Commit 109895a1 authored by Mauro Carvalho Chehab's avatar Mauro Carvalho Chehab

media: docs: dvb_intro.rst: update its contents

The content there is somewhat outdated. Update to reflect
the current status.

While here, remove extra spaces, as we won't be preserving
left margin alinment on this document.
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab+huawei@kernel.org>
parent c4b89166
...@@ -4,199 +4,613 @@ ...@@ -4,199 +4,613 @@
Using the Digital TV Framework Using the Digital TV Framework
============================== ==============================
February 14th 2006
Introduction Introduction
~~~~~~~~~~~~ ~~~~~~~~~~~~
.. note:: One significant difference between Digital TV and Analogue TV that the
unwary (like myself) should consider is that, although the component
This documentation is outdated. Please check at the DVB wiki structure of DVB-T cards are substantially similar to Analogue TV cards,
at https://linuxtv.org/wiki for more updated info. they function in substantially different ways.
There's a section there specific for Avermedia boards at: The purpose of an Analogue TV is to receive and display an Analogue
https://linuxtv.org/wiki/index.php/AVerMedia Television signal. An Analogue TV signal (otherwise known as composite
video) is an analogue encoding of a sequence of image frames (25 frames
per second in Europe) rasterised using an interlacing technique.
Interlacing takes two fields to represent one frame. Therefore, an
Analogue TV card for a PC has the following purpose:
* Tune the receiver to receive a broadcast signal
* demodulate the broadcast signal
* demultiplex the analogue video signal and analogue audio
signal.
Assumptions and Introduction .. note::
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is assumed that the reader understands the basic structure some countries employ a digital audio signal
of the Linux Kernel DVB drivers and the general principles of embedded within the modulated composite analogue signal -
Digital TV. using NICAM signaling.)
One significant difference between Digital TV and Analogue TV * digitize the analogue video signal and make the resulting datastream
that the unwary (like myself) should consider is that, available to the data bus.
although the component structure of budget DVB-T cards are
substantially similar to Analogue TV cards, they function in
substantially different ways.
The purpose of an Analogue TV is to receive and display an
Analogue Television signal. An Analogue TV signal (otherwise
known as composite video) is an analogue encoding of a
sequence of image frames (25 per second) rasterised using an
interlacing technique. Interlacing takes two fields to
represent one frame. Computers today are at their best when
dealing with digital signals, not analogue signals and a
composite video signal is about as far removed from a digital
data stream as you can get. Therefore, an Analogue TV card for
a PC has the following purpose:
* Tune the receiver to receive a broadcast signal The digital datastream from an Analogue TV card is generated by
* demodulate the broadcast signal circuitry on the card and is often presented uncompressed. For a PAL TV
* demultiplex the analogue video signal and analogue audio signal encoded at a resolution of 768x576 24-bit color pixels over 25
signal. **NOTE:** some countries employ a digital audio signal frames per second - a fair amount of data is generated and must be
embedded within the modulated composite analogue signal - processed by the PC before it can be displayed on the video monitor
NICAM.) screen. Some Analogue TV cards for PCs have onboard MPEG2 encoders which
* digitize the analogue video signal and make the resulting permit the raw digital data stream to be presented to the PC in an
datastream available to the data bus. encoded and compressed form - similar to the form that is used in
The digital datastream from an Analogue TV card is generated
by circuitry on the card and is often presented uncompressed.
For a PAL TV signal encoded at a resolution of 768x576 24-bit
color pixels over 25 frames per second - a fair amount of data
is generated and must be processed by the PC before it can be
displayed on the video monitor screen. Some Analogue TV cards
for PCs have onboard MPEG2 encoders which permit the raw
digital data stream to be presented to the PC in an encoded
and compressed form - similar to the form that is used in
Digital TV. Digital TV.
The purpose of a simple budget digital TV card (DVB-T,C or S) The purpose of a simple budget digital TV card (DVB-T,C or S) is to
is to simply: simply:
* Tune the received to receive a broadcast signal.
* Extract the encoded digital datastream from the broadcast
signal.
* Make the encoded digital datastream (MPEG2) available to
the data bus.
The significant difference between the two is that the tuner * Tune the received to receive a broadcast signal. * Extract the encoded
on the analogue TV card spits out an Analogue signal, whereas digital datastream from the broadcast signal.
the tuner on the digital TV card spits out a compressed * Make the encoded digital datastream (MPEG2) available to the data bus.
encoded digital datastream. As the signal is already
digitised, it is trivial to pass this datastream to the PC
databus with minimal additional processing and then extract
the digital video and audio datastreams passing them to the
appropriate software or hardware for decoding and viewing.
The significant difference between the two is that the tuner on the
analogue TV card spits out an Analogue signal, whereas the tuner on the
digital TV card spits out a compressed encoded digital datastream. As
the signal is already digitised, it is trivial to pass this datastream
to the PC databus with minimal additional processing and then extract
the digital video and audio datastreams passing them to the appropriate
software or hardware for decoding and viewing.
Getting the card going Getting the card going
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
In order to fire up the card, it is necessary to load a number The Device Driver API for DVB under Linux will the following
of modules from the DVB driver set. Prior to this it will have device nodes via the devfs filesystem:
been necessary to download these drivers from the linuxtv CVS
server and compile them successfully.
Depending on the card's feature set, the Device Driver API for
DVB under Linux will expose some of the following device files
in the /dev tree:
* /dev/dvb/adapter0/audio0
* /dev/dvb/adapter0/ca0
* /dev/dvb/adapter0/demux0 * /dev/dvb/adapter0/demux0
* /dev/dvb/adapter0/dvr0 * /dev/dvb/adapter0/dvr0
* /dev/dvb/adapter0/frontend0 * /dev/dvb/adapter0/frontend0
* /dev/dvb/adapter0/net0
* /dev/dvb/adapter0/osd0
* /dev/dvb/adapter0/video0
The primary device nodes that we are interested in (at this The ``/dev/dvb/adapter0/dvr0`` device node is used to read the MPEG2
stage) for the Avermedia DVB-T are: Data Stream and the ``/dev/dvb/adapter0/frontend0`` device node is used
to tune the frontend tuner module. The ``/dev/dvb/adapter0/demux0`` is
used to control what programs will be received.
* /dev/dvb/adapter0/dvr0 Depending on the card's feature set, the Device Driver API could also
* /dev/dvb/adapter0/frontend0 expose other device nodes:
The dvr0 device node is used to read the MPEG2 Data Stream and * /dev/dvb/adapter0/ca0
the frontend0 node is used to tune the frontend tuner module. * /dev/dvb/adapter0/audio0
* /dev/dvb/adapter0/net0
* /dev/dvb/adapter0/osd0
* /dev/dvb/adapter0/video0
The ``/dev/dvb/adapter0/ca0`` is used to decode encrypted channels. The
other device nodes are found only on devices that use the av7110
driver, with is now obsoleted, together with the extra API whose such
devices use.
Receiving DVB-T in Australia Receiving a digital TV channel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I have no experience of DVB-T in other countries other than This section attempts to explain how it works and how this affects the
Australia, so I will attempt to explain how it works here in configuration of a Digital TV card.
Melbourne and how this affects the configuration of the DVB-T
card.
The Digital Broadcasting Australia website has a Reception On this example, we're considering tuning into DVB-T channels in
locatortool which provides information on transponder channels Australia, at the Melbourne region.
and frequencies. My local transmitter happens to be Mount
Dandenong.
The frequencies broadcast by Mount Dandenong are: The frequencies broadcast by Mount Dandenong transmitters are,
currently:
Table 1. Transponder Frequencies Mount Dandenong, Vic, Aus. Table 1. Transponder Frequencies Mount Dandenong, Vic, Aus.
=========== ======= =========== =========== ===========
Broadcaster Channel Frequency Broadcaster Frequency
=========== ======= =========== =========== ===========
ABC VHF 12 226.5 MHz Seven 177.500 Mhz
TEN VHF 11 219.5 MHz SBS 184.500 Mhz
NINE VHF 8 191.625 MHz Nine 191.625 Mhz
SEVEN VHF 6 177.5 MHz Ten 219.500 Mhz
SBS UHF 29 536.5 MHz ABC 226.500 Mhz
=========== ======= =========== Channel 31 557.625 Mhz
=========== ===========
The Scan utility has a set of compiled-in defaults for various
countries and regions, but if they do not suit, or if you have The digital TV Scan utilities (like dvbv5-scan) have use a set of
a pre-compiled scan binary, you can specify a data file on the compiled-in defaults for various countries and regions. Those are
command line which contains the transponder frequencies. Here currently provided as a separate package, called dtv-scan-tables. It's
is a sample file for the above channel transponders: git tree is located at LinuxTV.org:
:: https://git.linuxtv.org/dtv-scan-tables.git/
If none of the tables there suit, you can specify a data file on the
command line which contains the transponder frequencies. Here is a
sample file for the above channel transponders, in the old "channel"
format::
# Data file for DVB scan program # Data file for DVB scan program
# #
# C Frequency SymbolRate FEC QAM # C Frequency SymbolRate FEC QAM
# S Frequency Polarisation SymbolRate FEC # S Frequency Polarisation SymbolRate FEC
# T Frequency Bandwidth FEC FEC2 QAM Mode Guard Hier # T Frequency Bandwidth FEC FEC2 QAM Mode Guard Hier
T 226500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE
T 191625000 7MHz 2/3 NONE QAM64 8k 1/8 NONE T 177500000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
T 219500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE T 184500000 7MHz AUTO AUTO QAM64 8k 1/8 NONE
T 177500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE T 191625000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
T 536500000 7MHz 2/3 NONE QAM64 8k 1/8 NONE T 219500000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
T 226500000 7MHz AUTO AUTO QAM64 8k 1/16 NONE
The defaults for the transponder frequency and other T 557625000 7MHz AUTO AUTO QPSK 8k 1/16 NONE
modulation parameters were obtained from www.dba.org.au.
Nowadays, we prefer to use a newer format, with is more verbose and easier
When Scan runs, it will output channels.conf information for to understand. With the new format, the "Seven" channel transponder's
any channel's transponders which the card's frontend can lock data is represented by::
onto. (i.e. any whose signal is strong enough at your
antenna). [Seven]
DELIVERY_SYSTEM = DVBT
Here's my channels.conf file for anyone who's interested: FREQUENCY = 177500000
BANDWIDTH_HZ = 7000000
:: CODE_RATE_HP = AUTO
CODE_RATE_LP = AUTO
ABC HDTV:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:2307:0:560 MODULATION = QAM/64
ABC TV Melbourne:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:561 TRANSMISSION_MODE = 8K
ABC TV 2:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:562 GUARD_INTERVAL = 1/16
ABC TV 3:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:563 HIERARCHY = NONE
ABC TV 4:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:564 INVERSION = AUTO
ABC DiG Radio:226500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_3_4:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:0:2311:566
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1585 For an updated version of the complete table, please see:
TEN Digital 1:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1586
TEN Digital 2:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1587 https://git.linuxtv.org/dtv-scan-tables.git/tree/dvb-t/au-Melbourne
TEN Digital 3:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1588
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1589 When the Digital TV scanning utility runs, it will output a file
TEN Digital 4:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1590 containing the information for all the audio and video programs that
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1591 exists into each channel's transponders which the card's frontend can
TEN HD:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:514:0:1592 lock onto. (i.e. any whose signal is strong enough at your antenna).
TEN Digital:219500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:650:1593
Nine Digital:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:513:660:1072 Here's the output of the dvbv5 tools from a channel scan took from
Nine Digital HD:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:512:0:1073 Melburne::
Nine Guide:191625000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_3_4:FEC_1_2:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_16:HIERARCHY_NONE:514:670:1074
7 Digital:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1328 [ABC HDTV]
7 Digital 1:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1329 SERVICE_ID = 560
7 Digital 2:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1330 VIDEO_PID = 2307
7 Digital 3:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:769:770:1331 AUDIO_PID = 0
7 HD Digital:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:833:834:1332 DELIVERY_SYSTEM = DVBT
7 Program Guide:177500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:865:866:1334 FREQUENCY = 226500000
SBS HD:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:102:103:784 INVERSION = OFF
SBS DIGITAL 1:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:161:81:785 BANDWIDTH_HZ = 7000000
SBS DIGITAL 2:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:162:83:786 CODE_RATE_HP = 3/4
SBS EPG:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:163:85:787 CODE_RATE_LP = 3/4
SBS RADIO 1:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:0:201:798 MODULATION = QAM/64
SBS RADIO 2:536500000:INVERSION_OFF:BANDWIDTH_7_MHZ:FEC_2_3:FEC_2_3:QAM_64:TRANSMISSION_MODE_8K:GUARD_INTERVAL_1_8:HIERARCHY_NONE:0:202:799 TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[ABC TV Melbourne]
SERVICE_ID = 561
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[ABC TV 2]
SERVICE_ID = 562
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[ABC TV 3]
SERVICE_ID = 563
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[ABC TV 4]
SERVICE_ID = 564
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[ABC DiG Radio]
SERVICE_ID = 566
VIDEO_PID = 0
AUDIO_PID = 2311
DELIVERY_SYSTEM = DVBT
FREQUENCY = 226500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 3/4
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital]
SERVICE_ID = 1585
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital 1]
SERVICE_ID = 1586
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital 2]
SERVICE_ID = 1587
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital 3]
SERVICE_ID = 1588
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital]
SERVICE_ID = 1589
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital 4]
SERVICE_ID = 1590
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital]
SERVICE_ID = 1591
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN HD]
SERVICE_ID = 1592
VIDEO_PID = 514
AUDIO_PID = 0
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[TEN Digital]
SERVICE_ID = 1593
VIDEO_PID = 512
AUDIO_PID = 650
DELIVERY_SYSTEM = DVBT
FREQUENCY = 219500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[Nine Digital]
SERVICE_ID = 1072
VIDEO_PID = 513
AUDIO_PID = 660
DELIVERY_SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[Nine Digital HD]
SERVICE_ID = 1073
VIDEO_PID = 512
AUDIO_PID = 0
DELIVERY_SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[Nine Guide]
SERVICE_ID = 1074
VIDEO_PID = 514
AUDIO_PID = 670
DELIVERY_SYSTEM = DVBT
FREQUENCY = 191625000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 3/4
CODE_RATE_LP = 1/2
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/16
HIERARCHY = NONE
[7 Digital]
SERVICE_ID = 1328
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[7 Digital 1]
SERVICE_ID = 1329
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[7 Digital 2]
SERVICE_ID = 1330
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[7 Digital 3]
SERVICE_ID = 1331
VIDEO_PID = 769
AUDIO_PID = 770
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[7 HD Digital]
SERVICE_ID = 1332
VIDEO_PID = 833
AUDIO_PID = 834
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[7 Program Guide]
SERVICE_ID = 1334
VIDEO_PID = 865
AUDIO_PID = 866
DELIVERY_SYSTEM = DVBT
FREQUENCY = 177500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[SBS HD]
SERVICE_ID = 784
VIDEO_PID = 102
AUDIO_PID = 103
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[SBS DIGITAL 1]
SERVICE_ID = 785
VIDEO_PID = 161
AUDIO_PID = 81
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[SBS DIGITAL 2]
SERVICE_ID = 786
VIDEO_PID = 162
AUDIO_PID = 83
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[SBS EPG]
SERVICE_ID = 787
VIDEO_PID = 163
AUDIO_PID = 85
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[SBS RADIO 1]
SERVICE_ID = 798
VIDEO_PID = 0
AUDIO_PID = 201
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
[SBS RADIO 2]
SERVICE_ID = 799
VIDEO_PID = 0
AUDIO_PID = 202
DELIVERY_SYSTEM = DVBT
FREQUENCY = 536500000
INVERSION = OFF
BANDWIDTH_HZ = 7000000
CODE_RATE_HP = 2/3
CODE_RATE_LP = 2/3
MODULATION = QAM/64
TRANSMISSION_MODE = 8K
GUARD_INTERVAL = 1/8
HIERARCHY = NONE
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment