Commit 00085111 authored by Leonidas S. Barbosa's avatar Leonidas S. Barbosa Committed by Herbert Xu

crypto: nx - Fix SHA concurrence issue and sg limit bounds

NX SHA algorithms stores the message digest into tfm what
cause a concurrence issue where hashes may be replaced by others.
This patch cleans up the cases where it's handling unnecessarily shared
variables in nx context and copies the current msg digest to a sctx->state
in order to safetly handle with the hashe's state.

Also fixes and does some clean ups regarding the right sg max limit
and bounds to the sg list avoind a memory crash.
Signed-off-by: default avatarLeonidas S. Barbosa <leosilva@linux.vnet.ibm.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 5313231a
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <crypto/sha.h> #include <crypto/sha.h>
#include <linux/module.h> #include <linux/module.h>
#include <asm/vio.h> #include <asm/vio.h>
#include <asm/byteorder.h>
#include "nx_csbcpb.h" #include "nx_csbcpb.h"
#include "nx.h" #include "nx.h"
...@@ -32,7 +33,8 @@ static int nx_sha256_init(struct shash_desc *desc) ...@@ -32,7 +33,8 @@ static int nx_sha256_init(struct shash_desc *desc)
{ {
struct sha256_state *sctx = shash_desc_ctx(desc); struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_sg *out_sg; int len;
int rc;
nx_ctx_init(nx_ctx, HCOP_FC_SHA); nx_ctx_init(nx_ctx, HCOP_FC_SHA);
...@@ -41,10 +43,28 @@ static int nx_sha256_init(struct shash_desc *desc) ...@@ -41,10 +43,28 @@ static int nx_sha256_init(struct shash_desc *desc)
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
SHA256_DIGEST_SIZE, nx_ctx->ap->sglen);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
len = SHA256_DIGEST_SIZE;
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
&nx_ctx->op.outlen,
&len,
(u8 *) sctx->state,
NX_DS_SHA256);
if (rc)
goto out;
sctx->state[0] = __cpu_to_be32(SHA256_H0);
sctx->state[1] = __cpu_to_be32(SHA256_H1);
sctx->state[2] = __cpu_to_be32(SHA256_H2);
sctx->state[3] = __cpu_to_be32(SHA256_H3);
sctx->state[4] = __cpu_to_be32(SHA256_H4);
sctx->state[5] = __cpu_to_be32(SHA256_H5);
sctx->state[6] = __cpu_to_be32(SHA256_H6);
sctx->state[7] = __cpu_to_be32(SHA256_H7);
sctx->count = 0;
out:
return 0; return 0;
} }
...@@ -54,11 +74,11 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, ...@@ -54,11 +74,11 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
struct sha256_state *sctx = shash_desc_ctx(desc); struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg; u64 to_process = 0, leftover, total;
u64 to_process, leftover, total;
u32 max_sg_len;
unsigned long irq_flags; unsigned long irq_flags;
int rc = 0; int rc = 0;
int data_len;
u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
spin_lock_irqsave(&nx_ctx->lock, irq_flags); spin_lock_irqsave(&nx_ctx->lock, irq_flags);
...@@ -66,16 +86,16 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, ...@@ -66,16 +86,16 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
* 1: < SHA256_BLOCK_SIZE: copy into state, return 0 * 1: < SHA256_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
*/ */
total = sctx->count + len; total = (sctx->count % SHA256_BLOCK_SIZE) + len;
if (total < SHA256_BLOCK_SIZE) { if (total < SHA256_BLOCK_SIZE) {
memcpy(sctx->buf + sctx->count, data, len); memcpy(sctx->buf + buf_len, data, len);
sctx->count += len; sctx->count += len;
goto out; goto out;
} }
in_sg = nx_ctx->in_sg; memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
nx_ctx->ap->sglen); NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
do { do {
/* /*
...@@ -83,34 +103,42 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, ...@@ -83,34 +103,42 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
* this update. This value is also restricted by the sg list * this update. This value is also restricted by the sg list
* limits. * limits.
*/ */
to_process = min_t(u64, total, nx_ctx->ap->databytelen); to_process = total - to_process;
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(SHA256_BLOCK_SIZE - 1); to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
leftover = total - to_process;
if (sctx->count) { if (buf_len) {
in_sg = nx_build_sg_list(nx_ctx->in_sg, data_len = buf_len;
(u8 *) sctx->buf, rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
sctx->count, max_sg_len); &nx_ctx->op.inlen,
&data_len,
(u8 *) sctx->buf,
NX_DS_SHA256);
if (rc || data_len != buf_len)
goto out;
} }
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
to_process - sctx->count, data_len = to_process - buf_len;
max_sg_len); rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * &nx_ctx->op.inlen,
sizeof(struct nx_sg); &data_len,
(u8 *) data,
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { NX_DS_SHA256);
/*
* we've hit the nx chip previously and we're updating if (rc)
* again, so copy over the partial digest. goto out;
*/
memcpy(csbcpb->cpb.sha256.input_partial_digest, to_process = (data_len + buf_len);
leftover = total - to_process;
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha256.input_partial_digest,
csbcpb->cpb.sha256.message_digest, csbcpb->cpb.sha256.message_digest,
SHA256_DIGEST_SIZE); SHA256_DIGEST_SIZE);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL; rc = -EINVAL;
goto out; goto out;
...@@ -122,22 +150,19 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, ...@@ -122,22 +150,19 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
goto out; goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops)); atomic_inc(&(nx_ctx->stats->sha256_ops));
csbcpb->cpb.sha256.message_bit_length += (u64)
(csbcpb->cpb.sha256.spbc * 8);
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process; total -= to_process;
data += to_process - sctx->count; data += to_process - buf_len;
sctx->count = 0; buf_len = 0;
in_sg = nx_ctx->in_sg;
} while (leftover >= SHA256_BLOCK_SIZE); } while (leftover >= SHA256_BLOCK_SIZE);
/* copy the leftover back into the state struct */ /* copy the leftover back into the state struct */
if (leftover) if (leftover)
memcpy(sctx->buf, data, leftover); memcpy(sctx->buf, data, leftover);
sctx->count = leftover;
sctx->count += len;
memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out: out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc; return rc;
...@@ -148,34 +173,46 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out) ...@@ -148,34 +173,46 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out)
struct sha256_state *sctx = shash_desc_ctx(desc); struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u32 max_sg_len;
unsigned long irq_flags; unsigned long irq_flags;
int rc; int rc;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags); spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen); /* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { if (sctx->count >= SHA256_BLOCK_SIZE) {
/* we've hit the nx chip previously, now we're finalizing, /* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */ * so copy over the partial digest */
memcpy(csbcpb->cpb.sha256.input_partial_digest, memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
} else {
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
} }
/* final is represented by continuing the operation and indicating that csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
* this is not an intermediate operation */
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8); len = sctx->count & (SHA256_BLOCK_SIZE - 1);
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
&nx_ctx->op.inlen,
&len,
(u8 *) sctx->buf,
NX_DS_SHA256);
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, if (rc || len != (sctx->count & (SHA256_BLOCK_SIZE - 1)))
sctx->count, max_sg_len); goto out;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE,
max_sg_len); len = SHA256_DIGEST_SIZE;
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); &nx_ctx->op.outlen,
&len,
out,
NX_DS_SHA256);
if (rc || len != SHA256_DIGEST_SIZE)
goto out;
if (!nx_ctx->op.outlen) { if (!nx_ctx->op.outlen) {
rc = -EINVAL; rc = -EINVAL;
...@@ -189,8 +226,7 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out) ...@@ -189,8 +226,7 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out)
atomic_inc(&(nx_ctx->stats->sha256_ops)); atomic_inc(&(nx_ctx->stats->sha256_ops));
atomic64_add(csbcpb->cpb.sha256.message_bit_length / 8, atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
&(nx_ctx->stats->sha256_bytes));
memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out: out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
...@@ -200,62 +236,18 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out) ...@@ -200,62 +236,18 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out)
static int nx_sha256_export(struct shash_desc *desc, void *out) static int nx_sha256_export(struct shash_desc *desc, void *out)
{ {
struct sha256_state *sctx = shash_desc_ctx(desc); struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct sha256_state *octx = out;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
octx->count = sctx->count + memcpy(out, sctx, sizeof(*sctx));
(csbcpb->cpb.sha256.message_bit_length / 8);
memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
/* if no data has been processed yet, we need to export SHA256's
* initial data, in case this context gets imported into a software
* context */
if (csbcpb->cpb.sha256.message_bit_length)
memcpy(octx->state, csbcpb->cpb.sha256.message_digest,
SHA256_DIGEST_SIZE);
else {
octx->state[0] = SHA256_H0;
octx->state[1] = SHA256_H1;
octx->state[2] = SHA256_H2;
octx->state[3] = SHA256_H3;
octx->state[4] = SHA256_H4;
octx->state[5] = SHA256_H5;
octx->state[6] = SHA256_H6;
octx->state[7] = SHA256_H7;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0; return 0;
} }
static int nx_sha256_import(struct shash_desc *desc, const void *in) static int nx_sha256_import(struct shash_desc *desc, const void *in)
{ {
struct sha256_state *sctx = shash_desc_ctx(desc); struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
const struct sha256_state *ictx = in;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); memcpy(sctx, in, sizeof(*sctx));
sctx->count = ictx->count & 0x3f;
csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8;
if (csbcpb->cpb.sha256.message_bit_length) {
memcpy(csbcpb->cpb.sha256.message_digest, ictx->state,
SHA256_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0; return 0;
} }
......
...@@ -32,7 +32,8 @@ static int nx_sha512_init(struct shash_desc *desc) ...@@ -32,7 +32,8 @@ static int nx_sha512_init(struct shash_desc *desc)
{ {
struct sha512_state *sctx = shash_desc_ctx(desc); struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_sg *out_sg; int len;
int rc;
nx_ctx_init(nx_ctx, HCOP_FC_SHA); nx_ctx_init(nx_ctx, HCOP_FC_SHA);
...@@ -41,10 +42,28 @@ static int nx_sha512_init(struct shash_desc *desc) ...@@ -41,10 +42,28 @@ static int nx_sha512_init(struct shash_desc *desc)
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512]; nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512); NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
SHA512_DIGEST_SIZE, nx_ctx->ap->sglen);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
len = SHA512_DIGEST_SIZE;
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
&nx_ctx->op.outlen,
&len,
(u8 *)sctx->state,
NX_DS_SHA512);
if (rc || len != SHA512_DIGEST_SIZE)
goto out;
sctx->state[0] = __cpu_to_be64(SHA512_H0);
sctx->state[1] = __cpu_to_be64(SHA512_H1);
sctx->state[2] = __cpu_to_be64(SHA512_H2);
sctx->state[3] = __cpu_to_be64(SHA512_H3);
sctx->state[4] = __cpu_to_be64(SHA512_H4);
sctx->state[5] = __cpu_to_be64(SHA512_H5);
sctx->state[6] = __cpu_to_be64(SHA512_H6);
sctx->state[7] = __cpu_to_be64(SHA512_H7);
sctx->count[0] = 0;
out:
return 0; return 0;
} }
...@@ -54,11 +73,11 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, ...@@ -54,11 +73,11 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
struct sha512_state *sctx = shash_desc_ctx(desc); struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg; u64 to_process, leftover = 0, total;
u64 to_process, leftover, total, spbc_bits;
u32 max_sg_len;
unsigned long irq_flags; unsigned long irq_flags;
int rc = 0; int rc = 0;
int data_len;
u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
spin_lock_irqsave(&nx_ctx->lock, irq_flags); spin_lock_irqsave(&nx_ctx->lock, irq_flags);
...@@ -66,16 +85,16 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, ...@@ -66,16 +85,16 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
* 1: < SHA512_BLOCK_SIZE: copy into state, return 0 * 1: < SHA512_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover * 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
*/ */
total = sctx->count[0] + len; total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
if (total < SHA512_BLOCK_SIZE) { if (total < SHA512_BLOCK_SIZE) {
memcpy(sctx->buf + sctx->count[0], data, len); memcpy(sctx->buf + buf_len, data, len);
sctx->count[0] += len; sctx->count[0] += len;
goto out; goto out;
} }
in_sg = nx_ctx->in_sg; memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
nx_ctx->ap->sglen); NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
do { do {
/* /*
...@@ -83,34 +102,43 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, ...@@ -83,34 +102,43 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
* this update. This value is also restricted by the sg list * this update. This value is also restricted by the sg list
* limits. * limits.
*/ */
to_process = min_t(u64, total, nx_ctx->ap->databytelen); to_process = total - leftover;
to_process = min_t(u64, to_process,
NX_PAGE_SIZE * (max_sg_len - 1));
to_process = to_process & ~(SHA512_BLOCK_SIZE - 1); to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
leftover = total - to_process; leftover = total - to_process;
if (sctx->count[0]) { if (buf_len) {
in_sg = nx_build_sg_list(nx_ctx->in_sg, data_len = buf_len;
(u8 *) sctx->buf, rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
sctx->count[0], max_sg_len); &nx_ctx->op.inlen,
&data_len,
(u8 *) sctx->buf,
NX_DS_SHA512);
if (rc || data_len != buf_len)
goto out;
} }
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
to_process - sctx->count[0], data_len = to_process - buf_len;
max_sg_len); rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * &nx_ctx->op.inlen,
sizeof(struct nx_sg); &data_len,
(u8 *) data,
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { NX_DS_SHA512);
/*
* we've hit the nx chip previously and we're updating if (rc || data_len != (to_process - buf_len))
* again, so copy over the partial digest. goto out;
*/
memcpy(csbcpb->cpb.sha512.input_partial_digest, to_process = (data_len + buf_len);
leftover = total - to_process;
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha512.input_partial_digest,
csbcpb->cpb.sha512.message_digest, csbcpb->cpb.sha512.message_digest,
SHA512_DIGEST_SIZE); SHA512_DIGEST_SIZE);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL; rc = -EINVAL;
goto out; goto out;
...@@ -122,24 +150,18 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, ...@@ -122,24 +150,18 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
goto out; goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops)); atomic_inc(&(nx_ctx->stats->sha512_ops));
spbc_bits = csbcpb->cpb.sha512.spbc * 8;
csbcpb->cpb.sha512.message_bit_length_lo += spbc_bits;
if (csbcpb->cpb.sha512.message_bit_length_lo < spbc_bits)
csbcpb->cpb.sha512.message_bit_length_hi++;
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process; total -= to_process;
data += to_process - sctx->count[0]; data += to_process - buf_len;
sctx->count[0] = 0; buf_len = 0;
in_sg = nx_ctx->in_sg;
} while (leftover >= SHA512_BLOCK_SIZE); } while (leftover >= SHA512_BLOCK_SIZE);
/* copy the leftover back into the state struct */ /* copy the leftover back into the state struct */
if (leftover) if (leftover)
memcpy(sctx->buf, data, leftover); memcpy(sctx->buf, data, leftover);
sctx->count[0] = leftover; sctx->count[0] += len;
memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out: out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc; return rc;
...@@ -150,39 +172,52 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out) ...@@ -150,39 +172,52 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
struct sha512_state *sctx = shash_desc_ctx(desc); struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u32 max_sg_len;
u64 count0; u64 count0;
unsigned long irq_flags; unsigned long irq_flags;
int rc; int rc;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags); spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen); /* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
/* we've hit the nx chip previously, now we're finalizing, /* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */ * so copy over the partial digest */
memcpy(csbcpb->cpb.sha512.input_partial_digest, memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); SHA512_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
} else {
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
} }
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
count0 = sctx->count[0] * 8; count0 = sctx->count[0] * 8;
csbcpb->cpb.sha512.message_bit_length_lo += count0; csbcpb->cpb.sha512.message_bit_length_lo = count0;
if (csbcpb->cpb.sha512.message_bit_length_lo < count0)
csbcpb->cpb.sha512.message_bit_length_hi++;
in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, sctx->count[0], len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
max_sg_len); rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA512_DIGEST_SIZE, &nx_ctx->op.inlen,
max_sg_len); &len,
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); (u8 *)sctx->buf,
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); NX_DS_SHA512);
if (rc || len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1)))
goto out;
len = SHA512_DIGEST_SIZE;
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
&nx_ctx->op.outlen,
&len,
out,
NX_DS_SHA512);
if (rc)
goto out;
if (!nx_ctx->op.outlen) { if (!nx_ctx->op.outlen) {
rc = -EINVAL; rc = -EINVAL;
...@@ -195,8 +230,7 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out) ...@@ -195,8 +230,7 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
goto out; goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops)); atomic_inc(&(nx_ctx->stats->sha512_ops));
atomic64_add(csbcpb->cpb.sha512.message_bit_length_lo / 8, atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
&(nx_ctx->stats->sha512_bytes));
memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out: out:
...@@ -207,74 +241,18 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out) ...@@ -207,74 +241,18 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
static int nx_sha512_export(struct shash_desc *desc, void *out) static int nx_sha512_export(struct shash_desc *desc, void *out)
{ {
struct sha512_state *sctx = shash_desc_ctx(desc); struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct sha512_state *octx = out;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags); memcpy(out, sctx, sizeof(*sctx));
/* move message_bit_length (128 bits) into count and convert its value
* to bytes */
octx->count[0] = csbcpb->cpb.sha512.message_bit_length_lo >> 3 |
((csbcpb->cpb.sha512.message_bit_length_hi & 7) << 61);
octx->count[1] = csbcpb->cpb.sha512.message_bit_length_hi >> 3;
octx->count[0] += sctx->count[0];
if (octx->count[0] < sctx->count[0])
octx->count[1]++;
memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
/* if no data has been processed yet, we need to export SHA512's
* initial data, in case this context gets imported into a software
* context */
if (csbcpb->cpb.sha512.message_bit_length_hi ||
csbcpb->cpb.sha512.message_bit_length_lo)
memcpy(octx->state, csbcpb->cpb.sha512.message_digest,
SHA512_DIGEST_SIZE);
else {
octx->state[0] = SHA512_H0;
octx->state[1] = SHA512_H1;
octx->state[2] = SHA512_H2;
octx->state[3] = SHA512_H3;
octx->state[4] = SHA512_H4;
octx->state[5] = SHA512_H5;
octx->state[6] = SHA512_H6;
octx->state[7] = SHA512_H7;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0; return 0;
} }
static int nx_sha512_import(struct shash_desc *desc, const void *in) static int nx_sha512_import(struct shash_desc *desc, const void *in)
{ {
struct sha512_state *sctx = shash_desc_ctx(desc); struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
const struct sha512_state *ictx = in;
unsigned long irq_flags;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
sctx->count[0] = ictx->count[0] & 0x3f;
csbcpb->cpb.sha512.message_bit_length_lo = (ictx->count[0] & ~0x3f)
<< 3;
csbcpb->cpb.sha512.message_bit_length_hi = ictx->count[1] << 3 |
ictx->count[0] >> 61;
if (csbcpb->cpb.sha512.message_bit_length_hi ||
csbcpb->cpb.sha512.message_bit_length_lo) {
memcpy(csbcpb->cpb.sha512.message_digest, ictx->state,
SHA512_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; memcpy(sctx, in, sizeof(*sctx));
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
}
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return 0; return 0;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment