Commit 0365ba7f authored by Benjamin Herrenschmidt's avatar Benjamin Herrenschmidt Committed by Linus Torvalds

[PATCH] ppc64: SMU driver update & i2c support

The SMU is the "system controller" chip used by Apple recent G5 machines
including the iMac G5.  It drives things like fans, i2c busses, real time
clock, etc...

The current kernel contains a very crude driver that doesn't do much more
than reading the real time clock synchronously.  This is a completely
rewritten driver that provides interrupt based command queuing, a userland
interface, and an i2c/smbus driver for accessing the devices hanging off
the SMU i2c busses like temperature sensors.  This driver is a basic block
for upcoming work on thermal control for those machines, among others.
Signed-off-by: default avatarBenjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jean Delvare <khali@linux-fr.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 0f329075
......@@ -719,7 +719,8 @@ pmac_declare_of_platform_devices(void)
if (np) {
for (np = np->child; np != NULL; np = np->sibling)
if (strncmp(np->name, "i2c", 3) == 0) {
of_platform_device_create(np, "uni-n-i2c");
of_platform_device_create(np, "uni-n-i2c",
NULL);
break;
}
}
......@@ -727,17 +728,18 @@ pmac_declare_of_platform_devices(void)
if (np) {
for (np = np->child; np != NULL; np = np->sibling)
if (strncmp(np->name, "i2c", 3) == 0) {
of_platform_device_create(np, "u3-i2c");
of_platform_device_create(np, "u3-i2c",
NULL);
break;
}
}
np = find_devices("valkyrie");
if (np)
of_platform_device_create(np, "valkyrie");
of_platform_device_create(np, "valkyrie", NULL);
np = find_devices("platinum");
if (np)
of_platform_device_create(np, "platinum");
of_platform_device_create(np, "platinum", NULL);
return 0;
}
......
......@@ -234,7 +234,9 @@ void of_device_unregister(struct of_device *ofdev)
device_unregister(&ofdev->dev);
}
struct of_device* of_platform_device_create(struct device_node *np, const char *bus_id)
struct of_device* of_platform_device_create(struct device_node *np,
const char *bus_id,
struct device *parent)
{
struct of_device *dev;
u32 *reg;
......@@ -247,7 +249,7 @@ struct of_device* of_platform_device_create(struct device_node *np, const char *
dev->node = of_node_get(np);
dev->dma_mask = 0xffffffffUL;
dev->dev.dma_mask = &dev->dma_mask;
dev->dev.parent = NULL;
dev->dev.parent = parent;
dev->dev.bus = &of_platform_bus_type;
dev->dev.release = of_release_dev;
......
......@@ -233,7 +233,9 @@ void of_device_unregister(struct of_device *ofdev)
device_unregister(&ofdev->dev);
}
struct of_device* of_platform_device_create(struct device_node *np, const char *bus_id)
struct of_device* of_platform_device_create(struct device_node *np,
const char *bus_id,
struct device *parent)
{
struct of_device *dev;
......@@ -245,7 +247,7 @@ struct of_device* of_platform_device_create(struct device_node *np, const char *
dev->node = np;
dev->dma_mask = 0xffffffffUL;
dev->dev.dma_mask = &dev->dma_mask;
dev->dev.parent = NULL;
dev->dev.parent = parent;
dev->dev.bus = &of_platform_bus_type;
dev->dev.release = of_release_dev;
......@@ -259,6 +261,7 @@ struct of_device* of_platform_device_create(struct device_node *np, const char *
return dev;
}
EXPORT_SYMBOL(of_match_device);
EXPORT_SYMBOL(of_platform_bus_type);
EXPORT_SYMBOL(of_register_driver);
......
......@@ -434,16 +434,24 @@ static int pmac_check_legacy_ioport(unsigned int baseport)
static int __init pmac_declare_of_platform_devices(void)
{
struct device_node *np;
struct device_node *np, *npp;
np = find_devices("u3");
if (np) {
for (np = np->child; np != NULL; np = np->sibling)
npp = of_find_node_by_name(NULL, "u3");
if (npp) {
for (np = NULL; (np = of_get_next_child(npp, np)) != NULL;) {
if (strncmp(np->name, "i2c", 3) == 0) {
of_platform_device_create(np, "u3-i2c");
of_platform_device_create(np, "u3-i2c", NULL);
of_node_put(np);
break;
}
}
of_node_put(npp);
}
npp = of_find_node_by_type(NULL, "smu");
if (npp) {
of_platform_device_create(npp, "smu", NULL);
of_node_put(npp);
}
return 0;
}
......
......@@ -84,7 +84,7 @@ void __pmac pmac_get_rtc_time(struct rtc_time *tm)
#ifdef CONFIG_PMAC_SMU
case SYS_CTRLER_SMU:
smu_get_rtc_time(tm);
smu_get_rtc_time(tm, 1);
break;
#endif /* CONFIG_PMAC_SMU */
default:
......@@ -128,7 +128,7 @@ int __pmac pmac_set_rtc_time(struct rtc_time *tm)
#ifdef CONFIG_PMAC_SMU
case SYS_CTRLER_SMU:
return smu_set_rtc_time(tm);
return smu_set_rtc_time(tm, 1);
#endif /* CONFIG_PMAC_SMU */
default:
return -ENODEV;
......
......@@ -245,6 +245,18 @@ config I2C_KEYWEST
This support is also available as a module. If so, the module
will be called i2c-keywest.
config I2C_PMAC_SMU
tristate "Powermac SMU I2C interface"
depends on I2C && PMAC_SMU
help
This supports the use of the I2C interface in the SMU
chip on recent Apple machines like the iMac G5. It is used
among others by the thermal control driver for those machines.
Say Y if you have such a machine.
This support is also available as a module. If so, the module
will be called i2c-pmac-smu.
config I2C_MPC
tristate "MPC107/824x/85xx/52xx"
depends on I2C && PPC32
......
......@@ -20,6 +20,7 @@ obj-$(CONFIG_I2C_ITE) += i2c-ite.o
obj-$(CONFIG_I2C_IXP2000) += i2c-ixp2000.o
obj-$(CONFIG_I2C_IXP4XX) += i2c-ixp4xx.o
obj-$(CONFIG_I2C_KEYWEST) += i2c-keywest.o
obj-$(CONFIG_I2C_PMAC_SMU) += i2c-pmac-smu.o
obj-$(CONFIG_I2C_MPC) += i2c-mpc.o
obj-$(CONFIG_I2C_MV64XXX) += i2c-mv64xxx.o
obj-$(CONFIG_I2C_NFORCE2) += i2c-nforce2.o
......
/*
i2c Support for Apple SMU Controller
Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp.
<benh@kernel.crashing.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <asm/prom.h>
#include <asm/of_device.h>
#include <asm/smu.h>
static int probe;
MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
MODULE_DESCRIPTION("I2C driver for Apple's SMU");
MODULE_LICENSE("GPL");
module_param(probe, bool, 0);
/* Physical interface */
struct smu_iface
{
struct i2c_adapter adapter;
struct completion complete;
u32 busid;
};
static void smu_i2c_done(struct smu_i2c_cmd *cmd, void *misc)
{
struct smu_iface *iface = misc;
complete(&iface->complete);
}
/*
* SMBUS-type transfer entrypoint
*/
static s32 smu_smbus_xfer( struct i2c_adapter* adap,
u16 addr,
unsigned short flags,
char read_write,
u8 command,
int size,
union i2c_smbus_data* data)
{
struct smu_iface *iface = i2c_get_adapdata(adap);
struct smu_i2c_cmd cmd;
int rc = 0;
int read = (read_write == I2C_SMBUS_READ);
cmd.info.bus = iface->busid;
cmd.info.devaddr = (addr << 1) | (read ? 0x01 : 0x00);
/* Prepare datas & select mode */
switch (size) {
case I2C_SMBUS_QUICK:
cmd.info.type = SMU_I2C_TRANSFER_SIMPLE;
cmd.info.datalen = 0;
break;
case I2C_SMBUS_BYTE:
cmd.info.type = SMU_I2C_TRANSFER_SIMPLE;
cmd.info.datalen = 1;
if (!read)
cmd.info.data[0] = data->byte;
break;
case I2C_SMBUS_BYTE_DATA:
cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
cmd.info.datalen = 1;
cmd.info.sublen = 1;
cmd.info.subaddr[0] = command;
cmd.info.subaddr[1] = 0;
cmd.info.subaddr[2] = 0;
if (!read)
cmd.info.data[0] = data->byte;
break;
case I2C_SMBUS_WORD_DATA:
cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
cmd.info.datalen = 2;
cmd.info.sublen = 1;
cmd.info.subaddr[0] = command;
cmd.info.subaddr[1] = 0;
cmd.info.subaddr[2] = 0;
if (!read) {
cmd.info.data[0] = data->byte & 0xff;
cmd.info.data[1] = (data->byte >> 8) & 0xff;
}
break;
/* Note that these are broken vs. the expected smbus API where
* on reads, the lenght is actually returned from the function,
* but I think the current API makes no sense and I don't want
* any driver that I haven't verified for correctness to go
* anywhere near a pmac i2c bus anyway ...
*/
case I2C_SMBUS_BLOCK_DATA:
cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
cmd.info.datalen = data->block[0] + 1;
if (cmd.info.datalen > 6)
return -EINVAL;
if (!read)
memcpy(cmd.info.data, data->block, cmd.info.datalen);
cmd.info.sublen = 1;
cmd.info.subaddr[0] = command;
cmd.info.subaddr[1] = 0;
cmd.info.subaddr[2] = 0;
break;
case I2C_SMBUS_I2C_BLOCK_DATA:
cmd.info.type = SMU_I2C_TRANSFER_STDSUB;
cmd.info.datalen = data->block[0];
if (cmd.info.datalen > 7)
return -EINVAL;
if (!read)
memcpy(cmd.info.data, &data->block[1],
cmd.info.datalen);
cmd.info.sublen = 1;
cmd.info.subaddr[0] = command;
cmd.info.subaddr[1] = 0;
cmd.info.subaddr[2] = 0;
break;
default:
return -EINVAL;
}
/* Turn a standardsub read into a combined mode access */
if (read_write == I2C_SMBUS_READ &&
cmd.info.type == SMU_I2C_TRANSFER_STDSUB)
cmd.info.type = SMU_I2C_TRANSFER_COMBINED;
/* Finish filling command and submit it */
cmd.done = smu_i2c_done;
cmd.misc = iface;
rc = smu_queue_i2c(&cmd);
if (rc < 0)
return rc;
wait_for_completion(&iface->complete);
rc = cmd.status;
if (!read || rc < 0)
return rc;
switch (size) {
case I2C_SMBUS_BYTE:
case I2C_SMBUS_BYTE_DATA:
data->byte = cmd.info.data[0];
break;
case I2C_SMBUS_WORD_DATA:
data->word = ((u16)cmd.info.data[1]) << 8;
data->word |= cmd.info.data[0];
break;
/* Note that these are broken vs. the expected smbus API where
* on reads, the lenght is actually returned from the function,
* but I think the current API makes no sense and I don't want
* any driver that I haven't verified for correctness to go
* anywhere near a pmac i2c bus anyway ...
*/
case I2C_SMBUS_BLOCK_DATA:
case I2C_SMBUS_I2C_BLOCK_DATA:
memcpy(&data->block[0], cmd.info.data, cmd.info.datalen);
break;
}
return rc;
}
static u32
smu_smbus_func(struct i2c_adapter * adapter)
{
return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
I2C_FUNC_SMBUS_BLOCK_DATA;
}
/* For now, we only handle combined mode (smbus) */
static struct i2c_algorithm smu_algorithm = {
.smbus_xfer = smu_smbus_xfer,
.functionality = smu_smbus_func,
};
static int create_iface(struct device_node *np, struct device *dev)
{
struct smu_iface* iface;
u32 *reg, busid;
int rc;
reg = (u32 *)get_property(np, "reg", NULL);
if (reg == NULL) {
printk(KERN_ERR "i2c-pmac-smu: can't find bus number !\n");
return -ENXIO;
}
busid = *reg;
iface = kmalloc(sizeof(struct smu_iface), GFP_KERNEL);
if (iface == NULL) {
printk(KERN_ERR "i2c-pmac-smu: can't allocate inteface !\n");
return -ENOMEM;
}
memset(iface, 0, sizeof(struct smu_iface));
init_completion(&iface->complete);
iface->busid = busid;
dev_set_drvdata(dev, iface);
sprintf(iface->adapter.name, "smu-i2c-%02x", busid);
iface->adapter.algo = &smu_algorithm;
iface->adapter.algo_data = NULL;
iface->adapter.client_register = NULL;
iface->adapter.client_unregister = NULL;
i2c_set_adapdata(&iface->adapter, iface);
iface->adapter.dev.parent = dev;
rc = i2c_add_adapter(&iface->adapter);
if (rc) {
printk(KERN_ERR "i2c-pamc-smu.c: Adapter %s registration "
"failed\n", iface->adapter.name);
i2c_set_adapdata(&iface->adapter, NULL);
}
if (probe) {
unsigned char addr;
printk("Probe: ");
for (addr = 0x00; addr <= 0x7f; addr++) {
if (i2c_smbus_xfer(&iface->adapter,addr,
0,0,0,I2C_SMBUS_QUICK,NULL) >= 0)
printk("%02x ", addr);
}
printk("\n");
}
printk(KERN_INFO "SMU i2c bus %x registered\n", busid);
return 0;
}
static int dispose_iface(struct device *dev)
{
struct smu_iface *iface = dev_get_drvdata(dev);
int rc;
rc = i2c_del_adapter(&iface->adapter);
i2c_set_adapdata(&iface->adapter, NULL);
/* We aren't that prepared to deal with this... */
if (rc)
printk("i2c-pmac-smu.c: Failed to remove bus %s !\n",
iface->adapter.name);
dev_set_drvdata(dev, NULL);
kfree(iface);
return 0;
}
static int create_iface_of_platform(struct of_device* dev,
const struct of_device_id *match)
{
return create_iface(dev->node, &dev->dev);
}
static int dispose_iface_of_platform(struct of_device* dev)
{
return dispose_iface(&dev->dev);
}
static struct of_device_id i2c_smu_match[] =
{
{
.compatible = "smu-i2c",
},
{},
};
static struct of_platform_driver i2c_smu_of_platform_driver =
{
.name = "i2c-smu",
.match_table = i2c_smu_match,
.probe = create_iface_of_platform,
.remove = dispose_iface_of_platform
};
static int __init i2c_pmac_smu_init(void)
{
of_register_driver(&i2c_smu_of_platform_driver);
return 0;
}
static void __exit i2c_pmac_smu_cleanup(void)
{
of_unregister_driver(&i2c_smu_of_platform_driver);
}
module_init(i2c_pmac_smu_init);
module_exit(i2c_pmac_smu_cleanup);
......@@ -8,21 +8,15 @@
*/
/*
* For now, this driver includes:
* - RTC get & set
* - reboot & shutdown commands
* all synchronous with IRQ disabled (ugh)
*
* TODO:
* rework in a way the PMU driver works, that is asynchronous
* with a queue of commands. I'll do that as soon as I have an
* SMU based machine at hand. Some more cleanup is needed too,
* like maybe fitting it into a platform device, etc...
* Also check what's up with cache coherency, and if we really
* can't do better than flushing the cache, maybe build a table
* of command len/reply len like the PMU driver to only flush
* what is actually necessary.
* --BenH.
* - maybe add timeout to commands ?
* - blocking version of time functions
* - polling version of i2c commands (including timer that works with
* interrutps off)
* - maybe avoid some data copies with i2c by directly using the smu cmd
* buffer and a lower level internal interface
* - understand SMU -> CPU events and implement reception of them via
* the userland interface
*/
#include <linux/config.h>
......@@ -36,6 +30,11 @@
#include <linux/jiffies.h>
#include <linux/interrupt.h>
#include <linux/rtc.h>
#include <linux/completion.h>
#include <linux/miscdevice.h>
#include <linux/delay.h>
#include <linux/sysdev.h>
#include <linux/poll.h>
#include <asm/byteorder.h>
#include <asm/io.h>
......@@ -45,8 +44,13 @@
#include <asm/smu.h>
#include <asm/sections.h>
#include <asm/abs_addr.h>
#include <asm/uaccess.h>
#include <asm/of_device.h>
#define VERSION "0.6"
#define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
#define DEBUG_SMU 1
#undef DEBUG_SMU
#ifdef DEBUG_SMU
#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
......@@ -57,20 +61,30 @@
/*
* This is the command buffer passed to the SMU hardware
*/
#define SMU_MAX_DATA 254
struct smu_cmd_buf {
u8 cmd;
u8 length;
u8 data[0x0FFE];
u8 data[SMU_MAX_DATA];
};
struct smu_device {
spinlock_t lock;
struct device_node *of_node;
int db_ack; /* doorbell ack GPIO */
int db_req; /* doorbell req GPIO */
struct of_device *of_dev;
int doorbell; /* doorbell gpio */
u32 __iomem *db_buf; /* doorbell buffer */
int db_irq;
int msg;
int msg_irq;
struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
u32 cmd_buf_abs; /* command buffer absolute */
struct list_head cmd_list;
struct smu_cmd *cmd_cur; /* pending command */
struct list_head cmd_i2c_list;
struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
struct timer_list i2c_timer;
};
/*
......@@ -79,113 +93,243 @@ struct smu_device {
*/
static struct smu_device *smu;
/*
* SMU low level communication stuff
* SMU driver low level stuff
*/
static inline int smu_cmd_stat(struct smu_cmd_buf *cmd_buf, u8 cmd_ack)
{
rmb();
return cmd_buf->cmd == cmd_ack && cmd_buf->length != 0;
}
static inline u8 smu_save_ack_cmd(struct smu_cmd_buf *cmd_buf)
static void smu_start_cmd(void)
{
return (~cmd_buf->cmd) & 0xff;
}
unsigned long faddr, fend;
struct smu_cmd *cmd;
static void smu_send_cmd(struct smu_device *dev)
{
/* SMU command buf is currently cacheable, we need a physical
* address. This isn't exactly a DMA mapping here, I suspect
if (list_empty(&smu->cmd_list))
return;
/* Fetch first command in queue */
cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
smu->cmd_cur = cmd;
list_del(&cmd->link);
DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
cmd->data_len);
DPRINTK("SMU: data buffer: %02x %02x %02x %02x ...\n",
((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3]);
/* Fill the SMU command buffer */
smu->cmd_buf->cmd = cmd->cmd;
smu->cmd_buf->length = cmd->data_len;
memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
/* Flush command and data to RAM */
faddr = (unsigned long)smu->cmd_buf;
fend = faddr + smu->cmd_buf->length + 2;
flush_inval_dcache_range(faddr, fend);
/* This isn't exactly a DMA mapping here, I suspect
* the SMU is actually communicating with us via i2c to the
* northbridge or the CPU to access RAM.
*/
writel(dev->cmd_buf_abs, dev->db_buf);
writel(smu->cmd_buf_abs, smu->db_buf);
/* Ring the SMU doorbell */
pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, dev->db_req, 4);
pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, dev->db_req, 4);
pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
}
static int smu_cmd_done(struct smu_device *dev)
static irqreturn_t smu_db_intr(int irq, void *arg, struct pt_regs *regs)
{
unsigned long wait = 0;
int gpio;
unsigned long flags;
struct smu_cmd *cmd;
void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
void *misc = NULL;
u8 gpio;
int rc = 0;
/* Check the SMU doorbell */
do {
gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO,
NULL, dev->db_ack);
if ((gpio & 7) == 7)
return 0;
udelay(100);
} while(++wait < 10000);
/* SMU completed the command, well, we hope, let's make sure
* of it
*/
spin_lock_irqsave(&smu->lock, flags);
printk(KERN_ERR "SMU timeout !\n");
return -ENXIO;
gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
if ((gpio & 7) != 7)
return IRQ_HANDLED;
cmd = smu->cmd_cur;
smu->cmd_cur = NULL;
if (cmd == NULL)
goto bail;
if (rc == 0) {
unsigned long faddr;
int reply_len;
u8 ack;
/* CPU might have brought back the cache line, so we need
* to flush again before peeking at the SMU response. We
* flush the entire buffer for now as we haven't read the
* reply lenght (it's only 2 cache lines anyway)
*/
faddr = (unsigned long)smu->cmd_buf;
flush_inval_dcache_range(faddr, faddr + 256);
/* Now check ack */
ack = (~cmd->cmd) & 0xff;
if (ack != smu->cmd_buf->cmd) {
DPRINTK("SMU: incorrect ack, want %x got %x\n",
ack, smu->cmd_buf->cmd);
rc = -EIO;
}
reply_len = rc == 0 ? smu->cmd_buf->length : 0;
DPRINTK("SMU: reply len: %d\n", reply_len);
if (reply_len > cmd->reply_len) {
printk(KERN_WARNING "SMU: reply buffer too small,"
"got %d bytes for a %d bytes buffer\n",
reply_len, cmd->reply_len);
reply_len = cmd->reply_len;
}
cmd->reply_len = reply_len;
if (cmd->reply_buf && reply_len)
memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
}
/* Now complete the command. Write status last in order as we lost
* ownership of the command structure as soon as it's no longer -1
*/
done = cmd->done;
misc = cmd->misc;
mb();
cmd->status = rc;
bail:
/* Start next command if any */
smu_start_cmd();
spin_unlock_irqrestore(&smu->lock, flags);
/* Call command completion handler if any */
if (done)
done(cmd, misc);
/* It's an edge interrupt, nothing to do */
return IRQ_HANDLED;
}
static int smu_do_cmd(struct smu_device *dev)
static irqreturn_t smu_msg_intr(int irq, void *arg, struct pt_regs *regs)
{
int rc;
u8 cmd_ack;
/* I don't quite know what to do with this one, we seem to never
* receive it, so I suspect we have to arm it someway in the SMU
* to start getting events that way.
*/
DPRINTK("SMU do_cmd %02x len=%d %02x\n",
dev->cmd_buf->cmd, dev->cmd_buf->length,
dev->cmd_buf->data[0]);
printk(KERN_INFO "SMU: message interrupt !\n");
cmd_ack = smu_save_ack_cmd(dev->cmd_buf);
/* It's an edge interrupt, nothing to do */
return IRQ_HANDLED;
}
/* Clear cmd_buf cache lines */
flush_inval_dcache_range((unsigned long)dev->cmd_buf,
((unsigned long)dev->cmd_buf) +
sizeof(struct smu_cmd_buf));
smu_send_cmd(dev);
rc = smu_cmd_done(dev);
if (rc == 0)
rc = smu_cmd_stat(dev->cmd_buf, cmd_ack) ? 0 : -1;
DPRINTK("SMU do_cmd %02x len=%d %02x => %d (%02x)\n",
dev->cmd_buf->cmd, dev->cmd_buf->length,
dev->cmd_buf->data[0], rc, cmd_ack);
/*
* Queued command management.
*
*/
return rc;
int smu_queue_cmd(struct smu_cmd *cmd)
{
unsigned long flags;
if (smu == NULL)
return -ENODEV;
if (cmd->data_len > SMU_MAX_DATA ||
cmd->reply_len > SMU_MAX_DATA)
return -EINVAL;
cmd->status = 1;
spin_lock_irqsave(&smu->lock, flags);
list_add_tail(&cmd->link, &smu->cmd_list);
if (smu->cmd_cur == NULL)
smu_start_cmd();
spin_unlock_irqrestore(&smu->lock, flags);
return 0;
}
EXPORT_SYMBOL(smu_queue_cmd);
/* RTC low level commands */
static inline int bcd2hex (int n)
int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
unsigned int data_len,
void (*done)(struct smu_cmd *cmd, void *misc),
void *misc, ...)
{
return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
struct smu_cmd *cmd = &scmd->cmd;
va_list list;
int i;
if (data_len > sizeof(scmd->buffer))
return -EINVAL;
memset(scmd, 0, sizeof(*scmd));
cmd->cmd = command;
cmd->data_len = data_len;
cmd->data_buf = scmd->buffer;
cmd->reply_len = sizeof(scmd->buffer);
cmd->reply_buf = scmd->buffer;
cmd->done = done;
cmd->misc = misc;
va_start(list, misc);
for (i = 0; i < data_len; ++i)
scmd->buffer[i] = (u8)va_arg(list, int);
va_end(list);
return smu_queue_cmd(cmd);
}
EXPORT_SYMBOL(smu_queue_simple);
static inline int hex2bcd (int n)
void smu_poll(void)
{
return ((n / 10) << 4) + (n % 10);
u8 gpio;
if (smu == NULL)
return;
gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
if ((gpio & 7) == 7)
smu_db_intr(smu->db_irq, smu, NULL);
}
EXPORT_SYMBOL(smu_poll);
#if 0
static inline void smu_fill_set_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf)
void smu_done_complete(struct smu_cmd *cmd, void *misc)
{
cmd_buf->cmd = 0x8e;
cmd_buf->length = 8;
cmd_buf->data[0] = 0x00;
memset(cmd_buf->data + 1, 0, 7);
struct completion *comp = misc;
complete(comp);
}
EXPORT_SYMBOL(smu_done_complete);
static inline void smu_fill_get_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf)
void smu_spinwait_cmd(struct smu_cmd *cmd)
{
cmd_buf->cmd = 0x8e;
cmd_buf->length = 1;
cmd_buf->data[0] = 0x01;
while(cmd->status == 1)
smu_poll();
}
EXPORT_SYMBOL(smu_spinwait_cmd);
/* RTC low level commands */
static inline int bcd2hex (int n)
{
return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
}
static inline void smu_fill_dis_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf)
static inline int hex2bcd (int n)
{
cmd_buf->cmd = 0x8e;
cmd_buf->length = 1;
cmd_buf->data[0] = 0x02;
return ((n / 10) << 4) + (n % 10);
}
#endif
static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
struct rtc_time *time)
......@@ -202,100 +346,96 @@ static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
}
static inline void smu_fill_get_rtc_cmd(struct smu_cmd_buf *cmd_buf)
{
cmd_buf->cmd = 0x8e;
cmd_buf->length = 1;
cmd_buf->data[0] = 0x81;
}
static void smu_parse_get_rtc_reply(struct smu_cmd_buf *cmd_buf,
struct rtc_time *time)
{
time->tm_sec = bcd2hex(cmd_buf->data[0]);
time->tm_min = bcd2hex(cmd_buf->data[1]);
time->tm_hour = bcd2hex(cmd_buf->data[2]);
time->tm_wday = bcd2hex(cmd_buf->data[3]);
time->tm_mday = bcd2hex(cmd_buf->data[4]);
time->tm_mon = bcd2hex(cmd_buf->data[5]) - 1;
time->tm_year = bcd2hex(cmd_buf->data[6]) + 100;
}
int smu_get_rtc_time(struct rtc_time *time)
int smu_get_rtc_time(struct rtc_time *time, int spinwait)
{
unsigned long flags;
struct smu_simple_cmd cmd;
int rc;
if (smu == NULL)
return -ENODEV;
memset(time, 0, sizeof(struct rtc_time));
spin_lock_irqsave(&smu->lock, flags);
smu_fill_get_rtc_cmd(smu->cmd_buf);
rc = smu_do_cmd(smu);
if (rc == 0)
smu_parse_get_rtc_reply(smu->cmd_buf, time);
spin_unlock_irqrestore(&smu->lock, flags);
rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
SMU_CMD_RTC_GET_DATETIME);
if (rc)
return rc;
smu_spinwait_simple(&cmd);
time->tm_sec = bcd2hex(cmd.buffer[0]);
time->tm_min = bcd2hex(cmd.buffer[1]);
time->tm_hour = bcd2hex(cmd.buffer[2]);
time->tm_wday = bcd2hex(cmd.buffer[3]);
time->tm_mday = bcd2hex(cmd.buffer[4]);
time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
return 0;
}
int smu_set_rtc_time(struct rtc_time *time)
int smu_set_rtc_time(struct rtc_time *time, int spinwait)
{
unsigned long flags;
struct smu_simple_cmd cmd;
int rc;
if (smu == NULL)
return -ENODEV;
spin_lock_irqsave(&smu->lock, flags);
smu_fill_set_rtc_cmd(smu->cmd_buf, time);
rc = smu_do_cmd(smu);
spin_unlock_irqrestore(&smu->lock, flags);
rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
SMU_CMD_RTC_SET_DATETIME,
hex2bcd(time->tm_sec),
hex2bcd(time->tm_min),
hex2bcd(time->tm_hour),
time->tm_wday,
hex2bcd(time->tm_mday),
hex2bcd(time->tm_mon) + 1,
hex2bcd(time->tm_year - 100));
if (rc)
return rc;
smu_spinwait_simple(&cmd);
return 0;
}
void smu_shutdown(void)
{
const unsigned char *command = "SHUTDOWN";
unsigned long flags;
struct smu_simple_cmd cmd;
if (smu == NULL)
return;
spin_lock_irqsave(&smu->lock, flags);
smu->cmd_buf->cmd = 0xaa;
smu->cmd_buf->length = strlen(command);
strcpy(smu->cmd_buf->data, command);
smu_do_cmd(smu);
if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
return;
smu_spinwait_simple(&cmd);
for (;;)
;
spin_unlock_irqrestore(&smu->lock, flags);
}
void smu_restart(void)
{
const unsigned char *command = "RESTART";
unsigned long flags;
struct smu_simple_cmd cmd;
if (smu == NULL)
return;
spin_lock_irqsave(&smu->lock, flags);
smu->cmd_buf->cmd = 0xaa;
smu->cmd_buf->length = strlen(command);
strcpy(smu->cmd_buf->data, command);
smu_do_cmd(smu);
if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
return;
smu_spinwait_simple(&cmd);
for (;;)
;
spin_unlock_irqrestore(&smu->lock, flags);
}
int smu_present(void)
{
return smu != NULL;
}
EXPORT_SYMBOL(smu_present);
int smu_init (void)
......@@ -307,6 +447,8 @@ int smu_init (void)
if (np == NULL)
return -ENODEV;
printk(KERN_INFO "SMU driver %s %s\n", VERSION, AUTHOR);
if (smu_cmdbuf_abs == 0) {
printk(KERN_ERR "SMU: Command buffer not allocated !\n");
return -EINVAL;
......@@ -318,7 +460,13 @@ int smu_init (void)
memset(smu, 0, sizeof(*smu));
spin_lock_init(&smu->lock);
INIT_LIST_HEAD(&smu->cmd_list);
INIT_LIST_HEAD(&smu->cmd_i2c_list);
smu->of_node = np;
smu->db_irq = NO_IRQ;
smu->msg_irq = NO_IRQ;
init_timer(&smu->i2c_timer);
/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
* 32 bits value safely
*/
......@@ -331,8 +479,8 @@ int smu_init (void)
goto fail;
}
data = (u32 *)get_property(np, "reg", NULL);
of_node_put(np);
if (data == NULL) {
of_node_put(np);
printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
goto fail;
}
......@@ -341,8 +489,31 @@ int smu_init (void)
* and ack. GPIOs are at 0x50, best would be to find that out
* in the device-tree though.
*/
smu->db_req = 0x50 + *data;
smu->db_ack = 0x50 + *data;
smu->doorbell = *data;
if (smu->doorbell < 0x50)
smu->doorbell += 0x50;
if (np->n_intrs > 0)
smu->db_irq = np->intrs[0].line;
of_node_put(np);
/* Now look for the smu-interrupt GPIO */
do {
np = of_find_node_by_name(NULL, "smu-interrupt");
if (np == NULL)
break;
data = (u32 *)get_property(np, "reg", NULL);
if (data == NULL) {
of_node_put(np);
break;
}
smu->msg = *data;
if (smu->msg < 0x50)
smu->msg += 0x50;
if (np->n_intrs > 0)
smu->msg_irq = np->intrs[0].line;
of_node_put(np);
} while(0);
/* Doorbell buffer is currently hard-coded, I didn't find a proper
* device-tree entry giving the address. Best would probably to use
......@@ -362,3 +533,584 @@ int smu_init (void)
return -ENXIO;
}
static int smu_late_init(void)
{
if (!smu)
return 0;
/*
* Try to request the interrupts
*/
if (smu->db_irq != NO_IRQ) {
if (request_irq(smu->db_irq, smu_db_intr,
SA_SHIRQ, "SMU doorbell", smu) < 0) {
printk(KERN_WARNING "SMU: can't "
"request interrupt %d\n",
smu->db_irq);
smu->db_irq = NO_IRQ;
}
}
if (smu->msg_irq != NO_IRQ) {
if (request_irq(smu->msg_irq, smu_msg_intr,
SA_SHIRQ, "SMU message", smu) < 0) {
printk(KERN_WARNING "SMU: can't "
"request interrupt %d\n",
smu->msg_irq);
smu->msg_irq = NO_IRQ;
}
}
return 0;
}
arch_initcall(smu_late_init);
/*
* sysfs visibility
*/
static void smu_expose_childs(void *unused)
{
struct device_node *np;
for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;) {
if (device_is_compatible(np, "smu-i2c")) {
char name[32];
u32 *reg = (u32 *)get_property(np, "reg", NULL);
if (reg == NULL)
continue;
sprintf(name, "smu-i2c-%02x", *reg);
of_platform_device_create(np, name, &smu->of_dev->dev);
}
}
}
static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs, NULL);
static int smu_platform_probe(struct of_device* dev,
const struct of_device_id *match)
{
if (!smu)
return -ENODEV;
smu->of_dev = dev;
/*
* Ok, we are matched, now expose all i2c busses. We have to defer
* that unfortunately or it would deadlock inside the device model
*/
schedule_work(&smu_expose_childs_work);
return 0;
}
static struct of_device_id smu_platform_match[] =
{
{
.type = "smu",
},
{},
};
static struct of_platform_driver smu_of_platform_driver =
{
.name = "smu",
.match_table = smu_platform_match,
.probe = smu_platform_probe,
};
static int __init smu_init_sysfs(void)
{
int rc;
/*
* Due to sysfs bogosity, a sysdev is not a real device, so
* we should in fact create both if we want sysdev semantics
* for power management.
* For now, we don't power manage machines with an SMU chip,
* I'm a bit too far from figuring out how that works with those
* new chipsets, but that will come back and bite us
*/
rc = of_register_driver(&smu_of_platform_driver);
return 0;
}
device_initcall(smu_init_sysfs);
struct of_device *smu_get_ofdev(void)
{
if (!smu)
return NULL;
return smu->of_dev;
}
EXPORT_SYMBOL_GPL(smu_get_ofdev);
/*
* i2c interface
*/
static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
{
void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
void *misc = cmd->misc;
unsigned long flags;
/* Check for read case */
if (!fail && cmd->read) {
if (cmd->pdata[0] < 1)
fail = 1;
else
memcpy(cmd->info.data, &cmd->pdata[1],
cmd->info.datalen);
}
DPRINTK("SMU: completing, success: %d\n", !fail);
/* Update status and mark no pending i2c command with lock
* held so nobody comes in while we dequeue an eventual
* pending next i2c command
*/
spin_lock_irqsave(&smu->lock, flags);
smu->cmd_i2c_cur = NULL;
wmb();
cmd->status = fail ? -EIO : 0;
/* Is there another i2c command waiting ? */
if (!list_empty(&smu->cmd_i2c_list)) {
struct smu_i2c_cmd *newcmd;
/* Fetch it, new current, remove from list */
newcmd = list_entry(smu->cmd_i2c_list.next,
struct smu_i2c_cmd, link);
smu->cmd_i2c_cur = newcmd;
list_del(&cmd->link);
/* Queue with low level smu */
list_add_tail(&cmd->scmd.link, &smu->cmd_list);
if (smu->cmd_cur == NULL)
smu_start_cmd();
}
spin_unlock_irqrestore(&smu->lock, flags);
/* Call command completion handler if any */
if (done)
done(cmd, misc);
}
static void smu_i2c_retry(unsigned long data)
{
struct smu_i2c_cmd *cmd = (struct smu_i2c_cmd *)data;
DPRINTK("SMU: i2c failure, requeuing...\n");
/* requeue command simply by resetting reply_len */
cmd->pdata[0] = 0xff;
cmd->scmd.reply_len = 0x10;
smu_queue_cmd(&cmd->scmd);
}
static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
{
struct smu_i2c_cmd *cmd = misc;
int fail = 0;
DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
/* Check for possible status */
if (scmd->status < 0)
fail = 1;
else if (cmd->read) {
if (cmd->stage == 0)
fail = cmd->pdata[0] != 0;
else
fail = cmd->pdata[0] >= 0x80;
} else {
fail = cmd->pdata[0] != 0;
}
/* Handle failures by requeuing command, after 5ms interval
*/
if (fail && --cmd->retries > 0) {
DPRINTK("SMU: i2c failure, starting timer...\n");
smu->i2c_timer.function = smu_i2c_retry;
smu->i2c_timer.data = (unsigned long)cmd;
smu->i2c_timer.expires = jiffies + msecs_to_jiffies(5);
add_timer(&smu->i2c_timer);
return;
}
/* If failure or stage 1, command is complete */
if (fail || cmd->stage != 0) {
smu_i2c_complete_command(cmd, fail);
return;
}
DPRINTK("SMU: going to stage 1\n");
/* Ok, initial command complete, now poll status */
scmd->reply_buf = cmd->pdata;
scmd->reply_len = 0x10;
scmd->data_buf = cmd->pdata;
scmd->data_len = 1;
cmd->pdata[0] = 0;
cmd->stage = 1;
cmd->retries = 20;
smu_queue_cmd(scmd);
}
int smu_queue_i2c(struct smu_i2c_cmd *cmd)
{
unsigned long flags;
if (smu == NULL)
return -ENODEV;
/* Fill most fields of scmd */
cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
cmd->scmd.done = smu_i2c_low_completion;
cmd->scmd.misc = cmd;
cmd->scmd.reply_buf = cmd->pdata;
cmd->scmd.reply_len = 0x10;
cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
cmd->scmd.status = 1;
cmd->stage = 0;
cmd->pdata[0] = 0xff;
cmd->retries = 20;
cmd->status = 1;
/* Check transfer type, sanitize some "info" fields
* based on transfer type and do more checking
*/
cmd->info.caddr = cmd->info.devaddr;
cmd->read = cmd->info.devaddr & 0x01;
switch(cmd->info.type) {
case SMU_I2C_TRANSFER_SIMPLE:
memset(&cmd->info.sublen, 0, 4);
break;
case SMU_I2C_TRANSFER_COMBINED:
cmd->info.devaddr &= 0xfe;
case SMU_I2C_TRANSFER_STDSUB:
if (cmd->info.sublen > 3)
return -EINVAL;
break;
default:
return -EINVAL;
}
/* Finish setting up command based on transfer direction
*/
if (cmd->read) {
if (cmd->info.datalen > SMU_I2C_READ_MAX)
return -EINVAL;
memset(cmd->info.data, 0xff, cmd->info.datalen);
cmd->scmd.data_len = 9;
} else {
if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
return -EINVAL;
cmd->scmd.data_len = 9 + cmd->info.datalen;
}
DPRINTK("SMU: i2c enqueuing command\n");
DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
cmd->read ? "read" : "write", cmd->info.datalen,
cmd->info.bus, cmd->info.caddr,
cmd->info.subaddr[0], cmd->info.type);
/* Enqueue command in i2c list, and if empty, enqueue also in
* main command list
*/
spin_lock_irqsave(&smu->lock, flags);
if (smu->cmd_i2c_cur == NULL) {
smu->cmd_i2c_cur = cmd;
list_add_tail(&cmd->scmd.link, &smu->cmd_list);
if (smu->cmd_cur == NULL)
smu_start_cmd();
} else
list_add_tail(&cmd->link, &smu->cmd_i2c_list);
spin_unlock_irqrestore(&smu->lock, flags);
return 0;
}
/*
* Userland driver interface
*/
static LIST_HEAD(smu_clist);
static DEFINE_SPINLOCK(smu_clist_lock);
enum smu_file_mode {
smu_file_commands,
smu_file_events,
smu_file_closing
};
struct smu_private
{
struct list_head list;
enum smu_file_mode mode;
int busy;
struct smu_cmd cmd;
spinlock_t lock;
wait_queue_head_t wait;
u8 buffer[SMU_MAX_DATA];
};
static int smu_open(struct inode *inode, struct file *file)
{
struct smu_private *pp;
unsigned long flags;
pp = kmalloc(sizeof(struct smu_private), GFP_KERNEL);
if (pp == 0)
return -ENOMEM;
memset(pp, 0, sizeof(struct smu_private));
spin_lock_init(&pp->lock);
pp->mode = smu_file_commands;
init_waitqueue_head(&pp->wait);
spin_lock_irqsave(&smu_clist_lock, flags);
list_add(&pp->list, &smu_clist);
spin_unlock_irqrestore(&smu_clist_lock, flags);
file->private_data = pp;
return 0;
}
static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
{
struct smu_private *pp = misc;
wake_up_all(&pp->wait);
}
static ssize_t smu_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct smu_private *pp = file->private_data;
unsigned long flags;
struct smu_user_cmd_hdr hdr;
int rc = 0;
if (pp->busy)
return -EBUSY;
else if (copy_from_user(&hdr, buf, sizeof(hdr)))
return -EFAULT;
else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
pp->mode = smu_file_events;
return 0;
} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
return -EINVAL;
else if (pp->mode != smu_file_commands)
return -EBADFD;
else if (hdr.data_len > SMU_MAX_DATA)
return -EINVAL;
spin_lock_irqsave(&pp->lock, flags);
if (pp->busy) {
spin_unlock_irqrestore(&pp->lock, flags);
return -EBUSY;
}
pp->busy = 1;
pp->cmd.status = 1;
spin_unlock_irqrestore(&pp->lock, flags);
if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
pp->busy = 0;
return -EFAULT;
}
pp->cmd.cmd = hdr.cmd;
pp->cmd.data_len = hdr.data_len;
pp->cmd.reply_len = SMU_MAX_DATA;
pp->cmd.data_buf = pp->buffer;
pp->cmd.reply_buf = pp->buffer;
pp->cmd.done = smu_user_cmd_done;
pp->cmd.misc = pp;
rc = smu_queue_cmd(&pp->cmd);
if (rc < 0)
return rc;
return count;
}
static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
char __user *buf, size_t count)
{
DECLARE_WAITQUEUE(wait, current);
struct smu_user_reply_hdr hdr;
unsigned long flags;
int size, rc = 0;
if (!pp->busy)
return 0;
if (count < sizeof(struct smu_user_reply_hdr))
return -EOVERFLOW;
spin_lock_irqsave(&pp->lock, flags);
if (pp->cmd.status == 1) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
add_wait_queue(&pp->wait, &wait);
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
rc = 0;
if (pp->cmd.status != 1)
break;
rc = -ERESTARTSYS;
if (signal_pending(current))
break;
spin_unlock_irqrestore(&pp->lock, flags);
schedule();
spin_lock_irqsave(&pp->lock, flags);
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&pp->wait, &wait);
}
spin_unlock_irqrestore(&pp->lock, flags);
if (rc)
return rc;
if (pp->cmd.status != 0)
pp->cmd.reply_len = 0;
size = sizeof(hdr) + pp->cmd.reply_len;
if (count < size)
size = count;
rc = size;
hdr.status = pp->cmd.status;
hdr.reply_len = pp->cmd.reply_len;
if (copy_to_user(buf, &hdr, sizeof(hdr)))
return -EFAULT;
size -= sizeof(hdr);
if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
return -EFAULT;
pp->busy = 0;
return rc;
}
static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
char __user *buf, size_t count)
{
/* Not implemented */
msleep_interruptible(1000);
return 0;
}
static ssize_t smu_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct smu_private *pp = file->private_data;
if (pp->mode == smu_file_commands)
return smu_read_command(file, pp, buf, count);
if (pp->mode == smu_file_events)
return smu_read_events(file, pp, buf, count);
return -EBADFD;
}
static unsigned int smu_fpoll(struct file *file, poll_table *wait)
{
struct smu_private *pp = file->private_data;
unsigned int mask = 0;
unsigned long flags;
if (pp == 0)
return 0;
if (pp->mode == smu_file_commands) {
poll_wait(file, &pp->wait, wait);
spin_lock_irqsave(&pp->lock, flags);
if (pp->busy && pp->cmd.status != 1)
mask |= POLLIN;
spin_unlock_irqrestore(&pp->lock, flags);
} if (pp->mode == smu_file_events) {
/* Not yet implemented */
}
return mask;
}
static int smu_release(struct inode *inode, struct file *file)
{
struct smu_private *pp = file->private_data;
unsigned long flags;
unsigned int busy;
if (pp == 0)
return 0;
file->private_data = NULL;
/* Mark file as closing to avoid races with new request */
spin_lock_irqsave(&pp->lock, flags);
pp->mode = smu_file_closing;
busy = pp->busy;
/* Wait for any pending request to complete */
if (busy && pp->cmd.status == 1) {
DECLARE_WAITQUEUE(wait, current);
add_wait_queue(&pp->wait, &wait);
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (pp->cmd.status != 1)
break;
spin_lock_irqsave(&pp->lock, flags);
schedule();
spin_unlock_irqrestore(&pp->lock, flags);
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&pp->wait, &wait);
}
spin_unlock_irqrestore(&pp->lock, flags);
spin_lock_irqsave(&smu_clist_lock, flags);
list_del(&pp->list);
spin_unlock_irqrestore(&smu_clist_lock, flags);
kfree(pp);
return 0;
}
static struct file_operations smu_device_fops __pmacdata = {
.llseek = no_llseek,
.read = smu_read,
.write = smu_write,
.poll = smu_fpoll,
.open = smu_open,
.release = smu_release,
};
static struct miscdevice pmu_device __pmacdata = {
MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
};
static int smu_device_init(void)
{
if (!smu)
return -ENODEV;
if (misc_register(&pmu_device) < 0)
printk(KERN_ERR "via-pmu: cannot register misc device.\n");
return 0;
}
device_initcall(smu_device_init);
......@@ -599,7 +599,7 @@ thermostat_init(void)
sensor_location[2] = "?";
}
of_dev = of_platform_device_create(np, "temperatures");
of_dev = of_platform_device_create(np, "temperatures", NULL);
if (of_dev == NULL) {
printk(KERN_ERR "Can't register temperatures device !\n");
......
......@@ -2051,7 +2051,7 @@ static int __init therm_pm72_init(void)
return -ENODEV;
}
}
of_dev = of_platform_device_create(np, "temperature");
of_dev = of_platform_device_create(np, "temperature", NULL);
if (of_dev == NULL) {
printk(KERN_ERR "Can't register FCU platform device !\n");
return -ENODEV;
......
......@@ -504,7 +504,7 @@ g4fan_init( void )
}
if( !(np=of_find_node_by_name(NULL, "fan")) )
return -ENODEV;
x.of_dev = of_platform_device_create( np, "temperature" );
x.of_dev = of_platform_device_create(np, "temperature", NULL);
of_node_put( np );
if( !x.of_dev ) {
......
#ifndef __MACIO_ASIC_H__
#define __MACIO_ASIC_H__
#include <linux/mod_devicetable.h>
#include <asm/of_device.h>
extern struct bus_type macio_bus_type;
......
......@@ -2,6 +2,7 @@
#define __OF_DEVICE_H__
#include <linux/device.h>
#include <linux/mod_devicetable.h>
#include <asm/prom.h>
/*
......@@ -55,7 +56,9 @@ extern int of_register_driver(struct of_platform_driver *drv);
extern void of_unregister_driver(struct of_platform_driver *drv);
extern int of_device_register(struct of_device *ofdev);
extern void of_device_unregister(struct of_device *ofdev);
extern struct of_device *of_platform_device_create(struct device_node *np, const char *bus_id);
extern struct of_device *of_platform_device_create(struct device_node *np,
const char *bus_id,
struct device *parent);
extern void of_release_dev(struct device *dev);
#endif /* __OF_DEVICE_H__ */
......
#ifndef _SMU_H
#define _SMU_H
/*
* Definitions for talking to the SMU chip in newer G5 PowerMacs
*/
#include <linux/config.h>
#include <linux/list.h>
/*
* Known SMU commands
*
* Most of what is below comes from looking at the Open Firmware driver,
* though this is still incomplete and could use better documentation here
* or there...
*/
/*
* Partition info commands
*
* I do not know what those are for at this point
*/
#define SMU_CMD_PARTITION_COMMAND 0x3e
/*
* Fan control
*
* This is a "mux" for fan control commands, first byte is the
* "sub" command.
*/
#define SMU_CMD_FAN_COMMAND 0x4a
/*
* Battery access
*
* Same command number as the PMU, could it be same syntax ?
*/
#define SMU_CMD_BATTERY_COMMAND 0x6f
#define SMU_CMD_GET_BATTERY_INFO 0x00
/*
* Real time clock control
*
* This is a "mux", first data byte contains the "sub" command.
* The "RTC" part of the SMU controls the date, time, powerup
* timer, but also a PRAM
*
* Dates are in BCD format on 7 bytes:
* [sec] [min] [hour] [weekday] [month day] [month] [year]
* with month being 1 based and year minus 100
*/
#define SMU_CMD_RTC_COMMAND 0x8e
#define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */
#define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */
#define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02
#define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */
#define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */
#define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */
#define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */
#define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */
#define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */
#define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */
#define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */
#define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */
/*
* i2c commands
*
* To issue an i2c command, first is to send a parameter block to the
* the SMU. This is a command of type 0x9a with 9 bytes of header
* eventually followed by data for a write:
*
* 0: bus number (from device-tree usually, SMU has lots of busses !)
* 1: transfer type/format (see below)
* 2: device address. For combined and combined4 type transfers, this
* is the "write" version of the address (bit 0x01 cleared)
* 3: subaddress length (0..3)
* 4: subaddress byte 0 (or only byte for subaddress length 1)
* 5: subaddress byte 1
* 6: subaddress byte 2
* 7: combined address (device address for combined mode data phase)
* 8: data length
*
* The transfer types are the same good old Apple ones it seems,
* that is:
* - 0x00: Simple transfer
* - 0x01: Subaddress transfer (addr write + data tx, no restart)
* - 0x02: Combined transfer (addr write + restart + data tx)
*
* This is then followed by actual data for a write.
*
* At this point, the OF driver seems to have a limitation on transfer
* sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
* wether this is just an OF limit due to some temporary buffer size
* or if this is an SMU imposed limit. This driver has the same limitation
* for now as I use a 0x10 bytes temporary buffer as well
*
* Once that is completed, a response is expected from the SMU. This is
* obtained via a command of type 0x9a with a length of 1 byte containing
* 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
* though I can't tell yet if this is actually necessary. Once this command
* is complete, at this point, all I can tell is what OF does. OF tests
* byte 0 of the reply:
* - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
* - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
* - on write, < 0 -> failure (immediate exit)
* - else, OF just exists (without error, weird)
*
* So on read, there is this wait-for-busy thing when getting a 0xfc or
* 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
* doing the above again until either the retries expire or the result
* is no longer 0xfe or 0xfc
*
* The Darwin I2C driver is less subtle though. On any non-success status
* from the response command, it waits 5ms and tries again up to 20 times,
* it doesn't differenciate between fatal errors or "busy" status.
*
* This driver provides an asynchronous paramblock based i2c command
* interface to be used either directly by low level code or by a higher
* level driver interfacing to the linux i2c layer. The current
* implementation of this relies on working timers & timer interrupts
* though, so be careful of calling context for now. This may be "fixed"
* in the future by adding a polling facility.
*/
#define SMU_CMD_I2C_COMMAND 0x9a
/* transfer types */
#define SMU_I2C_TRANSFER_SIMPLE 0x00
#define SMU_I2C_TRANSFER_STDSUB 0x01
#define SMU_I2C_TRANSFER_COMBINED 0x02
/*
* Power supply control
*
* The "sub" command is an ASCII string in the data, the
* data lenght is that of the string.
*
* The VSLEW command can be used to get or set the voltage slewing.
* - lenght 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
* reply at data offset 6, 7 and 8.
* - lenght 8 ("VSLEWxyz") has 3 additional bytes appended, and is
* used to set the voltage slewing point. The SMU replies with "DONE"
* I yet have to figure out their exact meaning of those 3 bytes in
* both cases.
*
*/
#define SMU_CMD_POWER_COMMAND 0xaa
#define SMU_CMD_POWER_RESTART "RESTART"
#define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN"
#define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW"
/* Misc commands
*
* This command seem to be a grab bag of various things
*/
#define SMU_CMD_MISC_df_COMMAND 0xdf
#define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02 /* i: 1 byte */
#define SMU_CMD_MISC_df_NMI_OPTION 0x04
/*
* Version info commands
*
* I haven't quite tried to figure out how these work
*/
#define SMU_CMD_VERSION_COMMAND 0xea
/*
* Misc commands
*
* This command seem to be a grab bag of various things
*/
#define SMU_CMD_MISC_ee_COMMAND 0xee
#define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02
#define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */
#define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */
/*
* Basic routines for use by architecture. To be extended as
* we understand more of the chip
* - Kernel side interface -
*/
#ifdef __KERNEL__
/*
* Asynchronous SMU commands
*
* Fill up this structure and submit it via smu_queue_command(),
* and get notified by the optional done() callback, or because
* status becomes != 1
*/
struct smu_cmd;
struct smu_cmd
{
/* public */
u8 cmd; /* command */
int data_len; /* data len */
int reply_len; /* reply len */
void *data_buf; /* data buffer */
void *reply_buf; /* reply buffer */
int status; /* command status */
void (*done)(struct smu_cmd *cmd, void *misc);
void *misc;
/* private */
struct list_head link;
};
/*
* Queues an SMU command, all fields have to be initialized
*/
extern int smu_queue_cmd(struct smu_cmd *cmd);
/*
* Simple command wrapper. This structure embeds a small buffer
* to ease sending simple SMU commands from the stack
*/
struct smu_simple_cmd
{
struct smu_cmd cmd;
u8 buffer[16];
};
/*
* Queues a simple command. All fields will be initialized by that
* function
*/
extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
unsigned int data_len,
void (*done)(struct smu_cmd *cmd, void *misc),
void *misc,
...);
/*
* Completion helper. Pass it to smu_queue_simple or as 'done'
* member to smu_queue_cmd, it will call complete() on the struct
* completion passed in the "misc" argument
*/
extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
/*
* Synchronous helpers. Will spin-wait for completion of a command
*/
extern void smu_spinwait_cmd(struct smu_cmd *cmd);
static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
{
smu_spinwait_cmd(&scmd->cmd);
}
/*
* Poll routine to call if blocked with irqs off
*/
extern void smu_poll(void);
/*
* Init routine, presence check....
*/
extern int smu_init(void);
extern int smu_present(void);
struct of_device;
extern struct of_device *smu_get_ofdev(void);
/*
* Common command wrappers
*/
extern void smu_shutdown(void);
extern void smu_restart(void);
extern int smu_get_rtc_time(struct rtc_time *time);
extern int smu_set_rtc_time(struct rtc_time *time);
struct rtc_time;
extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
/*
* SMU command buffer absolute address, exported by pmac_setup,
* this is allocated very early during boot.
*/
extern unsigned long smu_cmdbuf_abs;
/*
* Kenrel asynchronous i2c interface
*/
/* SMU i2c header, exactly matches i2c header on wire */
struct smu_i2c_param
{
u8 bus; /* SMU bus ID (from device tree) */
u8 type; /* i2c transfer type */
u8 devaddr; /* device address (includes direction) */
u8 sublen; /* subaddress length */
u8 subaddr[3]; /* subaddress */
u8 caddr; /* combined address, filled by SMU driver */
u8 datalen; /* length of transfer */
u8 data[7]; /* data */
};
#define SMU_I2C_READ_MAX 0x0d
#define SMU_I2C_WRITE_MAX 0x05
struct smu_i2c_cmd
{
/* public */
struct smu_i2c_param info;
void (*done)(struct smu_i2c_cmd *cmd, void *misc);
void *misc;
int status; /* 1 = pending, 0 = ok, <0 = fail */
/* private */
struct smu_cmd scmd;
int read;
int stage;
int retries;
u8 pdata[0x10];
struct list_head link;
};
/*
* Call this to queue an i2c command to the SMU. You must fill info,
* including info.data for a write, done and misc.
* For now, no polling interface is provided so you have to use completion
* callback.
*/
extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
#endif /* __KERNEL__ */
/*
* - Userland interface -
*/
/*
* A given instance of the device can be configured for 2 different
* things at the moment:
*
* - sending SMU commands (default at open() time)
* - receiving SMU events (not yet implemented)
*
* Commands are written with write() of a command block. They can be
* "driver" commands (for example to switch to event reception mode)
* or real SMU commands. They are made of a header followed by command
* data if any.
*
* For SMU commands (not for driver commands), you can then read() back
* a reply. The reader will be blocked or not depending on how the device
* file is opened. poll() isn't implemented yet. The reply will consist
* of a header as well, followed by the reply data if any. You should
* always provide a buffer large enough for the maximum reply data, I
* recommand one page.
*
* It is illegal to send SMU commands through a file descriptor configured
* for events reception
*
*/
struct smu_user_cmd_hdr
{
__u32 cmdtype;
#define SMU_CMDTYPE_SMU 0 /* SMU command */
#define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */
__u8 cmd; /* SMU command byte */
__u32 data_len; /* Lenght of data following */
};
struct smu_user_reply_hdr
{
__u32 status; /* Command status */
__u32 reply_len; /* Lenght of data follwing */
};
#endif /* _SMU_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment