Commit 0d12ef0c authored by Mike Travis's avatar Mike Travis Committed by Ingo Molnar

x86/UV: Update UV support for external NMI signals

The current UV NMI handler has not been updated for the changes
in the system NMI handler and the perf operations.  The UV NMI
handler reads an MMR in the UV Hub to check to see if the NMI
event was caused by the external 'system NMI' that the operator
can initiate on the System Mgmt Controller.

The problem arises when the perf tools are running, causing
millions of perf events per second on very large CPU count
systems.  Previously this was okay because the perf NMI handler
ran at a higher priority on the NMI call chain and if the NMI
was a perf event, it would stop calling other NMI handlers
remaining on the NMI call chain.

Now the system NMI handler calls all the handlers on the NMI
call chain including the UV NMI handler.  This causes the UV NMI
handler to read the MMRs at the same millions per second rate.
This can lead to significant performance loss and possible
system failures.  It also can cause thousands of 'Dazed and
Confused' messages being sent to the system console.  This
effectively makes perf tools unusable on UV systems.

To avoid this excessive overhead when perf tools are running,
this code has been optimized to minimize reading of the MMRs as
much as possible, by moving to the NMI_UNKNOWN notifier chain.
This chain is called only when all the users on the standard
NMI_LOCAL call chain have been called and none of them have
claimed this NMI.

There is an exception where the NMI_LOCAL notifier chain is
used.  When the perf tools are in use, it's possible that the UV
NMI was captured by some other NMI handler and then either
ignored or mistakenly processed as a perf event.  We set a
per_cpu ('ping') flag for those CPUs that ignored the initial
NMI, and then send them an IPI NMI signal.  The NMI_LOCAL
handler on each cpu does not need to read the MMR, but instead
checks the in memory flag indicating it was pinged.  There are
two module variables, 'ping_count' indicating how many requested
NMI events occurred, and 'ping_misses' indicating how many stray
NMI events.  These most likely are perf events so it shows the
overhead of the perf NMI interrupts and how many MMR reads were avoided.

This patch also minimizes the reads of the MMRs by having the
first cpu entering the NMI handler on each node set a per HUB
in-memory atomic value.  (Having a per HUB value avoids sending
lock traffic over NumaLink.)  Both types of UV NMIs from the SMI
layer are supported.
Signed-off-by: default avatarMike Travis <travis@sgi.com>
Reviewed-by: default avatarDimitri Sivanich <sivanich@sgi.com>
Reviewed-by: default avatarHedi Berriche <hedi@sgi.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Jason Wessel <jason.wessel@windriver.com>
Link: http://lkml.kernel.org/r/20130923212500.353547733@asylum.americas.sgi.comSigned-off-by: default avatarIngo Molnar <mingo@kernel.org>
parent 1e019421
......@@ -502,8 +502,8 @@ struct uv_blade_info {
unsigned short nr_online_cpus;
unsigned short pnode;
short memory_nid;
spinlock_t nmi_lock;
unsigned long nmi_count;
spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */
unsigned long nmi_count; /* obsolete, see uv_hub_nmi */
};
extern struct uv_blade_info *uv_blade_info;
extern short *uv_node_to_blade;
......@@ -576,6 +576,59 @@ static inline int uv_num_possible_blades(void)
return uv_possible_blades;
}
/* Per Hub NMI support */
extern void uv_nmi_setup(void);
/* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR UVH_SCRATCH5
#define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
#define UVH_NMI_MMR_SHIFT 63
#define UVH_NMI_MMR_TYPE "SCRATCH5"
/* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
#define UVH_NMI_MMRX_SHIFT (is_uv1_hub() ? \
UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
/* Non-zero indicates newer SMM NMI handler present */
#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
/* Indicates to BIOS that we want to use the newer SMM NMI handler */
#define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
#define UVH_NMI_MMRX_REQ_SHIFT 62
struct uv_hub_nmi_s {
raw_spinlock_t nmi_lock;
atomic_t in_nmi; /* flag this node in UV NMI IRQ */
atomic_t cpu_owner; /* last locker of this struct */
atomic_t read_mmr_count; /* count of MMR reads */
atomic_t nmi_count; /* count of true UV NMIs */
unsigned long nmi_value; /* last value read from NMI MMR */
};
struct uv_cpu_nmi_s {
struct uv_hub_nmi_s *hub;
atomic_t state;
atomic_t pinging;
int queries;
int pings;
};
DECLARE_PER_CPU(struct uv_cpu_nmi_s, __uv_cpu_nmi);
#define uv_cpu_nmi (__get_cpu_var(__uv_cpu_nmi))
#define uv_hub_nmi (uv_cpu_nmi.hub)
#define uv_cpu_nmi_per(cpu) (per_cpu(__uv_cpu_nmi, cpu))
#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
/* uv_cpu_nmi_states */
#define UV_NMI_STATE_OUT 0
#define UV_NMI_STATE_IN 1
#define UV_NMI_STATE_DUMP 2
#define UV_NMI_STATE_DUMP_DONE 3
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
......
......@@ -460,6 +460,23 @@ union uvh_event_occurred0_u {
#define UVH_EVENT_OCCURRED0_ALIAS_32 0x5f0
/* ========================================================================= */
/* UVH_EXTIO_INT0_BROADCAST */
/* ========================================================================= */
#define UVH_EXTIO_INT0_BROADCAST 0x61448UL
#define UVH_EXTIO_INT0_BROADCAST_32 0x3f0
#define UVH_EXTIO_INT0_BROADCAST_ENABLE_SHFT 0
#define UVH_EXTIO_INT0_BROADCAST_ENABLE_MASK 0x0000000000000001UL
union uvh_extio_int0_broadcast_u {
unsigned long v;
struct uvh_extio_int0_broadcast_s {
unsigned long enable:1; /* RW */
unsigned long rsvd_1_63:63;
} s;
};
/* ========================================================================= */
/* UVH_GR0_TLB_INT0_CONFIG */
/* ========================================================================= */
......@@ -2605,6 +2622,20 @@ union uvh_scratch5_u {
} s;
};
/* ========================================================================= */
/* UVH_SCRATCH5_ALIAS */
/* ========================================================================= */
#define UVH_SCRATCH5_ALIAS 0x2d0208UL
#define UVH_SCRATCH5_ALIAS_32 0x780
/* ========================================================================= */
/* UVH_SCRATCH5_ALIAS_2 */
/* ========================================================================= */
#define UVH_SCRATCH5_ALIAS_2 0x2d0210UL
#define UVH_SCRATCH5_ALIAS_2_32 0x788
/* ========================================================================= */
/* UVXH_EVENT_OCCURRED2 */
/* ========================================================================= */
......
......@@ -977,6 +977,7 @@ void __init uv_system_init(void)
map_mmr_high(max_pnode);
map_mmioh_high(min_pnode, max_pnode);
uv_nmi_setup();
uv_cpu_init();
uv_scir_register_cpu_notifier();
uv_register_nmi_notifier();
......
......@@ -20,72 +20,518 @@
*/
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/apic.h>
#include <asm/current.h>
#include <asm/kdebug.h>
#include <asm/local64.h>
#include <asm/nmi.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h>
/* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR UVH_SCRATCH5
#define UVH_NMI_MMR_CLEAR (UVH_NMI_MMR + 8)
#define UV_NMI_PENDING_MASK (1UL << 63)
DEFINE_PER_CPU(unsigned long, cpu_last_nmi_count);
static DEFINE_SPINLOCK(uv_nmi_lock);
/*
* UV handler for NMI
*
* Handle system-wide NMI events generated by the global 'power nmi' command.
*
* Basic operation is to field the NMI interrupt on each cpu and wait
* until all cpus have arrived into the nmi handler. If some cpus do not
* make it into the handler, try and force them in with the IPI(NMI) signal.
*
* We also have to lessen UV Hub MMR accesses as much as possible as this
* disrupts the UV Hub's primary mission of directing NumaLink traffic and
* can cause system problems to occur.
*
* To do this we register our primary NMI notifier on the NMI_UNKNOWN
* chain. This reduces the number of false NMI calls when the perf
* tools are running which generate an enormous number of NMIs per
* second (~4M/s for 1024 cpu threads). Our secondary NMI handler is
* very short as it only checks that if it has been "pinged" with the
* IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
*
*/
static struct uv_hub_nmi_s **uv_hub_nmi_list;
DEFINE_PER_CPU(struct uv_cpu_nmi_s, __uv_cpu_nmi);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_nmi);
static unsigned long nmi_mmr;
static unsigned long nmi_mmr_clear;
static unsigned long nmi_mmr_pending;
static atomic_t uv_in_nmi;
static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
static atomic_t uv_nmi_slave_continue;
static cpumask_var_t uv_nmi_cpu_mask;
/* Values for uv_nmi_slave_continue */
#define SLAVE_CLEAR 0
#define SLAVE_CONTINUE 1
#define SLAVE_EXIT 2
/*
* When NMI is received, print a stack trace.
* Default is all stack dumps go to the console and buffer.
* Lower level to send to log buffer only.
*/
int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
static int uv_nmi_loglevel = 7;
module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
/*
* The following values show statistics on how perf events are affecting
* this system.
*/
static int param_get_local64(char *buffer, const struct kernel_param *kp)
{
unsigned long real_uv_nmi;
int bid;
return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
}
/*
* Each blade has an MMR that indicates when an NMI has been sent
* to cpus on the blade. If an NMI is detected, atomically
* clear the MMR and update a per-blade NMI count used to
* cause each cpu on the blade to notice a new NMI.
static int param_set_local64(const char *val, const struct kernel_param *kp)
{
/* clear on any write */
local64_set((local64_t *)kp->arg, 0);
return 0;
}
static struct kernel_param_ops param_ops_local64 = {
.get = param_get_local64,
.set = param_set_local64,
};
#define param_check_local64(name, p) __param_check(name, p, local64_t)
static local64_t uv_nmi_count;
module_param_named(nmi_count, uv_nmi_count, local64, 0644);
static local64_t uv_nmi_misses;
module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
static local64_t uv_nmi_ping_count;
module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
static local64_t uv_nmi_ping_misses;
module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
/*
* Following values allow tuning for large systems under heavy loading
*/
static int uv_nmi_initial_delay = 100;
module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
static int uv_nmi_slave_delay = 100;
module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
static int uv_nmi_loop_delay = 100;
module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
static int uv_nmi_trigger_delay = 10000;
module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
static int uv_nmi_wait_count = 100;
module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
static int uv_nmi_retry_count = 500;
module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
/* Setup which NMI support is present in system */
static void uv_nmi_setup_mmrs(void)
{
if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) {
uv_write_local_mmr(UVH_NMI_MMRX_REQ,
1UL << UVH_NMI_MMRX_REQ_SHIFT);
nmi_mmr = UVH_NMI_MMRX;
nmi_mmr_clear = UVH_NMI_MMRX_CLEAR;
nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT;
pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE);
} else {
nmi_mmr = UVH_NMI_MMR;
nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
}
}
/* Read NMI MMR and check if NMI flag was set by BMC. */
static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
{
hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
atomic_inc(&hub_nmi->read_mmr_count);
return !!(hub_nmi->nmi_value & nmi_mmr_pending);
}
static inline void uv_local_mmr_clear_nmi(void)
{
uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
}
/*
* If first cpu in on this hub, set hub_nmi "in_nmi" and "owner" values and
* return true. If first cpu in on the system, set global "in_nmi" flag.
*/
bid = uv_numa_blade_id();
real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) & UV_NMI_PENDING_MASK);
static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
{
int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
if (first) {
atomic_set(&hub_nmi->cpu_owner, cpu);
if (atomic_add_unless(&uv_in_nmi, 1, 1))
atomic_set(&uv_nmi_cpu, cpu);
if (unlikely(real_uv_nmi)) {
spin_lock(&uv_blade_info[bid].nmi_lock);
real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) &
UV_NMI_PENDING_MASK);
if (real_uv_nmi) {
uv_blade_info[bid].nmi_count++;
uv_write_local_mmr(UVH_NMI_MMR_CLEAR,
UV_NMI_PENDING_MASK);
atomic_inc(&hub_nmi->nmi_count);
}
spin_unlock(&uv_blade_info[bid].nmi_lock);
return first;
}
/* Check if this is a system NMI event */
static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
{
int cpu = smp_processor_id();
int nmi = 0;
local64_inc(&uv_nmi_count);
uv_cpu_nmi.queries++;
do {
nmi = atomic_read(&hub_nmi->in_nmi);
if (nmi)
break;
if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
/* check hub MMR NMI flag */
if (uv_nmi_test_mmr(hub_nmi)) {
uv_set_in_nmi(cpu, hub_nmi);
nmi = 1;
break;
}
if (likely(__get_cpu_var(cpu_last_nmi_count) ==
uv_blade_info[bid].nmi_count))
return NMI_DONE;
/* MMR NMI flag is clear */
raw_spin_unlock(&hub_nmi->nmi_lock);
__get_cpu_var(cpu_last_nmi_count) = uv_blade_info[bid].nmi_count;
} else {
/* wait a moment for the hub nmi locker to set flag */
cpu_relax();
udelay(uv_nmi_slave_delay);
/*
* Use a lock so only one cpu prints at a time.
* This prevents intermixed output.
/* re-check hub in_nmi flag */
nmi = atomic_read(&hub_nmi->in_nmi);
if (nmi)
break;
}
/* check if this BMC missed setting the MMR NMI flag */
if (!nmi) {
nmi = atomic_read(&uv_in_nmi);
if (nmi)
uv_set_in_nmi(cpu, hub_nmi);
}
} while (0);
if (!nmi)
local64_inc(&uv_nmi_misses);
return nmi;
}
/* Need to reset the NMI MMR register, but only once per hub. */
static inline void uv_clear_nmi(int cpu)
{
struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
atomic_set(&hub_nmi->cpu_owner, -1);
atomic_set(&hub_nmi->in_nmi, 0);
uv_local_mmr_clear_nmi();
raw_spin_unlock(&hub_nmi->nmi_lock);
}
}
/* Print non-responding cpus */
static void uv_nmi_nr_cpus_pr(char *fmt)
{
static char cpu_list[1024];
int len = sizeof(cpu_list);
int c = cpumask_weight(uv_nmi_cpu_mask);
int n = cpulist_scnprintf(cpu_list, len, uv_nmi_cpu_mask);
if (n >= len-1)
strcpy(&cpu_list[len - 6], "...\n");
printk(fmt, c, cpu_list);
}
/* Ping non-responding cpus attemping to force them into the NMI handler */
static void uv_nmi_nr_cpus_ping(void)
{
int cpu;
for_each_cpu(cpu, uv_nmi_cpu_mask)
atomic_set(&uv_cpu_nmi_per(cpu).pinging, 1);
apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
}
/* Clean up flags for cpus that ignored both NMI and ping */
static void uv_nmi_cleanup_mask(void)
{
int cpu;
for_each_cpu(cpu, uv_nmi_cpu_mask) {
atomic_set(&uv_cpu_nmi_per(cpu).pinging, 0);
atomic_set(&uv_cpu_nmi_per(cpu).state, UV_NMI_STATE_OUT);
cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
}
}
/* Loop waiting as cpus enter nmi handler */
static int uv_nmi_wait_cpus(int first)
{
int i, j, k, n = num_online_cpus();
int last_k = 0, waiting = 0;
if (first) {
cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
k = 0;
} else {
k = n - cpumask_weight(uv_nmi_cpu_mask);
}
udelay(uv_nmi_initial_delay);
for (i = 0; i < uv_nmi_retry_count; i++) {
int loop_delay = uv_nmi_loop_delay;
for_each_cpu(j, uv_nmi_cpu_mask) {
if (atomic_read(&uv_cpu_nmi_per(j).state)) {
cpumask_clear_cpu(j, uv_nmi_cpu_mask);
if (++k >= n)
break;
}
}
if (k >= n) { /* all in? */
k = n;
break;
}
if (last_k != k) { /* abort if no new cpus coming in */
last_k = k;
waiting = 0;
} else if (++waiting > uv_nmi_wait_count)
break;
/* extend delay if waiting only for cpu 0 */
if (waiting && (n - k) == 1 &&
cpumask_test_cpu(0, uv_nmi_cpu_mask))
loop_delay *= 100;
udelay(loop_delay);
}
atomic_set(&uv_nmi_cpus_in_nmi, k);
return n - k;
}
/* Wait until all slave cpus have entered UV NMI handler */
static void uv_nmi_wait(int master)
{
/* indicate this cpu is in */
atomic_set(&uv_cpu_nmi.state, UV_NMI_STATE_IN);
/* if not the first cpu in (the master), then we are a slave cpu */
if (!master)
return;
do {
/* wait for all other cpus to gather here */
if (!uv_nmi_wait_cpus(1))
break;
/* if not all made it in, send IPI NMI to them */
uv_nmi_nr_cpus_pr(KERN_ALERT
"UV: Sending NMI IPI to %d non-responding CPUs: %s\n");
uv_nmi_nr_cpus_ping();
/* if all cpus are in, then done */
if (!uv_nmi_wait_cpus(0))
break;
uv_nmi_nr_cpus_pr(KERN_ALERT
"UV: %d CPUs not in NMI loop: %s\n");
} while (0);
pr_alert("UV: %d of %d CPUs in NMI\n",
atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
}
/* Dump this cpu's state */
static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
{
const char *dots = " ................................. ";
printk(KERN_DEFAULT "UV:%sNMI process trace for CPU %d\n", dots, cpu);
show_regs(regs);
atomic_set(&uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
}
/* Trigger a slave cpu to dump it's state */
static void uv_nmi_trigger_dump(int cpu)
{
int retry = uv_nmi_trigger_delay;
if (atomic_read(&uv_cpu_nmi_per(cpu).state) != UV_NMI_STATE_IN)
return;
atomic_set(&uv_cpu_nmi_per(cpu).state, UV_NMI_STATE_DUMP);
do {
cpu_relax();
udelay(10);
if (atomic_read(&uv_cpu_nmi_per(cpu).state)
!= UV_NMI_STATE_DUMP)
return;
} while (--retry > 0);
pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
atomic_set(&uv_cpu_nmi_per(cpu).state, UV_NMI_STATE_DUMP_DONE);
}
/* Wait until all cpus ready to exit */
static void uv_nmi_sync_exit(int master)
{
atomic_dec(&uv_nmi_cpus_in_nmi);
if (master) {
while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
cpu_relax();
atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
} else {
while (atomic_read(&uv_nmi_slave_continue))
cpu_relax();
}
}
/* Walk through cpu list and dump state of each */
static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
{
if (master) {
int tcpu;
int ignored = 0;
int saved_console_loglevel = console_loglevel;
pr_alert("UV: tracing processes for %d CPUs from CPU %d\n",
atomic_read(&uv_nmi_cpus_in_nmi), cpu);
console_loglevel = uv_nmi_loglevel;
atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
for_each_online_cpu(tcpu) {
if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
ignored++;
else if (tcpu == cpu)
uv_nmi_dump_state_cpu(tcpu, regs);
else
uv_nmi_trigger_dump(tcpu);
}
if (ignored)
printk(KERN_DEFAULT "UV: %d CPUs ignored NMI\n",
ignored);
console_loglevel = saved_console_loglevel;
pr_alert("UV: process trace complete\n");
} else {
while (!atomic_read(&uv_nmi_slave_continue))
cpu_relax();
while (atomic_read(&uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
cpu_relax();
uv_nmi_dump_state_cpu(cpu, regs);
}
uv_nmi_sync_exit(master);
}
static void uv_nmi_touch_watchdogs(void)
{
touch_softlockup_watchdog_sync();
clocksource_touch_watchdog();
rcu_cpu_stall_reset();
touch_nmi_watchdog();
}
/*
* UV NMI handler
*/
spin_lock(&uv_nmi_lock);
pr_info("UV NMI stack dump cpu %u:\n", smp_processor_id());
dump_stack();
spin_unlock(&uv_nmi_lock);
int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
{
struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
int cpu = smp_processor_id();
int master = 0;
unsigned long flags;
local_irq_save(flags);
/* If not a UV System NMI, ignore */
if (!atomic_read(&uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
local_irq_restore(flags);
return NMI_DONE;
}
/* Indicate we are the first CPU into the NMI handler */
master = (atomic_read(&uv_nmi_cpu) == cpu);
/* Pause as all cpus enter the NMI handler */
uv_nmi_wait(master);
/* Dump state of each cpu */
uv_nmi_dump_state(cpu, regs, master);
/* Clear per_cpu "in nmi" flag */
atomic_set(&uv_cpu_nmi.state, UV_NMI_STATE_OUT);
/* Clear MMR NMI flag on each hub */
uv_clear_nmi(cpu);
/* Clear global flags */
if (master) {
if (cpumask_weight(uv_nmi_cpu_mask))
uv_nmi_cleanup_mask();
atomic_set(&uv_nmi_cpus_in_nmi, -1);
atomic_set(&uv_nmi_cpu, -1);
atomic_set(&uv_in_nmi, 0);
}
uv_nmi_touch_watchdogs();
local_irq_restore(flags);
return NMI_HANDLED;
}
/*
* NMI handler for pulling in CPUs when perf events are grabbing our NMI
*/
int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
{
int ret;
uv_cpu_nmi.queries++;
if (!atomic_read(&uv_cpu_nmi.pinging)) {
local64_inc(&uv_nmi_ping_misses);
return NMI_DONE;
}
uv_cpu_nmi.pings++;
local64_inc(&uv_nmi_ping_count);
ret = uv_handle_nmi(reason, regs);
atomic_set(&uv_cpu_nmi.pinging, 0);
return ret;
}
void uv_register_nmi_notifier(void)
{
if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
pr_warn("UV NMI handler failed to register\n");
pr_warn("UV: NMI handler failed to register\n");
if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
pr_warn("UV: PING NMI handler failed to register\n");
}
void uv_nmi_init(void)
......@@ -100,3 +546,30 @@ void uv_nmi_init(void)
apic_write(APIC_LVT1, value);
}
void uv_nmi_setup(void)
{
int size = sizeof(void *) * (1 << NODES_SHIFT);
int cpu, nid;
/* Setup hub nmi info */
uv_nmi_setup_mmrs();
uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
pr_info("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
BUG_ON(!uv_hub_nmi_list);
size = sizeof(struct uv_hub_nmi_s);
for_each_present_cpu(cpu) {
nid = cpu_to_node(cpu);
if (uv_hub_nmi_list[nid] == NULL) {
uv_hub_nmi_list[nid] = kzalloc_node(size,
GFP_KERNEL, nid);
BUG_ON(!uv_hub_nmi_list[nid]);
raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
}
uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
}
alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL);
BUG_ON(!uv_nmi_cpu_mask);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment