Commit 068130cf authored by Ingo Molnar's avatar Ingo Molnar

[PATCH] posix-timers-cleanup-2.5.65-A5

This is a pure identity cleanup:

 - coding style fixes (whitespace, code, comment, line length cleanups)
 - remove dead code
 - simplify constructs, make code more readable
parent 187d7824
/*
* linux/kernel/posix_timers.c
*
*
*
* 2002-10-15 Posix Clocks & timers by George Anzinger
* Copyright (C) 2002 by MontaVista Software.
*/
/* These are all the functions necessary to implement
/* These are all the functions necessary to implement
* POSIX clocks & timers
*/
#include <linux/mm.h>
......@@ -32,28 +32,28 @@
*remainder = do_div(result,divisor); \
result; })
#endif /* ifndef div_long_long_rem */
#endif
/*
* Management arrays for POSIX timers. Timers are kept in slab memory
* Timer ids are allocated by an external routine that keeps track of the
* id and the timer. The external interface is:
*
*void *idr_find(struct idr *idp, int id); to find timer_id <id>
*int idr_get_new(struct idr *idp, void *ptr); to get a new id and
* related it to <ptr>
*void idr_remove(struct idr *idp, int id); to release <id>
*void idr_init(struct idr *idp); to initialize <idp>
* which we supply.
* void *idr_find(struct idr *idp, int id); to find timer_id <id>
* int idr_get_new(struct idr *idp, void *ptr); to get a new id and
* related it to <ptr>
* void idr_remove(struct idr *idp, int id); to release <id>
* void idr_init(struct idr *idp); to initialize <idp>
* which we supply.
* The idr_get_new *may* call slab for more memory so it must not be
* called under a spin lock. Likewise idr_remore may release memory
* (but it may be ok to do this under a lock...).
* idr_find is just a memory look up and is quite fast. A zero return
* indicates that the requested id does not exist.
*/
/*
* Lets keep our timers in a slab cache :-)
* Lets keep our timers in a slab cache :-)
*/
static kmem_cache_t *posix_timers_cache;
static struct idr posix_timers_id;
......@@ -65,24 +65,28 @@ static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
*/
#define TIMER_INACTIVE 1
#define TIMER_RETRY 1
#ifdef CONFIG_SMP
#define timer_active(tmr) (tmr->it_timer.entry.prev != (void *)TIMER_INACTIVE)
#define set_timer_inactive(tmr) tmr->it_timer.entry.prev = (void *)TIMER_INACTIVE
# define timer_active(tmr) \
((tmr)->it_timer.entry.prev != (void *)TIMER_INACTIVE)
# define set_timer_inactive(tmr) \
do { \
(tmr)->it_timer.entry.prev = (void *)TIMER_INACTIVE; \
} while (0)
#else
#define timer_active(tmr) BARFY // error to use outside of SMP
#define set_timer_inactive(tmr)
# define timer_active(tmr) BARFY // error to use outside of SMP
# define set_timer_inactive(tmr) do { } while (0)
#endif
/*
* The timer ID is turned into a timer address by idr_find().
* Verifying a valid ID consists of:
*
*
* a) checking that idr_find() returns other than zero.
* b) checking that the timer id matches the one in the timer itself.
* c) that the timer owner is in the callers thread group.
*/
/*
/*
* CLOCKs: The POSIX standard calls for a couple of clocks and allows us
* to implement others. This structure defines the various
* clocks and allows the possibility of adding others. We
......@@ -90,7 +94,7 @@ static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
* the "arch" code to add at least one clock that is high
* resolution. Here we define the standard CLOCK_REALTIME as a
* 1/HZ resolution clock.
*
* CPUTIME & THREAD_CPUTIME: We are not, at this time, definding these
* two clocks (and the other process related clocks (Std
* 1003.1d-1999). The way these should be supported, we think,
......@@ -98,7 +102,7 @@ static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
* pinned to the executing process and to use -pid for clocks
* pinned to particular pids. Calls which supported these clock
* ids would split early in the function.
*
* RESOLUTION: Clock resolution is used to round up timer and interval
* times, NOT to report clock times, which are reported with as
* much resolution as the system can muster. In some cases this
......@@ -106,7 +110,7 @@ static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
* may not be quantifiable until run time, and only then is the
* necessary code is written. The standard says we should say
* something about this issue in the documentation...
*
* FUNCTIONS: The CLOCKs structure defines possible functions to handle
* various clock functions. For clocks that use the standard
* system timer code these entries should be NULL. This will
......@@ -116,7 +120,7 @@ static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
* ENOSYS. The standard POSIX timer management code assumes the
* following: 1.) The k_itimer struct (sched.h) is used for the
* timer. 2.) The list, it_lock, it_clock, it_id and it_process
* fields are not modified by timer code.
* fields are not modified by timer code.
*
* At this time all functions EXCEPT clock_nanosleep can be
* redirected by the CLOCKS structure. Clock_nanosleep is in
......@@ -132,37 +136,29 @@ static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
static struct k_clock posix_clocks[MAX_CLOCKS];
#define if_clock_do(clock_fun, alt_fun,parms) (! clock_fun)? alt_fun parms :\
clock_fun parms
#define if_clock_do(clock_fun,alt_fun,parms) \
(!clock_fun) ? alt_fun parms : clock_fun parms
#define p_timer_get( clock,a,b) if_clock_do((clock)->timer_get, \
do_timer_gettime, \
(a,b))
#define p_timer_get(clock,a,b) \
if_clock_do((clock)->timer_get,do_timer_gettime, (a,b))
#define p_nsleep( clock,a,b,c) if_clock_do((clock)->nsleep, \
do_nsleep, \
(a,b,c))
#define p_nsleep(clock,a,b,c) \
if_clock_do((clock)->nsleep, do_nsleep, (a,b,c))
#define p_timer_del( clock,a) if_clock_do((clock)->timer_del, \
do_timer_delete, \
(a))
#define p_timer_del(clock,a) \
if_clock_do((clock)->timer_del, do_timer_delete, (a))
void register_posix_clock(int clock_id, struct k_clock *new_clock);
static int do_posix_gettime(struct k_clock *clock, struct timespec *tp);
int do_posix_clock_monotonic_gettime(struct timespec *tp);
int do_posix_clock_monotonic_settime(struct timespec *tp);
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags);
/*
/*
* Initialize everything, well, just everything in Posix clocks/timers ;)
*/
static __init int
init_posix_timers(void)
static __init int init_posix_timers(void)
{
struct k_clock clock_realtime = {.res = NSEC_PER_SEC / HZ };
struct k_clock clock_monotonic = {.res = NSEC_PER_SEC / HZ,
......@@ -174,9 +170,9 @@ init_posix_timers(void)
register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
posix_timers_cache = kmem_cache_create("posix_timers_cache",
sizeof (struct k_itimer), 0, 0,
0, 0);
sizeof (struct k_itimer), 0, 0, 0, 0);
idr_init(&posix_timers_id);
return 0;
}
......@@ -200,11 +196,11 @@ static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
* unsigned int/2). Times beyond this will be truncated back to
* this value. This is done in the absolute adjustment code,
* below. Here it is enough to just discard the high order
* bits.
* bits.
*/
*jiff = (u64)sec * HZ;
/*
* Do the res thing. (Don't forget the add in the declaration of nsec)
* Do the res thing. (Don't forget the add in the declaration of nsec)
*/
nsec -= nsec % res;
/*
......@@ -213,8 +209,7 @@ static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
*jiff += nsec / (NSEC_PER_SEC / HZ);
}
static void
tstotimer(struct itimerspec *time, struct k_itimer *timer)
static void tstotimer(struct itimerspec *time, struct k_itimer *timer)
{
u64 result;
int res = posix_clocks[timer->it_clock].res;
......@@ -225,22 +220,18 @@ tstotimer(struct itimerspec *time, struct k_itimer *timer)
timer->it_incr = (unsigned long)result;
}
static void
schedule_next_timer(struct k_itimer *timr)
static void schedule_next_timer(struct k_itimer *timr)
{
struct now_struct now;
/* Set up the timer for the next interval (if there is one) */
if (timr->it_incr == 0) {
{
set_timer_inactive(timr);
return;
}
if (!timr->it_incr) {
set_timer_inactive(timr);
return;
}
posix_get_now(&now);
while (posix_time_before(&timr->it_timer, &now)) {
while (posix_time_before(&timr->it_timer, &now))
posix_bump_timer(timr);
};
timr->it_overrun_last = timr->it_overrun;
timr->it_overrun = -1;
timr->it_requeue_pending = 0;
......@@ -248,7 +239,6 @@ schedule_next_timer(struct k_itimer *timr)
}
/*
* This function is exported for use by the signal deliver code. It is
* called just prior to the info block being released and passes that
* block to us. It's function is to update the overrun entry AND to
......@@ -258,12 +248,9 @@ schedule_next_timer(struct k_itimer *timr)
*
* To protect aginst the timer going away while the interrupt is queued,
* we require that the it_requeue_pending flag be set.
*/
void
do_schedule_next_timer(struct siginfo *info)
void do_schedule_next_timer(struct siginfo *info)
{
struct k_itimer *timr;
unsigned long flags;
......@@ -274,13 +261,12 @@ do_schedule_next_timer(struct siginfo *info)
schedule_next_timer(timr);
info->si_overrun = timr->it_overrun_last;
exit:
exit:
if (timr)
unlock_timer(timr, flags);
}
/*
/*
* Notify the task and set up the timer for the next expiration (if
* applicable). This function requires that the k_itimer structure
* it_lock is taken. This code will requeue the timer only if we get
......@@ -288,11 +274,9 @@ do_schedule_next_timer(struct siginfo *info)
* indicating that the signal was either not queued or was queued
* without an info block. In this case, we will not get a call back to
* do_schedule_next_timer() so we do it here. This should be rare...
*/
static void
timer_notify_task(struct k_itimer *timr)
static void timer_notify_task(struct k_itimer *timr)
{
struct siginfo info;
int ret;
......@@ -305,11 +289,11 @@ timer_notify_task(struct k_itimer *timr)
info.si_code = SI_TIMER;
info.si_tid = timr->it_id;
info.si_value = timr->it_sigev_value;
if (timr->it_incr == 0) {
if (!timr->it_incr)
set_timer_inactive(timr);
} else {
else
timr->it_requeue_pending = info.si_sys_private = 1;
}
ret = send_sig_info(info.si_signo, &info, timr->it_process);
switch (ret) {
......@@ -324,11 +308,11 @@ timer_notify_task(struct k_itimer *timr)
* signal was not sent because of sig_ignor or,
* possibly no queue memory OR will be sent but,
* we will not get a call back to restart it AND
* it should be restarted.
* it should be restarted.
*/
schedule_next_timer(timr);
case 0:
/*
/*
* all's well new signal queued
*/
break;
......@@ -336,14 +320,11 @@ timer_notify_task(struct k_itimer *timr)
}
/*
* This function gets called when a POSIX.1b interval timer expires. It
* is used as a callback from the kernel internal timer. The
* run_timer_list code ALWAYS calls with interrutps on.
*/
static void
posix_timer_fn(unsigned long __data)
static void posix_timer_fn(unsigned long __data)
{
struct k_itimer *timr = (struct k_itimer *) __data;
unsigned long flags;
......@@ -354,8 +335,8 @@ posix_timer_fn(unsigned long __data)
}
/*
* For some reason mips/mips64 define the SIGEV constants plus 128.
* Here we define a mask to get rid of the common bits. The
* For some reason mips/mips64 define the SIGEV constants plus 128.
* Here we define a mask to get rid of the common bits. The
* optimizer should make this costless to all but mips.
*/
#if (ARCH == mips) || (ARCH == mips64)
......@@ -367,30 +348,26 @@ posix_timer_fn(unsigned long __data)
#define MIPS_SIGEV (int)-1
#endif
static inline struct task_struct *
good_sigevent(sigevent_t * event)
static inline struct task_struct * good_sigevent(sigevent_t * event)
{
struct task_struct *rtn = current;
if (event->sigev_notify & SIGEV_THREAD_ID & MIPS_SIGEV) {
if (!(rtn =
find_task_by_pid(event->sigev_notify_thread_id)) ||
rtn->tgid != current->tgid) {
return NULL;
}
}
if (event->sigev_notify & SIGEV_SIGNAL & MIPS_SIGEV) {
if ((unsigned) (event->sigev_signo > SIGRTMAX))
return NULL;
}
if (event->sigev_notify & ~(SIGEV_SIGNAL | SIGEV_THREAD_ID)) {
if ((event->sigev_notify & SIGEV_THREAD_ID & MIPS_SIGEV) &&
(!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
rtn->tgid != current->tgid))
return NULL;
}
if ((event->sigev_notify & SIGEV_SIGNAL & MIPS_SIGEV) &&
((unsigned) (event->sigev_signo > SIGRTMAX)))
return NULL;
if (event->sigev_notify & ~(SIGEV_SIGNAL | SIGEV_THREAD_ID))
return NULL;
return rtn;
}
void
register_posix_clock(int clock_id, struct k_clock *new_clock)
void register_posix_clock(int clock_id, struct k_clock *new_clock)
{
if ((unsigned) clock_id >= MAX_CLOCKS) {
printk("POSIX clock register failed for clock_id %d\n",
......@@ -400,19 +377,18 @@ register_posix_clock(int clock_id, struct k_clock *new_clock)
posix_clocks[clock_id] = *new_clock;
}
static struct k_itimer *
alloc_posix_timer(void)
static struct k_itimer * alloc_posix_timer(void)
{
struct k_itimer *tmr;
tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
memset(tmr, 0, sizeof (struct k_itimer));
return (tmr);
return tmr;
}
static void
release_posix_timer(struct k_itimer *tmr)
static void release_posix_timer(struct k_itimer *tmr)
{
if (tmr->it_id != -1){
if (tmr->it_id != -1) {
spin_lock_irq(&idr_lock);
idr_remove(&posix_timers_id, tmr->it_id);
spin_unlock_irq(&idr_lock);
......@@ -433,28 +409,29 @@ sys_timer_create(clockid_t which_clock,
sigevent_t event;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res) return -EINVAL;
!posix_clocks[which_clock].res)
return -EINVAL;
new_timer = alloc_posix_timer();
if (unlikely (new_timer == NULL))
if (unlikely(!new_timer))
return -EAGAIN;
spin_lock_init(&new_timer->it_lock);
do {
if ( unlikely ( !idr_pre_get(&posix_timers_id))){
if (unlikely(!idr_pre_get(&posix_timers_id))) {
error = -EAGAIN;
new_timer_id = (timer_t)-1;
goto out;
goto out;
}
spin_lock_irq(&idr_lock);
new_timer_id = (timer_t) idr_get_new(
&posix_timers_id, (void *) new_timer);
new_timer_id = (timer_t) idr_get_new(&posix_timers_id,
(void *) new_timer);
spin_unlock_irq(&idr_lock);
}while( unlikely (new_timer_id == -1));
} while (unlikely(new_timer_id == -1));
new_timer->it_id = new_timer_id;
/*
* return the timer_id now. The next step is hard to
* return the timer_id now. The next step is hard to
* back out if there is an error.
*/
if (copy_to_user(created_timer_id,
......@@ -470,13 +447,12 @@ sys_timer_create(clockid_t which_clock,
read_lock(&tasklist_lock);
if ((process = good_sigevent(&event))) {
/*
* We may be setting up this process for another
* thread. It may be exitiing. To catch this
* thread. It may be exiting. To catch this
* case the we check the PF_EXITING flag. If
* the flag is not set, the task_lock will catch
* him before it is too late (in exit_itimers).
*
* The exec case is a bit more invloved but easy
* to code. If the process is in our thread
* group (and it must be or we would not allow
......@@ -484,7 +460,6 @@ sys_timer_create(clockid_t which_clock,
* us to be killed. In this case it will wait
* for us to die which means we can finish this
* linkage with our last gasp. I.e. no code :)
*/
task_lock(process);
if (!(process->flags & PF_EXITING)) {
......@@ -527,11 +502,10 @@ sys_timer_create(clockid_t which_clock,
* Once we set the process, it can be found so do it last...
*/
new_timer->it_process = process;
out:
if (error) {
out:
if (error)
release_posix_timer(new_timer);
}
return error;
}
......@@ -543,43 +517,36 @@ sys_timer_create(clockid_t which_clock,
* Arguments:
* ts : Pointer to the timespec structure to check
*
* Return value:
* Return value:
* If a NULL pointer was passed in, or the tv_nsec field was less than 0
* or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
* this function returns 0. Otherwise it returns 1.
*/
static int
good_timespec(const struct timespec *ts)
static int good_timespec(const struct timespec *ts)
{
if ((ts == NULL) ||
(ts->tv_sec < 0) ||
((unsigned) ts->tv_nsec >= NSEC_PER_SEC)) return 0;
if ((!ts) || (ts->tv_sec < 0) ||
((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
return 0;
return 1;
}
static inline void
unlock_timer(struct k_itimer *timr, unsigned long flags)
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
spin_unlock_irqrestore(&timr->it_lock, flags);
}
/*
* Locking issues: We need to protect the result of the id look up until
* we get the timer locked down so it is not deleted under us. The
* removal is done under the idr spinlock so we use that here to bridge
* the find to the timer lock. To avoid a dead lock, the timer id MUST
* be release with out holding the timer lock.
*/
static struct k_itimer *
lock_timer(timer_t timer_id, unsigned long *flags)
static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
{
struct k_itimer *timr;
/*
* Watch out here. We do a irqsave on the idr_lock and pass the
* Watch out here. We do a irqsave on the idr_lock and pass the
* flags part over to the timer lock. Must not let interrupts in
* while we are moving the lock.
*/
......@@ -590,35 +557,32 @@ lock_timer(timer_t timer_id, unsigned long *flags)
spin_lock(&timr->it_lock);
spin_unlock(&idr_lock);
if ( (timr->it_id != timer_id) || !(timr->it_process) ||
timr->it_process->tgid != current->tgid) {
if ((timr->it_id != timer_id) || !(timr->it_process) ||
timr->it_process->tgid != current->tgid) {
unlock_timer(timr, *flags);
timr = NULL;
}
} else {
} else
spin_unlock_irqrestore(&idr_lock, *flags);
}
return timr;
}
/*
/*
* Get the time remaining on a POSIX.1b interval timer. This function
* is ALWAYS called with spin_lock_irq on the timer, thus it must not
* mess with irq.
*
* We have a couple of messes to clean up here. First there is the case
* of a timer that has a requeue pending. These timers should appear to
* be in the timer list with an expiry as if we were to requeue them
* now.
*
* The second issue is the SIGEV_NONE timer which may be active but is
* not really ever put in the timer list (to save system resources).
* This timer may be expired, and if so, we will do it here. Otherwise
* it is the same as a requeue pending timer WRT to what we should
* report.
*/
void inline
do_timer_gettime(struct k_itimer *timr, struct itimerspec *cur_setting)
......@@ -627,31 +591,25 @@ do_timer_gettime(struct k_itimer *timr, struct itimerspec *cur_setting)
unsigned long expires;
struct now_struct now;
do {
do
expires = timr->it_timer.expires;
} while ((volatile long) (timr->it_timer.expires) != expires);
while ((volatile long) (timr->it_timer.expires) != expires);
posix_get_now(&now);
if (expires && (timr->it_sigev_notify & SIGEV_NONE) && !timr->it_incr) {
if (posix_time_before(&timr->it_timer, &now)) {
timr->it_timer.expires = expires = 0;
}
}
if (expires && (timr->it_sigev_notify & SIGEV_NONE) && !timr->it_incr &&
posix_time_before(&timr->it_timer, &now))
timr->it_timer.expires = expires = 0;
if (expires) {
if (timr->it_requeue_pending ||
(timr->it_sigev_notify & SIGEV_NONE)) {
while (posix_time_before(&timr->it_timer, &now)) {
(timr->it_sigev_notify & SIGEV_NONE))
while (posix_time_before(&timr->it_timer, &now))
posix_bump_timer(timr);
};
} else {
if (!timer_pending(&timr->it_timer)) {
else
if (!timer_pending(&timr->it_timer))
sub_expires = expires = 0;
}
}
if (expires) {
if (expires)
expires -= now.jiffies;
}
}
jiffies_to_timespec(expires, &cur_setting->it_value);
jiffies_to_timespec(timr->it_incr, &cur_setting->it_interval);
......@@ -661,6 +619,7 @@ do_timer_gettime(struct k_itimer *timr, struct itimerspec *cur_setting)
cur_setting->it_value.tv_sec = 0;
}
}
/* Get the time remaining on a POSIX.1b interval timer. */
asmlinkage long
sys_timer_gettime(timer_t timer_id, struct itimerspec *setting)
......@@ -683,7 +642,6 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec *setting)
return 0;
}
/*
* Get the number of overruns of a POSIX.1b interval timer. This is to
* be the overrun of the timer last delivered. At the same time we are
* accumulating overruns on the next timer. The overrun is frozen when
......@@ -691,7 +649,6 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec *setting)
* is not queued) or at the actual delivery time (as we are informed by
* the call back to do_schedule_next_timer(). So all we need to do is
* to pick up the frozen overrun.
*/
asmlinkage long
......@@ -710,8 +667,9 @@ sys_timer_getoverrun(timer_t timer_id)
return overrun;
}
/* Adjust for absolute time */
/*
* Adjust for absolute time
*
* If absolute time is given and it is not CLOCK_MONOTONIC, we need to
* adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
* what ever clock he is using.
......@@ -719,26 +677,23 @@ sys_timer_getoverrun(timer_t timer_id)
* If it is relative time, we need to add the current (CLOCK_MONOTONIC)
* time to it to get the proper time for the timer.
*/
static int
adjust_abs_time(struct k_clock *clock, struct timespec *tp, int abs)
static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, int abs)
{
struct timespec now;
struct timespec oc;
do_posix_clock_monotonic_gettime(&now);
if (abs &&
(posix_clocks[CLOCK_MONOTONIC].clock_get == clock->clock_get)) {
} else {
if (abs) {
if (!abs || (posix_clocks[CLOCK_MONOTONIC].clock_get !=
clock->clock_get)) {
if (abs)
do_posix_gettime(clock, &oc);
} else {
else
oc.tv_nsec = oc.tv_sec = 0;
}
tp->tv_sec += now.tv_sec - oc.tv_sec;
tp->tv_nsec += now.tv_nsec - oc.tv_nsec;
/*
/*
* Normalize...
*/
if ((tp->tv_nsec - NSEC_PER_SEC) >= 0) {
......@@ -761,18 +716,16 @@ adjust_abs_time(struct k_clock *clock, struct timespec *tp, int abs)
if ((unsigned) tp->tv_sec < now.tv_sec) {
tp->tv_sec = now.tv_sec;
tp->tv_nsec = now.tv_nsec;
} else {
// tp->tv_sec = now.tv_sec + (MAX_JIFFY_OFFSET / HZ);
} else
/*
* This is a considered response, not exactly in
* line with the standard (in fact it is silent on
* possible overflows). We assume such a large
* possible overflows). We assume such a large
* value is ALMOST always a programming error and
* try not to compound it by setting a really dumb
* value.
*/
return -EINVAL;
}
}
return 0;
}
......@@ -785,28 +738,27 @@ do_timer_settime(struct k_itimer *timr, int flags,
{
struct k_clock *clock = &posix_clocks[timr->it_clock];
if (old_setting) {
if (old_setting)
do_timer_gettime(timr, old_setting);
}
/* disable the timer */
timr->it_incr = 0;
/*
/*
* careful here. If smp we could be in the "fire" routine which will
* be spinning as we hold the lock. But this is ONLY an SMP issue.
*/
#ifdef CONFIG_SMP
if (timer_active(timr) && !del_timer(&timr->it_timer)) {
if (timer_active(timr) && !del_timer(&timr->it_timer))
/*
* It can only be active if on an other cpu. Since
* we have cleared the interval stuff above, it should
* clear once we release the spin lock. Of course once
* we do that anything could happen, including the
* complete melt down of the timer. So return with
* we do that anything could happen, including the
* complete melt down of the timer. So return with
* a "retry" exit status.
*/
return TIMER_RETRY;
}
set_timer_inactive(timr);
#else
del_timer(&timr->it_timer);
......@@ -814,22 +766,21 @@ do_timer_settime(struct k_itimer *timr, int flags,
timr->it_requeue_pending = 0;
timr->it_overrun_last = 0;
timr->it_overrun = -1;
/*
*switch off the timer when it_value is zero
/*
*switch off the timer when it_value is zero
*/
if ((new_setting->it_value.tv_sec == 0) &&
(new_setting->it_value.tv_nsec == 0)) {
if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
timr->it_timer.expires = 0;
return 0;
}
if ((flags & TIMER_ABSTIME) &&
(clock->clock_get != do_posix_clock_monotonic_gettime)) {
}
(clock->clock_get != do_posix_clock_monotonic_gettime))
// FIXME: what is this?
;
if (adjust_abs_time(clock,
&new_setting->it_value, flags & TIMER_ABSTIME)) {
&new_setting->it_value, flags & TIMER_ABSTIME))
return -EINVAL;
}
tstotimer(new_setting, timr);
/*
......@@ -838,9 +789,9 @@ do_timer_settime(struct k_itimer *timr, int flags,
* We do not even queue SIGEV_NONE timers!
*/
if (!(timr->it_sigev_notify & SIGEV_NONE)) {
if (timr->it_timer.expires == jiffies) {
if (timr->it_timer.expires == jiffies)
timer_notify_task(timr);
} else
else
add_timer(&timr->it_timer);
}
return 0;
......@@ -858,62 +809,54 @@ sys_timer_settime(timer_t timer_id, int flags,
long flag;
struct itimerspec *rtn = old_setting ? &old_spec : NULL;
if (new_setting == NULL) {
if (!new_setting)
return -EINVAL;
}
if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) {
if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
return -EFAULT;
}
if ((!good_timespec(&new_spec.it_interval)) ||
(!good_timespec(&new_spec.it_value))) {
(!good_timespec(&new_spec.it_value)))
return -EINVAL;
}
retry:
retry:
timr = lock_timer(timer_id, &flag);
if (!timr)
return -EINVAL;
if (!posix_clocks[timr->it_clock].timer_set) {
if (!posix_clocks[timr->it_clock].timer_set)
error = do_timer_settime(timr, flags, &new_spec, rtn);
} else {
else
error = posix_clocks[timr->it_clock].timer_set(timr,
flags,
&new_spec, rtn);
}
unlock_timer(timr, flag);
if (error == TIMER_RETRY) {
rtn = NULL; // We already got the old time...
goto retry;
}
if (old_setting && !error) {
if (copy_to_user(old_setting, &old_spec, sizeof (old_spec))) {
error = -EFAULT;
}
}
if (old_setting && !error && copy_to_user(old_setting,
&old_spec, sizeof (old_spec)))
error = -EFAULT;
return error;
}
static inline int
do_timer_delete(struct k_itimer *timer)
static inline int do_timer_delete(struct k_itimer *timer)
{
timer->it_incr = 0;
#ifdef CONFIG_SMP
if (timer_active(timer) &&
!del_timer(&timer->it_timer) && !timer->it_requeue_pending) {
!del_timer(&timer->it_timer) && !timer->it_requeue_pending)
/*
* It can only be active if on an other cpu. Since
* we have cleared the interval stuff above, it should
* clear once we release the spin lock. Of course once
* we do that anything could happen, including the
* complete melt down of the timer. So return with
* we do that anything could happen, including the
* complete melt down of the timer. So return with
* a "retry" exit status.
*/
return TIMER_RETRY;
}
#else
del_timer(&timer->it_timer);
#endif
......@@ -929,9 +872,8 @@ sys_timer_delete(timer_t timer_id)
#ifdef CONFIG_SMP
int error;
retry_delete:
retry_delete:
#endif
timer = lock_timer(timer_id, &flags);
if (!timer)
return -EINVAL;
......@@ -946,13 +888,9 @@ sys_timer_delete(timer_t timer_id)
#else
p_timer_del(&posix_clocks[timer->it_clock], timer);
#endif
task_lock(timer->it_process);
list_del(&timer->list);
task_unlock(timer->it_process);
/*
* This keeps any tasks waiting on the spin lock from thinking
* they got something (see the lock code above).
......@@ -963,20 +901,17 @@ sys_timer_delete(timer_t timer_id)
return 0;
}
/*
* return timer owned by the process, used by exit_itimers
* return timer owned by the process, used by exit_itimers
*/
static inline void
itimer_delete(struct k_itimer *timer)
static inline void itimer_delete(struct k_itimer *timer)
{
if (sys_timer_delete(timer->it_id)) {
if (sys_timer_delete(timer->it_id))
BUG();
}
}
/*
* This is exported to exit and exec
*/
void
exit_itimers(struct task_struct *tsk)
void exit_itimers(struct task_struct *tsk)
{
struct k_itimer *tmr;
......@@ -992,18 +927,15 @@ exit_itimers(struct task_struct *tsk)
/*
* And now for the "clock" calls
*
* These functions are called both from timer functions (with the timer
* spin_lock_irq() held and from clock calls with no locking. They must
* use the save flags versions of locks.
*/
static int
do_posix_gettime(struct k_clock *clock, struct timespec *tp)
static int do_posix_gettime(struct k_clock *clock, struct timespec *tp)
{
if (clock->clock_get) {
if (clock->clock_get)
return clock->clock_get(tp);
}
do_gettimeofday((struct timeval *) tp);
tp->tv_nsec *= NSEC_PER_USEC;
......@@ -1013,27 +945,24 @@ do_posix_gettime(struct k_clock *clock, struct timespec *tp)
/*
* We do ticks here to avoid the irq lock ( they take sooo long).
* The seqlock is great here. Since we a reader, we don't really care
* if we are interrupted since we don't take lock that will stall us or
* if we are interrupted since we don't take lock that will stall us or
* any other cpu. Voila, no irq lock is needed.
*
* Note also that the while loop assures that the sub_jiff_offset
* will be less than a jiffie, thus no need to normalize the result.
* Well, not really, if called with ints off :(
* HELP, this code should make an attempt at resolution beyond the
*
* HELP, this code should make an attempt at resolution beyond the
* jiffie. Trouble is this is "arch" dependent...
*/
int
do_posix_clock_monotonic_gettime(struct timespec *tp)
int do_posix_clock_monotonic_gettime(struct timespec *tp)
{
long sub_sec;
u64 jiffies_64_f;
#if (BITS_PER_LONG > 32)
jiffies_64_f = jiffies_64;
#else
unsigned int seq;
......@@ -1041,17 +970,15 @@ do_posix_clock_monotonic_gettime(struct timespec *tp)
seq = read_seqbegin(&xtime_lock);
jiffies_64_f = jiffies_64;
}while( read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&xtime_lock, seq));
#endif
tp->tv_sec = div_long_long_rem(jiffies_64_f, HZ, &sub_sec);
tp->tv_nsec = sub_sec * (NSEC_PER_SEC / HZ);
return 0;
}
int
do_posix_clock_monotonic_settime(struct timespec *tp)
int do_posix_clock_monotonic_settime(struct timespec *tp)
{
return -EINVAL;
}
......@@ -1062,15 +989,17 @@ sys_clock_settime(clockid_t which_clock, const struct timespec *tp)
struct timespec new_tp;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res) return -EINVAL;
!posix_clocks[which_clock].res)
return -EINVAL;
if (copy_from_user(&new_tp, tp, sizeof (*tp)))
return -EFAULT;
if (posix_clocks[which_clock].clock_set) {
if (posix_clocks[which_clock].clock_set)
return posix_clocks[which_clock].clock_set(&new_tp);
}
new_tp.tv_nsec /= NSEC_PER_USEC;
return do_sys_settimeofday((struct timeval *) &new_tp, NULL);
}
asmlinkage long
sys_clock_gettime(clockid_t which_clock, struct timespec *tp)
{
......@@ -1078,38 +1007,37 @@ sys_clock_gettime(clockid_t which_clock, struct timespec *tp)
int error = 0;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res) return -EINVAL;
!posix_clocks[which_clock].res)
return -EINVAL;
error = do_posix_gettime(&posix_clocks[which_clock], &rtn_tp);
if (!error) {
if (copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
error = -EFAULT;
}
}
if (!error && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
error = -EFAULT;
return error;
}
asmlinkage long
sys_clock_getres(clockid_t which_clock, struct timespec *tp)
{
struct timespec rtn_tp;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res) return -EINVAL;
!posix_clocks[which_clock].res)
return -EINVAL;
rtn_tp.tv_sec = 0;
rtn_tp.tv_nsec = posix_clocks[which_clock].res;
if (tp) {
if (copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
return -EFAULT;
}
}
if (tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
return -EFAULT;
return 0;
}
static void
nanosleep_wake_up(unsigned long __data)
static void nanosleep_wake_up(unsigned long __data)
{
struct task_struct *p = (struct task_struct *) __data;
......@@ -1119,29 +1047,27 @@ nanosleep_wake_up(unsigned long __data)
/*
* The standard says that an absolute nanosleep call MUST wake up at
* the requested time in spite of clock settings. Here is what we do:
* For each nanosleep call that needs it (only absolute and not on
* For each nanosleep call that needs it (only absolute and not on
* CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
* into the "nanosleep_abs_list". All we need is the task_struct pointer.
* When ever the clock is set we just wake up all those tasks. The rest
* is done by the while loop in clock_nanosleep().
* On locking, clock_was_set() is called from update_wall_clock which
* holds (or has held for it) a write_lock_irq( xtime_lock) and is
*
* On locking, clock_was_set() is called from update_wall_clock which
* holds (or has held for it) a write_lock_irq( xtime_lock) and is
* called from the timer bh code. Thus we need the irq save locks.
*/
static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
void
clock_was_set(void)
void clock_was_set(void)
{
wake_up_all(&nanosleep_abs_wqueue);
}
long clock_nanosleep_restart(struct restart_block *restart_block);
extern long do_clock_nanosleep(clockid_t which_clock, int flags,
extern long do_clock_nanosleep(clockid_t which_clock, int flags,
struct timespec *t);
#ifdef FOLD_NANO_SLEEP_INTO_CLOCK_NANO_SLEEP
......@@ -1160,9 +1086,9 @@ sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp)
ret = do_clock_nanosleep(CLOCK_REALTIME, 0, &t);
if (ret == -ERESTART_RESTARTBLOCK && rmtp &&
copy_to_user(rmtp, &t, sizeof (t)))
return -EFAULT;
if (ret == -ERESTART_RESTARTBLOCK && rmtp &&
copy_to_user(rmtp, &t, sizeof (t)))
return -EFAULT;
return ret;
}
#endif // ! FOLD_NANO_SLEEP_INTO_CLOCK_NANO_SLEEP
......@@ -1175,7 +1101,8 @@ sys_clock_nanosleep(clockid_t which_clock, int flags,
int ret;
if ((unsigned) which_clock >= MAX_CLOCKS ||
!posix_clocks[which_clock].res) return -EINVAL;
!posix_clocks[which_clock].res)
return -EINVAL;
if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
return -EFAULT;
......@@ -1185,11 +1112,10 @@ sys_clock_nanosleep(clockid_t which_clock, int flags,
ret = do_clock_nanosleep(which_clock, flags, &t);
if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
copy_to_user(rmtp, &t, sizeof (t)))
return -EFAULT;
if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
copy_to_user(rmtp, &t, sizeof (t)))
return -EFAULT;
return ret;
}
long
......@@ -1228,9 +1154,8 @@ do_clock_nanosleep(clockid_t which_clock, int flags, struct timespec *tsave)
}
if (abs && (posix_clocks[which_clock].clock_get !=
posix_clocks[CLOCK_MONOTONIC].clock_get)) {
posix_clocks[CLOCK_MONOTONIC].clock_get))
add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
}
do {
t = *tsave;
......@@ -1291,8 +1216,8 @@ clock_nanosleep_restart(struct restart_block *restart_block)
struct timespec t;
int ret = do_clock_nanosleep(restart_block->arg0, 0, &t);
if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
copy_to_user((struct timespec *)(restart_block->arg1), &t,
if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
copy_to_user((struct timespec *)(restart_block->arg1), &t,
sizeof (t)))
return -EFAULT;
return ret;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment