Commit 11b64d31 authored by Maxim Levitsky's avatar Maxim Levitsky Committed by Mauro Carvalho Chehab

[media] IR: ene_ir: updates

* Add support for newer firmware version that uses different
buffer format. Makes hardware work for many users.

* Register name updates

* Lot of refactoring

* Lots of fixes as a result of full testing

* Idle mode is done now by resetting the device, and this eliminates
the ugly sample_period = 75 hack.

Every feature of the driver is now well tested.
Signed-off-by: default avatarMaxim Levitsky <maximlevitsky@gmail.com>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@redhat.com>
parent 991369e3
...@@ -102,15 +102,15 @@ config IR_LIRC_CODEC ...@@ -102,15 +102,15 @@ config IR_LIRC_CODEC
the LIRC interface. the LIRC interface.
config IR_ENE config IR_ENE
tristate "ENE eHome Receiver/Transciever (pnp id: ENE0100/ENE02xxx)" tristate "ENE eHome Receiver/Transceiver (pnp id: ENE0100/ENE02xxx)"
depends on PNP depends on PNP
depends on IR_CORE depends on IR_CORE
---help--- ---help---
Say Y here to enable support for integrated infrared receiver Say Y here to enable support for integrated infrared receiver
/transciever made by ENE. /transceiver made by ENE.
You can see if you have it by looking at lspnp output. You can see if you have it by looking at lspnp output.
Output should include ENE0100 ENE0200 or something similiar. Output should include ENE0100 ENE0200 or something similar.
To compile this driver as a module, choose M here: the To compile this driver as a module, choose M here: the
module will be called ene_ir. module will be called ene_ir.
......
/* /*
* driver for ENE KB3926 B/C/D CIR (pnp id: ENE0XXX) * driver for ENE KB3926 B/C/D/E/F CIR (pnp id: ENE0XXX)
* *
* Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com> * Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com>
* *
...@@ -17,6 +17,17 @@ ...@@ -17,6 +17,17 @@
* along with this program; if not, write to the Free Software * along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA * USA
*
* Special thanks to:
* Sami R. <maesesami@gmail.com> for lot of help in debugging and therefore
* bringing to life support for transmission & learning mode.
*
* Charlie Andrews <charliethepilot@googlemail.com> for lots of help in
* bringing up the support of new firmware buffer that is popular
* on latest notebooks
*
* ENE for partial device documentation
*
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
...@@ -31,51 +42,59 @@ ...@@ -31,51 +42,59 @@
#include <media/ir-common.h> #include <media/ir-common.h>
#include "ene_ir.h" #include "ene_ir.h"
static int sample_period;
static int sample_period = -1; static bool learning_mode;
static int enable_idle = 1;
static int input = 1;
static int debug; static int debug;
static int txsim; static bool txsim;
static int ene_irq_status(struct ene_device *dev); static void ene_set_reg_addr(struct ene_device *dev, u16 reg)
{
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
}
/* read a hardware register */ /* read a hardware register */
static u8 ene_hw_read_reg(struct ene_device *dev, u16 reg) static u8 ene_read_reg(struct ene_device *dev, u16 reg)
{ {
u8 retval; u8 retval;
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI); ene_set_reg_addr(dev, reg);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
retval = inb(dev->hw_io + ENE_IO); retval = inb(dev->hw_io + ENE_IO);
dbg_regs("reg %04x == %02x", reg, retval);
ene_dbg_verbose("reg %04x == %02x", reg, retval);
return retval; return retval;
} }
/* write a hardware register */ /* write a hardware register */
static void ene_hw_write_reg(struct ene_device *dev, u16 reg, u8 value) static void ene_write_reg(struct ene_device *dev, u16 reg, u8 value)
{ {
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI); dbg_regs("reg %04x <- %02x", reg, value);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO); ene_set_reg_addr(dev, reg);
outb(value, dev->hw_io + ENE_IO); outb(value, dev->hw_io + ENE_IO);
ene_dbg_verbose("reg %04x <- %02x", reg, value);
} }
/* change specific bits in hardware register */ /* Set bits in hardware register */
static void ene_hw_write_reg_mask(struct ene_device *dev, static void ene_set_reg_mask(struct ene_device *dev, u16 reg, u8 mask)
u16 reg, u8 value, u8 mask)
{ {
u8 regvalue; dbg_regs("reg %04x |= %02x", reg, mask);
ene_set_reg_addr(dev, reg);
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI); outb(inb(dev->hw_io + ENE_IO) | mask, dev->hw_io + ENE_IO);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO); }
regvalue = inb(dev->hw_io + ENE_IO) & ~mask; /* Clear bits in hardware register */
regvalue |= (value & mask); static void ene_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask)
outb(regvalue, dev->hw_io + ENE_IO); {
dbg_regs("reg %04x &= ~%02x ", reg, mask);
ene_set_reg_addr(dev, reg);
outb(inb(dev->hw_io + ENE_IO) & ~mask, dev->hw_io + ENE_IO);
}
ene_dbg_verbose("reg %04x <- %02x (mask=%02x)", reg, value, mask); /* A helper to set/clear a bit in register according to boolean variable */
static void ene_set_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask,
bool set)
{
if (set)
ene_set_reg_mask(dev, reg, mask);
else
ene_clear_reg_mask(dev, reg, mask);
} }
/* detect hardware features */ /* detect hardware features */
...@@ -83,339 +102,369 @@ static int ene_hw_detect(struct ene_device *dev) ...@@ -83,339 +102,369 @@ static int ene_hw_detect(struct ene_device *dev)
{ {
u8 chip_major, chip_minor; u8 chip_major, chip_minor;
u8 hw_revision, old_ver; u8 hw_revision, old_ver;
u8 tmp; u8 fw_reg2, fw_reg1;
u8 fw_capabilities;
int pll_freq;
tmp = ene_hw_read_reg(dev, ENE_HW_UNK);
ene_hw_write_reg(dev, ENE_HW_UNK, tmp & ~ENE_HW_UNK_CLR);
chip_major = ene_hw_read_reg(dev, ENE_HW_VER_MAJOR); ene_clear_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD);
chip_minor = ene_hw_read_reg(dev, ENE_HW_VER_MINOR); chip_major = ene_read_reg(dev, ENE_ECVER_MAJOR);
chip_minor = ene_read_reg(dev, ENE_ECVER_MINOR);
ene_set_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD);
ene_hw_write_reg(dev, ENE_HW_UNK, tmp); hw_revision = ene_read_reg(dev, ENE_ECHV);
hw_revision = ene_hw_read_reg(dev, ENE_HW_VERSION); old_ver = ene_read_reg(dev, ENE_HW_VER_OLD);
old_ver = ene_hw_read_reg(dev, ENE_HW_VER_OLD);
pll_freq = (ene_hw_read_reg(dev, ENE_PLLFRH) << 4) + dev->pll_freq = (ene_read_reg(dev, ENE_PLLFRH) << 4) +
(ene_hw_read_reg(dev, ENE_PLLFRL) >> 4); (ene_read_reg(dev, ENE_PLLFRL) >> 4);
if (pll_freq != 1000)
dev->rx_period_adjust = 4;
else
dev->rx_period_adjust = 2;
if (sample_period != ENE_DEFAULT_SAMPLE_PERIOD)
ene_printk(KERN_NOTICE, "PLL freq = %d\n", pll_freq); dev->rx_period_adjust =
dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 2 : 4;
if (hw_revision == 0xFF) { if (hw_revision == 0xFF) {
ene_warn("device seems to be disabled");
ene_printk(KERN_WARNING, "device seems to be disabled\n"); ene_warn("send a mail to lirc-list@lists.sourceforge.net");
ene_printk(KERN_WARNING, ene_warn("please attach output of acpidump and dmidecode");
"send a mail to lirc-list@lists.sourceforge.net\n");
ene_printk(KERN_WARNING, "please attach output of acpidump\n");
return -ENODEV; return -ENODEV;
} }
ene_notice("chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x",
chip_major, chip_minor, old_ver, hw_revision);
ene_notice("PLL freq = %d", dev->pll_freq);
if (chip_major == 0x33) { if (chip_major == 0x33) {
ene_printk(KERN_WARNING, "chips 0x33xx aren't supported\n"); ene_warn("chips 0x33xx aren't supported");
return -ENODEV; return -ENODEV;
} }
if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) { if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) {
dev->hw_revision = ENE_HW_C; dev->hw_revision = ENE_HW_C;
ene_notice("KB3926C detected");
} else if (old_ver == 0x24 && hw_revision == 0xC0) { } else if (old_ver == 0x24 && hw_revision == 0xC0) {
dev->hw_revision = ENE_HW_B; dev->hw_revision = ENE_HW_B;
ene_printk(KERN_NOTICE, "KB3926B detected\n"); ene_notice("KB3926B detected");
} else { } else {
dev->hw_revision = ENE_HW_D; dev->hw_revision = ENE_HW_D;
ene_printk(KERN_WARNING, ene_notice("KB3926D or higher detected");
"unknown ENE chip detected, assuming KB3926D\n");
ene_printk(KERN_WARNING,
"driver support might be not complete");
} }
ene_printk(KERN_DEBUG,
"chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x\n",
chip_major, chip_minor, old_ver, hw_revision);
/* detect features hardware supports */ /* detect features hardware supports */
if (dev->hw_revision < ENE_HW_C) if (dev->hw_revision < ENE_HW_C)
return 0; return 0;
fw_capabilities = ene_hw_read_reg(dev, ENE_FW2); fw_reg1 = ene_read_reg(dev, ENE_FW1);
ene_dbg("Firmware capabilities: %02x", fw_capabilities); fw_reg2 = ene_read_reg(dev, ENE_FW2);
dev->hw_gpio40_learning = fw_capabilities & ENE_FW2_GP40_AS_LEARN; ene_notice("Firmware regs: %02x %02x", fw_reg1, fw_reg2);
dev->hw_learning_and_tx_capable = fw_capabilities & ENE_FW2_LEARNING;
dev->hw_fan_as_normal_input = dev->hw_learning_and_tx_capable && dev->hw_use_gpio_0a = fw_reg2 & ENE_FW2_GP0A;
(fw_capabilities & ENE_FW2_FAN_AS_NRML_IN); dev->hw_learning_and_tx_capable = fw_reg2 & ENE_FW2_LEARNING;
dev->hw_extra_buffer = fw_reg1 & ENE_FW1_HAS_EXTRA_BUF;
dev->hw_fan_input = dev->hw_learning_and_tx_capable &&
(fw_reg2 & ENE_FW2_FAN_INPUT);
ene_printk(KERN_NOTICE, "hardware features:\n"); ene_notice("Hardware features:");
ene_printk(KERN_NOTICE,
"learning and transmit %s, gpio40_learn %s, fan_in %s\n",
dev->hw_learning_and_tx_capable ? "on" : "off",
dev->hw_gpio40_learning ? "on" : "off",
dev->hw_fan_as_normal_input ? "on" : "off");
if (dev->hw_learning_and_tx_capable) { if (dev->hw_learning_and_tx_capable) {
ene_printk(KERN_WARNING, ene_notice("* Supports transmitting & learning mode");
"Device supports transmitting, but that support is\n"); ene_notice(" This feature is rare and therefore,");
ene_printk(KERN_WARNING, ene_notice(" you are welcome to test it,");
"lightly tested. Please test it and mail\n"); ene_notice(" and/or contact the author via:");
ene_printk(KERN_WARNING, ene_notice(" lirc-list@lists.sourceforge.net");
"lirc-list@lists.sourceforge.net\n"); ene_notice(" or maximlevitsky@gmail.com");
ene_notice("* Uses GPIO %s for IR raw input",
dev->hw_use_gpio_0a ? "40" : "0A");
if (dev->hw_fan_input)
ene_notice("* Uses unused fan feedback input as source"
" of demodulated IR data");
} }
if (!dev->hw_fan_input)
ene_notice("* Uses GPIO %s for IR demodulated input",
dev->hw_use_gpio_0a ? "0A" : "40");
if (dev->hw_extra_buffer)
ene_notice("* Uses new style input buffer");
return 0; return 0;
} }
/* this enables/disables IR input via gpio40*/ /* Sense current received carrier */
static void ene_enable_gpio40_receive(struct ene_device *dev, int enable) void ene_rx_sense_carrier(struct ene_device *dev)
{ {
ene_hw_write_reg_mask(dev, ENE_CIR_CONF2, enable ? int period = ene_read_reg(dev, ENE_CIRCAR_PRD);
0 : ENE_CIR_CONF2_GPIO40DIS, int hperiod = ene_read_reg(dev, ENE_CIRCAR_HPRD);
ENE_CIR_CONF2_GPIO40DIS); int carrier, duty_cycle;
if (!(period & ENE_CIRCAR_PRD_VALID))
return;
period &= ~ENE_CIRCAR_PRD_VALID;
if (!period)
return;
dbg("RX: hardware carrier period = %02x", period);
dbg("RX: hardware carrier pulse period = %02x", hperiod);
carrier = 2000000 / period;
duty_cycle = (hperiod * 100) / period;
dbg("RX: sensed carrier = %d Hz, duty cycle %d%%",
carrier, duty_cycle);
/* TODO: Send carrier & duty cycle to IR layer */
} }
/* this enables/disables IR via standard input */ /* this enables/disables the CIR RX engine */
static void ene_enable_normal_receive(struct ene_device *dev, int enable) static void ene_enable_cir_engine(struct ene_device *dev, bool enable)
{ {
ene_hw_write_reg(dev, ENE_CIR_CONF1, enable ? ENE_CIR_CONF1_RX_ON : 0); ene_set_clear_reg_mask(dev, ENE_CIRCFG,
ENE_CIRCFG_RX_EN | ENE_CIRCFG_RX_IRQ, enable);
} }
/* this enables/disables IR input via unused fan tachtometer input */ /* this selects input for CIR engine. Ether GPIO 0A or GPIO40*/
static void ene_enable_fan_receive(struct ene_device *dev, int enable) static void ene_select_rx_input(struct ene_device *dev, bool gpio_0a)
{ {
if (!enable) ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_GPIO0A, gpio_0a);
ene_hw_write_reg(dev, ENE_FAN_AS_IN1, 0);
else {
ene_hw_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN);
ene_hw_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN);
}
dev->rx_fan_input_inuse = enable;
} }
/*
/* Sense current received carrier */ * this enables alternative input via fan tachometer sensor and bypasses
static int ene_rx_sense_carrier(struct ene_device *dev) * the hw CIR engine
*/
static void ene_enable_fan_input(struct ene_device *dev, bool enable)
{ {
int period = ene_hw_read_reg(dev, ENE_RX_CARRIER); if (!dev->hw_fan_input)
int carrier; return;
ene_dbg("RX: hardware carrier period = %02x", period);
if (!(period & ENE_RX_CARRIER_VALID))
return 0;
period &= ~ENE_RX_CARRIER_VALID;
if (!period)
return 0;
carrier = 2000000 / period; if (!enable)
ene_dbg("RX: sensed carrier = %d Hz", carrier); ene_write_reg(dev, ENE_FAN_AS_IN1, 0);
return carrier; else {
ene_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN);
ene_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN);
}
dev->rx_fan_input_inuse = enable;
} }
/* determine which input to use*/ /* setup the receiver for RX*/
static void ene_rx_set_inputs(struct ene_device *dev) static void ene_rx_setup(struct ene_device *dev)
{ {
int learning_mode = dev->learning_enabled; bool learning_mode = dev->learning_enabled ||
dev->carrier_detect_enabled;
int sample_period_adjust = 0;
ene_dbg("RX: setup receiver, learning mode = %d", learning_mode);
ene_enable_normal_receive(dev, 1); /* set sample period*/
if (sample_period == ENE_DEFAULT_SAMPLE_PERIOD)
sample_period_adjust =
dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 1 : 2;
/* old hardware doesn't support learning mode for sure */ ene_write_reg(dev, ENE_CIRRLC_CFG,
if (dev->hw_revision <= ENE_HW_B) (sample_period + sample_period_adjust) |
return; ENE_CIRRLC_CFG_OVERFLOW);
/* revB doesn't support inputs */
if (dev->hw_revision < ENE_HW_C)
goto select_timeout;
/* receiver not learning capable, still set gpio40 correctly */ if (learning_mode && dev->hw_learning_and_tx_capable) {
if (!dev->hw_learning_and_tx_capable) {
ene_enable_gpio40_receive(dev, !dev->hw_gpio40_learning);
return;
}
/* enable learning mode */ /* Enable the opposite of the normal input
if (learning_mode) { That means that if GPIO40 is normally used, use GPIO0A
ene_enable_gpio40_receive(dev, dev->hw_gpio40_learning); and vice versa.
This input will carry non demodulated
signal, and we will tell the hw to demodulate it itself */
ene_select_rx_input(dev, !dev->hw_use_gpio_0a);
dev->rx_fan_input_inuse = false;
/* fan input is not used for learning */ /* Enable carrier demodulation */
if (dev->hw_fan_as_normal_input) ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD);
ene_enable_fan_receive(dev, 0);
/* disable learning mode */ /* Enable carrier detection */
ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT,
dev->carrier_detect_enabled || debug);
} else { } else {
if (dev->hw_fan_as_normal_input) { if (dev->hw_fan_input)
ene_enable_fan_receive(dev, 1); dev->rx_fan_input_inuse = true;
ene_enable_normal_receive(dev, 0); else
} else ene_select_rx_input(dev, dev->hw_use_gpio_0a);
ene_enable_gpio40_receive(dev,
!dev->hw_gpio40_learning); /* Disable carrier detection & demodulation */
ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD);
ene_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT);
} }
/* set few additional settings for this mode */ select_timeout:
ene_hw_write_reg_mask(dev, ENE_CIR_CONF1, learning_mode ?
ENE_CIR_CONF1_LEARN1 : 0, ENE_CIR_CONF1_LEARN1);
ene_hw_write_reg_mask(dev, ENE_CIR_CONF2, learning_mode ?
ENE_CIR_CONF2_LEARN2 : 0, ENE_CIR_CONF2_LEARN2);
if (dev->rx_fan_input_inuse) { if (dev->rx_fan_input_inuse) {
dev->props->rx_resolution = ENE_SAMPLE_PERIOD_FAN * 1000; dev->props->rx_resolution = MS_TO_NS(ENE_FW_SAMPLE_PERIOD_FAN);
dev->props->timeout = /* Fan input doesn't support timeouts, it just ends the
ENE_FAN_VALUE_MASK * ENE_SAMPLE_PERIOD_FAN * 1000; input with a maximum sample */
dev->props->min_timeout = dev->props->max_timeout =
MS_TO_NS(ENE_FW_SMPL_BUF_FAN_MSK *
ENE_FW_SAMPLE_PERIOD_FAN);
} else { } else {
dev->props->rx_resolution = sample_period * 1000; dev->props->rx_resolution = MS_TO_NS(sample_period);
dev->props->timeout = ENE_MAXGAP * 1000;
/* Theoreticly timeout is unlimited, but we cap it
* because it was seen that on one device, it
* would stop sending spaces after around 250 msec.
* Besides, this is close to 2^32 anyway and timeout is u32.
*/
dev->props->min_timeout = MS_TO_NS(127 * sample_period);
dev->props->max_timeout = MS_TO_NS(200000);
} }
if (dev->hw_learning_and_tx_capable)
dev->props->tx_resolution = MS_TO_NS(sample_period);
if (dev->props->timeout > dev->props->max_timeout)
dev->props->timeout = dev->props->max_timeout;
if (dev->props->timeout < dev->props->min_timeout)
dev->props->timeout = dev->props->min_timeout;
} }
/* Enable the device for receive */ /* Enable the device for receive */
static void ene_rx_enable(struct ene_device *dev) static void ene_rx_enable(struct ene_device *dev)
{ {
u8 reg_value; u8 reg_value;
dbg("RX: setup receiver, learning mode = %d", learning_mode);
/* Enable system interrupt */
if (dev->hw_revision < ENE_HW_C) { if (dev->hw_revision < ENE_HW_C) {
ene_hw_write_reg(dev, ENEB_IRQ, dev->irq << 1); ene_write_reg(dev, ENEB_IRQ, dev->irq << 1);
ene_hw_write_reg(dev, ENEB_IRQ_UNK1, 0x01); ene_write_reg(dev, ENEB_IRQ_UNK1, 0x01);
} else { } else {
reg_value = ene_hw_read_reg(dev, ENEC_IRQ) & 0xF0; reg_value = ene_read_reg(dev, ENE_IRQ) & 0xF0;
reg_value |= ENEC_IRQ_UNK_EN; reg_value |= ENE_IRQ_UNK_EN;
reg_value &= ~ENEC_IRQ_STATUS; reg_value &= ~ENE_IRQ_STATUS;
reg_value |= (dev->irq & ENEC_IRQ_MASK); reg_value |= (dev->irq & ENE_IRQ_MASK);
ene_hw_write_reg(dev, ENEC_IRQ, reg_value); ene_write_reg(dev, ENE_IRQ, reg_value);
ene_hw_write_reg(dev, ENE_TX_UNK1, 0x63);
} }
ene_hw_write_reg(dev, ENE_CIR_CONF2, 0x00); if (dev->hw_revision >= ENE_HW_C)
ene_rx_set_inputs(dev); ene_write_reg(dev, ENE_CIRCAR_PULS, 0x63);
/* Enable the inputs */
ene_write_reg(dev, ENE_CIRCFG2, 0x00);
/* set sampling period */ if (dev->rx_fan_input_inuse) {
ene_hw_write_reg(dev, ENE_CIR_SAMPLE_PERIOD, sample_period); ene_enable_cir_engine(dev, false);
ene_enable_fan_input(dev, true);
} else {
ene_enable_cir_engine(dev, true);
ene_enable_fan_input(dev, false);
}
/* ack any pending irqs - just in case */ /* ack any pending irqs - just in case */
ene_irq_status(dev); ene_irq_status(dev);
/* enable firmware bits */ /* enable firmware bits */
ene_hw_write_reg_mask(dev, ENE_FW1, ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ);
ENE_FW1_ENABLE | ENE_FW1_IRQ,
ENE_FW1_ENABLE | ENE_FW1_IRQ);
/* enter idle mode */ /* enter idle mode */
ir_raw_event_set_idle(dev->idev, 1); ir_raw_event_set_idle(dev->idev, true);
ir_raw_event_reset(dev->idev); dev->rx_enabled = true;
} }
/* Disable the device receiver */ /* Disable the device receiver */
static void ene_rx_disable(struct ene_device *dev) static void ene_rx_disable(struct ene_device *dev)
{ {
/* disable inputs */ /* disable inputs */
ene_enable_normal_receive(dev, 0); ene_enable_cir_engine(dev, false);
ene_enable_fan_input(dev, false);
if (dev->hw_fan_as_normal_input)
ene_enable_fan_receive(dev, 0);
/* disable hardware IRQ and firmware flag */ /* disable hardware IRQ and firmware flag */
ene_hw_write_reg_mask(dev, ENE_FW1, 0, ENE_FW1_ENABLE | ENE_FW1_IRQ); ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ);
ir_raw_event_set_idle(dev->idev, 1); ir_raw_event_set_idle(dev->idev, true);
ir_raw_event_reset(dev->idev); dev->rx_enabled = false;
} }
/* prepare transmission */ /* prepare transmission */
static void ene_tx_prepare(struct ene_device *dev) static void ene_tx_prepare(struct ene_device *dev)
{ {
u8 conf1; u8 conf1 = ene_read_reg(dev, ENE_CIRCFG);
u8 fwreg2 = ene_read_reg(dev, ENE_FW2);
conf1 = ene_hw_read_reg(dev, ENE_CIR_CONF1);
dev->saved_conf1 = conf1; dev->saved_conf1 = conf1;
if (dev->hw_revision == ENE_HW_C) /* Show information about currently connected transmitter jacks */
conf1 &= ~ENE_CIR_CONF1_TX_CLEAR; if (fwreg2 & ENE_FW2_EMMITER1_CONN)
dbg("TX: Transmitter #1 is connected");
/* Enable TX engine */ if (fwreg2 & ENE_FW2_EMMITER2_CONN)
conf1 |= ENE_CIR_CONF1_TX_ON; dbg("TX: Transmitter #2 is connected");
/* Set carrier */ if (!(fwreg2 & (ENE_FW2_EMMITER1_CONN | ENE_FW2_EMMITER2_CONN)))
if (dev->tx_period) { ene_warn("TX: transmitter cable isn't connected!");
/* Set transmitter mask */
ene_set_clear_reg_mask(dev, ENE_GPIOFS8, ENE_GPIOFS8_GPIO41,
!!(dev->transmitter_mask & 0x01));
ene_set_clear_reg_mask(dev, ENE_GPIOFS1, ENE_GPIOFS1_GPIO0D,
!!(dev->transmitter_mask & 0x02));
/* NOTE: duty cycle handling is just a guess, it might /* Set the carrier period && duty cycle */
not be aviable. Default values were tested */ if (dev->tx_period) {
int tx_period_in500ns = dev->tx_period * 2;
int tx_pulse_width_in_500ns = int tx_puls_width = dev->tx_period / (100 / dev->tx_duty_cycle);
tx_period_in500ns / (100 / dev->tx_duty_cycle);
if (!tx_pulse_width_in_500ns) if (!tx_puls_width)
tx_pulse_width_in_500ns = 1; tx_puls_width = 1;
ene_dbg("TX: pulse distance = %d * 500 ns", tx_period_in500ns); dbg("TX: pulse distance = %d * 500 ns", dev->tx_period);
ene_dbg("TX: pulse width = %d * 500 ns", dbg("TX: pulse width = %d * 500 ns", tx_puls_width);
tx_pulse_width_in_500ns);
ene_hw_write_reg(dev, ENE_TX_PERIOD, ENE_TX_PERIOD_UNKBIT | ene_write_reg(dev, ENE_CIRMOD_PRD, ENE_CIRMOD_PRD_POL |
tx_period_in500ns); dev->tx_period);
ene_hw_write_reg(dev, ENE_TX_PERIOD_PULSE, ene_write_reg(dev, ENE_CIRMOD_HPRD, tx_puls_width);
tx_pulse_width_in_500ns);
conf1 |= ENE_CIR_CONF1_TX_CARR; conf1 |= ENE_CIRCFG_TX_CARR;
} else } else
conf1 &= ~ENE_CIR_CONF1_TX_CARR; conf1 &= ~ENE_CIRCFG_TX_CARR;
ene_hw_write_reg(dev, ENE_CIR_CONF1, conf1); /* disable receive on revc */
if (dev->hw_revision == ENE_HW_C)
conf1 &= ~ENE_CIRCFG_RX_EN;
/* Enable TX engine */
conf1 |= ENE_CIRCFG_TX_EN | ENE_CIRCFG_TX_IRQ;
ene_write_reg(dev, ENE_CIRCFG, conf1);
} }
/* end transmission */ /* end transmission */
static void ene_tx_complete(struct ene_device *dev) static void ene_tx_complete(struct ene_device *dev)
{ {
ene_hw_write_reg(dev, ENE_CIR_CONF1, dev->saved_conf1); ene_write_reg(dev, ENE_CIRCFG, dev->saved_conf1);
dev->tx_buffer = NULL; dev->tx_buffer = NULL;
} }
/* set transmit mask */
static void ene_tx_hw_set_transmiter_mask(struct ene_device *dev)
{
u8 txport1 = ene_hw_read_reg(dev, ENE_TX_PORT1) & ~ENE_TX_PORT1_EN;
u8 txport2 = ene_hw_read_reg(dev, ENE_TX_PORT2) & ~ENE_TX_PORT2_EN;
if (dev->transmitter_mask & 0x01)
txport1 |= ENE_TX_PORT1_EN;
if (dev->transmitter_mask & 0x02)
txport2 |= ENE_TX_PORT2_EN;
ene_hw_write_reg(dev, ENE_TX_PORT1, txport1);
ene_hw_write_reg(dev, ENE_TX_PORT2, txport2);
}
/* TX one sample - must be called with dev->hw_lock*/ /* TX one sample - must be called with dev->hw_lock*/
static void ene_tx_sample(struct ene_device *dev) static void ene_tx_sample(struct ene_device *dev)
{ {
u8 raw_tx; u8 raw_tx;
u32 sample; u32 sample;
bool pulse = dev->tx_sample_pulse;
if (!dev->tx_buffer) { if (!dev->tx_buffer) {
ene_dbg("TX: attempt to transmit NULL buffer"); ene_warn("TX: BUG: attempt to transmit NULL buffer");
return; return;
} }
/* Grab next TX sample */ /* Grab next TX sample */
if (!dev->tx_sample) { if (!dev->tx_sample) {
again:
if (dev->tx_pos == dev->tx_len + 1) { if (dev->tx_pos == dev->tx_len) {
if (!dev->tx_done) { if (!dev->tx_done) {
ene_dbg("TX: no more data to send"); dbg("TX: no more data to send");
dev->tx_done = 1; dev->tx_done = true;
goto exit; goto exit;
} else { } else {
ene_dbg("TX: last sample sent by hardware"); dbg("TX: last sample sent by hardware");
ene_tx_complete(dev); ene_tx_complete(dev);
complete(&dev->tx_complete); complete(&dev->tx_complete);
return; return;
...@@ -425,23 +474,23 @@ static void ene_tx_sample(struct ene_device *dev) ...@@ -425,23 +474,23 @@ static void ene_tx_sample(struct ene_device *dev)
sample = dev->tx_buffer[dev->tx_pos++]; sample = dev->tx_buffer[dev->tx_pos++];
dev->tx_sample_pulse = !dev->tx_sample_pulse; dev->tx_sample_pulse = !dev->tx_sample_pulse;
ene_dbg("TX: sample %8d (%s)", sample, dev->tx_sample_pulse ? dev->tx_sample = DIV_ROUND_CLOSEST(sample, sample_period);
"pulse" : "space");
dev->tx_sample = DIV_ROUND_CLOSEST(sample, ENE_TX_SMPL_PERIOD);
/* guard against too short samples */
if (!dev->tx_sample) if (!dev->tx_sample)
goto again; dev->tx_sample = 1;
} }
raw_tx = min(dev->tx_sample , (unsigned int)ENE_TX_SMLP_MASK); raw_tx = min(dev->tx_sample , (unsigned int)ENE_CIRRLC_OUT_MASK);
dev->tx_sample -= raw_tx; dev->tx_sample -= raw_tx;
if (dev->tx_sample_pulse) dbg("TX: sample %8d (%s)", raw_tx * sample_period,
raw_tx |= ENE_TX_PULSE_MASK; pulse ? "pulse" : "space");
if (pulse)
raw_tx |= ENE_CIRRLC_OUT_PULSE;
ene_write_reg(dev,
dev->tx_reg ? ENE_CIRRLC_OUT1 : ENE_CIRRLC_OUT0, raw_tx);
ene_hw_write_reg(dev, ENE_TX_INPUT1 + dev->tx_reg, raw_tx);
dev->tx_reg = !dev->tx_reg; dev->tx_reg = !dev->tx_reg;
exit: exit:
/* simulate TX done interrupt */ /* simulate TX done interrupt */
...@@ -460,82 +509,204 @@ static void ene_tx_irqsim(unsigned long data) ...@@ -460,82 +509,204 @@ static void ene_tx_irqsim(unsigned long data)
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
} }
/* Read properities of hw sample buffer */
static void ene_setup_hw_buffer(struct ene_device *dev)
{
u16 tmp;
ene_read_hw_pointer(dev);
dev->r_pointer = dev->w_pointer;
if (!dev->hw_extra_buffer) {
dev->buffer_len = ENE_FW_PACKET_SIZE * 2;
return;
}
tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER);
tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER+1) << 8;
dev->extra_buf1_address = tmp;
dev->extra_buf1_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 2);
tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 3);
tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 4) << 8;
dev->extra_buf2_address = tmp;
dev->extra_buf2_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 5);
dev->buffer_len = dev->extra_buf1_len + dev->extra_buf2_len + 8;
ene_notice("Hardware uses 2 extended buffers:");
ene_notice(" 0x%04x - len : %d", dev->extra_buf1_address,
dev->extra_buf1_len);
ene_notice(" 0x%04x - len : %d", dev->extra_buf2_address,
dev->extra_buf2_len);
ene_notice("Total buffer len = %d", dev->buffer_len);
if (dev->buffer_len > 64 || dev->buffer_len < 16)
goto error;
if (dev->extra_buf1_address > 0xFBFC ||
dev->extra_buf1_address < 0xEC00)
goto error;
if (dev->extra_buf2_address > 0xFBFC ||
dev->extra_buf2_address < 0xEC00)
goto error;
if (dev->r_pointer > dev->buffer_len)
goto error;
ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
return;
error:
ene_warn("Error validating extra buffers, device probably won't work");
dev->hw_extra_buffer = false;
ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
}
/* Restore the pointers to extra buffers - to make module reload work*/
static void ene_restore_extra_buffer(struct ene_device *dev)
{
if (!dev->hw_extra_buffer)
return;
ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 0,
dev->extra_buf1_address & 0xFF);
ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 1,
dev->extra_buf1_address >> 8);
ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 2, dev->extra_buf1_len);
ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 3,
dev->extra_buf2_address & 0xFF);
ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 4,
dev->extra_buf2_address >> 8);
ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 5,
dev->extra_buf2_len);
ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
}
/* read irq status and ack it */ /* read irq status and ack it */
static int ene_irq_status(struct ene_device *dev) static int ene_irq_status(struct ene_device *dev)
{ {
u8 irq_status; u8 irq_status;
u8 fw_flags1, fw_flags2; u8 fw_flags1, fw_flags2;
int cur_rx_pointer;
int retval = 0; int retval = 0;
fw_flags2 = ene_hw_read_reg(dev, ENE_FW2); fw_flags2 = ene_read_reg(dev, ENE_FW2);
cur_rx_pointer = !!(fw_flags2 & ENE_FW2_BUF_HIGH);
if (dev->hw_revision < ENE_HW_C) { if (dev->hw_revision < ENE_HW_C) {
irq_status = ene_hw_read_reg(dev, ENEB_IRQ_STATUS); irq_status = ene_read_reg(dev, ENEB_IRQ_STATUS);
if (!(irq_status & ENEB_IRQ_STATUS_IR)) if (!(irq_status & ENEB_IRQ_STATUS_IR))
return 0; return 0;
ene_hw_write_reg(dev, ENEB_IRQ_STATUS, ene_clear_reg_mask(dev, ENEB_IRQ_STATUS, ENEB_IRQ_STATUS_IR);
irq_status & ~ENEB_IRQ_STATUS_IR);
dev->rx_pointer = cur_rx_pointer;
return ENE_IRQ_RX; return ENE_IRQ_RX;
} }
irq_status = ene_hw_read_reg(dev, ENEC_IRQ); irq_status = ene_read_reg(dev, ENE_IRQ);
if (!(irq_status & ENE_IRQ_STATUS))
if (!(irq_status & ENEC_IRQ_STATUS))
return 0; return 0;
/* original driver does that twice - a workaround ? */ /* original driver does that twice - a workaround ? */
ene_hw_write_reg(dev, ENEC_IRQ, irq_status & ~ENEC_IRQ_STATUS); ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS);
ene_hw_write_reg(dev, ENEC_IRQ, irq_status & ~ENEC_IRQ_STATUS); ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS);
/* clear unknown flag in F8F9 */ /* check RX interrupt */
if (fw_flags2 & ENE_FW2_IRQ_CLR) if (fw_flags2 & ENE_FW2_RXIRQ) {
ene_hw_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_IRQ_CLR); retval |= ENE_IRQ_RX;
ene_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_RXIRQ);
}
/* check if this is a TX interrupt */ /* check TX interrupt */
fw_flags1 = ene_hw_read_reg(dev, ENE_FW1); fw_flags1 = ene_read_reg(dev, ENE_FW1);
if (fw_flags1 & ENE_FW1_TXIRQ) { if (fw_flags1 & ENE_FW1_TXIRQ) {
ene_hw_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ); ene_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ);
retval |= ENE_IRQ_TX; retval |= ENE_IRQ_TX;
} }
/* Check if this is RX interrupt */ return retval;
if (dev->rx_pointer != cur_rx_pointer) { }
retval |= ENE_IRQ_RX;
dev->rx_pointer = cur_rx_pointer;
} else if (!(retval & ENE_IRQ_TX)) { /* Read hardware write pointer */
ene_dbg("RX: interrupt without change in RX pointer(%d)", static void ene_read_hw_pointer(struct ene_device *dev)
dev->rx_pointer); {
retval |= ENE_IRQ_RX; if (dev->hw_extra_buffer)
dev->w_pointer = ene_read_reg(dev, ENE_FW_RX_POINTER);
else
dev->w_pointer = ene_read_reg(dev, ENE_FW2)
& ENE_FW2_BUF_WPTR ? 0 : ENE_FW_PACKET_SIZE;
dbg_verbose("RB: HW write pointer: %02x, driver read pointer: %02x",
dev->w_pointer, dev->r_pointer);
}
/* Gets address of next sample from HW ring buffer */
static int ene_get_sample_reg(struct ene_device *dev)
{
int r_pointer;
if (dev->r_pointer == dev->w_pointer) {
dbg_verbose("RB: hit end, try update w_pointer");
ene_read_hw_pointer(dev);
} }
if ((retval & ENE_IRQ_RX) && (retval & ENE_IRQ_TX)) if (dev->r_pointer == dev->w_pointer) {
ene_dbg("both RX and TX interrupt at same time"); dbg_verbose("RB: end of data at %d", dev->r_pointer);
return 0;
}
return retval; dbg_verbose("RB: reading at offset %d", dev->r_pointer);
r_pointer = dev->r_pointer;
dev->r_pointer++;
if (dev->r_pointer == dev->buffer_len)
dev->r_pointer = 0;
dbg_verbose("RB: next read will be from offset %d", dev->r_pointer);
if (r_pointer < 8) {
dbg_verbose("RB: read at main buffer at %d", r_pointer);
return ENE_FW_SAMPLE_BUFFER + r_pointer;
}
r_pointer -= 8;
if (r_pointer < dev->extra_buf1_len) {
dbg_verbose("RB: read at 1st extra buffer at %d", r_pointer);
return dev->extra_buf1_address + r_pointer;
}
r_pointer -= dev->extra_buf1_len;
if (r_pointer < dev->extra_buf2_len) {
dbg_verbose("RB: read at 2nd extra buffer at %d", r_pointer);
return dev->extra_buf2_address + r_pointer;
}
dbg("attempt to read beyong ring bufer end");
return 0;
} }
/* interrupt handler */ /* interrupt handler */
static irqreturn_t ene_isr(int irq, void *data) static irqreturn_t ene_isr(int irq, void *data)
{ {
u16 hw_value; u16 hw_value, reg;
int i, hw_sample; int hw_sample, irq_status;
int pulse; bool pulse;
int irq_status;
unsigned long flags; unsigned long flags;
int carrier = 0;
irqreturn_t retval = IRQ_NONE; irqreturn_t retval = IRQ_NONE;
struct ene_device *dev = (struct ene_device *)data; struct ene_device *dev = (struct ene_device *)data;
struct ir_raw_event ev; struct ir_raw_event ev;
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
dbg_verbose("ISR called");
ene_read_hw_pointer(dev);
irq_status = ene_irq_status(dev); irq_status = ene_irq_status(dev);
if (!irq_status) if (!irq_status)
...@@ -544,9 +715,9 @@ static irqreturn_t ene_isr(int irq, void *data) ...@@ -544,9 +715,9 @@ static irqreturn_t ene_isr(int irq, void *data)
retval = IRQ_HANDLED; retval = IRQ_HANDLED;
if (irq_status & ENE_IRQ_TX) { if (irq_status & ENE_IRQ_TX) {
dbg_verbose("TX interrupt");
if (!dev->hw_learning_and_tx_capable) { if (!dev->hw_learning_and_tx_capable) {
ene_dbg("TX interrupt on unsupported device!"); dbg("TX interrupt on unsupported device!");
goto unlock; goto unlock;
} }
ene_tx_sample(dev); ene_tx_sample(dev);
...@@ -555,48 +726,57 @@ static irqreturn_t ene_isr(int irq, void *data) ...@@ -555,48 +726,57 @@ static irqreturn_t ene_isr(int irq, void *data)
if (!(irq_status & ENE_IRQ_RX)) if (!(irq_status & ENE_IRQ_RX))
goto unlock; goto unlock;
dbg_verbose("RX interrupt");
if (dev->carrier_detect_enabled || debug) if (dev->carrier_detect_enabled || debug)
carrier = ene_rx_sense_carrier(dev); ene_rx_sense_carrier(dev);
#if 0
/* TODO */ /* On hardware that don't support extra buffer we need to trust
if (dev->carrier_detect_enabled && carrier) the interrupt and not track the read pointer */
ir_raw_event_report_frequency(dev->idev, carrier); if (!dev->hw_extra_buffer)
#endif dev->r_pointer = dev->w_pointer == 0 ? ENE_FW_PACKET_SIZE : 0;
while (1) {
for (i = 0; i < ENE_SAMPLES_SIZE; i++) { reg = ene_get_sample_reg(dev);
hw_value = ene_hw_read_reg(dev,
ENE_SAMPLE_BUFFER + dev->rx_pointer * 4 + i); dbg_verbose("next sample to read at: %04x", reg);
if (!reg)
break;
hw_value = ene_read_reg(dev, reg);
if (dev->rx_fan_input_inuse) { if (dev->rx_fan_input_inuse) {
int offset = ENE_FW_SMPL_BUF_FAN - ENE_FW_SAMPLE_BUFFER;
/* read high part of the sample */ /* read high part of the sample */
hw_value |= ene_hw_read_reg(dev, hw_value |= ene_read_reg(dev, reg + offset) << 8;
ENE_SAMPLE_BUFFER_FAN + pulse = hw_value & ENE_FW_SMPL_BUF_FAN_PLS;
dev->rx_pointer * 4 + i) << 8;
pulse = hw_value & ENE_FAN_SMPL_PULS_MSK;
/* clear space bit, and other unused bits */ /* clear space bit, and other unused bits */
hw_value &= ENE_FAN_VALUE_MASK; hw_value &= ENE_FW_SMPL_BUF_FAN_MSK;
hw_sample = hw_value * ENE_SAMPLE_PERIOD_FAN; hw_sample = hw_value * ENE_FW_SAMPLE_PERIOD_FAN;
} else { } else {
pulse = !(hw_value & ENE_SAMPLE_SPC_MASK); pulse = !(hw_value & ENE_FW_SAMPLE_SPACE);
hw_value &= ENE_SAMPLE_VALUE_MASK; hw_value &= ~ENE_FW_SAMPLE_SPACE;
hw_sample = hw_value * sample_period; hw_sample = hw_value * sample_period;
if (dev->rx_period_adjust) { if (dev->rx_period_adjust) {
hw_sample *= (100 - dev->rx_period_adjust); hw_sample *= 100;
hw_sample /= 100; hw_sample /= (100 + dev->rx_period_adjust);
} }
} }
/* no more data */
if (!(hw_value))
break;
ene_dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space"); if (!dev->hw_extra_buffer && !hw_sample) {
dev->r_pointer = dev->w_pointer;
continue;
}
dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space");
ev.duration = hw_sample * 1000; ev.duration = MS_TO_NS(hw_sample);
ev.pulse = pulse; ev.pulse = pulse;
ir_raw_event_store_with_filter(dev->idev, &ev); ir_raw_event_store_with_filter(dev->idev, &ev);
} }
...@@ -611,16 +791,14 @@ static irqreturn_t ene_isr(int irq, void *data) ...@@ -611,16 +791,14 @@ static irqreturn_t ene_isr(int irq, void *data)
static void ene_setup_settings(struct ene_device *dev) static void ene_setup_settings(struct ene_device *dev)
{ {
dev->tx_period = 32; dev->tx_period = 32;
dev->tx_duty_cycle = 25; /*%*/ dev->tx_duty_cycle = 50; /*%*/
dev->transmitter_mask = 3; dev->transmitter_mask = 0x03;
/* Force learning mode if (input == 2), otherwise
let user set it with LIRC_SET_REC_CARRIER */
dev->learning_enabled = dev->learning_enabled =
(input == 2 && dev->hw_learning_and_tx_capable); (learning_mode && dev->hw_learning_and_tx_capable);
dev->rx_pointer = -1;
/* Set reasonable default timeout */
dev->props->timeout = MS_TO_NS(15000);
} }
/* outside interface: called on first open*/ /* outside interface: called on first open*/
...@@ -630,8 +808,6 @@ static int ene_open(void *data) ...@@ -630,8 +808,6 @@ static int ene_open(void *data)
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
dev->in_use = 1;
ene_setup_settings(dev);
ene_rx_enable(dev); ene_rx_enable(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0; return 0;
...@@ -645,7 +821,6 @@ static void ene_close(void *data) ...@@ -645,7 +821,6 @@ static void ene_close(void *data)
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
ene_rx_disable(dev); ene_rx_disable(dev);
dev->in_use = 0;
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
} }
...@@ -654,11 +829,11 @@ static int ene_set_tx_mask(void *data, u32 tx_mask) ...@@ -654,11 +829,11 @@ static int ene_set_tx_mask(void *data, u32 tx_mask)
{ {
struct ene_device *dev = (struct ene_device *)data; struct ene_device *dev = (struct ene_device *)data;
unsigned long flags; unsigned long flags;
ene_dbg("TX: attempt to set transmitter mask %02x", tx_mask); dbg("TX: attempt to set transmitter mask %02x", tx_mask);
/* invalid txmask */ /* invalid txmask */
if (!tx_mask || tx_mask & ~0x3) { if (!tx_mask || tx_mask & ~0x03) {
ene_dbg("TX: invalid mask"); dbg("TX: invalid mask");
/* return count of transmitters */ /* return count of transmitters */
return 2; return 2;
} }
...@@ -674,28 +849,42 @@ static int ene_set_tx_carrier(void *data, u32 carrier) ...@@ -674,28 +849,42 @@ static int ene_set_tx_carrier(void *data, u32 carrier)
{ {
struct ene_device *dev = (struct ene_device *)data; struct ene_device *dev = (struct ene_device *)data;
unsigned long flags; unsigned long flags;
u32 period = 1000000 / carrier; /* (1 / freq) (* # usec in 1 sec) */ u32 period = 2000000 / carrier;
ene_dbg("TX: attempt to set tx carrier to %d kHz", carrier); dbg("TX: attempt to set tx carrier to %d kHz", carrier);
if (period && (period > ENE_TX_PERIOD_MAX || if (period && (period > ENE_CIRMOD_PRD_MAX ||
period < ENE_TX_PERIOD_MIN)) { period < ENE_CIRMOD_PRD_MIN)) {
ene_dbg("TX: out of range %d-%d carrier, " dbg("TX: out of range %d-%d kHz carrier",
"falling back to 32 kHz", 2000 / ENE_CIRMOD_PRD_MIN,
1000 / ENE_TX_PERIOD_MIN, 2000 / ENE_CIRMOD_PRD_MAX);
1000 / ENE_TX_PERIOD_MAX);
period = 32; /* this is just a coincidence!!! */ return -1;
} }
ene_dbg("TX: set carrier to %d kHz", carrier);
dbg("TX: set carrier to %d kHz", carrier);
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
dev->tx_period = period; dev->tx_period = period;
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0; return 0;
} }
/*outside interface : set tx duty cycle */
static int ene_set_tx_duty_cycle(void *data, u32 duty_cycle)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
dbg("TX: setting duty cycle to %d%%", duty_cycle);
BUG_ON(!duty_cycle || duty_cycle >= 100);
spin_lock_irqsave(&dev->hw_lock, flags);
dev->tx_duty_cycle = duty_cycle;
spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0;
}
/* outside interface: enable learning mode */ /* outside interface: enable learning mode */
static int ene_set_learning_mode(void *data, int enable) static int ene_set_learning_mode(void *data, int enable)
...@@ -707,31 +896,25 @@ static int ene_set_learning_mode(void *data, int enable) ...@@ -707,31 +896,25 @@ static int ene_set_learning_mode(void *data, int enable)
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
dev->learning_enabled = enable; dev->learning_enabled = enable;
ene_rx_set_inputs(dev); ene_rx_disable(dev);
ene_rx_setup(dev);
ene_rx_enable(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0; return 0;
} }
/* outside interface: set rec carrier */
static int ene_set_rec_carrier(void *data, u32 min, u32 max)
{
struct ene_device *dev = (struct ene_device *)data;
ene_set_learning_mode(dev,
max > ENE_NORMAL_RX_HI || min < ENE_NORMAL_RX_LOW);
return 0;
}
/* outside interface: enable or disable idle mode */ /* outside interface: enable or disable idle mode */
static void ene_rx_set_idle(void *data, int idle) static void ene_rx_set_idle(void *data, int idle)
{ {
struct ene_device *dev = (struct ene_device *)data; struct ene_device *dev = (struct ene_device *)data;
ene_dbg("%sabling idle mode", idle ? "en" : "dis");
ene_hw_write_reg_mask(dev, ENE_CIR_SAMPLE_PERIOD, if (!idle)
(enable_idle && idle) ? 0 : ENE_CIR_SAMPLE_OVERFLOW, return;
ENE_CIR_SAMPLE_OVERFLOW);
}
dbg("RX: stopping the receiver");
ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN);
ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN);
}
/* outside interface: transmit */ /* outside interface: transmit */
static int ene_transmit(void *data, int *buf, u32 n) static int ene_transmit(void *data, int *buf, u32 n)
...@@ -747,11 +930,10 @@ static int ene_transmit(void *data, int *buf, u32 n) ...@@ -747,11 +930,10 @@ static int ene_transmit(void *data, int *buf, u32 n)
dev->tx_sample = 0; dev->tx_sample = 0;
dev->tx_sample_pulse = 0; dev->tx_sample_pulse = 0;
ene_dbg("TX: %d samples", dev->tx_len); dbg("TX: %d samples", dev->tx_len);
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_hw_set_transmiter_mask(dev);
ene_tx_prepare(dev); ene_tx_prepare(dev);
/* Transmit first two samples */ /* Transmit first two samples */
...@@ -761,16 +943,15 @@ static int ene_transmit(void *data, int *buf, u32 n) ...@@ -761,16 +943,15 @@ static int ene_transmit(void *data, int *buf, u32 n)
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) { if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) {
ene_dbg("TX: timeout"); dbg("TX: timeout");
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_complete(dev); ene_tx_complete(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
} else } else
ene_dbg("TX: done"); dbg("TX: done");
return n; return n;
} }
/* probe entry */ /* probe entry */
static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id) static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id)
{ {
...@@ -791,41 +972,47 @@ static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id) ...@@ -791,41 +972,47 @@ static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id)
error = -ENODEV; error = -ENODEV;
if (!pnp_port_valid(pnp_dev, 0) || if (!pnp_port_valid(pnp_dev, 0) ||
pnp_port_len(pnp_dev, 0) < ENE_MAX_IO) pnp_port_len(pnp_dev, 0) < ENE_IO_SIZE)
goto error; goto error;
if (!pnp_irq_valid(pnp_dev, 0)) if (!pnp_irq_valid(pnp_dev, 0))
goto error; goto error;
dev->hw_io = pnp_port_start(pnp_dev, 0);
dev->irq = pnp_irq(pnp_dev, 0);
spin_lock_init(&dev->hw_lock); spin_lock_init(&dev->hw_lock);
/* claim the resources */ /* claim the resources */
error = -EBUSY; error = -EBUSY;
if (!request_region(dev->hw_io, ENE_MAX_IO, ENE_DRIVER_NAME)) dev->hw_io = pnp_port_start(pnp_dev, 0);
if (!request_region(dev->hw_io, ENE_IO_SIZE, ENE_DRIVER_NAME)) {
dev->hw_io = -1;
dev->irq = -1;
goto error; goto error;
}
dev->irq = pnp_irq(pnp_dev, 0);
if (request_irq(dev->irq, ene_isr, if (request_irq(dev->irq, ene_isr,
IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev)) IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev)) {
dev->irq = -1;
goto error; goto error;
}
pnp_set_drvdata(pnp_dev, dev); pnp_set_drvdata(pnp_dev, dev);
dev->pnp_dev = pnp_dev; dev->pnp_dev = pnp_dev;
/* don't allow too short/long sample periods */
if (sample_period < 5 || sample_period > 0x7F)
sample_period = ENE_DEFAULT_SAMPLE_PERIOD;
/* detect hardware version and features */ /* detect hardware version and features */
error = ene_hw_detect(dev); error = ene_hw_detect(dev);
if (error) if (error)
goto error; goto error;
ene_setup_settings(dev);
if (!dev->hw_learning_and_tx_capable && txsim) { if (!dev->hw_learning_and_tx_capable && txsim) {
dev->hw_learning_and_tx_capable = 1; dev->hw_learning_and_tx_capable = true;
setup_timer(&dev->tx_sim_timer, ene_tx_irqsim, setup_timer(&dev->tx_sim_timer, ene_tx_irqsim,
(long unsigned int)dev); (long unsigned int)dev);
ene_printk(KERN_WARNING, ene_warn("Simulation of TX activated");
"Simulation of TX activated\n");
} }
ir_props->driver_type = RC_DRIVER_IR_RAW; ir_props->driver_type = RC_DRIVER_IR_RAW;
...@@ -833,72 +1020,45 @@ static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id) ...@@ -833,72 +1020,45 @@ static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id)
ir_props->priv = dev; ir_props->priv = dev;
ir_props->open = ene_open; ir_props->open = ene_open;
ir_props->close = ene_close; ir_props->close = ene_close;
ir_props->min_timeout = ENE_MINGAP * 1000; ir_props->s_idle = ene_rx_set_idle;
ir_props->max_timeout = ENE_MAXGAP * 1000;
ir_props->timeout = ENE_MAXGAP * 1000;
if (dev->hw_revision == ENE_HW_B)
ir_props->s_idle = ene_rx_set_idle;
dev->props = ir_props; dev->props = ir_props;
dev->idev = input_dev; dev->idev = input_dev;
/* don't allow too short/long sample periods */
if (sample_period < 5 || sample_period > 0x7F)
sample_period = -1;
/* choose default sample period */
if (sample_period == -1) {
sample_period = 50;
/* on revB, hardware idle mode eats first sample
if we set too low sample period */
if (dev->hw_revision == ENE_HW_B && enable_idle)
sample_period = 75;
}
ir_props->rx_resolution = sample_period * 1000;
if (dev->hw_learning_and_tx_capable) { if (dev->hw_learning_and_tx_capable) {
ir_props->s_learning_mode = ene_set_learning_mode; ir_props->s_learning_mode = ene_set_learning_mode;
if (input == 0)
ir_props->s_rx_carrier_range = ene_set_rec_carrier;
init_completion(&dev->tx_complete); init_completion(&dev->tx_complete);
ir_props->tx_ir = ene_transmit; ir_props->tx_ir = ene_transmit;
ir_props->s_tx_mask = ene_set_tx_mask; ir_props->s_tx_mask = ene_set_tx_mask;
ir_props->s_tx_carrier = ene_set_tx_carrier; ir_props->s_tx_carrier = ene_set_tx_carrier;
ir_props->tx_resolution = ENE_TX_SMPL_PERIOD * 1000; ir_props->s_tx_duty_cycle = ene_set_tx_duty_cycle;
/* ir_props->s_carrier_report = ene_set_carrier_report; */ /* ir_props->s_carrier_report = ene_set_carrier_report; */
} }
ene_setup_hw_buffer(dev);
ene_setup_settings(dev);
ene_rx_setup(dev);
device_set_wakeup_capable(&pnp_dev->dev, 1); device_set_wakeup_capable(&pnp_dev->dev, true);
device_set_wakeup_enable(&pnp_dev->dev, 1); device_set_wakeup_enable(&pnp_dev->dev, true);
if (dev->hw_learning_and_tx_capable) if (dev->hw_learning_and_tx_capable)
input_dev->name = "ENE eHome Infrared Remote Transceiver"; input_dev->name = "ENE eHome Infrared Remote Transceiver";
else else
input_dev->name = "ENE eHome Infrared Remote Receiver"; input_dev->name = "ENE eHome Infrared Remote Receiver";
error = -ENODEV; error = -ENODEV;
if (ir_input_register(input_dev, RC_MAP_RC6_MCE, ir_props, if (ir_input_register(input_dev, RC_MAP_RC6_MCE, ir_props,
ENE_DRIVER_NAME)) ENE_DRIVER_NAME))
goto error; goto error;
ene_notice("driver has been succesfully loaded");
ene_printk(KERN_NOTICE, "driver has been succesfully loaded\n");
return 0; return 0;
error: error:
if (dev->irq) if (dev && dev->irq >= 0)
free_irq(dev->irq, dev); free_irq(dev->irq, dev);
if (dev->hw_io) if (dev && dev->hw_io >= 0)
release_region(dev->hw_io, ENE_MAX_IO); release_region(dev->hw_io, ENE_IO_SIZE);
input_free_device(input_dev); input_free_device(input_dev);
kfree(ir_props); kfree(ir_props);
...@@ -914,10 +1074,11 @@ static void ene_remove(struct pnp_dev *pnp_dev) ...@@ -914,10 +1074,11 @@ static void ene_remove(struct pnp_dev *pnp_dev)
spin_lock_irqsave(&dev->hw_lock, flags); spin_lock_irqsave(&dev->hw_lock, flags);
ene_rx_disable(dev); ene_rx_disable(dev);
ene_restore_extra_buffer(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags); spin_unlock_irqrestore(&dev->hw_lock, flags);
free_irq(dev->irq, dev); free_irq(dev->irq, dev);
release_region(dev->hw_io, ENE_MAX_IO); release_region(dev->hw_io, ENE_IO_SIZE);
ir_input_unregister(dev->idev); ir_input_unregister(dev->idev);
kfree(dev->props); kfree(dev->props);
kfree(dev); kfree(dev);
...@@ -927,28 +1088,28 @@ static void ene_remove(struct pnp_dev *pnp_dev) ...@@ -927,28 +1088,28 @@ static void ene_remove(struct pnp_dev *pnp_dev)
static void ene_enable_wake(struct ene_device *dev, int enable) static void ene_enable_wake(struct ene_device *dev, int enable)
{ {
enable = enable && device_may_wakeup(&dev->pnp_dev->dev); enable = enable && device_may_wakeup(&dev->pnp_dev->dev);
dbg("wake on IR %s", enable ? "enabled" : "disabled");
ene_dbg("wake on IR %s", enable ? "enabled" : "disabled"); ene_set_clear_reg_mask(dev, ENE_FW1, ENE_FW1_WAKE, enable);
ene_hw_write_reg_mask(dev, ENE_FW1, enable ?
ENE_FW1_WAKE : 0, ENE_FW1_WAKE);
} }
#ifdef CONFIG_PM #ifdef CONFIG_PM
static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state) static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state)
{ {
struct ene_device *dev = pnp_get_drvdata(pnp_dev); struct ene_device *dev = pnp_get_drvdata(pnp_dev);
ene_enable_wake(dev, 1); ene_enable_wake(dev, true);
/* TODO: add support for wake pattern */
return 0; return 0;
} }
static int ene_resume(struct pnp_dev *pnp_dev) static int ene_resume(struct pnp_dev *pnp_dev)
{ {
struct ene_device *dev = pnp_get_drvdata(pnp_dev); struct ene_device *dev = pnp_get_drvdata(pnp_dev);
if (dev->in_use) if (dev->rx_enabled) {
ene_rx_setup(dev);
ene_rx_enable(dev); ene_rx_enable(dev);
}
ene_enable_wake(dev, 0); ene_enable_wake(dev, false);
return 0; return 0;
} }
#endif #endif
...@@ -956,7 +1117,7 @@ static int ene_resume(struct pnp_dev *pnp_dev) ...@@ -956,7 +1117,7 @@ static int ene_resume(struct pnp_dev *pnp_dev)
static void ene_shutdown(struct pnp_dev *pnp_dev) static void ene_shutdown(struct pnp_dev *pnp_dev)
{ {
struct ene_device *dev = pnp_get_drvdata(pnp_dev); struct ene_device *dev = pnp_get_drvdata(pnp_dev);
ene_enable_wake(dev, 1); ene_enable_wake(dev, true);
} }
static const struct pnp_device_id ene_ids[] = { static const struct pnp_device_id ene_ids[] = {
...@@ -994,18 +1155,11 @@ static void ene_exit(void) ...@@ -994,18 +1155,11 @@ static void ene_exit(void)
module_param(sample_period, int, S_IRUGO); module_param(sample_period, int, S_IRUGO);
MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)"); MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)");
module_param(enable_idle, bool, S_IRUGO | S_IWUSR); module_param(learning_mode, bool, S_IRUGO);
MODULE_PARM_DESC(enable_idle, MODULE_PARM_DESC(learning_mode, "Enable learning mode by default");
"Enables turning off signal sampling after long inactivity time; "
"if disabled might help detecting input signal (default: enabled)"
" (KB3926B only)");
module_param(input, bool, S_IRUGO);
MODULE_PARM_DESC(input, "select which input to use "
"0 - auto, 1 - standard, 2 - wideband(KB3926C+)");
module_param(debug, int, S_IRUGO | S_IWUSR); module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debug (debug=2 verbose debug output)"); MODULE_PARM_DESC(debug, "Debug level");
module_param(txsim, bool, S_IRUGO); module_param(txsim, bool, S_IRUGO);
MODULE_PARM_DESC(txsim, MODULE_PARM_DESC(txsim,
...@@ -1013,8 +1167,8 @@ MODULE_PARM_DESC(txsim, ...@@ -1013,8 +1167,8 @@ MODULE_PARM_DESC(txsim,
MODULE_DEVICE_TABLE(pnp, ene_ids); MODULE_DEVICE_TABLE(pnp, ene_ids);
MODULE_DESCRIPTION MODULE_DESCRIPTION
("Infrared input driver for KB3926B/KB3926C/KB3926D " ("Infrared input driver for KB3926B/C/D/E/F "
"(aka ENE0100/ENE0200/ENE0201) CIR port"); "(aka ENE0100/ENE0200/ENE0201/ENE0202) CIR port");
MODULE_AUTHOR("Maxim Levitsky"); MODULE_AUTHOR("Maxim Levitsky");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
......
/* /*
* driver for ENE KB3926 B/C/D CIR (also known as ENE0XXX) * driver for ENE KB3926 B/C/D/E/F CIR (also known as ENE0XXX)
* *
* Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com> * Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com>
* *
...@@ -26,43 +26,50 @@ ...@@ -26,43 +26,50 @@
#define ENE_ADDR_HI 1 /* hi byte of register address */ #define ENE_ADDR_HI 1 /* hi byte of register address */
#define ENE_ADDR_LO 2 /* low byte of register address */ #define ENE_ADDR_LO 2 /* low byte of register address */
#define ENE_IO 3 /* read/write window */ #define ENE_IO 3 /* read/write window */
#define ENE_MAX_IO 4 #define ENE_IO_SIZE 4
/* 8 bytes of samples, divided in 2 halfs*/ /* 8 bytes of samples, divided in 2 packets*/
#define ENE_SAMPLE_BUFFER 0xF8F0 /* regular sample buffer */ #define ENE_FW_SAMPLE_BUFFER 0xF8F0 /* sample buffer */
#define ENE_SAMPLE_SPC_MASK 0x80 /* sample is space */ #define ENE_FW_SAMPLE_SPACE 0x80 /* sample is space */
#define ENE_SAMPLE_VALUE_MASK 0x7F #define ENE_FW_PACKET_SIZE 4
#define ENE_SAMPLE_OVERFLOW 0x7F
#define ENE_SAMPLES_SIZE 4 /* first firmware flag register */
#define ENE_FW1 0xF8F8 /* flagr */
/* fan input sample buffer */
#define ENE_SAMPLE_BUFFER_FAN 0xF8FB /* this buffer holds high byte of */
/* each sample of normal buffer */
#define ENE_FAN_SMPL_PULS_MSK 0x8000 /* this bit of combined sample */
/* if set, says that sample is pulse */
#define ENE_FAN_VALUE_MASK 0x0FFF /* mask for valid bits of the value */
/* first firmware register */
#define ENE_FW1 0xF8F8
#define ENE_FW1_ENABLE 0x01 /* enable fw processing */ #define ENE_FW1_ENABLE 0x01 /* enable fw processing */
#define ENE_FW1_TXIRQ 0x02 /* TX interrupt pending */ #define ENE_FW1_TXIRQ 0x02 /* TX interrupt pending */
#define ENE_FW1_HAS_EXTRA_BUF 0x04 /* fw uses extra buffer*/
#define ENE_FW1_EXTRA_BUF_HND 0x08 /* extra buffer handshake bit*/
#define ENE_FW1_LED_ON 0x10 /* turn on a led */
#define ENE_FW1_WPATTERN 0x20 /* enable wake pattern */
#define ENE_FW1_WAKE 0x40 /* enable wake from S3 */ #define ENE_FW1_WAKE 0x40 /* enable wake from S3 */
#define ENE_FW1_IRQ 0x80 /* enable interrupt */ #define ENE_FW1_IRQ 0x80 /* enable interrupt */
/* second firmware register */ /* second firmware flag register */
#define ENE_FW2 0xF8F9 #define ENE_FW2 0xF8F9 /* flagw */
#define ENE_FW2_BUF_HIGH 0x01 /* which half of the buffer to read */ #define ENE_FW2_BUF_WPTR 0x01 /* which half of the buffer to read */
#define ENE_FW2_IRQ_CLR 0x04 /* clear this on IRQ */ #define ENE_FW2_RXIRQ 0x04 /* RX IRQ pending*/
#define ENE_FW2_GP40_AS_LEARN 0x08 /* normal input is used as */ #define ENE_FW2_GP0A 0x08 /* Use GPIO0A for demodulated input */
/* learning input */ #define ENE_FW2_EMMITER1_CONN 0x10 /* TX emmiter 1 connected */
#define ENE_FW2_FAN_AS_NRML_IN 0x40 /* fan is used as normal input */ #define ENE_FW2_EMMITER2_CONN 0x20 /* TX emmiter 2 connected */
#define ENE_FW2_FAN_INPUT 0x40 /* fan input used for demodulated data*/
#define ENE_FW2_LEARNING 0x80 /* hardware supports learning and TX */ #define ENE_FW2_LEARNING 0x80 /* hardware supports learning and TX */
/* firmware RX pointer for new style buffer */
#define ENE_FW_RX_POINTER 0xF8FA
/* high parts of samples for fan input (8 samples)*/
#define ENE_FW_SMPL_BUF_FAN 0xF8FB
#define ENE_FW_SMPL_BUF_FAN_PLS 0x8000 /* combined sample is pulse */
#define ENE_FW_SMPL_BUF_FAN_MSK 0x0FFF /* combined sample maximum value */
#define ENE_FW_SAMPLE_PERIOD_FAN 61 /* fan input has fixed sample period */
/* transmitter ports */ /* transmitter ports */
#define ENE_TX_PORT2 0xFC01 /* this enables one or both */ #define ENE_GPIOFS1 0xFC01
#define ENE_TX_PORT2_EN 0x20 /* TX ports */ #define ENE_GPIOFS1_GPIO0D 0x20 /* enable tx output on GPIO0D */
#define ENE_TX_PORT1 0xFC08 #define ENE_GPIOFS8 0xFC08
#define ENE_TX_PORT1_EN 0x02 #define ENE_GPIOFS8_GPIO41 0x02 /* enable tx output on GPIO40 */
/* IRQ registers block (for revision B) */ /* IRQ registers block (for revision B) */
#define ENEB_IRQ 0xFD09 /* IRQ number */ #define ENEB_IRQ 0xFD09 /* IRQ number */
...@@ -70,97 +77,99 @@ ...@@ -70,97 +77,99 @@
#define ENEB_IRQ_STATUS 0xFD80 /* irq status */ #define ENEB_IRQ_STATUS 0xFD80 /* irq status */
#define ENEB_IRQ_STATUS_IR 0x20 /* IR irq */ #define ENEB_IRQ_STATUS_IR 0x20 /* IR irq */
/* fan as input settings - only if learning capable */ /* fan as input settings */
#define ENE_FAN_AS_IN1 0xFE30 /* fan init reg 1 */ #define ENE_FAN_AS_IN1 0xFE30 /* fan init reg 1 */
#define ENE_FAN_AS_IN1_EN 0xCD #define ENE_FAN_AS_IN1_EN 0xCD
#define ENE_FAN_AS_IN2 0xFE31 /* fan init reg 2 */ #define ENE_FAN_AS_IN2 0xFE31 /* fan init reg 2 */
#define ENE_FAN_AS_IN2_EN 0x03 #define ENE_FAN_AS_IN2_EN 0x03
#define ENE_SAMPLE_PERIOD_FAN 61 /* fan input has fixed sample period */
/* IRQ registers block (for revision C,D) */ /* IRQ registers block (for revision C,D) */
#define ENEC_IRQ 0xFE9B /* new irq settings register */ #define ENE_IRQ 0xFE9B /* new irq settings register */
#define ENEC_IRQ_MASK 0x0F /* irq number mask */ #define ENE_IRQ_MASK 0x0F /* irq number mask */
#define ENEC_IRQ_UNK_EN 0x10 /* always enabled */ #define ENE_IRQ_UNK_EN 0x10 /* always enabled */
#define ENEC_IRQ_STATUS 0x20 /* irq status and ACK */ #define ENE_IRQ_STATUS 0x20 /* irq status and ACK */
/* CIR block settings */ /* CIR Config register #1 */
#define ENE_CIR_CONF1 0xFEC0 #define ENE_CIRCFG 0xFEC0
#define ENE_CIR_CONF1_TX_CLEAR 0x01 /* clear that on revC */ #define ENE_CIRCFG_RX_EN 0x01 /* RX enable */
/* while transmitting */ #define ENE_CIRCFG_RX_IRQ 0x02 /* Enable hardware interrupt */
#define ENE_CIR_CONF1_RX_ON 0x07 /* normal receiver enabled */ #define ENE_CIRCFG_REV_POL 0x04 /* Input polarity reversed */
#define ENE_CIR_CONF1_LEARN1 0x08 /* enabled on learning mode */ #define ENE_CIRCFG_CARR_DEMOD 0x08 /* Enable carrier demodulator */
#define ENE_CIR_CONF1_TX_ON 0x30 /* enabled on transmit */
#define ENE_CIR_CONF1_TX_CARR 0x80 /* send TX carrier or not */ #define ENE_CIRCFG_TX_EN 0x10 /* TX enable */
#define ENE_CIRCFG_TX_IRQ 0x20 /* Send interrupt on TX done */
#define ENE_CIR_CONF2 0xFEC1 /* unknown setting = 0 */ #define ENE_CIRCFG_TX_POL_REV 0x40 /* TX polarity reversed */
#define ENE_CIR_CONF2_LEARN2 0x10 /* set on enable learning */ #define ENE_CIRCFG_TX_CARR 0x80 /* send TX carrier or not */
#define ENE_CIR_CONF2_GPIO40DIS 0x20 /* disable input via gpio40 */
/* CIR config register #2 */
#define ENE_CIR_SAMPLE_PERIOD 0xFEC8 /* sample period in us */ #define ENE_CIRCFG2 0xFEC1
#define ENE_CIR_SAMPLE_OVERFLOW 0x80 /* interrupt on overflows if set */ #define ENE_CIRCFG2_RLC 0x00
#define ENE_CIRCFG2_RC5 0x01
#define ENE_CIRCFG2_RC6 0x02
/* Two byte tx buffer */ #define ENE_CIRCFG2_NEC 0x03
#define ENE_TX_INPUT1 0xFEC9 #define ENE_CIRCFG2_CARR_DETECT 0x10 /* Enable carrier detection */
#define ENE_TX_INPUT2 0xFECA #define ENE_CIRCFG2_GPIO0A 0x20 /* Use GPIO0A instead of GPIO40 for input */
#define ENE_TX_PULSE_MASK 0x80 /* Transmitted sample is pulse */ #define ENE_CIRCFG2_FAST_SAMPL1 0x40 /* Fast leading pulse detection for RC6 */
#define ENE_TX_SMLP_MASK 0x7F #define ENE_CIRCFG2_FAST_SAMPL2 0x80 /* Fast data detection for RC6 */
#define ENE_TX_SMPL_PERIOD 50 /* transmit sample period - fixed */
/* Knobs for protocol decoding - will document when/if will use them */
#define ENE_CIRPF 0xFEC2
#define ENE_CIRHIGH 0xFEC3
#define ENE_CIRBIT 0xFEC4
#define ENE_CIRSTART 0xFEC5
#define ENE_CIRSTART2 0xFEC6
/* Actual register which contains RLC RX data - read by firmware */
#define ENE_CIRDAT_IN 0xFEC7
/* RLC configuration - sample period (1us resulution) + idle mode */
#define ENE_CIRRLC_CFG 0xFEC8
#define ENE_CIRRLC_CFG_OVERFLOW 0x80 /* interrupt on overflows if set */
#define ENE_DEFAULT_SAMPLE_PERIOD 50
/* Two byte RLC TX buffer */
#define ENE_CIRRLC_OUT0 0xFEC9
#define ENE_CIRRLC_OUT1 0xFECA
#define ENE_CIRRLC_OUT_PULSE 0x80 /* Transmitted sample is pulse */
#define ENE_CIRRLC_OUT_MASK 0x7F
/* Carrier detect setting
* Low nibble - number of carrier pulses to average
* High nibble - number of initial carrier pulses to discard
*/
#define ENE_CIRCAR_PULS 0xFECB
/* detected RX carrier period (resolution: 500 ns) */
#define ENE_CIRCAR_PRD 0xFECC
#define ENE_CIRCAR_PRD_VALID 0x80 /* data valid content valid */
/* Unknown TX setting - TX sample period ??? */ /* detected RX carrier pulse width (resolution: 500 ns) */
#define ENE_TX_UNK1 0xFECB /* set to 0x63 */ #define ENE_CIRCAR_HPRD 0xFECD
/* Current received carrier period */ /* TX period (resolution: 500 ns, minimum 2)*/
#define ENE_RX_CARRIER 0xFECC /* RX period (500 ns) */ #define ENE_CIRMOD_PRD 0xFECE
#define ENE_RX_CARRIER_VALID 0x80 /* Register content valid */ #define ENE_CIRMOD_PRD_POL 0x80 /* TX carrier polarity*/
#define ENE_CIRMOD_PRD_MAX 0x7F /* 15.87 kHz */
#define ENE_CIRMOD_PRD_MIN 0x02 /* 1 Mhz */
/* TX period (1/carrier) */ /* TX pulse width (resolution: 500 ns)*/
#define ENE_TX_PERIOD 0xFECE /* TX period (500 ns) */ #define ENE_CIRMOD_HPRD 0xFECF
#define ENE_TX_PERIOD_UNKBIT 0x80 /* This bit set on transmit*/
#define ENE_TX_PERIOD_PULSE 0xFECF /* TX pulse period (500 ns)*/
/* Hardware versions */ /* Hardware versions */
#define ENE_HW_VERSION 0xFF00 /* hardware revision */ #define ENE_ECHV 0xFF00 /* hardware revision */
#define ENE_PLLFRH 0xFF16 #define ENE_PLLFRH 0xFF16
#define ENE_PLLFRL 0xFF17 #define ENE_PLLFRL 0xFF17
#define ENE_DEFAULT_PLL_FREQ 1000
#define ENE_HW_UNK 0xFF1D #define ENE_ECSTS 0xFF1D
#define ENE_HW_UNK_CLR 0x04 #define ENE_ECSTS_RSRVD 0x04
#define ENE_HW_VER_MAJOR 0xFF1E /* chip version */
#define ENE_HW_VER_MINOR 0xFF1F
#define ENE_HW_VER_OLD 0xFD00
/* Normal/Learning carrier ranges - only valid if we have learning input*/
/* TODO: test */
#define ENE_NORMAL_RX_LOW 34
#define ENE_NORMAL_RX_HI 38
/* Tx carrier range */ #define ENE_ECVER_MAJOR 0xFF1E /* chip version */
/* Hardware might be able to do more, but this range is enough for #define ENE_ECVER_MINOR 0xFF1F
all purposes */ #define ENE_HW_VER_OLD 0xFD00
#define ENE_TX_PERIOD_MAX 32 /* corresponds to 29.4 kHz */
#define ENE_TX_PERIOD_MIN 16 /* corrsponds to 62.5 kHz */
/* Minimal and maximal gaps */
/* Normal case:
Minimal gap is 0x7F * sample period
Maximum gap depends on hardware.
For KB3926B, it is unlimited, for newer models its around
250000, after which HW stops sending samples, and that is
not possible to change */
/* Fan case:
Both minimal and maximal gaps are same, and equal to 0xFFF * 0x61
And there is nothing to change this setting
*/
#define ENE_MAXGAP 250000
#define ENE_MINGAP (127 * sample_period)
/******************************************************************************/ /******************************************************************************/
...@@ -171,46 +180,60 @@ ...@@ -171,46 +180,60 @@
#define ENE_HW_B 1 /* 3926B */ #define ENE_HW_B 1 /* 3926B */
#define ENE_HW_C 2 /* 3926C */ #define ENE_HW_C 2 /* 3926C */
#define ENE_HW_D 3 /* 3926D */ #define ENE_HW_D 3 /* 3926D or later */
#define ene_printk(level, text, ...) \ #define ene_printk(level, text, ...) \
printk(level ENE_DRIVER_NAME ": " text, ## __VA_ARGS__) printk(level ENE_DRIVER_NAME ": " text "\n", ## __VA_ARGS__)
#define ene_dbg(text, ...) \ #define ene_notice(text, ...) ene_printk(KERN_NOTICE, text, ## __VA_ARGS__)
if (debug) \ #define ene_warn(text, ...) ene_printk(KERN_WARNING, text, ## __VA_ARGS__)
printk(KERN_DEBUG \
ENE_DRIVER_NAME ": " text "\n" , ## __VA_ARGS__)
#define ene_dbg_verbose(text, ...) \
if (debug > 1) \
printk(KERN_DEBUG \
ENE_DRIVER_NAME ": " text "\n" , ## __VA_ARGS__)
#define __dbg(level, format, ...) \
do { \
if (debug >= level) \
printk(KERN_DEBUG ENE_DRIVER_NAME \
": " format "\n", ## __VA_ARGS__); \
} while (0)
#define dbg(format, ...) __dbg(1, format, ## __VA_ARGS__)
#define dbg_verbose(format, ...) __dbg(2, format, ## __VA_ARGS__)
#define dbg_regs(format, ...) __dbg(3, format, ## __VA_ARGS__)
#define MS_TO_NS(msec) ((msec) * 1000)
struct ene_device { struct ene_device {
struct pnp_dev *pnp_dev; struct pnp_dev *pnp_dev;
struct input_dev *idev; struct input_dev *idev;
struct ir_dev_props *props; struct ir_dev_props *props;
int in_use;
/* hw IO settings */ /* hw IO settings */
unsigned long hw_io; long hw_io;
int irq; int irq;
spinlock_t hw_lock; spinlock_t hw_lock;
/* HW features */ /* HW features */
int hw_revision; /* hardware revision */ int hw_revision; /* hardware revision */
bool hw_learning_and_tx_capable; /* learning capable */ bool hw_use_gpio_0a; /* gpio40 is demodulated input*/
bool hw_gpio40_learning; /* gpio40 is learning */ bool hw_extra_buffer; /* hardware has 'extra buffer' */
bool hw_fan_as_normal_input; /* fan input is used as */ bool hw_fan_input; /* fan input is IR data source */
/* regular input */ bool hw_learning_and_tx_capable; /* learning & tx capable */
int pll_freq;
int buffer_len;
/* Extra RX buffer location */
int extra_buf1_address;
int extra_buf1_len;
int extra_buf2_address;
int extra_buf2_len;
/* HW state*/ /* HW state*/
int rx_pointer; /* hw pointer to rx buffer */ int r_pointer; /* pointer to next sample to read */
int w_pointer; /* pointer to next sample hw will write */
bool rx_fan_input_inuse; /* is fan input in use for rx*/ bool rx_fan_input_inuse; /* is fan input in use for rx*/
int tx_reg; /* current reg used for TX */ int tx_reg; /* current reg used for TX */
u8 saved_conf1; /* saved FEC0 reg */ u8 saved_conf1; /* saved FEC0 reg */
/* TX sample handling */
unsigned int tx_sample; /* current sample for TX */ unsigned int tx_sample; /* current sample for TX */
bool tx_sample_pulse; /* current sample is pulse */ bool tx_sample_pulse; /* current sample is pulse */
...@@ -232,4 +255,8 @@ struct ene_device { ...@@ -232,4 +255,8 @@ struct ene_device {
bool learning_enabled; /* learning input enabled */ bool learning_enabled; /* learning input enabled */
bool carrier_detect_enabled; /* carrier detect enabled */ bool carrier_detect_enabled; /* carrier detect enabled */
int rx_period_adjust; int rx_period_adjust;
bool rx_enabled;
}; };
static int ene_irq_status(struct ene_device *dev);
static void ene_read_hw_pointer(struct ene_device *dev);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment