Commit 07f2d8c6 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 RAS changes from Ingo Molnar:
 "The main changes in this cycle were:

   - Simplify the CMCI storm logic on Intel CPUs after yet another
     report about a race in the code (Borislav Petkov)

   - Enable the MCE threshold irq on AMD CPUs by default (Aravind
     Gopalakrishnan)

   - Add AMD-specific MCE-severity grading function.  Further error
     recovery actions will be based on its output (Aravind Gopalakrishnan)

   - Documentation updates (Borislav Petkov)

   - ... assorted fixes and cleanups"

* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce/severity: Fix warning about indented braces
  x86/mce: Define mce_severity function pointer
  x86/mce: Add an AMD severities-grading function
  x86/mce: Reindent __mcheck_cpu_apply_quirks() properly
  x86/mce: Use safe MSR accesses for AMD quirk
  x86/MCE/AMD: Enable thresholding interrupts by default if supported
  x86/MCE: Make mce_panic() fatal machine check msg in the same pattern
  x86/MCE/intel: Cleanup CMCI storm logic
  Documentation/acpi/einj: Correct and streamline text
  x86/MCE/AMD: Drop bogus const modifier from AMD's bank4_names()
parents ee799f41 cee8f5a6
APEI Error INJection
~~~~~~~~~~~~~~~~~~~~
EINJ provides a hardware error injection mechanism
It is very useful for debugging and testing of other APEI and RAS features.
EINJ provides a hardware error injection mechanism. It is very useful
for debugging and testing APEI and RAS features in general.
To use EINJ, make sure the following are enabled in your kernel
You need to check whether your BIOS supports EINJ first. For that, look
for early boot messages similar to this one:
ACPI: EINJ 0x000000007370A000 000150 (v01 INTEL 00000001 INTL 00000001)
which shows that the BIOS is exposing an EINJ table - it is the
mechanism through which the injection is done.
Alternatively, look in /sys/firmware/acpi/tables for an "EINJ" file,
which is a different representation of the same thing.
It doesn't necessarily mean that EINJ is not supported if those above
don't exist: before you give up, go into BIOS setup to see if the BIOS
has an option to enable error injection. Look for something called WHEA
or similar. Often, you need to enable an ACPI5 support option prior, in
order to see the APEI,EINJ,... functionality supported and exposed by
the BIOS menu.
To use EINJ, make sure the following are options enabled in your kernel
configuration:
CONFIG_DEBUG_FS
CONFIG_ACPI_APEI
CONFIG_ACPI_APEI_EINJ
The user interface of EINJ is debug file system, under the
directory apei/einj. The following files are provided.
The EINJ user interface is in <debugfs mount point>/apei/einj.
The following files belong to it:
- available_error_type
Reading this file returns the error injection capability of the
platform, that is, which error types are supported. The error type
definition is as follow, the left field is the error type value, the
right field is error description.
This file shows which error types are supported:
Error Type Value Error Description
================ =================
0x00000001 Processor Correctable
0x00000002 Processor Uncorrectable non-fatal
0x00000004 Processor Uncorrectable fatal
......@@ -33,97 +52,126 @@ directory apei/einj. The following files are provided.
0x00000400 Platform Uncorrectable non-fatal
0x00000800 Platform Uncorrectable fatal
The format of file contents are as above, except there are only the
available error type lines.
The format of the file contents are as above, except present are only
the available error types.
- error_type
This file is used to set the error type value. The error type value
is defined in "available_error_type" description.
Set the value of the error type being injected. Possible error types
are defined in the file available_error_type above.
- error_inject
Write any integer to this file to trigger the error
injection. Before this, please specify all necessary error
parameters.
Write any integer to this file to trigger the error injection. Make
sure you have specified all necessary error parameters, i.e. this
write should be the last step when injecting errors.
- flags
Present for kernel version 3.13 and above. Used to specify which
of param{1..4} are valid and should be used by BIOS during injection.
Value is a bitmask as specified in ACPI5.0 spec for the
Present for kernel versions 3.13 and above. Used to specify which
of param{1..4} are valid and should be used by the firmware during
injection. Value is a bitmask as specified in ACPI5.0 spec for the
SET_ERROR_TYPE_WITH_ADDRESS data structure:
Bit 0 - Processor APIC field valid (see param3 below)
Bit 1 - Memory address and mask valid (param1 and param2)
Bit 2 - PCIe (seg,bus,dev,fn) valid (param4 below)
If set to zero, legacy behaviour is used where the type of injection
specifies just one bit set, and param1 is multiplexed.
Bit 0 - Processor APIC field valid (see param3 below).
Bit 1 - Memory address and mask valid (param1 and param2).
Bit 2 - PCIe (seg,bus,dev,fn) valid (see param4 below).
If set to zero, legacy behavior is mimicked where the type of
injection specifies just one bit set, and param1 is multiplexed.
- param1
This file is used to set the first error parameter value. Effect of
parameter depends on error_type specified. For example, if error
type is memory related type, the param1 should be a valid physical
memory address. [Unless "flag" is set - see above]
This file is used to set the first error parameter value. Its effect
depends on the error type specified in error_type. For example, if
error type is memory related type, the param1 should be a valid
physical memory address. [Unless "flag" is set - see above]
- param2
This file is used to set the second error parameter value. Effect of
parameter depends on error_type specified. For example, if error
type is memory related type, the param2 should be a physical memory
address mask. Linux requires page or narrower granularity, say,
0xfffffffffffff000.
Same use as param1 above. For example, if error type is of memory
related type, then param2 should be a physical memory address mask.
Linux requires page or narrower granularity, say, 0xfffffffffffff000.
- param3
Used when the 0x1 bit is set in "flag" to specify the APIC id
Used when the 0x1 bit is set in "flags" to specify the APIC id
- param4
Used when the 0x4 bit is set in "flag" to specify target PCIe device
Used when the 0x4 bit is set in "flags" to specify target PCIe device
- notrigger
The EINJ mechanism is a two step process. First inject the error, then
perform some actions to trigger it. Setting "notrigger" to 1 skips the
trigger phase, which *may* allow the user to cause the error in some other
context by a simple access to the cpu, memory location, or device that is
the target of the error injection. Whether this actually works depends
on what operations the BIOS actually includes in the trigger phase.
BIOS versions based in the ACPI 4.0 specification have limited options
to control where the errors are injected. Your BIOS may support an
extension (enabled with the param_extension=1 module parameter, or
boot command line einj.param_extension=1). This allows the address
and mask for memory injections to be specified by the param1 and
param2 files in apei/einj.
BIOS versions using the ACPI 5.0 specification have more control over
the target of the injection. For processor related errors (type 0x1,
0x2 and 0x4) the APICID of the target should be provided using the
param1 file in apei/einj. For memory errors (type 0x8, 0x10 and 0x20)
the address is set using param1 with a mask in param2 (0x0 is equivalent
to all ones). For PCI express errors (type 0x40, 0x80 and 0x100) the
segment, bus, device and function are specified using param1:
The error injection mechanism is a two-step process. First inject the
error, then perform some actions to trigger it. Setting "notrigger"
to 1 skips the trigger phase, which *may* allow the user to cause the
error in some other context by a simple access to the CPU, memory
location, or device that is the target of the error injection. Whether
this actually works depends on what operations the BIOS actually
includes in the trigger phase.
BIOS versions based on the ACPI 4.0 specification have limited options
in controlling where the errors are injected. Your BIOS may support an
extension (enabled with the param_extension=1 module parameter, or boot
command line einj.param_extension=1). This allows the address and mask
for memory injections to be specified by the param1 and param2 files in
apei/einj.
BIOS versions based on the ACPI 5.0 specification have more control over
the target of the injection. For processor-related errors (type 0x1, 0x2
and 0x4), you can set flags to 0x3 (param3 for bit 0, and param1 and
param2 for bit 1) so that you have more information added to the error
signature being injected. The actual data passed is this:
memory_address = param1;
memory_address_range = param2;
apicid = param3;
pcie_sbdf = param4;
For memory errors (type 0x8, 0x10 and 0x20) the address is set using
param1 with a mask in param2 (0x0 is equivalent to all ones). For PCI
express errors (type 0x40, 0x80 and 0x100) the segment, bus, device and
function are specified using param1:
31 24 23 16 15 11 10 8 7 0
+-------------------------------------------------+
| segment | bus | device | function | reserved |
+-------------------------------------------------+
An ACPI 5.0 BIOS may also allow vendor specific errors to be injected.
Anyway, you get the idea, if there's doubt just take a look at the code
in drivers/acpi/apei/einj.c.
An ACPI 5.0 BIOS may also allow vendor-specific errors to be injected.
In this case a file named vendor will contain identifying information
from the BIOS that hopefully will allow an application wishing to use
the vendor specific extension to tell that they are running on a BIOS
the vendor-specific extension to tell that they are running on a BIOS
that supports it. All vendor extensions have the 0x80000000 bit set in
error_type. A file vendor_flags controls the interpretation of param1
and param2 (1 = PROCESSOR, 2 = MEMORY, 4 = PCI). See your BIOS vendor
documentation for details (and expect changes to this API if vendors
creativity in using this feature expands beyond our expectations).
Example:
An error injection example:
# cd /sys/kernel/debug/apei/einj
# cat available_error_type # See which errors can be injected
0x00000002 Processor Uncorrectable non-fatal
0x00000008 Memory Correctable
0x00000010 Memory Uncorrectable non-fatal
# echo 0x12345000 > param1 # Set memory address for injection
# echo 0xfffffffffffff000 > param2 # Mask - anywhere in this page
# echo $((-1 << 12)) > param2 # Mask 0xfffffffffffff000 - anywhere in this page
# echo 0x8 > error_type # Choose correctable memory error
# echo 1 > error_inject # Inject now
You should see something like this in dmesg:
[22715.830801] EDAC sbridge MC3: HANDLING MCE MEMORY ERROR
[22715.834759] EDAC sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090
[22715.834759] EDAC sbridge MC3: TSC 0
[22715.834759] EDAC sbridge MC3: ADDR 12345000 EDAC sbridge MC3: MISC 144780c86
[22715.834759] EDAC sbridge MC3: PROCESSOR 0:306e7 TIME 1422553404 SOCKET 0 APIC 0
[22716.616173] EDAC MC3: 1 CE memory read error on CPU_SrcID#0_Channel#0_DIMM#0 (channel:0 slot:0 page:0x12345 offset:0x0 grain:32 syndrome:0x0 - area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0)
For more information about EINJ, please refer to ACPI specification
version 4.0, section 17.5 and ACPI 5.0, section 18.6.
......@@ -116,6 +116,12 @@ struct mca_config {
u32 rip_msr;
};
struct mce_vendor_flags {
__u64 overflow_recov : 1, /* cpuid_ebx(80000007) */
__reserved_0 : 63;
};
extern struct mce_vendor_flags mce_flags;
extern struct mca_config mca_cfg;
extern void mce_register_decode_chain(struct notifier_block *nb);
extern void mce_unregister_decode_chain(struct notifier_block *nb);
......@@ -128,9 +134,11 @@ extern int mce_p5_enabled;
#ifdef CONFIG_X86_MCE
int mcheck_init(void);
void mcheck_cpu_init(struct cpuinfo_x86 *c);
void mcheck_vendor_init_severity(void);
#else
static inline int mcheck_init(void) { return 0; }
static inline void mcheck_cpu_init(struct cpuinfo_x86 *c) {}
static inline void mcheck_vendor_init_severity(void) {}
#endif
#ifdef CONFIG_X86_ANCIENT_MCE
......@@ -183,11 +191,11 @@ typedef DECLARE_BITMAP(mce_banks_t, MAX_NR_BANKS);
DECLARE_PER_CPU(mce_banks_t, mce_poll_banks);
enum mcp_flags {
MCP_TIMESTAMP = (1 << 0), /* log time stamp */
MCP_UC = (1 << 1), /* log uncorrected errors */
MCP_DONTLOG = (1 << 2), /* only clear, don't log */
MCP_TIMESTAMP = BIT(0), /* log time stamp */
MCP_UC = BIT(1), /* log uncorrected errors */
MCP_DONTLOG = BIT(2), /* only clear, don't log */
};
void machine_check_poll(enum mcp_flags flags, mce_banks_t *b);
bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b);
int mce_notify_irq(void);
......
......@@ -14,6 +14,7 @@ enum severity_level {
};
#define ATTR_LEN 16
#define INITIAL_CHECK_INTERVAL 5 * 60 /* 5 minutes */
/* One object for each MCE bank, shared by all CPUs */
struct mce_bank {
......@@ -23,20 +24,20 @@ struct mce_bank {
char attrname[ATTR_LEN]; /* attribute name */
};
int mce_severity(struct mce *a, int tolerant, char **msg, bool is_excp);
extern int (*mce_severity)(struct mce *a, int tolerant, char **msg, bool is_excp);
struct dentry *mce_get_debugfs_dir(void);
extern struct mce_bank *mce_banks;
extern mce_banks_t mce_banks_ce_disabled;
#ifdef CONFIG_X86_MCE_INTEL
unsigned long mce_intel_adjust_timer(unsigned long interval);
void mce_intel_cmci_poll(void);
unsigned long cmci_intel_adjust_timer(unsigned long interval);
bool mce_intel_cmci_poll(void);
void mce_intel_hcpu_update(unsigned long cpu);
void cmci_disable_bank(int bank);
#else
# define mce_intel_adjust_timer mce_adjust_timer_default
static inline void mce_intel_cmci_poll(void) { }
# define cmci_intel_adjust_timer mce_adjust_timer_default
static inline bool mce_intel_cmci_poll(void) { return false; }
static inline void mce_intel_hcpu_update(unsigned long cpu) { }
static inline void cmci_disable_bank(int bank) { }
#endif
......
......@@ -186,7 +186,61 @@ static int error_context(struct mce *m)
return ((m->cs & 3) == 3) ? IN_USER : IN_KERNEL;
}
int mce_severity(struct mce *m, int tolerant, char **msg, bool is_excp)
/*
* See AMD Error Scope Hierarchy table in a newer BKDG. For example
* 49125_15h_Models_30h-3Fh_BKDG.pdf, section "RAS Features"
*/
static int mce_severity_amd(struct mce *m, int tolerant, char **msg, bool is_excp)
{
enum context ctx = error_context(m);
/* Processor Context Corrupt, no need to fumble too much, die! */
if (m->status & MCI_STATUS_PCC)
return MCE_PANIC_SEVERITY;
if (m->status & MCI_STATUS_UC) {
/*
* On older systems where overflow_recov flag is not present, we
* should simply panic if an error overflow occurs. If
* overflow_recov flag is present and set, then software can try
* to at least kill process to prolong system operation.
*/
if (mce_flags.overflow_recov) {
/* software can try to contain */
if (!(m->mcgstatus & MCG_STATUS_RIPV) && (ctx == IN_KERNEL))
return MCE_PANIC_SEVERITY;
/* kill current process */
return MCE_AR_SEVERITY;
} else {
/* at least one error was not logged */
if (m->status & MCI_STATUS_OVER)
return MCE_PANIC_SEVERITY;
}
/*
* For any other case, return MCE_UC_SEVERITY so that we log the
* error and exit #MC handler.
*/
return MCE_UC_SEVERITY;
}
/*
* deferred error: poll handler catches these and adds to mce_ring so
* memory-failure can take recovery actions.
*/
if (m->status & MCI_STATUS_DEFERRED)
return MCE_DEFERRED_SEVERITY;
/*
* corrected error: poll handler catches these and passes responsibility
* of decoding the error to EDAC
*/
return MCE_KEEP_SEVERITY;
}
static int mce_severity_intel(struct mce *m, int tolerant, char **msg, bool is_excp)
{
enum exception excp = (is_excp ? EXCP_CONTEXT : NO_EXCP);
enum context ctx = error_context(m);
......@@ -216,6 +270,16 @@ int mce_severity(struct mce *m, int tolerant, char **msg, bool is_excp)
}
}
/* Default to mce_severity_intel */
int (*mce_severity)(struct mce *m, int tolerant, char **msg, bool is_excp) =
mce_severity_intel;
void __init mcheck_vendor_init_severity(void)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
mce_severity = mce_severity_amd;
}
#ifdef CONFIG_DEBUG_FS
static void *s_start(struct seq_file *f, loff_t *pos)
{
......
......@@ -65,6 +65,7 @@ static DEFINE_MUTEX(mce_chrdev_read_mutex);
DEFINE_PER_CPU(unsigned, mce_exception_count);
struct mce_bank *mce_banks __read_mostly;
struct mce_vendor_flags mce_flags __read_mostly;
struct mca_config mca_cfg __read_mostly = {
.bootlog = -1,
......@@ -89,9 +90,6 @@ static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
static DEFINE_PER_CPU(struct mce, mces_seen);
static int cpu_missing;
/* CMCI storm detection filter */
static DEFINE_PER_CPU(unsigned long, mce_polled_error);
/*
* MCA banks polled by the period polling timer for corrected events.
* With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
......@@ -622,8 +620,9 @@ DEFINE_PER_CPU(unsigned, mce_poll_count);
* is already totally * confused. In this case it's likely it will
* not fully execute the machine check handler either.
*/
void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
{
bool error_logged = false;
struct mce m;
int severity;
int i;
......@@ -646,7 +645,7 @@ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
if (!(m.status & MCI_STATUS_VAL))
continue;
this_cpu_write(mce_polled_error, 1);
/*
* Uncorrected or signalled events are handled by the exception
* handler when it is enabled, so don't process those here.
......@@ -679,8 +678,10 @@ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
* Don't get the IP here because it's unlikely to
* have anything to do with the actual error location.
*/
if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) {
error_logged = true;
mce_log(&m);
}
/*
* Clear state for this bank.
......@@ -694,6 +695,8 @@ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
*/
sync_core();
return error_logged;
}
EXPORT_SYMBOL_GPL(machine_check_poll);
......@@ -813,7 +816,7 @@ static void mce_reign(void)
* other CPUs.
*/
if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
mce_panic("Fatal Machine check", m, msg);
mce_panic("Fatal machine check", m, msg);
/*
* For UC somewhere we let the CPU who detects it handle it.
......@@ -826,7 +829,7 @@ static void mce_reign(void)
* source or one CPU is hung. Panic.
*/
if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
mce_panic("Machine check from unknown source", NULL, NULL);
mce_panic("Fatal machine check from unknown source", NULL, NULL);
/*
* Now clear all the mces_seen so that they don't reappear on
......@@ -1258,7 +1261,7 @@ void mce_log_therm_throt_event(__u64 status)
* poller finds an MCE, poll 2x faster. When the poller finds no more
* errors, poll 2x slower (up to check_interval seconds).
*/
static unsigned long check_interval = 5 * 60; /* 5 minutes */
static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
static DEFINE_PER_CPU(struct timer_list, mce_timer);
......@@ -1268,49 +1271,57 @@ static unsigned long mce_adjust_timer_default(unsigned long interval)
return interval;
}
static unsigned long (*mce_adjust_timer)(unsigned long interval) =
mce_adjust_timer_default;
static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
static int cmc_error_seen(void)
static void __restart_timer(struct timer_list *t, unsigned long interval)
{
unsigned long *v = this_cpu_ptr(&mce_polled_error);
unsigned long when = jiffies + interval;
unsigned long flags;
local_irq_save(flags);
if (timer_pending(t)) {
if (time_before(when, t->expires))
mod_timer_pinned(t, when);
} else {
t->expires = round_jiffies(when);
add_timer_on(t, smp_processor_id());
}
return test_and_clear_bit(0, v);
local_irq_restore(flags);
}
static void mce_timer_fn(unsigned long data)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
int cpu = smp_processor_id();
unsigned long iv;
int notify;
WARN_ON(smp_processor_id() != data);
WARN_ON(cpu != data);
iv = __this_cpu_read(mce_next_interval);
if (mce_available(this_cpu_ptr(&cpu_info))) {
machine_check_poll(MCP_TIMESTAMP,
this_cpu_ptr(&mce_poll_banks));
mce_intel_cmci_poll();
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_poll_banks));
if (mce_intel_cmci_poll()) {
iv = mce_adjust_timer(iv);
goto done;
}
}
/*
* Alert userspace if needed. If we logged an MCE, reduce the
* polling interval, otherwise increase the polling interval.
* Alert userspace if needed. If we logged an MCE, reduce the polling
* interval, otherwise increase the polling interval.
*/
iv = __this_cpu_read(mce_next_interval);
notify = mce_notify_irq();
notify |= cmc_error_seen();
if (notify) {
if (mce_notify_irq())
iv = max(iv / 2, (unsigned long) HZ/100);
} else {
else
iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
iv = mce_adjust_timer(iv);
}
done:
__this_cpu_write(mce_next_interval, iv);
/* Might have become 0 after CMCI storm subsided */
if (iv) {
t->expires = jiffies + iv;
add_timer_on(t, smp_processor_id());
}
__restart_timer(t, iv);
}
/*
......@@ -1319,16 +1330,10 @@ static void mce_timer_fn(unsigned long data)
void mce_timer_kick(unsigned long interval)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
unsigned long when = jiffies + interval;
unsigned long iv = __this_cpu_read(mce_next_interval);
if (timer_pending(t)) {
if (time_before(when, t->expires))
mod_timer_pinned(t, when);
} else {
t->expires = round_jiffies(when);
add_timer_on(t, smp_processor_id());
}
__restart_timer(t, interval);
if (interval < iv)
__this_cpu_write(mce_next_interval, interval);
}
......@@ -1528,6 +1533,13 @@ static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
if (c->x86 == 6 && cfg->banks > 0)
mce_banks[0].ctl = 0;
/*
* overflow_recov is supported for F15h Models 00h-0fh
* even though we don't have a CPUID bit for it.
*/
if (c->x86 == 0x15 && c->x86_model <= 0xf)
mce_flags.overflow_recov = 1;
/*
* Turn off MC4_MISC thresholding banks on those models since
* they're not supported there.
......@@ -1535,7 +1547,7 @@ static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
if (c->x86 == 0x15 &&
(c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
int i;
u64 val, hwcr;
u64 hwcr;
bool need_toggle;
u32 msrs[] = {
0x00000413, /* MC4_MISC0 */
......@@ -1550,15 +1562,9 @@ static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
if (need_toggle)
wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
for (i = 0; i < ARRAY_SIZE(msrs); i++) {
rdmsrl(msrs[i], val);
/* CntP bit set? */
if (val & BIT_64(62)) {
val &= ~BIT_64(62);
wrmsrl(msrs[i], val);
}
}
/* Clear CntP bit safely */
for (i = 0; i < ARRAY_SIZE(msrs); i++)
msr_clear_bit(msrs[i], 62);
/* restore old settings */
if (need_toggle)
......@@ -1629,10 +1635,11 @@ static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
mce_intel_feature_init(c);
mce_adjust_timer = mce_intel_adjust_timer;
mce_adjust_timer = cmci_intel_adjust_timer;
break;
case X86_VENDOR_AMD:
mce_amd_feature_init(c);
mce_flags.overflow_recov = cpuid_ebx(0x80000007) & 0x1;
break;
default:
break;
......@@ -2017,6 +2024,7 @@ __setup("mce", mcheck_enable);
int __init mcheck_init(void)
{
mcheck_intel_therm_init();
mcheck_vendor_init_severity();
return 0;
}
......
......@@ -79,7 +79,7 @@ static inline bool is_shared_bank(int bank)
return (bank == 4);
}
static const char * const bank4_names(struct threshold_block *b)
static const char *bank4_names(const struct threshold_block *b)
{
switch (b->address) {
/* MSR4_MISC0 */
......@@ -250,6 +250,7 @@ void mce_amd_feature_init(struct cpuinfo_x86 *c)
if (!b.interrupt_capable)
goto init;
b.interrupt_enable = 1;
new = (high & MASK_LVTOFF_HI) >> 20;
offset = setup_APIC_mce(offset, new);
......@@ -322,6 +323,8 @@ static void amd_threshold_interrupt(void)
log:
mce_setup(&m);
rdmsrl(MSR_IA32_MCx_STATUS(bank), m.status);
if (!(m.status & MCI_STATUS_VAL))
return;
m.misc = ((u64)high << 32) | low;
m.bank = bank;
mce_log(&m);
......@@ -497,10 +500,12 @@ static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
b->interrupt_capable = lvt_interrupt_supported(bank, high);
b->threshold_limit = THRESHOLD_MAX;
if (b->interrupt_capable)
if (b->interrupt_capable) {
threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
else
b->interrupt_enable = 1;
} else {
threshold_ktype.default_attrs[2] = NULL;
}
INIT_LIST_HEAD(&b->miscj);
......
......@@ -38,6 +38,15 @@
*/
static DEFINE_PER_CPU(mce_banks_t, mce_banks_owned);
/*
* CMCI storm detection backoff counter
*
* During storm, we reset this counter to INITIAL_CHECK_INTERVAL in case we've
* encountered an error. If not, we decrement it by one. We signal the end of
* the CMCI storm when it reaches 0.
*/
static DEFINE_PER_CPU(int, cmci_backoff_cnt);
/*
* cmci_discover_lock protects against parallel discovery attempts
* which could race against each other.
......@@ -46,7 +55,7 @@ static DEFINE_RAW_SPINLOCK(cmci_discover_lock);
#define CMCI_THRESHOLD 1
#define CMCI_POLL_INTERVAL (30 * HZ)
#define CMCI_STORM_INTERVAL (1 * HZ)
#define CMCI_STORM_INTERVAL (HZ)
#define CMCI_STORM_THRESHOLD 15
static DEFINE_PER_CPU(unsigned long, cmci_time_stamp);
......@@ -82,11 +91,21 @@ static int cmci_supported(int *banks)
return !!(cap & MCG_CMCI_P);
}
void mce_intel_cmci_poll(void)
bool mce_intel_cmci_poll(void)
{
if (__this_cpu_read(cmci_storm_state) == CMCI_STORM_NONE)
return;
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned));
return false;
/*
* Reset the counter if we've logged an error in the last poll
* during the storm.
*/
if (machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned)))
this_cpu_write(cmci_backoff_cnt, INITIAL_CHECK_INTERVAL);
else
this_cpu_dec(cmci_backoff_cnt);
return true;
}
void mce_intel_hcpu_update(unsigned long cpu)
......@@ -97,31 +116,32 @@ void mce_intel_hcpu_update(unsigned long cpu)
per_cpu(cmci_storm_state, cpu) = CMCI_STORM_NONE;
}
unsigned long mce_intel_adjust_timer(unsigned long interval)
unsigned long cmci_intel_adjust_timer(unsigned long interval)
{
int r;
if (interval < CMCI_POLL_INTERVAL)
return interval;
if ((this_cpu_read(cmci_backoff_cnt) > 0) &&
(__this_cpu_read(cmci_storm_state) == CMCI_STORM_ACTIVE)) {
mce_notify_irq();
return CMCI_STORM_INTERVAL;
}
switch (__this_cpu_read(cmci_storm_state)) {
case CMCI_STORM_ACTIVE:
/*
* We switch back to interrupt mode once the poll timer has
* silenced itself. That means no events recorded and the
* timer interval is back to our poll interval.
* silenced itself. That means no events recorded and the timer
* interval is back to our poll interval.
*/
__this_cpu_write(cmci_storm_state, CMCI_STORM_SUBSIDED);
r = atomic_sub_return(1, &cmci_storm_on_cpus);
if (r == 0)
if (!atomic_sub_return(1, &cmci_storm_on_cpus))
pr_notice("CMCI storm subsided: switching to interrupt mode\n");
/* FALLTHROUGH */
case CMCI_STORM_SUBSIDED:
/*
* We wait for all cpus to go back to SUBSIDED
* state. When that happens we switch back to
* interrupt mode.
* We wait for all CPUs to go back to SUBSIDED state. When that
* happens we switch back to interrupt mode.
*/
if (!atomic_read(&cmci_storm_on_cpus)) {
__this_cpu_write(cmci_storm_state, CMCI_STORM_NONE);
......@@ -130,10 +150,8 @@ unsigned long mce_intel_adjust_timer(unsigned long interval)
}
return CMCI_POLL_INTERVAL;
default:
/*
* We have shiny weather. Let the poll do whatever it
* thinks.
*/
/* We have shiny weather. Let the poll do whatever it thinks. */
return interval;
}
}
......@@ -178,7 +196,8 @@ static bool cmci_storm_detect(void)
cmci_storm_disable_banks();
__this_cpu_write(cmci_storm_state, CMCI_STORM_ACTIVE);
r = atomic_add_return(1, &cmci_storm_on_cpus);
mce_timer_kick(CMCI_POLL_INTERVAL);
mce_timer_kick(CMCI_STORM_INTERVAL);
this_cpu_write(cmci_backoff_cnt, INITIAL_CHECK_INTERVAL);
if (r == 1)
pr_notice("CMCI storm detected: switching to poll mode\n");
......@@ -195,6 +214,7 @@ static void intel_threshold_interrupt(void)
{
if (cmci_storm_detect())
return;
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned));
mce_notify_irq();
}
......@@ -286,6 +306,7 @@ void cmci_recheck(void)
if (!mce_available(raw_cpu_ptr(&cpu_info)) || !cmci_supported(&banks))
return;
local_irq_save(flags);
machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_banks_owned));
local_irq_restore(flags);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment