Commit 0863b4e2 authored by Simon Schuster's avatar Simon Schuster Committed by Greg Kroah-Hartman

Staging: vt6656: Fix indentation of bssdb.c

Corrects indentation by using tabs instead of spaces. This also
includes modification of the alignment of multi-line expressions and
statements.
Signed-off-by: default avatarSebastian Rachuj <sebastian.rachuj@studium.uni-erlangen.de>
Signed-off-by: default avatarSimon Schuster <linux@rationality.eu>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent a6e8e3a4
...@@ -21,15 +21,15 @@ ...@@ -21,15 +21,15 @@
* Purpose: Handles the Basic Service Set & Node Database functions * Purpose: Handles the Basic Service Set & Node Database functions
* *
* Functions: * Functions:
* BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
* BSSvClearBSSList - Clear BSS List * BSSvClearBSSList - Clear BSS List
* BSSbInsertToBSSList - Insert a BSS set into known BSS list * BSSbInsertToBSSList - Insert a BSS set into known BSS list
* BSSbUpdateToBSSList - Update BSS set in known BSS list * BSSbUpdateToBSSList - Update BSS set in known BSS list
* BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
* BSSvCreateOneNode - Allocate an Node for Node DB * BSSvCreateOneNode - Allocate an Node for Node DB
* BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
* BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
* BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fallback rate control
* *
* Revision History: * Revision History:
* *
...@@ -59,23 +59,23 @@ ...@@ -59,23 +59,23 @@
#include "iowpa.h" #include "iowpa.h"
#include "power.h" #include "power.h"
static int msglevel =MSG_LEVEL_INFO; static int msglevel =MSG_LEVEL_INFO;
//static int msglevel =MSG_LEVEL_DEBUG; //static int msglevel =MSG_LEVEL_DEBUG;
static const u16 awHWRetry0[5][5] = { static const u16 awHWRetry0[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M}, {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
{RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M}, {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
{RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M}, {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
{RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M}, {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
{RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M} {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
}; };
static const u16 awHWRetry1[5][5] = { static const u16 awHWRetry1[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M}, {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
{RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M}, {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
{RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M}, {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
{RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M}, {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
{RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M} {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
}; };
static void s_vCheckSensitivity(struct vnt_private *pDevice); static void s_vCheckSensitivity(struct vnt_private *pDevice);
static void s_vCheckPreEDThreshold(struct vnt_private *pDevice); static void s_vCheckPreEDThreshold(struct vnt_private *pDevice);
...@@ -84,16 +84,16 @@ static void s_uCalculateLinkQual(struct vnt_private *pDevice); ...@@ -84,16 +84,16 @@ static void s_uCalculateLinkQual(struct vnt_private *pDevice);
/*+ /*+
* *
* Routine Description: * Routine Description:
* Search known BSS list for Desire SSID or BSSID. * Search known BSS list for Desire SSID or BSSID.
* *
* Return Value: * Return Value:
* PTR to KnownBSS or NULL * PTR to KnownBSS or NULL
* *
-*/ -*/
PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice, PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
u8 *pbyDesireBSSID, u8 *pbyDesireSSID, u8 *pbyDesireBSSID, u8 *pbyDesireSSID,
CARD_PHY_TYPE ePhyType) CARD_PHY_TYPE ePhyType)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u8 *pbyBSSID = NULL; u8 *pbyBSSID = NULL;
...@@ -104,134 +104,134 @@ PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice, ...@@ -104,134 +104,134 @@ PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
int ii = 0; int ii = 0;
int jj = 0; int jj = 0;
if (pbyDesireBSSID != NULL) { if (pbyDesireBSSID != NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID); "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
if ((!is_broadcast_ether_addr(pbyDesireBSSID)) && if ((!is_broadcast_ether_addr(pbyDesireBSSID)) &&
(memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){ (memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){
pbyBSSID = pbyDesireBSSID; pbyBSSID = pbyDesireBSSID;
} }
} }
if (pbyDesireSSID != NULL) { if (pbyDesireSSID != NULL) {
if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) { if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) {
pSSID = (PWLAN_IE_SSID) pbyDesireSSID; pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
} }
} }
if ((pbyBSSID != NULL)&&(pDevice->bRoaming == false)) { if ((pbyBSSID != NULL)&&(pDevice->bRoaming == false)) {
// match BSSID first // match BSSID first
for (ii = 0; ii <MAX_BSS_NUM; ii++) { for (ii = 0; ii <MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]); pCurrBSS = &(pMgmt->sBSSList[ii]);
pCurrBSS->bSelected = false; pCurrBSS->bSelected = false;
if ((pCurrBSS->bActive) && if ((pCurrBSS->bActive) &&
(pCurrBSS->bSelected == false)) { (pCurrBSS->bSelected == false)) {
if (ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) { if (ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) {
if (pSSID != NULL) { if (pSSID != NULL) {
// compare ssid // compare ssid
if ( !memcmp(pSSID->abySSID, if ( !memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID, ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
pSSID->len)) { pSSID->len)) {
if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) || if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) || ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
) { ) {
pCurrBSS->bSelected = true; pCurrBSS->bSelected = true;
return(pCurrBSS); return(pCurrBSS);
} }
} }
} else { } else {
if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) || if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) || ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
) { ) {
pCurrBSS->bSelected = true; pCurrBSS->bSelected = true;
return(pCurrBSS); return(pCurrBSS);
} }
} }
} }
} }
} }
} else { } else {
// ignore BSSID // ignore BSSID
for (ii = 0; ii <MAX_BSS_NUM; ii++) { for (ii = 0; ii <MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]); pCurrBSS = &(pMgmt->sBSSList[ii]);
//2007-0721-01<Mark>by MikeLiu //2007-0721-01<Mark>by MikeLiu
// if ((pCurrBSS->bActive) && // if ((pCurrBSS->bActive) &&
// (pCurrBSS->bSelected == false)) { // (pCurrBSS->bSelected == false)) {
pCurrBSS->bSelected = false; pCurrBSS->bSelected = false;
if (pCurrBSS->bActive) { if (pCurrBSS->bActive) {
if (pSSID != NULL) { if (pSSID != NULL) {
// matched SSID // matched SSID
if (memcmp(pSSID->abySSID, if (memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID, ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
pSSID->len) || pSSID->len) ||
(pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) { (pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) {
// SSID not match skip this BSS // SSID not match skip this BSS
continue; continue;
} }
} }
if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) || if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))
){ ){
// Type not match skip this BSS // Type not match skip this BSS
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo);
continue; continue;
} }
if (ePhyType != PHY_TYPE_AUTO) { if (ePhyType != PHY_TYPE_AUTO) {
if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) || if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) ||
((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) { ((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
// PhyType not match skip this BSS // PhyType not match skip this BSS
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse);
continue; continue;
} }
} }
pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel; pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"BSSpSearchBSSList pSelect1[%pM]\n", "BSSpSearchBSSList pSelect1[%pM]\n",
pCurrBSS->abyBSSID); pCurrBSS->abyBSSID);
jj++; jj++;
if (pSelect == NULL) { if (pSelect == NULL) {
pSelect = pCurrBSS; pSelect = pCurrBSS;
} else { } else {
// compare RSSI, select the strongest signal // compare RSSI, select the strongest signal
if (pCurrBSS->uRSSI < pSelect->uRSSI) { if (pCurrBSS->uRSSI < pSelect->uRSSI) {
pSelect = pCurrBSS; pSelect = pCurrBSS;
} }
} }
} }
} }
pDevice->bSameBSSMaxNum = jj; pDevice->bSameBSSMaxNum = jj;
if (pSelect != NULL) { if (pSelect != NULL) {
pSelect->bSelected = true; pSelect->bSelected = true;
if (pDevice->bRoaming == false) { if (pDevice->bRoaming == false) {
// Einsn Add @20070907 // Einsn Add @20070907
memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ; memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ;
} }
return(pSelect); return(pSelect);
} }
} }
return(NULL); return(NULL);
} }
/*+ /*+
* *
* Routine Description: * Routine Description:
* Clear BSS List * Clear BSS List
* *
* Return Value: * Return Value:
* None. * None.
* *
-*/ -*/
...@@ -240,65 +240,70 @@ void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID) ...@@ -240,65 +240,70 @@ void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID)
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii; int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) { for (ii = 0; ii < MAX_BSS_NUM; ii++) {
if (bKeepCurrBSSID) { if (bKeepCurrBSSID) {
if (pMgmt->sBSSList[ii].bActive && if (pMgmt->sBSSList[ii].bActive &&
ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID, ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID,
pMgmt->abyCurrBSSID)) { pMgmt->abyCurrBSSID)) {
//mike mark: there are two BSSID's in list. If that AP is in hidden ssid mode, one SSID is null,
// but other's might not be obvious, so if it associate's with your STA, //mike mark:
// you must keep the two of them!! //there are two BSSID's in list. If that AP is
// bKeepCurrBSSID = false; //in hidden ssid mode, one SSID is null, but
continue; //other's might not be obvious, so if it
} //associate's with your STA, you must keep the
} //two of them!! bKeepCurrBSSID = false;
pMgmt->sBSSList[ii].bActive = false; continue;
memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS)); }
} }
BSSvClearAnyBSSJoinRecord(pDevice);
pMgmt->sBSSList[ii].bActive = false;
memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
}
BSSvClearAnyBSSJoinRecord(pDevice);
} }
/*+ /*+
* *
* Routine Description: * Routine Description:
* search BSS list by BSSID & SSID if matched * search BSS list by BSSID & SSID if matched
* *
* Return Value: * Return Value:
* true if found. * true if found.
* *
-*/ -*/
PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice, PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice,
u8 *abyBSSID, PWLAN_IE_SSID pSSID) u8 *abyBSSID,
PWLAN_IE_SSID pSSID)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
PKnownBSS pBSSList = NULL; PKnownBSS pBSSList = NULL;
int ii; int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) { for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = &(pMgmt->sBSSList[ii]); pBSSList = &(pMgmt->sBSSList[ii]);
if (pBSSList->bActive) { if (pBSSList->bActive) {
if (ether_addr_equal(pBSSList->abyBSSID, abyBSSID)) { if (ether_addr_equal(pBSSList->abyBSSID, abyBSSID)) {
if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){ if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){
if (memcmp(pSSID->abySSID, if (memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID, ((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
pSSID->len) == 0) pSSID->len) == 0)
return pBSSList; return pBSSList;
} }
} }
} }
} }
return NULL; return NULL;
}; };
/*+ /*+
* *
* Routine Description: * Routine Description:
* Insert a BSS set into known BSS list * Insert a BSS set into known BSS list
* *
* Return Value: * Return Value:
* true if success. * true if success.
* *
-*/ -*/
...@@ -327,153 +332,153 @@ int BSSbInsertToBSSList(struct vnt_private *pDevice, ...@@ -327,153 +332,153 @@ int BSSbInsertToBSSList(struct vnt_private *pDevice,
unsigned int ii; unsigned int ii;
bool bParsingQuiet = false; bool bParsingQuiet = false;
pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]); pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]);
for (ii = 0; ii < MAX_BSS_NUM; ii++) { for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]); pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]);
if (!pBSSList->bActive) if (!pBSSList->bActive)
break; break;
} }
if (ii == MAX_BSS_NUM){ if (ii == MAX_BSS_NUM){
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n"); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n");
return false; return false;
} }
// save the BSS info // save the BSS info
pBSSList->bActive = true; pBSSList->bActive = true;
memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN); memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp); pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval); pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo); pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0; pBSSList->uClearCount = 0;
if (pSSID->len > WLAN_SSID_MAXLEN) if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN; pSSID->len = WLAN_SSID_MAXLEN;
memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN); memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
pBSSList->uChannel = byCurrChannel; pBSSList->uChannel = byCurrChannel;
if (pSuppRates->len > WLAN_RATES_MAXLEN) if (pSuppRates->len > WLAN_RATES_MAXLEN)
pSuppRates->len = WLAN_RATES_MAXLEN; pSuppRates->len = WLAN_RATES_MAXLEN;
memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN); memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates != NULL) { if (pExtSuppRates != NULL) {
if (pExtSuppRates->len > WLAN_RATES_MAXLEN) if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
pExtSuppRates->len = WLAN_RATES_MAXLEN; pExtSuppRates->len = WLAN_RATES_MAXLEN;
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN); memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len);
} else { } else {
memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1); memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
}
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
// Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == true) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
// assoc with BSS
if (pBSSList == pMgmt->pCurrBSS) {
bParsingQuiet = true;
}
}
WPA_ClearRSN(pBSSList);
if (pRSNWPA != NULL) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength -
(unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
} }
} pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
WPA2_ClearRSN(pBSSList); // Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == true) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
if (pRSN != NULL) { pBSSList->byRxRate = pRxPacket->byRxRate;
unsigned int uLen = pRSN->len + 2; pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if (uLen <= (uIELength - if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) { (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
pBSSList->wRSNLen = uLen; // assoc with BSS
memcpy(pBSSList->byRSNIE, pRSN, uLen); if (pBSSList == pMgmt->pCurrBSS) {
WPA2vParseRSN(pBSSList, pRSN); bParsingQuiet = true;
}
} }
}
WPA_ClearRSN(pBSSList);
if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == true)) {
if (pRSNWPA != NULL) {
PSKeyItem pTransmitKey = NULL; unsigned int uLen = pRSNWPA->len + 2;
bool bIs802_1x = false;
if (uLen <= (uIELength -
for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) { (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) { pBSSList->wWPALen = uLen;
bIs802_1x = true; memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
break; WPA_ParseRSN(pBSSList, pRSNWPA);
} }
} }
if ((bIs802_1x == true) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) { WPA2_ClearRSN(pBSSList);
bAdd_PMKID_Candidate((void *) pDevice, if (pRSN != NULL) {
pBSSList->abyBSSID, unsigned int uLen = pRSN->len + 2;
&pBSSList->sRSNCapObj);
if (uLen <= (uIELength -
if ((pDevice->bLinkPass == true) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) { (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == true) || pBSSList->wRSNLen = uLen;
(KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == true)) { memcpy(pBSSList->byRSNIE, pRSN, uLen);
pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList; WPA2vParseRSN(pBSSList, pRSN);
pDevice->gsPMKIDCandidate.Version = 1; }
}
}
if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == true)) {
}
} PSKeyItem pTransmitKey = NULL;
} bool bIs802_1x = false;
if (pDevice->bUpdateBBVGA) { for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) {
// Monitor if RSSI is too strong. if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) {
pBSSList->byRSSIStatCnt = 0; bIs802_1x = true;
RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &pBSSList->ldBmMAX); break;
pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX; }
pBSSList->ldBmAverRange = pBSSList->ldBmMAX; }
for (ii = 1; ii < RSSI_STAT_COUNT; ii++) if ((bIs802_1x == true) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
pBSSList->ldBmAverage[ii] = 0; ( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) {
}
bAdd_PMKID_Candidate((void *) pDevice,
pBSSList->uIELength = uIELength; pBSSList->abyBSSID,
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN) &pBSSList->sRSNCapObj);
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength); if ((pDevice->bLinkPass == true) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == true) ||
return true; (KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == true)) {
pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList;
pDevice->gsPMKIDCandidate.Version = 1;
}
}
}
}
if (pDevice->bUpdateBBVGA) {
// Monitor if RSSI is too strong.
pBSSList->byRSSIStatCnt = 0;
RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &pBSSList->ldBmMAX);
pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
pBSSList->ldBmAverage[ii] = 0;
}
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
return true;
} }
/*+ /*+
* *
* Routine Description: * Routine Description:
* Update BSS set in known BSS list * Update BSS set in known BSS list
* *
* Return Value: * Return Value:
* true if success. * true if success.
* *
-*/ -*/
// TODO: input structure modify // TODO: input structure modify
...@@ -504,202 +509,203 @@ int BSSbUpdateToBSSList(struct vnt_private *pDevice, ...@@ -504,202 +509,203 @@ int BSSbUpdateToBSSList(struct vnt_private *pDevice,
signed long ldBm, ldBmSum; signed long ldBm, ldBmSum;
bool bParsingQuiet = false; bool bParsingQuiet = false;
if (pBSSList == NULL) if (pBSSList == NULL)
return false; return false;
pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp); pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval); pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo); pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0; pBSSList->uClearCount = 0;
pBSSList->uChannel = byCurrChannel; pBSSList->uChannel = byCurrChannel;
if (pSSID->len > WLAN_SSID_MAXLEN) if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN; pSSID->len = WLAN_SSID_MAXLEN;
if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0)) if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0))
memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN); memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN); memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates != NULL) { if (pExtSuppRates != NULL) {
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN); memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN);
} else { } else {
memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1); memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
}
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
// Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == true) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
if(bChannelHit)
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
// assoc with BSS
if (pBSSList == pMgmt->pCurrBSS) {
bParsingQuiet = true;
}
}
WPA_ClearRSN(pBSSList); //mike update
if (pRSNWPA != NULL) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength -
(unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
} }
} pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
WPA2_ClearRSN(pBSSList); //mike update // Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == true) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
if (pRSN != NULL) { pBSSList->byRxRate = pRxPacket->byRxRate;
unsigned int uLen = pRSN->len + 2; pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
if (uLen <= (uIELength - if(bChannelHit)
(unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) { pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->wRSNLen = uLen; pBSSList->bySQ = pRxPacket->bySQ;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN); if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
// assoc with BSS
if (pBSSList == pMgmt->pCurrBSS) {
bParsingQuiet = true;
}
} }
}
WPA_ClearRSN(pBSSList); //mike update
if (pRxPacket->uRSSI != 0) {
RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &ldBm); if (pRSNWPA != NULL) {
// Monitor if RSSI is too strong. unsigned int uLen = pRSNWPA->len + 2;
pBSSList->byRSSIStatCnt++; if (uLen <= (uIELength -
pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT; (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm; pBSSList->wWPALen = uLen;
ldBmSum = 0; memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) { WPA_ParseRSN(pBSSList, pRSNWPA);
if (pBSSList->ldBmAverage[ii] != 0) {
pBSSList->ldBmMAX =
max(pBSSList->ldBmAverage[ii], ldBm);
ldBmSum +=
pBSSList->ldBmAverage[ii];
jj++;
} }
} }
pBSSList->ldBmAverRange = ldBmSum /jj;
} WPA2_ClearRSN(pBSSList); //mike update
pBSSList->uIELength = uIELength; if (pRSN != NULL) {
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN) unsigned int uLen = pRSN->len + 2;
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN; if (uLen <= (uIELength -
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength); (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
pBSSList->wRSNLen = uLen;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN);
}
}
return true; if (pRxPacket->uRSSI != 0) {
RFvRSSITodBm(pDevice, (u8)(pRxPacket->uRSSI), &ldBm);
// Monitor if RSSI is too strong.
pBSSList->byRSSIStatCnt++;
pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
ldBmSum = 0;
for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pBSSList->ldBmAverage[ii] != 0) {
pBSSList->ldBmMAX =
max(pBSSList->ldBmAverage[ii], ldBm);
ldBmSum +=
pBSSList->ldBmAverage[ii];
jj++;
}
}
pBSSList->ldBmAverRange = ldBmSum /jj;
}
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
return true;
} }
/*+ /*+
* *
* Routine Description: * Routine Description:
* Search Node DB table to find the index of matched DstAddr * Search Node DB table to find the index of matched DstAddr
* *
* Return Value: * Return Value:
* None * None
* *
-*/ -*/
int BSSbIsSTAInNodeDB(struct vnt_private *pDevice, int BSSbIsSTAInNodeDB(struct vnt_private *pDevice,
u8 *abyDstAddr, u32 *puNodeIndex) u8 *abyDstAddr,
u32 *puNodeIndex)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
unsigned int ii; unsigned int ii;
// Index = 0 reserved for AP Node // Index = 0 reserved for AP Node
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) { for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) { if (pMgmt->sNodeDBTable[ii].bActive) {
if (ether_addr_equal(abyDstAddr, if (ether_addr_equal(abyDstAddr,
pMgmt->sNodeDBTable[ii].abyMACAddr)) { pMgmt->sNodeDBTable[ii].abyMACAddr)) {
*puNodeIndex = ii; *puNodeIndex = ii;
return true; return true;
} }
} }
} }
return false; return false;
}; };
/*+ /*+
* *
* Routine Description: * Routine Description:
* Find an empty node and allocate it; if no empty node * Find an empty node and allocate it; if no empty node
* is found, then use the most inactive one. * is found, then use the most inactive one.
* *
* Return Value: * Return Value:
* None * None
* *
-*/ -*/
void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex) void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii; int ii;
u32 BigestCount = 0; u32 BigestCount = 0;
u32 SelectIndex; u32 SelectIndex;
struct sk_buff *skb; struct sk_buff *skb;
// Index = 0 reserved for AP Node (In STA mode) // Index = 0 reserved for AP Node (In STA mode)
// Index = 0 reserved for Broadcast/MultiCast (In AP mode) // Index = 0 reserved for Broadcast/MultiCast (In AP mode)
SelectIndex = 1; SelectIndex = 1;
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) { for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) { if (pMgmt->sNodeDBTable[ii].bActive) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) { if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount; BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount;
SelectIndex = ii; SelectIndex = ii;
} }
} }
else { else {
break; break;
} }
} }
// if not found replace uInActiveCount with the largest one. // if not found replace uInActiveCount with the largest one.
if ( ii == (MAX_NODE_NUM + 1)) { if ( ii == (MAX_NODE_NUM + 1)) {
*puNodeIndex = SelectIndex; *puNodeIndex = SelectIndex;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex);
// clear ps buffer // clear ps buffer
if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) { if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL) while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL)
dev_kfree_skb(skb); dev_kfree_skb(skb);
} }
} }
else { else {
*puNodeIndex = ii; *puNodeIndex = ii;
} }
memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB)); memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[*puNodeIndex].bActive = true; pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND; pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
// for AP mode PS queue // for AP mode PS queue
skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue); skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0; pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0; pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
}; };
/*+ /*+
* *
* Routine Description: * Routine Description:
* Remove Node by NodeIndex * Remove Node by NodeIndex
* *
* *
* Return Value: * Return Value:
* None * None
* *
-*/ -*/
...@@ -707,72 +713,73 @@ void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex) ...@@ -707,72 +713,73 @@ void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80}; u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
struct sk_buff *skb; struct sk_buff *skb;
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL) while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL)
dev_kfree_skb(skb); dev_kfree_skb(skb);
// clear context // clear context
memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB)); memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
// clear tx bit map // clear tx bit map
pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7]; pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
}; };
/*+ /*+
* *
* Routine Description: * Routine Description:
* Update AP Node content in Index 0 of KnownNodeDB * Update AP Node content in Index 0 of KnownNodeDB
* *
* *
* Return Value: * Return Value:
* None * None
* *
-*/ -*/
void BSSvUpdateAPNode(struct vnt_private *pDevice, u16 *pwCapInfo, void BSSvUpdateAPNode(struct vnt_private *pDevice,
PWLAN_IE_SUPP_RATES pSuppRates, PWLAN_IE_SUPP_RATES pExtSuppRates) u16 *pwCapInfo,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
u32 uRateLen = WLAN_RATES_MAXLEN; u32 uRateLen = WLAN_RATES_MAXLEN;
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB)); memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[0].bActive = true; pMgmt->sNodeDBTable[0].bActive = true;
if (pDevice->byBBType == BB_TYPE_11B) { if (pDevice->byBBType == BB_TYPE_11B) {
uRateLen = WLAN_RATES_MAXLEN_11B; uRateLen = WLAN_RATES_MAXLEN_11B;
} }
pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates, pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
uRateLen); uRateLen);
pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates, pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
uRateLen); uRateLen);
RATEvParseMaxRate((void *) pDevice, RATEvParseMaxRate((void *) pDevice,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
true, true,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate), &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate), &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate), &(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate), &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate) &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
); memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN);
memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN); pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate; pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo); pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND; // Auto rate fallback function initiation.
// Auto rate fallback function initiation. // RATEbInit(pDevice);
// RATEbInit(pDevice); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
}; };
/*+ /*+
* *
* Routine Description: * Routine Description:
* Add Multicast Node content in Index 0 of KnownNodeDB * Add Multicast Node content in Index 0 of KnownNodeDB
* *
* *
* Return Value: * Return Value:
* None * None
* *
-*/ -*/
...@@ -780,24 +787,23 @@ void BSSvAddMulticastNode(struct vnt_private *pDevice) ...@@ -780,24 +787,23 @@ void BSSvAddMulticastNode(struct vnt_private *pDevice)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
if (!pDevice->bEnableHostWEP) if (!pDevice->bEnableHostWEP)
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB)); memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN); memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
pMgmt->sNodeDBTable[0].bActive = true; pMgmt->sNodeDBTable[0].bActive = true;
pMgmt->sNodeDBTable[0].bPSEnable = false; pMgmt->sNodeDBTable[0].bPSEnable = false;
skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue); skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
RATEvParseMaxRate((void *) pDevice, RATEvParseMaxRate((void *) pDevice,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates, (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
true, true,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate), &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate), &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate), &(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate), &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate) &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
); pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate; pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
}; };
...@@ -806,11 +812,11 @@ void BSSvAddMulticastNode(struct vnt_private *pDevice) ...@@ -806,11 +812,11 @@ void BSSvAddMulticastNode(struct vnt_private *pDevice)
* Routine Description: * Routine Description:
* *
* *
* Second call back function to update Node DB info & AP link status * Second call back function to update Node DB info & AP link status
* *
* *
* Return Value: * Return Value:
* none. * none.
* *
-*/ -*/
...@@ -828,302 +834,301 @@ void BSSvSecondCallBack(struct work_struct *work) ...@@ -828,302 +834,301 @@ void BSSvSecondCallBack(struct work_struct *work)
if (pDevice->Flags & fMP_DISCONNECTED) if (pDevice->Flags & fMP_DISCONNECTED)
return; return;
spin_lock_irq(&pDevice->lock); spin_lock_irq(&pDevice->lock);
pDevice->uAssocCount = 0; pDevice->uAssocCount = 0;
//Power Saving Mode Tx Burst //Power Saving Mode Tx Burst
if ( pDevice->bEnablePSMode == true ) { if ( pDevice->bEnablePSMode == true ) {
pDevice->ulPSModeWaitTx++; pDevice->ulPSModeWaitTx++;
if ( pDevice->ulPSModeWaitTx >= 2 ) { if ( pDevice->ulPSModeWaitTx >= 2 ) {
pDevice->ulPSModeWaitTx = 0; pDevice->ulPSModeWaitTx = 0;
pDevice->bPSModeTxBurst = false; pDevice->bPSModeTxBurst = false;
} }
} }
pDevice->byERPFlag &= pDevice->byERPFlag &=
~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1)); ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
if (pDevice->wUseProtectCntDown > 0) { if (pDevice->wUseProtectCntDown > 0) {
pDevice->wUseProtectCntDown --; pDevice->wUseProtectCntDown --;
} }
else { else {
// disable protect mode // disable protect mode
pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1)); pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
} }
if(pDevice->byReAssocCount > 0) {
pDevice->byReAssocCount++;
if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != true)) { //10 sec timeout
printk("Re-association timeout!!!\n");
pDevice->byReAssocCount = 0;
// if(pDevice->bWPASuppWextEnabled == true)
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof (wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
}
else if(pDevice->bLinkPass == true)
pDevice->byReAssocCount = 0;
}
pMgmt->eLastState = pMgmt->eCurrState ; if(pDevice->byReAssocCount > 0) {
pDevice->byReAssocCount++;
if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != true)) { //10 sec timeout
printk("Re-association timeout!!!\n");
pDevice->byReAssocCount = 0;
// if(pDevice->bWPASuppWextEnabled == true)
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof (wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
}
else if(pDevice->bLinkPass == true)
pDevice->byReAssocCount = 0;
}
pMgmt->eLastState = pMgmt->eCurrState ;
s_uCalculateLinkQual(pDevice); s_uCalculateLinkQual(pDevice);
for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) { for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) { if (pMgmt->sNodeDBTable[ii].bActive) {
// Increase in-activity counter // Increase in-activity counter
pMgmt->sNodeDBTable[ii].uInActiveCount++; pMgmt->sNodeDBTable[ii].uInActiveCount++;
if (ii > 0) { if (ii > 0) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) { if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) {
BSSvRemoveOneNode(pDevice, ii); BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii); "Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii);
continue; continue;
} }
if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) { if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) {
pDevice->uAssocCount++; pDevice->uAssocCount++;
// check if Non ERP exist // check if Non ERP exist
if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) { if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) {
if (!pMgmt->sNodeDBTable[ii].bShortPreamble) { if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1); pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1);
uLongPreambleSTACnt ++; uLongPreambleSTACnt ++;
} }
if (!pMgmt->sNodeDBTable[ii].bERPExist) { if (!pMgmt->sNodeDBTable[ii].bERPExist) {
pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1); pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1);
pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1); pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1);
} }
if (!pMgmt->sNodeDBTable[ii].bShortSlotTime) if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
uNonShortSlotSTACnt++; uNonShortSlotSTACnt++;
} }
} }
// check if any STA in PS mode // check if any STA in PS mode
if (pMgmt->sNodeDBTable[ii].bPSEnable) if (pMgmt->sNodeDBTable[ii].bPSEnable)
uSleepySTACnt++; uSleepySTACnt++;
} }
// Rate fallback check // Rate fallback check
if (!pDevice->bFixRate) { if (!pDevice->bFixRate) {
if (ii > 0) { if (ii > 0) {
// ii = 0 for multicast node (AP & Adhoc) // ii = 0 for multicast node (AP & Adhoc)
RATEvTxRateFallBack((void *)pDevice, RATEvTxRateFallBack((void *)pDevice,
&(pMgmt->sNodeDBTable[ii])); &(pMgmt->sNodeDBTable[ii]));
} }
else { else {
// ii = 0 reserved for unicast AP node (Infra STA) // ii = 0 reserved for unicast AP node (Infra STA)
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)
RATEvTxRateFallBack((void *)pDevice, RATEvTxRateFallBack((void *)pDevice,
&(pMgmt->sNodeDBTable[ii])); &(pMgmt->sNodeDBTable[ii]));
} }
} }
// check if pending PS queue // check if pending PS queue
if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) { if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n", DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n",
ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt); ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt);
if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) { if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) {
BSSvRemoveOneNode(pDevice, ii); BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii); DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii);
continue; continue;
} }
} }
}
}
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) {
// on/off protect mode
if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
if (!pDevice->bProtectMode) {
MACvEnableProtectMD(pDevice);
pDevice->bProtectMode = true;
}
}
else {
if (pDevice->bProtectMode) {
MACvDisableProtectMD(pDevice);
pDevice->bProtectMode = false;
}
}
// on/off short slot time
if (uNonShortSlotSTACnt > 0) {
if (pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = false;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
}
else {
if (!pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = true;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
}
// on/off barker long preamble mode
if (uLongPreambleSTACnt > 0) {
if (!pDevice->bBarkerPreambleMd) {
MACvEnableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = true;
}
}
else {
if (pDevice->bBarkerPreambleMd) {
MACvDisableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = false;
}
}
}
// Check if any STA in PS mode, enable DTIM multicast deliver
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (uSleepySTACnt > 0)
pMgmt->sNodeDBTable[0].bPSEnable = true;
else
pMgmt->sNodeDBTable[0].bPSEnable = false;
}
pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
if (pDevice->bUpdateBBVGA) {
s_vCheckSensitivity(pDevice);
s_vCheckPreEDThreshold(pDevice);
}
if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
(pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) {
pDevice->byBBVGANew = pDevice->abyBBVGA[0];
bScheduleCommand((void *) pDevice,
WLAN_CMD_CHANGE_BBSENSITIVITY,
NULL);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
pMgmt->sNodeDBTable[0].bActive = false;
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
pDevice->bRoaming = true;
pDevice->bIsRoaming = false;
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
/* let wpa supplicant know AP may disconnect */
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof (wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
}
}
else if (pItemSSID->len != 0) {
//Davidwang
if ((pDevice->bEnableRoaming == true)&&(!(pMgmt->Cisco_cckm))) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming );
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming );
if ((pDevice->bRoaming == true)&&(pDevice->bIsRoaming == true)){
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n");
BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
pDevice->uIsroamingTime = 0;
pDevice->bRoaming = false;
}
else if ((pDevice->bRoaming == false)&&(pDevice->bIsRoaming == true)) {
pDevice->uIsroamingTime++;
if (pDevice->uIsroamingTime >= 20)
pDevice->bIsRoaming = false;
}
}
else {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
//network manager support need not do Roaming scan???
if(pDevice->bWPASuppWextEnabled ==true)
pDevice->uAutoReConnectTime = 0;
}
else {
//mike use old encryption status for wpa reauthen
if(pDevice->bWPADEVUp)
pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
}
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
// if adhoc started which essid is NULL string, rescanning.
if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
}
else {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n");
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL);
pDevice->uAutoReConnectTime = 0;
};
}
if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
if (pDevice->bUpdateBBVGA) {
s_vCheckSensitivity(pDevice);
s_vCheckPreEDThreshold(pDevice);
} }
if (pMgmt->sNodeDBTable[0].uInActiveCount >=ADHOC_LOST_BEACON_COUNT) {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount); }
pMgmt->sNodeDBTable[0].uInActiveCount = 0;
pMgmt->eCurrState = WMAC_STATE_STARTED; if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) {
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false; // on/off protect mode
ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW); if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
} if (!pDevice->bProtectMode) {
} MACvEnableProtectMD(pDevice);
} pDevice->bProtectMode = true;
}
}
else {
if (pDevice->bProtectMode) {
MACvDisableProtectMD(pDevice);
pDevice->bProtectMode = false;
}
}
// on/off short slot time
if (uNonShortSlotSTACnt > 0) {
if (pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = false;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
}
else {
if (!pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = true;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
}
// on/off barker long preamble mode
if (uLongPreambleSTACnt > 0) {
if (!pDevice->bBarkerPreambleMd) {
MACvEnableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = true;
}
}
else {
if (pDevice->bBarkerPreambleMd) {
MACvDisableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = false;
}
}
}
// Check if any STA in PS mode, enable DTIM multicast deliver
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (uSleepySTACnt > 0)
pMgmt->sNodeDBTable[0].bPSEnable = true;
else
pMgmt->sNodeDBTable[0].bPSEnable = false;
}
pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
if (pDevice->bUpdateBBVGA) {
s_vCheckSensitivity(pDevice);
s_vCheckPreEDThreshold(pDevice);
}
if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
(pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) {
pDevice->byBBVGANew = pDevice->abyBBVGA[0];
bScheduleCommand((void *) pDevice,
WLAN_CMD_CHANGE_BBSENSITIVITY,
NULL);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
pMgmt->sNodeDBTable[0].bActive = false;
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
pDevice->bRoaming = true;
pDevice->bIsRoaming = false;
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
/* let wpa supplicant know AP may disconnect */
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof (wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
}
}
else if (pItemSSID->len != 0) {
//Davidwang
if ((pDevice->bEnableRoaming == true)&&(!(pMgmt->Cisco_cckm))) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming );
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming );
if ((pDevice->bRoaming == true)&&(pDevice->bIsRoaming == true)){
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n");
BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
pDevice->uIsroamingTime = 0;
pDevice->bRoaming = false;
}
else if ((pDevice->bRoaming == false)&&(pDevice->bIsRoaming == true)) {
pDevice->uIsroamingTime++;
if (pDevice->uIsroamingTime >= 20)
pDevice->bIsRoaming = false;
}
}
else {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
//network manager support need not do Roaming scan???
if(pDevice->bWPASuppWextEnabled ==true)
pDevice->uAutoReConnectTime = 0;
}
else {
//mike use old encryption status for wpa reauthen
if(pDevice->bWPADEVUp)
pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
}
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
// if adhoc started which essid is NULL string, rescanning.
if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
}
else {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n");
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL);
pDevice->uAutoReConnectTime = 0;
};
}
if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
if (pDevice->bUpdateBBVGA) {
s_vCheckSensitivity(pDevice);
s_vCheckPreEDThreshold(pDevice);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >=ADHOC_LOST_BEACON_COUNT) {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
pMgmt->sNodeDBTable[0].uInActiveCount = 0;
pMgmt->eCurrState = WMAC_STATE_STARTED;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
}
}
}
if (pDevice->bLinkPass == true) { if (pDevice->bLinkPass == true) {
if (pMgmt->eAuthenMode < WMAC_AUTH_WPA || if (pMgmt->eAuthenMode < WMAC_AUTH_WPA ||
...@@ -1142,7 +1147,7 @@ else { ...@@ -1142,7 +1147,7 @@ else {
netif_wake_queue(pDevice->dev); netif_wake_queue(pDevice->dev);
} }
spin_unlock_irq(&pDevice->lock); spin_unlock_irq(&pDevice->lock);
schedule_delayed_work(&pDevice->second_callback_work, HZ); schedule_delayed_work(&pDevice->second_callback_work, HZ);
} }
...@@ -1152,11 +1157,11 @@ else { ...@@ -1152,11 +1157,11 @@ else {
* Routine Description: * Routine Description:
* *
* *
* Update Tx attemps, Tx failure counter in Node DB * Update Tx attemps, Tx failure counter in Node DB
* *
* *
* Return Value: * Return Value:
* none. * none.
* *
-*/ -*/
...@@ -1174,170 +1179,170 @@ void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, u8 byTSR, u8 byPktNO) ...@@ -1174,170 +1179,170 @@ void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, u8 byTSR, u8 byPktNO)
u8 byPktNum; u8 byPktNum;
u16 wFIFOCtl; u16 wFIFOCtl;
byPktNum = (byPktNO & 0x0F) >> 4; byPktNum = (byPktNO & 0x0F) >> 4;
byTxRetry = (byTSR & 0xF0) >> 4; byTxRetry = (byTSR & 0xF0) >> 4;
wRate = (u16) (byPktNO & 0xF0) >> 4; wRate = (u16) (byPktNO & 0xF0) >> 4;
wFIFOCtl = pkt_info[byPktNum].fifo_ctl; wFIFOCtl = pkt_info[byPktNum].fifo_ctl;
pbyDestAddr = pkt_info[byPktNum].dest_addr; pbyDestAddr = pkt_info[byPktNum].dest_addr;
if (wFIFOCtl & FIFOCTL_AUTO_FB_0) { if (wFIFOCtl & FIFOCTL_AUTO_FB_0) {
byFallBack = AUTO_FB_0; byFallBack = AUTO_FB_0;
} else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) { } else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) {
byFallBack = AUTO_FB_1; byFallBack = AUTO_FB_1;
} else { } else {
byFallBack = AUTO_FB_NONE; byFallBack = AUTO_FB_NONE;
} }
// Only Unicast using support rates // Only Unicast using support rates
if (wFIFOCtl & FIFOCTL_NEEDACK) { if (wFIFOCtl & FIFOCTL_NEEDACK) {
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) { if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
pMgmt->sNodeDBTable[0].uTxAttempts += 1; pMgmt->sNodeDBTable[0].uTxAttempts += 1;
if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) { if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
// transmit success, TxAttempts at least plus one // transmit success, TxAttempts at least plus one
pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++; pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
if ( (byFallBack == AUTO_FB_NONE) || if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) { (wRate < RATE_18M) ) {
wFallBackRate = wRate; wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) { } else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5) if (byTxRetry < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry]; wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
else else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4]; wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) { } else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5) if (byTxRetry < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry]; wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
else else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4]; wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
} }
pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++; pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
} else { } else {
pMgmt->sNodeDBTable[0].uTxFailures ++; pMgmt->sNodeDBTable[0].uTxFailures ++;
}
pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
} }
} else if (byFallBack == AUTO_FB_1) { pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
for (ii = 0; ii < byTxRetry; ii++) { if (byTxRetry != 0) {
if (ii < 5) pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry;
wFallBackRate = if ( (byFallBack == AUTO_FB_NONE) ||
awHWRetry1[wRate-RATE_18M][ii]; (wRate < RATE_18M) ) {
else pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry;
wFallBackRate = } else if (byFallBack == AUTO_FB_0) {
awHWRetry1[wRate-RATE_18M][4]; for (ii = 0; ii < byTxRetry; ii++) {
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++; if (ii < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate =
awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
}
}
}
if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
if (BSSbIsSTAInNodeDB((void *) pDevice,
pbyDestAddr,
&uNodeIndex)) {
pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
// transmit success, TxAttempts at least plus one
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++;
}
pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
}
}
} }
} }
} }
}
if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
if (BSSbIsSTAInNodeDB((void *) pDevice,
pbyDestAddr,
&uNodeIndex)) {
pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
// transmit success, TxAttempts at least plus one
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++;
}
pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate =
awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate =
awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
}
}
}
}
}
} }
/*+ /*+
* *
* Routine Description: * Routine Description:
* Clear Nodes & skb in DB Table * Clear Nodes & skb in DB Table
* *
* *
* Parameters: * Parameters:
* In: * In:
* hDeviceContext - The adapter context. * hDeviceContext - The adapter context.
* uStartIndex - starting index * uStartIndex - starting index
* Out: * Out:
* none * none
* *
* Return Value: * Return Value:
* None. * None.
* *
-*/ -*/
void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex) void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex)
{ {
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
struct sk_buff *skb; struct sk_buff *skb;
int ii; int ii;
for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) { for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) { if (pMgmt->sNodeDBTable[ii].bActive) {
// check if sTxPSQueue has been initial // check if sTxPSQueue has been initial
if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) { if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){ while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii);
dev_kfree_skb(skb); dev_kfree_skb(skb);
} }
} }
memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB)); memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
} }
} }
}; };
static void s_vCheckSensitivity(struct vnt_private *pDevice) static void s_vCheckSensitivity(struct vnt_private *pDevice)
...@@ -1346,40 +1351,40 @@ static void s_vCheckSensitivity(struct vnt_private *pDevice) ...@@ -1346,40 +1351,40 @@ static void s_vCheckSensitivity(struct vnt_private *pDevice)
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
int ii; int ii;
if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) || if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) { ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID); pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
if (pBSSList != NULL) { if (pBSSList != NULL) {
/* Update BB register if RSSI is too strong */ /* Update BB register if RSSI is too strong */
signed long LocalldBmAverage = 0; signed long LocalldBmAverage = 0;
signed long uNumofdBm = 0; signed long uNumofdBm = 0;
for (ii = 0; ii < RSSI_STAT_COUNT; ii++) { for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pBSSList->ldBmAverage[ii] != 0) { if (pBSSList->ldBmAverage[ii] != 0) {
uNumofdBm ++; uNumofdBm ++;
LocalldBmAverage += pBSSList->ldBmAverage[ii]; LocalldBmAverage += pBSSList->ldBmAverage[ii];
} }
} }
if (uNumofdBm > 0) { if (uNumofdBm > 0) {
LocalldBmAverage = LocalldBmAverage/uNumofdBm; LocalldBmAverage = LocalldBmAverage/uNumofdBm;
for (ii=0;ii<BB_VGA_LEVEL;ii++) { for (ii=0;ii<BB_VGA_LEVEL;ii++) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]); DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]);
if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) { if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
pDevice->byBBVGANew = pDevice->abyBBVGA[ii]; pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
break; break;
} }
} }
if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) { if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
pDevice->uBBVGADiffCount++; pDevice->uBBVGADiffCount++;
if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD) if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD)
bScheduleCommand(pDevice, bScheduleCommand(pDevice,
WLAN_CMD_CHANGE_BBSENSITIVITY, WLAN_CMD_CHANGE_BBSENSITIVITY,
NULL); NULL);
} else { } else {
pDevice->uBBVGADiffCount = 0; pDevice->uBBVGADiffCount = 0;
} }
} }
} }
} }
} }
static void s_uCalculateLinkQual(struct vnt_private *pDevice) static void s_uCalculateLinkQual(struct vnt_private *pDevice)
...@@ -1436,13 +1441,13 @@ static void s_vCheckPreEDThreshold(struct vnt_private *pDevice) ...@@ -1436,13 +1441,13 @@ static void s_vCheckPreEDThreshold(struct vnt_private *pDevice)
PKnownBSS pBSSList = NULL; PKnownBSS pBSSList = NULL;
struct vnt_manager *pMgmt = &pDevice->vnt_mgmt; struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) || if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) { ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID); pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
if (pBSSList != NULL) { if (pBSSList != NULL) {
pDevice->byBBPreEDRSSI = (u8) (~(pBSSList->ldBmAverRange) + 1); pDevice->byBBPreEDRSSI = (u8) (~(pBSSList->ldBmAverRange) + 1);
BBvUpdatePreEDThreshold(pDevice, false); BBvUpdatePreEDThreshold(pDevice, false);
} }
} }
} }
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment