=
int
(
data
[
'general'
].
get
(
'numberOfSolutions'
,
1
))
numberOfAntsForNextGeneration
=
int
(
data
[
'general'
].
get
(
'numberOfAntsForNextGeneration'
,
1
))
assert
max_results
>=
1
assert
max_results
>=
1
assert
numberOfAntsForNextGeneration
>=
1
\
and
numberOfAntsForNextGeneration
<=
int
(
data
[
"general"
][
"numberOfAntsPerGenerations"
])
ants
=
[]
#list of ants for keeping track of their performance
ants
=
[]
#list of ants for keeping track of their performance
...
@@ -60,6 +62,7 @@ class BatchesStochasticACO(BatchesACO):
...
@@ -60,6 +62,7 @@ class BatchesStochasticACO(BatchesACO):
# generation can have more than 1 ant)
# generation can have more than 1 ant)
seedPlus
=
0
seedPlus
=
0
for
i
in
range
(
int
(
data
[
"general"
][
"numberOfGenerations"
])):
for
i
in
range
(
int
(
data
[
"general"
][
"numberOfGenerations"
])):
antsInCurrentGeneration
=
[]
scenario_list
=
[]
# for the distributor
scenario_list
=
[]
# for the distributor
# number of ants created per generation
# number of ants created per generation
for
j
in
range
(
int
(
data
[
"general"
][
"numberOfAntsPerGenerations"
])):
for
j
in
range
(
int
(
data
[
"general"
][
"numberOfAntsPerGenerations"
])):
...
@@ -84,70 +87,71 @@ class BatchesStochasticACO(BatchesACO):
...
@@ -84,70 +87,71 @@ class BatchesStochasticACO(BatchesACO):
ant
[
'input'
]
=
ant_data
ant
[
'input'
]
=
ant_data
scenario_list
.
append
(
ant
)
scenario_list
.
append
(
ant
)
if
distributor
is
None
:
#
if distributor is None:
if
multiprocessorCount
:
#
if multiprocessorCount:
self
.
logger
.
info
(
"running multiprocessing ACO with %s processes"
%
multiprocessorCount
)
#
self.logger.info("running multiprocessing ACO with %s processes" % multiprocessorCount)
# We unset our signal handler to print traceback at the end
#
# We unset our signal handler to print traceback at the end
# otherwise logs are confusing.
#
# otherwise logs are confusing.
sigterm_handler
=
signal
.
getsignal
(
signal
.
SIGTERM
)
#
sigterm_handler = signal.getsignal(signal.SIGTERM)
pool
=
Pool
(
processes
=
multiprocessorCount
)
#
pool = Pool(processes=multiprocessorCount)
try
:
#
try:
signal
.
signal
(
signal
.
SIGTERM
,
signal
.
SIG_DFL
)
#
signal.signal(signal.SIGTERM, signal.SIG_DFL)
scenario_list
=
pool
.
map
(
runAntInSubProcess
,
scenario_list
)
#
scenario_list = pool.map(runAntInSubProcess, scenario_list)
pool
.
close
()
#
pool.close()
pool
.
join
()
#
pool.join()
finally
:
#
finally:
signal
.
signal
(
signal
.
SIGTERM
,
sigterm_handler
)
#
signal.signal(signal.SIGTERM, sigterm_handler)
else
:
#
else:
# synchronous
#
# synchronous
for
ant
in
scenario_list
:
for
ant
in
scenario_list
:
ant
[
'result'
]
=
self
.
runOneScenario
(
ant
[
'input'
])[
'result'
]
ant
[
'result'
]
=
self
.
runOneScenario
(
ant
[
'input'
])[
'result'
]
else
:
# asynchronous
#
else: # asynchronous
self
.
logger
.
info
(
"Registering a job for %s scenarios"
%
len
(
scenario_list
))
#
self.logger.info("Registering a job for %s scenarios" % len(scenario_list))
start_register
=
time
.
time
()
#
start_register = time.time()
job_id
=
distributor
.
requestSimulationRun
(
#
job_id = distributor.requestSimulationRun(
[
json
.
dumps
(
x
).
encode
(
'zlib'
).
encode
(
'base64'
)
for
x
in
scenario_list
])
#
[json.dumps(x).encode('zlib').encode('base64') for x in scenario_list])
self
.
logger
.
info
(
"Job registered as %s (took %0.2fs)"
%
(
job_id
,
time
.
time
()
-
start_register
))
#
self.logger.info("Job registered as %s (took %0.2fs)" % (job_id, time.time() - start_register ))
#
while
True
:
#
while True:
time
.
sleep
(
1.
)
#
time.sleep(1.)
result_list
=
distributor
.
getJobResult
(
job_id
)
#
result_list = distributor.getJobResult(job_id)
# The distributor returns None when calculation is still ongoing,
#
# The distributor returns None when calculation is still ongoing,
# or the list of result in the same order.
#
# or the list of result in the same order.
if
result_list
is
not
None
:
#
if result_list is not None:
self
.
logger
.
info
(
"Job %s terminated"
%
job_id
)
#
self.logger.info("Job %s terminated" % job_id)
break
#
break
#
for
ant
,
result
in
zip
(
scenario_list
,
result_list
):
#
for ant, result in zip(scenario_list, result_list):
result
=
json
.
loads
(
result
)
#
result = json.loads(result)
if
'result'
in
result
:
# XXX is this still needed ???
#
if 'result' in result: # XXX is this still needed ???
result
=
result
[
'result'
]
#
result = result['result']
assert
"result_list"
in
result
#
assert "result_list" in result
else
:
#
else:
result
=
{
'result_list'
:
[
result
]}
#
result = {'result_list': [result]}
ant
[
'result'
]
=
result
#
ant['result'] = result
for
ant
in
scenario_list
:
for
ant
in
scenario_list
:
ant
[
'score'
]
=
self
.
_calculateAntScore
(
ant
)
ant
[
'score'
]
=
self
.
_calculateAntScore
(
ant
)
ants
.
extend
(
scenario_list
)
ants
.
extend
(
scenario_list
)
antsInCurrentGeneration
.
extend
(
scenario_list
)
# remove ants that outputs the same schedules
#
in this generation
remove ants that outputs the same schedules
# XXX we in fact remove ants that produce the same output json
# XXX we in fact remove ants that produce the same output json
ants_without_duplicates
=
dict
()
uniqueAntsInThisGeneration
=
dict
()
for
ant
in
ants
:
for
ant
in
ants
InCurrentGeneration
:
ant_result
,
=
copy
(
ant
[
'result'
][
'result_list'
])
ant_result
,
=
copy
(
ant
[
'result'
][
'result_list'
])
ant_result
[
'general'
].
pop
(
'totalExecutionTime'
,
None
)
ant_result
[
'general'
].
pop
(
'totalExecutionTime'
,
None
)
ant_result
=
json
.
dumps
(
ant_result
,
sort_keys
=
True
)
ant_result
=
json
.
dumps
(
ant_result
,
sort_keys
=
True
)
ants_without_duplicates
[
ant_result
]
=
ant
uniqueAntsInThisGeneration
[
ant_result
]
=
ant
# The ants in this generation are ranked based on their scores and the
# The ants in this generation are ranked based on their scores and the
# best (
max_results) are selected
# best (
numberOfAntsForNextGeneration) are selected to carry their pheromones to next generation
ants
=
sorted
(
ants_without_duplicates
.
values
(),
ants
ForNextGeneration
=
sorted
(
uniqueAntsInThisGeneration
.
values
(),
key
=
operator
.
itemgetter
(
'score'
))[:
max_results
]
key
=
operator
.
itemgetter
(
'score'
))[:
numberOfAntsForNextGeneration
]
for
l
in
ants
:
for
l
in
ants
ForNextGeneration
:
# update the options list to ensure that good performing queue-rule
# update the options list to ensure that good performing queue-rule
# combinations have increased representation and good chance of
# combinations have increased representation and good chance of
# being selected in the next generation
# being selected in the next generation
...
@@ -157,6 +161,20 @@ class BatchesStochasticACO(BatchesACO):
...
@@ -157,6 +161,20 @@ class BatchesStochasticACO(BatchesACO):
# selected by the next ants.
# selected by the next ants.
collated
[
m
].
append
(
l
[
m
])
collated
[
m
].
append
(
l
[
m
])
# from all the ants in the experiment remove ants that outputs the same schedules
# XXX we in fact remove ants that produce the same output json
uniqueAnts
=
dict
()
for
ant
in
ants
:
ant_result
,
=
copy
(
ant
[
'result'
][
'result_list'
])
ant_result
[
'general'
].
pop
(
'totalExecutionTime'
,
None
)
ant_result
=
json
.
dumps
(
ant_result
,
sort_keys
=
True
)
uniqueAnts
[
ant_result
]
=
ant
# The ants in this generation are ranked based on their scores and the
# best (max_results) are selected
ants
=
sorted
(
uniqueAnts
.
values
(),
key
=
operator
.
itemgetter
(
'score'
))[:
max_results
]
data
[
'result'
][
'result_list'
]
=
result_list
=
[]
data
[
'result'
][
'result_list'
]
=
result_list
=
[]
for
ant
in
ants
:
for
ant
in
ants
:
result
,
=
ant
[
'result'
][
'result_list'
]
result
,
=
ant
[
'result'
][
'result_list'
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment