Commit 132a4edb authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik/libata-dev

* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik/libata-dev:
  sata_fsl,mv,nv: prepare for NCQ command completion update
  ata: Convert pci_table entries to PCI_VDEVICE (if PCI_ANY_ID is used)
  libata: more PCI IDs for jmicron controllers
  ata_piix: fix locking around SIDPR access
  [libata] update blacklist for new hyphenated pattern ranges (v2)
  libata: allow hyphenated pattern ranges
  ata_generic: drop hard coded DMA force logic for CENATEK
  [libata] ahci: Fix warning: comparison between 'enum <anonymous>' and 'enum <anonymous>'
  [libata] add ATA_CMD_DSM to ata_get_cmd_descript
  [libata] Add Samsung PATA controller driver, pata_samsung_cf
  [libata] Add 460EX on-chip SATA driver, sata_dwc_460ex
  libata: reduce blacklist size even more (v2)
  libata: reduce blacklist size (v2)
  libata: glob_match for ata_device_blacklist (v2)
  ahci_platform: Remove unneeded ahci_driver.probe assignment
  ahci_platform: Provide for vendor specific init
parents e6da54d8 752e386c
...@@ -187,6 +187,15 @@ config ATA_PIIX ...@@ -187,6 +187,15 @@ config ATA_PIIX
If unsure, say N. If unsure, say N.
config SATA_DWC
tristate "DesignWare Cores SATA support"
depends on 460EX
help
This option enables support for the on-chip SATA controller of the
AppliedMicro processor 460EX.
If unsure, say N.
config SATA_MV config SATA_MV
tristate "Marvell SATA support" tristate "Marvell SATA support"
help help
...@@ -796,6 +805,15 @@ config PATA_RZ1000 ...@@ -796,6 +805,15 @@ config PATA_RZ1000
If unsure, say N. If unsure, say N.
config PATA_SAMSUNG_CF
tristate "Samsung SoC PATA support"
depends on SAMSUNG_DEV_IDE
help
This option enables basic support for Samsung's S3C/S5P board
PATA controllers via the new ATA layer
If unsure, say N.
config PATA_WINBOND_VLB config PATA_WINBOND_VLB
tristate "Winbond W83759A VLB PATA support (Experimental)" tristate "Winbond W83759A VLB PATA support (Experimental)"
depends on ISA && EXPERIMENTAL depends on ISA && EXPERIMENTAL
......
...@@ -7,6 +7,7 @@ obj-$(CONFIG_SATA_AHCI_PLATFORM) += ahci_platform.o libahci.o ...@@ -7,6 +7,7 @@ obj-$(CONFIG_SATA_AHCI_PLATFORM) += ahci_platform.o libahci.o
obj-$(CONFIG_SATA_FSL) += sata_fsl.o obj-$(CONFIG_SATA_FSL) += sata_fsl.o
obj-$(CONFIG_SATA_INIC162X) += sata_inic162x.o obj-$(CONFIG_SATA_INIC162X) += sata_inic162x.o
obj-$(CONFIG_SATA_SIL24) += sata_sil24.o obj-$(CONFIG_SATA_SIL24) += sata_sil24.o
obj-$(CONFIG_SATA_DWC) += sata_dwc_460ex.o
# SFF w/ custom DMA # SFF w/ custom DMA
obj-$(CONFIG_PDC_ADMA) += pdc_adma.o obj-$(CONFIG_PDC_ADMA) += pdc_adma.o
...@@ -87,6 +88,7 @@ obj-$(CONFIG_PATA_OF_PLATFORM) += pata_of_platform.o ...@@ -87,6 +88,7 @@ obj-$(CONFIG_PATA_OF_PLATFORM) += pata_of_platform.o
obj-$(CONFIG_PATA_QDI) += pata_qdi.o obj-$(CONFIG_PATA_QDI) += pata_qdi.o
obj-$(CONFIG_PATA_RB532) += pata_rb532_cf.o obj-$(CONFIG_PATA_RB532) += pata_rb532_cf.o
obj-$(CONFIG_PATA_RZ1000) += pata_rz1000.o obj-$(CONFIG_PATA_RZ1000) += pata_rz1000.o
obj-$(CONFIG_PATA_SAMSUNG_CF) += pata_samsung_cf.o
obj-$(CONFIG_PATA_WINBOND_VLB) += pata_winbond.o obj-$(CONFIG_PATA_WINBOND_VLB) += pata_winbond.o
# Should be last but two libata driver # Should be last but two libata driver
......
...@@ -1042,7 +1042,7 @@ static int ahci_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) ...@@ -1042,7 +1042,7 @@ static int ahci_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
VPRINTK("ENTER\n"); VPRINTK("ENTER\n");
WARN_ON(ATA_MAX_QUEUE > AHCI_MAX_CMDS); WARN_ON((int)ATA_MAX_QUEUE > AHCI_MAX_CMDS);
if (!printed_version++) if (!printed_version++)
dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n"); dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
......
...@@ -54,19 +54,13 @@ static int __init ahci_probe(struct platform_device *pdev) ...@@ -54,19 +54,13 @@ static int __init ahci_probe(struct platform_device *pdev)
return -EINVAL; return -EINVAL;
} }
if (pdata && pdata->init) {
rc = pdata->init(dev);
if (rc)
return rc;
}
if (pdata && pdata->ata_port_info) if (pdata && pdata->ata_port_info)
pi = *pdata->ata_port_info; pi = *pdata->ata_port_info;
hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
if (!hpriv) { if (!hpriv) {
rc = -ENOMEM; dev_err(dev, "can't alloc ahci_host_priv\n");
goto err0; return -ENOMEM;
} }
hpriv->flags |= (unsigned long)pi.private_data; hpriv->flags |= (unsigned long)pi.private_data;
...@@ -74,8 +68,19 @@ static int __init ahci_probe(struct platform_device *pdev) ...@@ -74,8 +68,19 @@ static int __init ahci_probe(struct platform_device *pdev)
hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem)); hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem));
if (!hpriv->mmio) { if (!hpriv->mmio) {
dev_err(dev, "can't map %pR\n", mem); dev_err(dev, "can't map %pR\n", mem);
rc = -ENOMEM; return -ENOMEM;
goto err0; }
/*
* Some platforms might need to prepare for mmio region access,
* which could be done in the following init call. So, the mmio
* region shouldn't be accessed before init (if provided) has
* returned successfully.
*/
if (pdata && pdata->init) {
rc = pdata->init(dev, hpriv->mmio);
if (rc)
return rc;
} }
ahci_save_initial_config(dev, hpriv, ahci_save_initial_config(dev, hpriv,
...@@ -166,7 +171,6 @@ static int __devexit ahci_remove(struct platform_device *pdev) ...@@ -166,7 +171,6 @@ static int __devexit ahci_remove(struct platform_device *pdev)
} }
static struct platform_driver ahci_driver = { static struct platform_driver ahci_driver = {
.probe = ahci_probe,
.remove = __devexit_p(ahci_remove), .remove = __devexit_p(ahci_remove),
.driver = { .driver = {
.name = "ahci", .name = "ahci",
......
...@@ -54,7 +54,6 @@ static int generic_set_mode(struct ata_link *link, struct ata_device **unused) ...@@ -54,7 +54,6 @@ static int generic_set_mode(struct ata_link *link, struct ata_device **unused)
const struct pci_device_id *id = ap->host->private_data; const struct pci_device_id *id = ap->host->private_data;
int dma_enabled = 0; int dma_enabled = 0;
struct ata_device *dev; struct ata_device *dev;
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
if (id->driver_data & ATA_GEN_FORCE_DMA) { if (id->driver_data & ATA_GEN_FORCE_DMA) {
dma_enabled = 0xff; dma_enabled = 0xff;
...@@ -63,9 +62,6 @@ static int generic_set_mode(struct ata_link *link, struct ata_device **unused) ...@@ -63,9 +62,6 @@ static int generic_set_mode(struct ata_link *link, struct ata_device **unused)
dma_enabled = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); dma_enabled = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
} }
if (pdev->vendor == PCI_VENDOR_ID_CENATEK)
dma_enabled = 0xFF;
ata_for_each_dev(dev, link, ENABLED) { ata_for_each_dev(dev, link, ENABLED) {
/* We don't really care */ /* We don't really care */
dev->pio_mode = XFER_PIO_0; dev->pio_mode = XFER_PIO_0;
......
...@@ -158,6 +158,7 @@ struct piix_map_db { ...@@ -158,6 +158,7 @@ struct piix_map_db {
struct piix_host_priv { struct piix_host_priv {
const int *map; const int *map;
u32 saved_iocfg; u32 saved_iocfg;
spinlock_t sidpr_lock; /* FIXME: remove once locking in EH is fixed */
void __iomem *sidpr; void __iomem *sidpr;
}; };
...@@ -951,12 +952,15 @@ static int piix_sidpr_scr_read(struct ata_link *link, ...@@ -951,12 +952,15 @@ static int piix_sidpr_scr_read(struct ata_link *link,
unsigned int reg, u32 *val) unsigned int reg, u32 *val)
{ {
struct piix_host_priv *hpriv = link->ap->host->private_data; struct piix_host_priv *hpriv = link->ap->host->private_data;
unsigned long flags;
if (reg >= ARRAY_SIZE(piix_sidx_map)) if (reg >= ARRAY_SIZE(piix_sidx_map))
return -EINVAL; return -EINVAL;
spin_lock_irqsave(&hpriv->sidpr_lock, flags);
piix_sidpr_sel(link, reg); piix_sidpr_sel(link, reg);
*val = ioread32(hpriv->sidpr + PIIX_SIDPR_DATA); *val = ioread32(hpriv->sidpr + PIIX_SIDPR_DATA);
spin_unlock_irqrestore(&hpriv->sidpr_lock, flags);
return 0; return 0;
} }
...@@ -964,12 +968,15 @@ static int piix_sidpr_scr_write(struct ata_link *link, ...@@ -964,12 +968,15 @@ static int piix_sidpr_scr_write(struct ata_link *link,
unsigned int reg, u32 val) unsigned int reg, u32 val)
{ {
struct piix_host_priv *hpriv = link->ap->host->private_data; struct piix_host_priv *hpriv = link->ap->host->private_data;
unsigned long flags;
if (reg >= ARRAY_SIZE(piix_sidx_map)) if (reg >= ARRAY_SIZE(piix_sidx_map))
return -EINVAL; return -EINVAL;
spin_lock_irqsave(&hpriv->sidpr_lock, flags);
piix_sidpr_sel(link, reg); piix_sidpr_sel(link, reg);
iowrite32(val, hpriv->sidpr + PIIX_SIDPR_DATA); iowrite32(val, hpriv->sidpr + PIIX_SIDPR_DATA);
spin_unlock_irqrestore(&hpriv->sidpr_lock, flags);
return 0; return 0;
} }
...@@ -1566,6 +1573,7 @@ static int __devinit piix_init_one(struct pci_dev *pdev, ...@@ -1566,6 +1573,7 @@ static int __devinit piix_init_one(struct pci_dev *pdev,
hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
if (!hpriv) if (!hpriv)
return -ENOMEM; return -ENOMEM;
spin_lock_init(&hpriv->sidpr_lock);
/* Save IOCFG, this will be used for cable detection, quirk /* Save IOCFG, this will be used for cable detection, quirk
* detection and restoration on detach. This is necessary * detection and restoration on detach. This is necessary
......
...@@ -4167,15 +4167,13 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = { ...@@ -4167,15 +4167,13 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = {
{ "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
{ "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
{ "CRD-84", NULL, ATA_HORKAGE_NODMA }, { "CRD-84", NULL, ATA_HORKAGE_NODMA },
{ "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
{ "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
{ "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
{ "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
{ "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
...@@ -4211,70 +4209,16 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = { ...@@ -4211,70 +4209,16 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = {
{ "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
/* Seagate NCQ + FLUSH CACHE firmware bug */ /* Seagate NCQ + FLUSH CACHE firmware bug */
{ "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ | { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN }, ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ | { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN }, ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ | { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN }, ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ | { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN },
{ "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ATA_HORKAGE_FIRMWARE_WARN }, ATA_HORKAGE_FIRMWARE_WARN },
/* Blacklist entries taken from Silicon Image 3124/3132 /* Blacklist entries taken from Silicon Image 3124/3132
...@@ -4303,12 +4247,7 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = { ...@@ -4303,12 +4247,7 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = {
/* Devices which get the IVB wrong */ /* Devices which get the IVB wrong */
{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
/* Maybe we should just blacklist TSSTcorp... */ /* Maybe we should just blacklist TSSTcorp... */
{ "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
{ "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
{ "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
{ "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
{ "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
{ "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
/* Devices that do not need bridging limits applied */ /* Devices that do not need bridging limits applied */
{ "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
...@@ -4326,27 +4265,71 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = { ...@@ -4326,27 +4265,71 @@ static const struct ata_blacklist_entry ata_device_blacklist [] = {
{ } { }
}; };
static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) /**
{ * glob_match - match a text string against a glob-style pattern
const char *p; * @text: the string to be examined
int len; * @pattern: the glob-style pattern to be matched against
*
/* * Either/both of text and pattern can be empty strings.
* check for trailing wildcard: *\0 *
* Match text against a glob-style pattern, with wildcards and simple sets:
*
* ? matches any single character.
* * matches any run of characters.
* [xyz] matches a single character from the set: x, y, or z.
* [a-d] matches a single character from the range: a, b, c, or d.
* [a-d0-9] matches a single character from either range.
*
* The special characters ?, [, -, or *, can be matched using a set, eg. [*]
* Behaviour with malformed patterns is undefined, though generally reasonable.
*
* Example patterns: "SD1?", "SD1[0-5]", "*R0", SD*1?[012]*xx"
*
* This function uses one level of recursion per '*' in pattern.
* Since it calls _nothing_ else, and has _no_ explicit local variables,
* this will not cause stack problems for any reasonable use here.
*
* RETURNS:
* 0 on match, 1 otherwise.
*/ */
p = strchr(patt, wildchar); static int glob_match (const char *text, const char *pattern)
if (p && ((*(p + 1)) == 0)) {
len = p - patt; do {
else { /* Match single character or a '?' wildcard */
len = strlen(name); if (*text == *pattern || *pattern == '?') {
if (!len) { if (!*pattern++)
if (!*patt) return 0; /* End of both strings: match */
return 0; } else {
return -1; /* Match single char against a '[' bracketed ']' pattern set */
if (!*text || *pattern != '[')
break; /* Not a pattern set */
while (*++pattern && *pattern != ']' && *text != *pattern) {
if (*pattern == '-' && *(pattern - 1) != '[')
if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
++pattern;
break;
} }
} }
if (!*pattern || *pattern == ']')
return 1; /* No match */
while (*pattern && *pattern++ != ']');
}
} while (*++text && *pattern);
return strncmp(patt, name, len); /* Match any run of chars against a '*' wildcard */
if (*pattern == '*') {
if (!*++pattern)
return 0; /* Match: avoid recursion at end of pattern */
/* Loop to handle additional pattern chars after the wildcard */
while (*text) {
if (glob_match(text, pattern) == 0)
return 0; /* Remainder matched */
++text; /* Absorb (match) this char and try again */
}
}
if (!*text && !*pattern)
return 0; /* End of both strings: match */
return 1; /* No match */
} }
static unsigned long ata_dev_blacklisted(const struct ata_device *dev) static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
...@@ -4359,10 +4342,10 @@ static unsigned long ata_dev_blacklisted(const struct ata_device *dev) ...@@ -4359,10 +4342,10 @@ static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
while (ad->model_num) { while (ad->model_num) {
if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { if (!glob_match(model_num, ad->model_num)) {
if (ad->model_rev == NULL) if (ad->model_rev == NULL)
return ad->horkage; return ad->horkage;
if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) if (!glob_match(model_rev, ad->model_rev))
return ad->horkage; return ad->horkage;
} }
ad++; ad++;
......
...@@ -2214,6 +2214,7 @@ const char *ata_get_cmd_descript(u8 command) ...@@ -2214,6 +2214,7 @@ const char *ata_get_cmd_descript(u8 command)
{ ATA_CMD_SMART, "SMART" }, { ATA_CMD_SMART, "SMART" },
{ ATA_CMD_MEDIA_LOCK, "DOOR LOCK" }, { ATA_CMD_MEDIA_LOCK, "DOOR LOCK" },
{ ATA_CMD_MEDIA_UNLOCK, "DOOR UNLOCK" }, { ATA_CMD_MEDIA_UNLOCK, "DOOR UNLOCK" },
{ ATA_CMD_DSM, "DATA SET MANAGEMENT" },
{ ATA_CMD_CHK_MED_CRD_TYP, "CHECK MEDIA CARD TYPE" }, { ATA_CMD_CHK_MED_CRD_TYP, "CHECK MEDIA CARD TYPE" },
{ ATA_CMD_CFA_REQ_EXT_ERR, "CFA REQUEST EXTENDED ERROR" }, { ATA_CMD_CFA_REQ_EXT_ERR, "CFA REQUEST EXTENDED ERROR" },
{ ATA_CMD_CFA_WRITE_NE, "CFA WRITE SECTORS WITHOUT ERASE" }, { ATA_CMD_CFA_WRITE_NE, "CFA WRITE SECTORS WITHOUT ERASE" },
......
/*
* Copyright (c) 2010 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* PATA driver for Samsung SoCs.
* Supports CF Interface in True IDE mode. Currently only PIO mode has been
* implemented; UDMA support has to be added.
*
* Based on:
* PATA driver for AT91SAM9260 Static Memory Controller
* PATA driver for Toshiba SCC controller
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/libata.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <plat/ata.h>
#include <plat/regs-ata.h>
#define DRV_NAME "pata_samsung_cf"
#define DRV_VERSION "0.1"
enum s3c_cpu_type {
TYPE_S3C64XX,
TYPE_S5PC100,
TYPE_S5PV210,
};
/*
* struct s3c_ide_info - S3C PATA instance.
* @clk: The clock resource for this controller.
* @ide_addr: The area mapped for the hardware registers.
* @sfr_addr: The area mapped for the special function registers.
* @irq: The IRQ number we are using.
* @cpu_type: The exact type of this controller.
* @fifo_status_reg: The ATA_FIFO_STATUS register offset.
*/
struct s3c_ide_info {
struct clk *clk;
void __iomem *ide_addr;
void __iomem *sfr_addr;
unsigned int irq;
enum s3c_cpu_type cpu_type;
unsigned int fifo_status_reg;
};
static void pata_s3c_set_endian(void __iomem *s3c_ide_regbase, u8 mode)
{
u32 reg = readl(s3c_ide_regbase + S3C_ATA_CFG);
reg = mode ? (reg & ~S3C_ATA_CFG_SWAP) : (reg | S3C_ATA_CFG_SWAP);
writel(reg, s3c_ide_regbase + S3C_ATA_CFG);
}
static void pata_s3c_cfg_mode(void __iomem *s3c_ide_sfrbase)
{
/* Select true-ide as the internal operating mode */
writel(readl(s3c_ide_sfrbase + S3C_CFATA_MUX) | S3C_CFATA_MUX_TRUEIDE,
s3c_ide_sfrbase + S3C_CFATA_MUX);
}
static unsigned long
pata_s3c_setup_timing(struct s3c_ide_info *info, const struct ata_timing *ata)
{
int t1 = ata->setup;
int t2 = ata->act8b;
int t2i = ata->rec8b;
ulong piotime;
piotime = ((t2i & 0xff) << 12) | ((t2 & 0xff) << 4) | (t1 & 0xf);
return piotime;
}
static void pata_s3c_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct s3c_ide_info *info = ap->host->private_data;
struct ata_timing timing;
int cycle_time;
ulong ata_cfg = readl(info->ide_addr + S3C_ATA_CFG);
ulong piotime;
/* Enables IORDY if mode requires it */
if (ata_pio_need_iordy(adev))
ata_cfg |= S3C_ATA_CFG_IORDYEN;
else
ata_cfg &= ~S3C_ATA_CFG_IORDYEN;
cycle_time = (int)(1000000000UL / clk_get_rate(info->clk));
ata_timing_compute(adev, adev->pio_mode, &timing,
cycle_time * 1000, 0);
piotime = pata_s3c_setup_timing(info, &timing);
writel(ata_cfg, info->ide_addr + S3C_ATA_CFG);
writel(piotime, info->ide_addr + S3C_ATA_PIO_TIME);
}
/*
* Waits until the IDE controller is able to perform next read/write
* operation to the disk. Needed for 64XX series boards only.
*/
static int wait_for_host_ready(struct s3c_ide_info *info)
{
ulong timeout;
void __iomem *fifo_reg = info->ide_addr + info->fifo_status_reg;
/* wait for maximum of 20 msec */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
if ((readl(fifo_reg) >> 28) == 0)
return 0;
}
return -EBUSY;
}
/*
* Writes to one of the task file registers.
*/
static void ata_outb(struct ata_host *host, u8 addr, void __iomem *reg)
{
struct s3c_ide_info *info = host->private_data;
wait_for_host_ready(info);
writeb(addr, reg);
}
/*
* Reads from one of the task file registers.
*/
static u8 ata_inb(struct ata_host *host, void __iomem *reg)
{
struct s3c_ide_info *info = host->private_data;
u8 temp;
wait_for_host_ready(info);
(void) readb(reg);
wait_for_host_ready(info);
temp = readb(info->ide_addr + S3C_ATA_PIO_RDATA);
return temp;
}
/*
* pata_s3c_tf_load - send taskfile registers to host controller
*/
static void pata_s3c_tf_load(struct ata_port *ap,
const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
ata_outb(ap->host, tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
ata_outb(ap->host, tf->hob_feature, ioaddr->feature_addr);
ata_outb(ap->host, tf->hob_nsect, ioaddr->nsect_addr);
ata_outb(ap->host, tf->hob_lbal, ioaddr->lbal_addr);
ata_outb(ap->host, tf->hob_lbam, ioaddr->lbam_addr);
ata_outb(ap->host, tf->hob_lbah, ioaddr->lbah_addr);
}
if (is_addr) {
ata_outb(ap->host, tf->feature, ioaddr->feature_addr);
ata_outb(ap->host, tf->nsect, ioaddr->nsect_addr);
ata_outb(ap->host, tf->lbal, ioaddr->lbal_addr);
ata_outb(ap->host, tf->lbam, ioaddr->lbam_addr);
ata_outb(ap->host, tf->lbah, ioaddr->lbah_addr);
}
if (tf->flags & ATA_TFLAG_DEVICE)
ata_outb(ap->host, tf->device, ioaddr->device_addr);
ata_wait_idle(ap);
}
/*
* pata_s3c_tf_read - input device's ATA taskfile shadow registers
*/
static void pata_s3c_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->feature = ata_inb(ap->host, ioaddr->error_addr);
tf->nsect = ata_inb(ap->host, ioaddr->nsect_addr);
tf->lbal = ata_inb(ap->host, ioaddr->lbal_addr);
tf->lbam = ata_inb(ap->host, ioaddr->lbam_addr);
tf->lbah = ata_inb(ap->host, ioaddr->lbah_addr);
tf->device = ata_inb(ap->host, ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
ata_outb(ap->host, tf->ctl | ATA_HOB, ioaddr->ctl_addr);
tf->hob_feature = ata_inb(ap->host, ioaddr->error_addr);
tf->hob_nsect = ata_inb(ap->host, ioaddr->nsect_addr);
tf->hob_lbal = ata_inb(ap->host, ioaddr->lbal_addr);
tf->hob_lbam = ata_inb(ap->host, ioaddr->lbam_addr);
tf->hob_lbah = ata_inb(ap->host, ioaddr->lbah_addr);
ata_outb(ap->host, tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
}
}
/*
* pata_s3c_exec_command - issue ATA command to host controller
*/
static void pata_s3c_exec_command(struct ata_port *ap,
const struct ata_taskfile *tf)
{
ata_outb(ap->host, tf->command, ap->ioaddr.command_addr);
ata_sff_pause(ap);
}
/*
* pata_s3c_check_status - Read device status register
*/
static u8 pata_s3c_check_status(struct ata_port *ap)
{
return ata_inb(ap->host, ap->ioaddr.status_addr);
}
/*
* pata_s3c_check_altstatus - Read alternate device status register
*/
static u8 pata_s3c_check_altstatus(struct ata_port *ap)
{
return ata_inb(ap->host, ap->ioaddr.altstatus_addr);
}
/*
* pata_s3c_data_xfer - Transfer data by PIO
*/
unsigned int pata_s3c_data_xfer(struct ata_device *dev, unsigned char *buf,
unsigned int buflen, int rw)
{
struct ata_port *ap = dev->link->ap;
struct s3c_ide_info *info = ap->host->private_data;
void __iomem *data_addr = ap->ioaddr.data_addr;
unsigned int words = buflen >> 1, i;
u16 *data_ptr = (u16 *)buf;
/* Requires wait same as in ata_inb/ata_outb */
if (rw == READ)
for (i = 0; i < words; i++, data_ptr++) {
wait_for_host_ready(info);
(void) readw(data_addr);
wait_for_host_ready(info);
*data_ptr = readw(info->ide_addr
+ S3C_ATA_PIO_RDATA);
}
else
for (i = 0; i < words; i++, data_ptr++) {
wait_for_host_ready(info);
writew(*data_ptr, data_addr);
}
if (buflen & 0x01)
dev_err(ap->dev, "unexpected trailing data\n");
return words << 1;
}
/*
* pata_s3c_dev_select - Select device on ATA bus
*/
static void pata_s3c_dev_select(struct ata_port *ap, unsigned int device)
{
u8 tmp = ATA_DEVICE_OBS;
if (device != 0)
tmp |= ATA_DEV1;
ata_outb(ap->host, tmp, ap->ioaddr.device_addr);
ata_sff_pause(ap);
}
/*
* pata_s3c_devchk - PATA device presence detection
*/
static unsigned int pata_s3c_devchk(struct ata_port *ap,
unsigned int device)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 nsect, lbal;
pata_s3c_dev_select(ap, device);
ata_outb(ap->host, 0x55, ioaddr->nsect_addr);
ata_outb(ap->host, 0xaa, ioaddr->lbal_addr);
ata_outb(ap->host, 0xaa, ioaddr->nsect_addr);
ata_outb(ap->host, 0x55, ioaddr->lbal_addr);
ata_outb(ap->host, 0x55, ioaddr->nsect_addr);
ata_outb(ap->host, 0xaa, ioaddr->lbal_addr);
nsect = ata_inb(ap->host, ioaddr->nsect_addr);
lbal = ata_inb(ap->host, ioaddr->lbal_addr);
if ((nsect == 0x55) && (lbal == 0xaa))
return 1; /* we found a device */
return 0; /* nothing found */
}
/*
* pata_s3c_wait_after_reset - wait for devices to become ready after reset
*/
static int pata_s3c_wait_after_reset(struct ata_link *link,
unsigned long deadline)
{
int rc;
msleep(ATA_WAIT_AFTER_RESET);
/* always check readiness of the master device */
rc = ata_sff_wait_ready(link, deadline);
/* -ENODEV means the odd clown forgot the D7 pulldown resistor
* and TF status is 0xff, bail out on it too.
*/
if (rc)
return rc;
return 0;
}
/*
* pata_s3c_bus_softreset - PATA device software reset
*/
static unsigned int pata_s3c_bus_softreset(struct ata_port *ap,
unsigned long deadline)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
/* software reset. causes dev0 to be selected */
ata_outb(ap->host, ap->ctl, ioaddr->ctl_addr);
udelay(20);
ata_outb(ap->host, ap->ctl | ATA_SRST, ioaddr->ctl_addr);
udelay(20);
ata_outb(ap->host, ap->ctl, ioaddr->ctl_addr);
ap->last_ctl = ap->ctl;
return pata_s3c_wait_after_reset(&ap->link, deadline);
}
/*
* pata_s3c_softreset - reset host port via ATA SRST
*/
static int pata_s3c_softreset(struct ata_link *link, unsigned int *classes,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
unsigned int devmask = 0;
int rc;
u8 err;
/* determine if device 0 is present */
if (pata_s3c_devchk(ap, 0))
devmask |= (1 << 0);
/* select device 0 again */
pata_s3c_dev_select(ap, 0);
/* issue bus reset */
rc = pata_s3c_bus_softreset(ap, deadline);
/* if link is occupied, -ENODEV too is an error */
if (rc && rc != -ENODEV) {
ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
return rc;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_sff_dev_classify(&ap->link.device[0],
devmask & (1 << 0), &err);
return 0;
}
/*
* pata_s3c_set_devctl - Write device control register
*/
static void pata_s3c_set_devctl(struct ata_port *ap, u8 ctl)
{
ata_outb(ap->host, ctl, ap->ioaddr.ctl_addr);
}
static struct scsi_host_template pata_s3c_sht = {
ATA_PIO_SHT(DRV_NAME),
};
static struct ata_port_operations pata_s3c_port_ops = {
.inherits = &ata_sff_port_ops,
.sff_check_status = pata_s3c_check_status,
.sff_check_altstatus = pata_s3c_check_altstatus,
.sff_tf_load = pata_s3c_tf_load,
.sff_tf_read = pata_s3c_tf_read,
.sff_data_xfer = pata_s3c_data_xfer,
.sff_exec_command = pata_s3c_exec_command,
.sff_dev_select = pata_s3c_dev_select,
.sff_set_devctl = pata_s3c_set_devctl,
.softreset = pata_s3c_softreset,
.set_piomode = pata_s3c_set_piomode,
};
static struct ata_port_operations pata_s5p_port_ops = {
.inherits = &ata_sff_port_ops,
.set_piomode = pata_s3c_set_piomode,
};
static void pata_s3c_enable(void *s3c_ide_regbase, bool state)
{
u32 temp = readl(s3c_ide_regbase + S3C_ATA_CTRL);
temp = state ? (temp | 1) : (temp & ~1);
writel(temp, s3c_ide_regbase + S3C_ATA_CTRL);
}
static irqreturn_t pata_s3c_irq(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct s3c_ide_info *info = host->private_data;
u32 reg;
reg = readl(info->ide_addr + S3C_ATA_IRQ);
writel(reg, info->ide_addr + S3C_ATA_IRQ);
return ata_sff_interrupt(irq, dev_instance);
}
static void pata_s3c_hwinit(struct s3c_ide_info *info,
struct s3c_ide_platdata *pdata)
{
switch (info->cpu_type) {
case TYPE_S3C64XX:
/* Configure as big endian */
pata_s3c_cfg_mode(info->sfr_addr);
pata_s3c_set_endian(info->ide_addr, 1);
pata_s3c_enable(info->ide_addr, true);
msleep(100);
/* Remove IRQ Status */
writel(0x1f, info->ide_addr + S3C_ATA_IRQ);
writel(0x1b, info->ide_addr + S3C_ATA_IRQ_MSK);
break;
case TYPE_S5PC100:
pata_s3c_cfg_mode(info->sfr_addr);
/* FALLTHROUGH */
case TYPE_S5PV210:
/* Configure as little endian */
pata_s3c_set_endian(info->ide_addr, 0);
pata_s3c_enable(info->ide_addr, true);
msleep(100);
/* Remove IRQ Status */
writel(0x3f, info->ide_addr + S3C_ATA_IRQ);
writel(0x3f, info->ide_addr + S3C_ATA_IRQ_MSK);
break;
default:
BUG();
}
}
static int __init pata_s3c_probe(struct platform_device *pdev)
{
struct s3c_ide_platdata *pdata = pdev->dev.platform_data;
struct device *dev = &pdev->dev;
struct s3c_ide_info *info;
struct resource *res;
struct ata_port *ap;
struct ata_host *host;
enum s3c_cpu_type cpu_type;
int ret;
cpu_type = platform_get_device_id(pdev)->driver_data;
info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
if (!info) {
dev_err(dev, "failed to allocate memory for device data\n");
return -ENOMEM;
}
info->irq = platform_get_irq(pdev, 0);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(dev, "failed to get mem resource\n");
return -EINVAL;
}
if (!devm_request_mem_region(dev, res->start,
resource_size(res), DRV_NAME)) {
dev_err(dev, "error requesting register region\n");
return -EBUSY;
}
info->ide_addr = devm_ioremap(dev, res->start, resource_size(res));
if (!info->ide_addr) {
dev_err(dev, "failed to map IO base address\n");
return -ENOMEM;
}
info->clk = clk_get(&pdev->dev, "cfcon");
if (IS_ERR(info->clk)) {
dev_err(dev, "failed to get access to cf controller clock\n");
ret = PTR_ERR(info->clk);
info->clk = NULL;
return ret;
}
clk_enable(info->clk);
/* init ata host */
host = ata_host_alloc(dev, 1);
if (!host) {
dev_err(dev, "failed to allocate ide host\n");
ret = -ENOMEM;
goto stop_clk;
}
ap = host->ports[0];
ap->flags |= ATA_FLAG_MMIO;
ap->pio_mask = ATA_PIO4;
if (cpu_type == TYPE_S3C64XX) {
ap->ops = &pata_s3c_port_ops;
info->sfr_addr = info->ide_addr + 0x1800;
info->ide_addr += 0x1900;
info->fifo_status_reg = 0x94;
} else if (cpu_type == TYPE_S5PC100) {
ap->ops = &pata_s5p_port_ops;
info->sfr_addr = info->ide_addr + 0x1800;
info->ide_addr += 0x1900;
info->fifo_status_reg = 0x84;
} else {
ap->ops = &pata_s5p_port_ops;
info->fifo_status_reg = 0x84;
}
info->cpu_type = cpu_type;
if (info->irq <= 0) {
ap->flags |= ATA_FLAG_PIO_POLLING;
info->irq = 0;
ata_port_desc(ap, "no IRQ, using PIO polling\n");
}
ap->ioaddr.cmd_addr = info->ide_addr + S3C_ATA_CMD;
ap->ioaddr.data_addr = info->ide_addr + S3C_ATA_PIO_DTR;
ap->ioaddr.error_addr = info->ide_addr + S3C_ATA_PIO_FED;
ap->ioaddr.feature_addr = info->ide_addr + S3C_ATA_PIO_FED;
ap->ioaddr.nsect_addr = info->ide_addr + S3C_ATA_PIO_SCR;
ap->ioaddr.lbal_addr = info->ide_addr + S3C_ATA_PIO_LLR;
ap->ioaddr.lbam_addr = info->ide_addr + S3C_ATA_PIO_LMR;
ap->ioaddr.lbah_addr = info->ide_addr + S3C_ATA_PIO_LHR;
ap->ioaddr.device_addr = info->ide_addr + S3C_ATA_PIO_DVR;
ap->ioaddr.status_addr = info->ide_addr + S3C_ATA_PIO_CSD;
ap->ioaddr.command_addr = info->ide_addr + S3C_ATA_PIO_CSD;
ap->ioaddr.altstatus_addr = info->ide_addr + S3C_ATA_PIO_DAD;
ap->ioaddr.ctl_addr = info->ide_addr + S3C_ATA_PIO_DAD;
ata_port_desc(ap, "mmio cmd 0x%llx ",
(unsigned long long)res->start);
host->private_data = info;
if (pdata && pdata->setup_gpio)
pdata->setup_gpio();
/* Set endianness and enable the interface */
pata_s3c_hwinit(info, pdata);
platform_set_drvdata(pdev, host);
return ata_host_activate(host, info->irq,
info->irq ? pata_s3c_irq : NULL,
0, &pata_s3c_sht);
stop_clk:
clk_disable(info->clk);
clk_put(info->clk);
return ret;
}
static int __exit pata_s3c_remove(struct platform_device *pdev)
{
struct ata_host *host = platform_get_drvdata(pdev);
struct s3c_ide_info *info = host->private_data;
ata_host_detach(host);
clk_disable(info->clk);
clk_put(info->clk);
return 0;
}
#ifdef CONFIG_PM
static int pata_s3c_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct ata_host *host = platform_get_drvdata(pdev);
return ata_host_suspend(host, PMSG_SUSPEND);
}
static int pata_s3c_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct ata_host *host = platform_get_drvdata(pdev);
struct s3c_ide_platdata *pdata = pdev->dev.platform_data;
struct s3c_ide_info *info = host->private_data;
pata_s3c_hwinit(info, pdata);
ata_host_resume(host);
return 0;
}
static const struct dev_pm_ops pata_s3c_pm_ops = {
.suspend = pata_s3c_suspend,
.resume = pata_s3c_resume,
};
#endif
/* driver device registration */
static struct platform_device_id pata_s3c_driver_ids[] = {
{
.name = "s3c64xx-pata",
.driver_data = TYPE_S3C64XX,
}, {
.name = "s5pc100-pata",
.driver_data = TYPE_S5PC100,
}, {
.name = "s5pv210-pata",
.driver_data = TYPE_S5PV210,
},
{ }
};
MODULE_DEVICE_TABLE(platform, pata_s3c_driver_ids);
static struct platform_driver pata_s3c_driver = {
.remove = __exit_p(pata_s3c_remove),
.id_table = pata_s3c_driver_ids,
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &pata_s3c_pm_ops,
#endif
},
};
static int __init pata_s3c_init(void)
{
return platform_driver_probe(&pata_s3c_driver, pata_s3c_probe);
}
static void __exit pata_s3c_exit(void)
{
platform_driver_unregister(&pata_s3c_driver);
}
module_init(pata_s3c_init);
module_exit(pata_s3c_exit);
MODULE_AUTHOR("Abhilash Kesavan, <a.kesavan@samsung.com>");
MODULE_DESCRIPTION("low-level driver for Samsung PATA controller");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
...@@ -168,8 +168,7 @@ static const unsigned long JCACTSELtbl[2][7] = { ...@@ -168,8 +168,7 @@ static const unsigned long JCACTSELtbl[2][7] = {
}; };
static const struct pci_device_id scc_pci_tbl[] = { static const struct pci_device_id scc_pci_tbl[] = {
{PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_SCC_ATA, { PCI_VDEVICE(TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_SCC_ATA), 0},
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ } /* terminate list */ { } /* terminate list */
}; };
......
/*
* drivers/ata/sata_dwc_460ex.c
*
* Synopsys DesignWare Cores (DWC) SATA host driver
*
* Author: Mark Miesfeld <mmiesfeld@amcc.com>
*
* Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
* Copyright 2008 DENX Software Engineering
*
* Based on versions provided by AMCC and Synopsys which are:
* Copyright 2006 Applied Micro Circuits Corporation
* COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifdef CONFIG_SATA_DWC_DEBUG
#define DEBUG
#endif
#ifdef CONFIG_SATA_DWC_VDEBUG
#define VERBOSE_DEBUG
#define DEBUG_NCQ
#endif
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/libata.h>
#include <linux/slab.h>
#include "libata.h"
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#define DRV_NAME "sata-dwc"
#define DRV_VERSION "1.0"
/* SATA DMA driver Globals */
#define DMA_NUM_CHANS 1
#define DMA_NUM_CHAN_REGS 8
/* SATA DMA Register definitions */
#define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
struct dmareg {
u32 low; /* Low bits 0-31 */
u32 high; /* High bits 32-63 */
};
/* DMA Per Channel registers */
struct dma_chan_regs {
struct dmareg sar; /* Source Address */
struct dmareg dar; /* Destination address */
struct dmareg llp; /* Linked List Pointer */
struct dmareg ctl; /* Control */
struct dmareg sstat; /* Source Status not implemented in core */
struct dmareg dstat; /* Destination Status not implemented in core*/
struct dmareg sstatar; /* Source Status Address not impl in core */
struct dmareg dstatar; /* Destination Status Address not implemente */
struct dmareg cfg; /* Config */
struct dmareg sgr; /* Source Gather */
struct dmareg dsr; /* Destination Scatter */
};
/* Generic Interrupt Registers */
struct dma_interrupt_regs {
struct dmareg tfr; /* Transfer Interrupt */
struct dmareg block; /* Block Interrupt */
struct dmareg srctran; /* Source Transfer Interrupt */
struct dmareg dsttran; /* Dest Transfer Interrupt */
struct dmareg error; /* Error */
};
struct ahb_dma_regs {
struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */
struct dma_interrupt_regs interrupt_status; /* Interrupt Status */
struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */
struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */
struct dmareg statusInt; /* Interrupt combined*/
struct dmareg rq_srcreg; /* Src Trans Req */
struct dmareg rq_dstreg; /* Dst Trans Req */
struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/
struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/
struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/
struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/
struct dmareg dma_cfg; /* DMA Config */
struct dmareg dma_chan_en; /* DMA Channel Enable*/
struct dmareg dma_id; /* DMA ID */
struct dmareg dma_test; /* DMA Test */
struct dmareg res1; /* reserved */
struct dmareg res2; /* reserved */
/*
* DMA Comp Params
* Param 6 = dma_param[0], Param 5 = dma_param[1],
* Param 4 = dma_param[2] ...
*/
struct dmareg dma_params[6];
};
/* Data structure for linked list item */
struct lli {
u32 sar; /* Source Address */
u32 dar; /* Destination address */
u32 llp; /* Linked List Pointer */
struct dmareg ctl; /* Control */
struct dmareg dstat; /* Destination Status */
};
enum {
SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)),
SATA_DWC_DMAC_LLI_NUM = 256,
SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
SATA_DWC_DMAC_LLI_NUM),
SATA_DWC_DMAC_TWIDTH_BYTES = 4,
SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
SATA_DWC_DMAC_TWIDTH_BYTES),
};
/* DMA Register Operation Bits */
enum {
DMA_EN = 0x00000001, /* Enable AHB DMA */
DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */
DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */
};
#define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
#define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
/* Enable channel */
#define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
((0x000000001 << (ch)) << 8))
/* Disable channel */
#define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
/* Transfer Type & Flow Controller */
#define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
#define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
#define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
/* Src Burst Transaction Length */
#define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
/* Dst Burst Transaction Length */
#define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
/* Source Transfer Width */
#define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
/* Destination Transfer Width */
#define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
/* Assign HW handshaking interface (x) to destination / source peripheral */
#define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
#define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
#define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
/*
* This define is used to set block chaining disabled in the control low
* register. It is already in little endian format so it can be &'d dirctly.
* It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
*/
enum {
DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */
DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */
DMA_CTL_SINC_DEC = 0x00000200,
DMA_CTL_SINC_NOCHANGE = 0x00000400,
DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */
DMA_CTL_DINC_DEC = 0x00000080,
DMA_CTL_DINC_NOCHANGE = 0x00000100,
DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */
/* Channel Configuration Register high bits */
DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */
DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */
/* Channel Configuration Register low bits */
DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */
DMA_CFG_RELD_SRC = 0x40000000,
DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */
DMA_CFG_HS_SELDST = 0x00000400,
DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */
/* Channel Linked List Pointer Register */
DMA_LLP_AHBMASTER1 = 0, /* List Master Select */
DMA_LLP_AHBMASTER2 = 1,
SATA_DWC_MAX_PORTS = 1,
SATA_DWC_SCR_OFFSET = 0x24,
SATA_DWC_REG_OFFSET = 0x64,
};
/* DWC SATA Registers */
struct sata_dwc_regs {
u32 fptagr; /* 1st party DMA tag */
u32 fpbor; /* 1st party DMA buffer offset */
u32 fptcr; /* 1st party DMA Xfr count */
u32 dmacr; /* DMA Control */
u32 dbtsr; /* DMA Burst Transac size */
u32 intpr; /* Interrupt Pending */
u32 intmr; /* Interrupt Mask */
u32 errmr; /* Error Mask */
u32 llcr; /* Link Layer Control */
u32 phycr; /* PHY Control */
u32 physr; /* PHY Status */
u32 rxbistpd; /* Recvd BIST pattern def register */
u32 rxbistpd1; /* Recvd BIST data dword1 */
u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
u32 txbistpd; /* Trans BIST pattern def register */
u32 txbistpd1; /* Trans BIST data dword1 */
u32 txbistpd2; /* Trans BIST data dword2 */
u32 bistcr; /* BIST Control Register */
u32 bistfctr; /* BIST FIS Count Register */
u32 bistsr; /* BIST Status Register */
u32 bistdecr; /* BIST Dword Error count register */
u32 res[15]; /* Reserved locations */
u32 testr; /* Test Register */
u32 versionr; /* Version Register */
u32 idr; /* ID Register */
u32 unimpl[192]; /* Unimplemented */
u32 dmadr[256]; /* FIFO Locations in DMA Mode */
};
enum {
SCR_SCONTROL_DET_ENABLE = 0x00000001,
SCR_SSTATUS_DET_PRESENT = 0x00000001,
SCR_SERROR_DIAG_X = 0x04000000,
/* DWC SATA Register Operations */
SATA_DWC_TXFIFO_DEPTH = 0x01FF,
SATA_DWC_RXFIFO_DEPTH = 0x01FF,
SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
SATA_DWC_INTPR_DMAT = 0x00000001,
SATA_DWC_INTPR_NEWFP = 0x00000002,
SATA_DWC_INTPR_PMABRT = 0x00000004,
SATA_DWC_INTPR_ERR = 0x00000008,
SATA_DWC_INTPR_NEWBIST = 0x00000010,
SATA_DWC_INTPR_IPF = 0x10000000,
SATA_DWC_INTMR_DMATM = 0x00000001,
SATA_DWC_INTMR_NEWFPM = 0x00000002,
SATA_DWC_INTMR_PMABRTM = 0x00000004,
SATA_DWC_INTMR_ERRM = 0x00000008,
SATA_DWC_INTMR_NEWBISTM = 0x00000010,
SATA_DWC_LLCR_SCRAMEN = 0x00000001,
SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
SATA_DWC_LLCR_RPDEN = 0x00000004,
/* This is all error bits, zero's are reserved fields. */
SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
};
#define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
#define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
SATA_DWC_DMACR_TMOD_TXCHEN)
#define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
#define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
<< 16)
struct sata_dwc_device {
struct device *dev; /* generic device struct */
struct ata_probe_ent *pe; /* ptr to probe-ent */
struct ata_host *host;
u8 *reg_base;
struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */
int irq_dma;
};
#define SATA_DWC_QCMD_MAX 32
struct sata_dwc_device_port {
struct sata_dwc_device *hsdev;
int cmd_issued[SATA_DWC_QCMD_MAX];
struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */
dma_addr_t llit_dma[SATA_DWC_QCMD_MAX];
u32 dma_chan[SATA_DWC_QCMD_MAX];
int dma_pending[SATA_DWC_QCMD_MAX];
};
/*
* Commonly used DWC SATA driver Macros
*/
#define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
(host)->private_data)
#define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
(ap)->host->private_data)
#define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
(ap)->private_data)
#define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
(qc)->ap->host->private_data)
#define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
(hsdevp)->hsdev)
enum {
SATA_DWC_CMD_ISSUED_NOT = 0,
SATA_DWC_CMD_ISSUED_PEND = 1,
SATA_DWC_CMD_ISSUED_EXEC = 2,
SATA_DWC_CMD_ISSUED_NODATA = 3,
SATA_DWC_DMA_PENDING_NONE = 0,
SATA_DWC_DMA_PENDING_TX = 1,
SATA_DWC_DMA_PENDING_RX = 2,
};
struct sata_dwc_host_priv {
void __iomem *scr_addr_sstatus;
u32 sata_dwc_sactive_issued ;
u32 sata_dwc_sactive_queued ;
u32 dma_interrupt_count;
struct ahb_dma_regs *sata_dma_regs;
struct device *dwc_dev;
};
struct sata_dwc_host_priv host_pvt;
/*
* Prototypes
*/
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
u32 check_status);
static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
static void sata_dwc_port_stop(struct ata_port *ap);
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
static void dma_dwc_exit(struct sata_dwc_device *hsdev);
static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
struct lli *lli, dma_addr_t dma_lli,
void __iomem *addr, int dir);
static void dma_dwc_xfer_start(int dma_ch);
static void sata_dwc_tf_dump(struct ata_taskfile *tf)
{
dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
"0x%lx device: %x\n", tf->command, ata_get_cmd_descript\
(tf->protocol), tf->flags, tf->device);
dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
"lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
tf->lbam, tf->lbah);
dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
"hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
tf->hob_lbah);
}
/*
* Function: get_burst_length_encode
* arguments: datalength: length in bytes of data
* returns value to be programmed in register corrresponding to data length
* This value is effectively the log(base 2) of the length
*/
static int get_burst_length_encode(int datalength)
{
int items = datalength >> 2; /* div by 4 to get lword count */
if (items >= 64)
return 5;
if (items >= 32)
return 4;
if (items >= 16)
return 3;
if (items >= 8)
return 2;
if (items >= 4)
return 1;
return 0;
}
static void clear_chan_interrupts(int c)
{
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
DMA_CHANNEL(c));
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
DMA_CHANNEL(c));
}
/*
* Function: dma_request_channel
* arguments: None
* returns channel number if available else -1
* This function assigns the next available DMA channel from the list to the
* requester
*/
static int dma_request_channel(void)
{
int i;
for (i = 0; i < DMA_NUM_CHANS; i++) {
if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &\
DMA_CHANNEL(i)))
return i;
}
dev_err(host_pvt.dwc_dev, "%s NO channel chan_en: 0x%08x\n", __func__,
in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)));
return -1;
}
/*
* Function: dma_dwc_interrupt
* arguments: irq, dev_id, pt_regs
* returns channel number if available else -1
* Interrupt Handler for DW AHB SATA DMA
*/
static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
{
int chan;
u32 tfr_reg, err_reg;
unsigned long flags;
struct sata_dwc_device *hsdev =
(struct sata_dwc_device *)hsdev_instance;
struct ata_host *host = (struct ata_host *)hsdev->host;
struct ata_port *ap;
struct sata_dwc_device_port *hsdevp;
u8 tag = 0;
unsigned int port = 0;
spin_lock_irqsave(&host->lock, flags);
ap = host->ports[port];
hsdevp = HSDEVP_FROM_AP(ap);
tag = ap->link.active_tag;
tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
.low));
err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
.low));
dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
/* Check for end-of-transfer interrupt. */
if (tfr_reg & DMA_CHANNEL(chan)) {
/*
* Each DMA command produces 2 interrupts. Only
* complete the command after both interrupts have been
* seen. (See sata_dwc_isr())
*/
host_pvt.dma_interrupt_count++;
sata_dwc_clear_dmacr(hsdevp, tag);
if (hsdevp->dma_pending[tag] ==
SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev, "DMA not pending eot=0x%08x "
"err=0x%08x tag=0x%02x pending=%d\n",
tfr_reg, err_reg, tag,
hsdevp->dma_pending[tag]);
}
if ((host_pvt.dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap, 1);
/* Clear the interrupt */
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
.tfr.low),
DMA_CHANNEL(chan));
}
/* Check for error interrupt. */
if (err_reg & DMA_CHANNEL(chan)) {
/* TODO Need error handler ! */
dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
err_reg);
/* Clear the interrupt. */
out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
.error.low),
DMA_CHANNEL(chan));
}
}
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_HANDLED;
}
/*
* Function: dma_request_interrupts
* arguments: hsdev
* returns status
* This function registers ISR for a particular DMA channel interrupt
*/
static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
{
int retval = 0;
int chan;
for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
/* Unmask error interrupt */
out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
DMA_ENABLE_CHAN(chan));
/* Unmask end-of-transfer interrupt */
out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
DMA_ENABLE_CHAN(chan));
}
retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
if (retval) {
dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
__func__, irq);
return -ENODEV;
}
/* Mark this interrupt as requested */
hsdev->irq_dma = irq;
return 0;
}
/*
* Function: map_sg_to_lli
* The Synopsis driver has a comment proposing that better performance
* is possible by only enabling interrupts on the last item in the linked list.
* However, it seems that could be a problem if an error happened on one of the
* first items. The transfer would halt, but no error interrupt would occur.
* Currently this function sets interrupts enabled for each linked list item:
* DMA_CTL_INT_EN.
*/
static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
struct lli *lli, dma_addr_t dma_lli,
void __iomem *dmadr_addr, int dir)
{
int i, idx = 0;
int fis_len = 0;
dma_addr_t next_llp;
int bl;
dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
" dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
(u32)dmadr_addr);
bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
for (i = 0; i < num_elems; i++, sg++) {
u32 addr, offset;
u32 sg_len, len;
addr = (u32) sg_dma_address(sg);
sg_len = sg_dma_len(sg);
dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
"=%d\n", __func__, i, addr, sg_len);
while (sg_len) {
if (idx >= SATA_DWC_DMAC_LLI_NUM) {
/* The LLI table is not large enough. */
dev_err(host_pvt.dwc_dev, "LLI table overrun "
"(idx=%d)\n", idx);
break;
}
len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
offset = addr & 0xffff;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
/*
* Make sure a LLI block is not created that will span
* 8K max FIS boundary. If the block spans such a FIS
* boundary, there is a chance that a DMA burst will
* cross that boundary -- this results in an error in
* the host controller.
*/
if (fis_len + len > 8192) {
dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
"%d(0x%x) len=%d(0x%x)\n", fis_len,
fis_len, len, len);
len = 8192 - fis_len;
fis_len = 0;
} else {
fis_len += len;
}
if (fis_len == 8192)
fis_len = 0;
/*
* Set DMA addresses and lower half of control register
* based on direction.
*/
if (dir == DMA_FROM_DEVICE) {
lli[idx].dar = cpu_to_le32(addr);
lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
lli[idx].ctl.low = cpu_to_le32(
DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
DMA_CTL_SMS(0) |
DMA_CTL_DMS(1) |
DMA_CTL_SRC_MSIZE(bl) |
DMA_CTL_DST_MSIZE(bl) |
DMA_CTL_SINC_NOCHANGE |
DMA_CTL_SRC_TRWID(2) |
DMA_CTL_DST_TRWID(2) |
DMA_CTL_INT_EN |
DMA_CTL_LLP_SRCEN |
DMA_CTL_LLP_DSTEN);
} else { /* DMA_TO_DEVICE */
lli[idx].sar = cpu_to_le32(addr);
lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
lli[idx].ctl.low = cpu_to_le32(
DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
DMA_CTL_SMS(1) |
DMA_CTL_DMS(0) |
DMA_CTL_SRC_MSIZE(bl) |
DMA_CTL_DST_MSIZE(bl) |
DMA_CTL_DINC_NOCHANGE |
DMA_CTL_SRC_TRWID(2) |
DMA_CTL_DST_TRWID(2) |
DMA_CTL_INT_EN |
DMA_CTL_LLP_SRCEN |
DMA_CTL_LLP_DSTEN);
}
dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
"0x%08x val: 0x%08x\n", __func__,
len, DMA_CTL_BLK_TS(len / 4));
/* Program the LLI CTL high register */
lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
(len / 4));
/* Program the next pointer. The next pointer must be
* the physical address, not the virtual address.
*/
next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
lli)));
/* The last 2 bits encode the list master select. */
next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
lli[idx].llp = cpu_to_le32(next_llp);
idx++;
sg_len -= len;
addr += len;
}
}
/*
* The last next ptr has to be zero and the last control low register
* has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
* and destination enable) set back to 0 (disabled.) This is what tells
* the core that this is the last item in the linked list.
*/
if (idx) {
lli[idx-1].llp = 0x00000000;
lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
/* Flush cache to memory */
dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
DMA_BIDIRECTIONAL);
}
return idx;
}
/*
* Function: dma_dwc_xfer_start
* arguments: Channel number
* Return : None
* Enables the DMA channel
*/
static void dma_dwc_xfer_start(int dma_ch)
{
/* Enable the DMA channel */
out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
DMA_ENABLE_CHAN(dma_ch));
}
static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
struct lli *lli, dma_addr_t dma_lli,
void __iomem *addr, int dir)
{
int dma_ch;
int num_lli;
/* Acquire DMA channel */
dma_ch = dma_request_channel();
if (dma_ch == -1) {
dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
__func__);
return -EAGAIN;
}
/* Convert SG list to linked list of items (LLIs) for AHB DMA */
num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
" 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
lli, (u32)dma_lli, addr, num_lli);
clear_chan_interrupts(dma_ch);
/* Program the CFG register. */
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), 0);
/* Program the address of the linked list */
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
/* Program the CTL register with src enable / dst enable */
out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
return 0;
}
/*
* Function: dma_dwc_exit
* arguments: None
* returns status
* This function exits the SATA DMA driver
*/
static void dma_dwc_exit(struct sata_dwc_device *hsdev)
{
dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
if (host_pvt.sata_dma_regs)
iounmap(host_pvt.sata_dma_regs);
if (hsdev->irq_dma)
free_irq(hsdev->irq_dma, hsdev);
}
/*
* Function: dma_dwc_init
* arguments: hsdev
* returns status
* This function initializes the SATA DMA driver
*/
static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
{
int err;
err = dma_request_interrupts(hsdev, irq);
if (err) {
dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
" %d\n", __func__, err);
goto error_out;
}
/* Enabe DMA */
out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
sata_dma_regs);
return 0;
error_out:
dma_dwc_exit(hsdev);
return err;
}
static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
{
if (scr > SCR_NOTIFICATION) {
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
__func__, scr);
return -EINVAL;
}
*val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
__func__, link->ap->print_id, scr, *val);
return 0;
}
static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
{
dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
__func__, link->ap->print_id, scr, val);
if (scr > SCR_NOTIFICATION) {
dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
__func__, scr);
return -EINVAL;
}
out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
return 0;
}
static u32 core_scr_read(unsigned int scr)
{
return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
(scr * 4));
}
static void core_scr_write(unsigned int scr, u32 val)
{
out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
val);
}
static void clear_serror(void)
{
u32 val;
val = core_scr_read(SCR_ERROR);
core_scr_write(SCR_ERROR, val);
}
static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
{
out_le32(&hsdev->sata_dwc_regs->intpr,
in_le32(&hsdev->sata_dwc_regs->intpr));
}
static u32 qcmd_tag_to_mask(u8 tag)
{
return 0x00000001 << (tag & 0x1f);
}
/* See ahci.c */
static void sata_dwc_error_intr(struct ata_port *ap,
struct sata_dwc_device *hsdev, uint intpr)
{
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct ata_eh_info *ehi = &ap->link.eh_info;
unsigned int err_mask = 0, action = 0;
struct ata_queued_cmd *qc;
u32 serror;
u8 status, tag;
u32 err_reg;
ata_ehi_clear_desc(ehi);
serror = core_scr_read(SCR_ERROR);
status = ap->ops->sff_check_status(ap);
err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
low));
tag = ap->link.active_tag;
dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
"dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
__func__, serror, intpr, status, host_pvt.dma_interrupt_count,
hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
/* Clear error register and interrupt bit */
clear_serror();
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
/* This is the only error happening now. TODO check for exact error */
err_mask |= AC_ERR_HOST_BUS;
action |= ATA_EH_RESET;
/* Pass this on to EH */
ehi->serror |= serror;
ehi->action |= action;
qc = ata_qc_from_tag(ap, tag);
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
ata_port_abort(ap);
}
/*
* Function : sata_dwc_isr
* arguments : irq, void *dev_instance, struct pt_regs *regs
* Return value : irqreturn_t - status of IRQ
* This Interrupt handler called via port ops registered function.
* .irq_handler = sata_dwc_isr
*/
static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
{
struct ata_host *host = (struct ata_host *)dev_instance;
struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
struct ata_port *ap;
struct ata_queued_cmd *qc;
unsigned long flags;
u8 status, tag;
int handled, num_processed, port = 0;
uint intpr, sactive, sactive2, tag_mask;
struct sata_dwc_device_port *hsdevp;
host_pvt.sata_dwc_sactive_issued = 0;
spin_lock_irqsave(&host->lock, flags);
/* Read the interrupt register */
intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
ap = host->ports[port];
hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
ap->link.active_tag);
/* Check for error interrupt */
if (intpr & SATA_DWC_INTPR_ERR) {
sata_dwc_error_intr(ap, hsdev, intpr);
handled = 1;
goto DONE;
}
/* Check for DMA SETUP FIS (FP DMA) interrupt */
if (intpr & SATA_DWC_INTPR_NEWFP) {
clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
qc = ata_qc_from_tag(ap, tag);
/*
* Start FP DMA for NCQ command. At this point the tag is the
* active tag. It is the tag that matches the command about to
* be completed.
*/
qc->ap->link.active_tag = tag;
sata_dwc_bmdma_start_by_tag(qc, tag);
handled = 1;
goto DONE;
}
sactive = core_scr_read(SCR_ACTIVE);
tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
/* If no sactive issued and tag_mask is zero then this is not NCQ */
if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
if (ap->link.active_tag == ATA_TAG_POISON)
tag = 0;
else
tag = ap->link.active_tag;
qc = ata_qc_from_tag(ap, tag);
/* DEV interrupt w/ no active qc? */
if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
dev_err(ap->dev, "%s interrupt with no active qc "
"qc=%p\n", __func__, qc);
ap->ops->sff_check_status(ap);
handled = 1;
goto DONE;
}
status = ap->ops->sff_check_status(ap);
qc->ap->link.active_tag = tag;
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
if (status & ATA_ERR) {
dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
sata_dwc_qc_complete(ap, qc, 1);
handled = 1;
goto DONE;
}
dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
__func__, ata_get_cmd_descript(qc->tf.protocol));
DRVSTILLBUSY:
if (ata_is_dma(qc->tf.protocol)) {
/*
* Each DMA transaction produces 2 interrupts. The DMAC
* transfer complete interrupt and the SATA controller
* operation done interrupt. The command should be
* completed only after both interrupts are seen.
*/
host_pvt.dma_interrupt_count++;
if (hsdevp->dma_pending[tag] == \
SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev, "%s: DMA not pending "
"intpr=0x%08x status=0x%08x pending"
"=%d\n", __func__, intpr, status,
hsdevp->dma_pending[tag]);
}
if ((host_pvt.dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap, 1);
} else if (ata_is_pio(qc->tf.protocol)) {
ata_sff_hsm_move(ap, qc, status, 0);
handled = 1;
goto DONE;
} else {
if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
goto DRVSTILLBUSY;
}
handled = 1;
goto DONE;
}
/*
* This is a NCQ command. At this point we need to figure out for which
* tags we have gotten a completion interrupt. One interrupt may serve
* as completion for more than one operation when commands are queued
* (NCQ). We need to process each completed command.
*/
/* process completed commands */
sactive = core_scr_read(SCR_ACTIVE);
tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
tag_mask > 1) {
dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
"tag_mask=0x%08x\n", __func__, sactive,
host_pvt.sata_dwc_sactive_issued, tag_mask);
}
if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
(host_pvt.sata_dwc_sactive_issued)) {
dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x "
"(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
"=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
tag_mask);
}
/* read just to clear ... not bad if currently still busy */
status = ap->ops->sff_check_status(ap);
dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
tag = 0;
num_processed = 0;
while (tag_mask) {
num_processed++;
while (!(tag_mask & 0x00000001)) {
tag++;
tag_mask <<= 1;
}
tag_mask &= (~0x00000001);
qc = ata_qc_from_tag(ap, tag);
/* To be picked up by completion functions */
qc->ap->link.active_tag = tag;
hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
/* Let libata/scsi layers handle error */
if (status & ATA_ERR) {
dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
status);
sata_dwc_qc_complete(ap, qc, 1);
handled = 1;
goto DONE;
}
/* Process completed command */
dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
ata_get_cmd_descript(qc->tf.protocol));
if (ata_is_dma(qc->tf.protocol)) {
host_pvt.dma_interrupt_count++;
if (hsdevp->dma_pending[tag] == \
SATA_DWC_DMA_PENDING_NONE)
dev_warn(ap->dev, "%s: DMA not pending?\n",
__func__);
if ((host_pvt.dma_interrupt_count % 2) == 0)
sata_dwc_dma_xfer_complete(ap, 1);
} else {
if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
goto STILLBUSY;
}
continue;
STILLBUSY:
ap->stats.idle_irq++;
dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
ap->print_id);
} /* while tag_mask */
/*
* Check to see if any commands completed while we were processing our
* initial set of completed commands (read status clears interrupts,
* so we might miss a completed command interrupt if one came in while
* we were processing --we read status as part of processing a completed
* command).
*/
sactive2 = core_scr_read(SCR_ACTIVE);
if (sactive2 != sactive) {
dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
"=0x%x\n", sactive, sactive2);
}
handled = 1;
DONE:
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
{
struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
out_le32(&(hsdev->sata_dwc_regs->dmacr),
SATA_DWC_DMACR_RX_CLEAR(
in_le32(&(hsdev->sata_dwc_regs->dmacr))));
} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
out_le32(&(hsdev->sata_dwc_regs->dmacr),
SATA_DWC_DMACR_TX_CLEAR(
in_le32(&(hsdev->sata_dwc_regs->dmacr))));
} else {
/*
* This should not happen, it indicates the driver is out of
* sync. If it does happen, clear dmacr anyway.
*/
dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
"TX DMA not pending tag=0x%02x pending=%d"
" dmacr: 0x%08x\n", __func__, tag,
hsdevp->dma_pending[tag],
in_le32(&(hsdev->sata_dwc_regs->dmacr)));
out_le32(&(hsdev->sata_dwc_regs->dmacr),
SATA_DWC_DMACR_TXRXCH_CLEAR);
}
}
static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
{
struct ata_queued_cmd *qc;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
u8 tag = 0;
tag = ap->link.active_tag;
qc = ata_qc_from_tag(ap, tag);
if (!qc) {
dev_err(ap->dev, "failed to get qc");
return;
}
#ifdef DEBUG_NCQ
if (tag > 0) {
dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
"dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
ata_get_cmd_descript(qc->dma_dir),
ata_get_cmd_descript(qc->tf.protocol),
in_le32(&(hsdev->sata_dwc_regs->dmacr)));
}
#endif
if (ata_is_dma(qc->tf.protocol)) {
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
"pending dmacr: 0x%08x\n", __func__,
in_le32(&(hsdev->sata_dwc_regs->dmacr)));
}
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
sata_dwc_qc_complete(ap, qc, check_status);
ap->link.active_tag = ATA_TAG_POISON;
} else {
sata_dwc_qc_complete(ap, qc, check_status);
}
}
static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
u32 check_status)
{
u8 status = 0;
u32 mask = 0x0;
u8 tag = qc->tag;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
host_pvt.sata_dwc_sactive_queued = 0;
dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
dev_err(ap->dev, "TX DMA PENDING\n");
else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
dev_err(ap->dev, "RX DMA PENDING\n");
dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
" protocol=%d\n", qc->tf.command, status, ap->print_id,
qc->tf.protocol);
/* clear active bit */
mask = (~(qcmd_tag_to_mask(tag)));
host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
& mask;
host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
& mask;
ata_qc_complete(qc);
return 0;
}
static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
{
/* Enable selective interrupts by setting the interrupt maskregister*/
out_le32(&hsdev->sata_dwc_regs->intmr,
SATA_DWC_INTMR_ERRM |
SATA_DWC_INTMR_NEWFPM |
SATA_DWC_INTMR_PMABRTM |
SATA_DWC_INTMR_DMATM);
/*
* Unmask the error bits that should trigger an error interrupt by
* setting the error mask register.
*/
out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
__func__, in_le32(&hsdev->sata_dwc_regs->intmr),
in_le32(&hsdev->sata_dwc_regs->errmr));
}
static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
{
port->cmd_addr = (void *)base + 0x00;
port->data_addr = (void *)base + 0x00;
port->error_addr = (void *)base + 0x04;
port->feature_addr = (void *)base + 0x04;
port->nsect_addr = (void *)base + 0x08;
port->lbal_addr = (void *)base + 0x0c;
port->lbam_addr = (void *)base + 0x10;
port->lbah_addr = (void *)base + 0x14;
port->device_addr = (void *)base + 0x18;
port->command_addr = (void *)base + 0x1c;
port->status_addr = (void *)base + 0x1c;
port->altstatus_addr = (void *)base + 0x20;
port->ctl_addr = (void *)base + 0x20;
}
/*
* Function : sata_dwc_port_start
* arguments : struct ata_ioports *port
* Return value : returns 0 if success, error code otherwise
* This function allocates the scatter gather LLI table for AHB DMA
*/
static int sata_dwc_port_start(struct ata_port *ap)
{
int err = 0;
struct sata_dwc_device *hsdev;
struct sata_dwc_device_port *hsdevp = NULL;
struct device *pdev;
int i;
hsdev = HSDEV_FROM_AP(ap);
dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
hsdev->host = ap->host;
pdev = ap->host->dev;
if (!pdev) {
dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
err = -ENODEV;
goto CLEANUP;
}
/* Allocate Port Struct */
hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
if (!hsdevp) {
dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
err = -ENOMEM;
goto CLEANUP;
}
hsdevp->hsdev = hsdev;
for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
ap->bmdma_prd = 0; /* set these so libata doesn't use them */
ap->bmdma_prd_dma = 0;
/*
* DMA - Assign scatter gather LLI table. We can't use the libata
* version since it's PRD is IDE PCI specific.
*/
for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
hsdevp->llit[i] = dma_alloc_coherent(pdev,
SATA_DWC_DMAC_LLI_TBL_SZ,
&(hsdevp->llit_dma[i]),
GFP_ATOMIC);
if (!hsdevp->llit[i]) {
dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
__func__);
err = -ENOMEM;
goto CLEANUP;
}
}
if (ap->port_no == 0) {
dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
__func__);
out_le32(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXRXCH_CLEAR);
dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
__func__);
out_le32(&hsdev->sata_dwc_regs->dbtsr,
(SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
}
/* Clear any error bits before libata starts issuing commands */
clear_serror();
ap->private_data = hsdevp;
CLEANUP:
if (err) {
sata_dwc_port_stop(ap);
dev_dbg(ap->dev, "%s: fail\n", __func__);
} else {
dev_dbg(ap->dev, "%s: done\n", __func__);
}
return err;
}
static void sata_dwc_port_stop(struct ata_port *ap)
{
int i;
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
if (hsdevp && hsdev) {
/* deallocate LLI table */
for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
dma_free_coherent(ap->host->dev,
SATA_DWC_DMAC_LLI_TBL_SZ,
hsdevp->llit[i], hsdevp->llit_dma[i]);
}
kfree(hsdevp);
}
ap->private_data = NULL;
}
/*
* Function : sata_dwc_exec_command_by_tag
* arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
* Return value : None
* This function keeps track of individual command tag ids and calls
* ata_exec_command in libata
*/
static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
struct ata_taskfile *tf,
u8 tag, u32 cmd_issued)
{
unsigned long flags;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
ata_get_cmd_descript(tf), tag);
spin_lock_irqsave(&ap->host->lock, flags);
hsdevp->cmd_issued[tag] = cmd_issued;
spin_unlock_irqrestore(&ap->host->lock, flags);
/*
* Clear SError before executing a new command.
* sata_dwc_scr_write and read can not be used here. Clearing the PM
* managed SError register for the disk needs to be done before the
* task file is loaded.
*/
clear_serror();
ata_sff_exec_command(ap, tf);
}
static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
SATA_DWC_CMD_ISSUED_PEND);
}
static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
{
u8 tag = qc->tag;
if (ata_is_ncq(qc->tf.protocol)) {
dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
__func__, qc->ap->link.sactive, tag);
} else {
tag = 0;
}
sata_dwc_bmdma_setup_by_tag(qc, tag);
}
static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
int start_dma;
u32 reg, dma_chan;
struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
struct ata_port *ap = qc->ap;
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
int dir = qc->dma_dir;
dma_chan = hsdevp->dma_chan[tag];
if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
start_dma = 1;
if (dir == DMA_TO_DEVICE)
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
else
hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
} else {
dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
"(tag=%d) DMA NOT started\n", __func__,
hsdevp->cmd_issued[tag], tag);
start_dma = 0;
}
dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
"start_dma? %x\n", __func__, qc, tag, qc->tf.command,
ata_get_cmd_descript(qc->dma_dir), start_dma);
sata_dwc_tf_dump(&(qc->tf));
if (start_dma) {
reg = core_scr_read(SCR_ERROR);
if (reg & SATA_DWC_SERROR_ERR_BITS) {
dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
__func__, reg);
}
if (dir == DMA_TO_DEVICE)
out_le32(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_TXCHEN);
else
out_le32(&hsdev->sata_dwc_regs->dmacr,
SATA_DWC_DMACR_RXCHEN);
/* Enable AHB DMA transfer on the specified channel */
dma_dwc_xfer_start(dma_chan);
}
}
static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
{
u8 tag = qc->tag;
if (ata_is_ncq(qc->tf.protocol)) {
dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
__func__, qc->ap->link.sactive, tag);
} else {
tag = 0;
}
dev_dbg(qc->ap->dev, "%s\n", __func__);
sata_dwc_bmdma_start_by_tag(qc, tag);
}
/*
* Function : sata_dwc_qc_prep_by_tag
* arguments : ata_queued_cmd *qc, u8 tag
* Return value : None
* qc_prep for a particular queued command based on tag
*/
static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
{
struct scatterlist *sg = qc->sg;
struct ata_port *ap = qc->ap;
u32 dma_chan;
struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
int err;
dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
__func__, ap->port_no, ata_get_cmd_descript(qc->dma_dir),
qc->n_elem);
dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
hsdevp->llit_dma[tag],
(void *__iomem)(&hsdev->sata_dwc_regs->\
dmadr), qc->dma_dir);
if (dma_chan < 0) {
dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
__func__, err);
return;
}
hsdevp->dma_chan[tag] = dma_chan;
}
static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
{
u32 sactive;
u8 tag = qc->tag;
struct ata_port *ap = qc->ap;
#ifdef DEBUG_NCQ
if (qc->tag > 0 || ap->link.sactive > 1)
dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
"prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
__func__, ap->print_id, qc->tf.command,
ata_get_cmd_descript(&qc->tf),
qc->tag, ata_get_cmd_descript(qc->tf.protocol),
ap->link.active_tag, ap->link.sactive);
#endif
if (!ata_is_ncq(qc->tf.protocol))
tag = 0;
sata_dwc_qc_prep_by_tag(qc, tag);
if (ata_is_ncq(qc->tf.protocol)) {
sactive = core_scr_read(SCR_ACTIVE);
sactive |= (0x00000001 << tag);
core_scr_write(SCR_ACTIVE, sactive);
dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
"sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
sactive);
ap->ops->sff_tf_load(ap, &qc->tf);
sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
SATA_DWC_CMD_ISSUED_PEND);
} else {
ata_sff_qc_issue(qc);
}
return 0;
}
/*
* Function : sata_dwc_qc_prep
* arguments : ata_queued_cmd *qc
* Return value : None
* qc_prep for a particular queued command
*/
static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
{
if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
return;
#ifdef DEBUG_NCQ
if (qc->tag > 0)
dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
__func__, tag, qc->ap->link.active_tag);
return ;
#endif
}
static void sata_dwc_error_handler(struct ata_port *ap)
{
ap->link.flags |= ATA_LFLAG_NO_HRST;
ata_sff_error_handler(ap);
}
/*
* scsi mid-layer and libata interface structures
*/
static struct scsi_host_template sata_dwc_sht = {
ATA_NCQ_SHT(DRV_NAME),
/*
* test-only: Currently this driver doesn't handle NCQ
* correctly. We enable NCQ but set the queue depth to a
* max of 1. This will get fixed in in a future release.
*/
.sg_tablesize = LIBATA_MAX_PRD,
.can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */
.dma_boundary = ATA_DMA_BOUNDARY,
};
static struct ata_port_operations sata_dwc_ops = {
.inherits = &ata_sff_port_ops,
.error_handler = sata_dwc_error_handler,
.qc_prep = sata_dwc_qc_prep,
.qc_issue = sata_dwc_qc_issue,
.scr_read = sata_dwc_scr_read,
.scr_write = sata_dwc_scr_write,
.port_start = sata_dwc_port_start,
.port_stop = sata_dwc_port_stop,
.bmdma_setup = sata_dwc_bmdma_setup,
.bmdma_start = sata_dwc_bmdma_start,
};
static const struct ata_port_info sata_dwc_port_info[] = {
{
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_MMIO | ATA_FLAG_NCQ,
.pio_mask = 0x1f, /* pio 0-4 */
.udma_mask = ATA_UDMA6,
.port_ops = &sata_dwc_ops,
},
};
static int sata_dwc_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
struct sata_dwc_device *hsdev;
u32 idr, versionr;
char *ver = (char *)&versionr;
u8 *base = NULL;
int err = 0;
int irq, rc;
struct ata_host *host;
struct ata_port_info pi = sata_dwc_port_info[0];
const struct ata_port_info *ppi[] = { &pi, NULL };
/* Allocate DWC SATA device */
hsdev = kmalloc(sizeof(*hsdev), GFP_KERNEL);
if (hsdev == NULL) {
dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
err = -ENOMEM;
goto error_out;
}
memset(hsdev, 0, sizeof(*hsdev));
/* Ioremap SATA registers */
base = of_iomap(ofdev->dev.of_node, 0);
if (!base) {
dev_err(&ofdev->dev, "ioremap failed for SATA register"
" address\n");
err = -ENODEV;
goto error_out;
}
hsdev->reg_base = base;
dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
/* Synopsys DWC SATA specific Registers */
hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
/* Allocate and fill host */
host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
if (!host) {
dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
err = -ENOMEM;
goto error_out;
}
host->private_data = hsdev;
/* Setup port */
host->ports[0]->ioaddr.cmd_addr = base;
host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
/* Read the ID and Version Registers */
idr = in_le32(&hsdev->sata_dwc_regs->idr);
versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
idr, ver[0], ver[1], ver[2]);
/* Get SATA DMA interrupt number */
irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
if (irq == NO_IRQ) {
dev_err(&ofdev->dev, "no SATA DMA irq\n");
err = -ENODEV;
goto error_out;
}
/* Get physical SATA DMA register base address */
host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
if (!(host_pvt.sata_dma_regs)) {
dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
" address\n");
err = -ENODEV;
goto error_out;
}
/* Save dev for later use in dev_xxx() routines */
host_pvt.dwc_dev = &ofdev->dev;
/* Initialize AHB DMAC */
dma_dwc_init(hsdev, irq);
/* Enable SATA Interrupts */
sata_dwc_enable_interrupts(hsdev);
/* Get SATA interrupt number */
irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
if (irq == NO_IRQ) {
dev_err(&ofdev->dev, "no SATA DMA irq\n");
err = -ENODEV;
goto error_out;
}
/*
* Now, register with libATA core, this will also initiate the
* device discovery process, invoking our port_start() handler &
* error_handler() to execute a dummy Softreset EH session
*/
rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
if (rc != 0)
dev_err(&ofdev->dev, "failed to activate host");
dev_set_drvdata(&ofdev->dev, host);
return 0;
error_out:
/* Free SATA DMA resources */
dma_dwc_exit(hsdev);
if (base)
iounmap(base);
return err;
}
static int sata_dwc_remove(struct of_device *ofdev)
{
struct device *dev = &ofdev->dev;
struct ata_host *host = dev_get_drvdata(dev);
struct sata_dwc_device *hsdev = host->private_data;
ata_host_detach(host);
dev_set_drvdata(dev, NULL);
/* Free SATA DMA resources */
dma_dwc_exit(hsdev);
iounmap(hsdev->reg_base);
kfree(hsdev);
kfree(host);
dev_dbg(&ofdev->dev, "done\n");
return 0;
}
static const struct of_device_id sata_dwc_match[] = {
{ .compatible = "amcc,sata-460ex", },
{}
};
MODULE_DEVICE_TABLE(of, sata_dwc_match);
static struct of_platform_driver sata_dwc_driver = {
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
.of_match_table = sata_dwc_match,
},
.probe = sata_dwc_probe,
.remove = sata_dwc_remove,
};
static int __init sata_dwc_init(void)
{
return of_register_platform_driver(&sata_dwc_driver);
}
static void __exit sata_dwc_exit(void)
{
of_unregister_platform_driver(&sata_dwc_driver);
}
module_init(sata_dwc_init);
module_exit(sata_dwc_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
MODULE_VERSION(DRV_VERSION);
...@@ -1096,7 +1096,7 @@ static void sata_fsl_host_intr(struct ata_port *ap) ...@@ -1096,7 +1096,7 @@ static void sata_fsl_host_intr(struct ata_port *ap)
{ {
struct sata_fsl_host_priv *host_priv = ap->host->private_data; struct sata_fsl_host_priv *host_priv = ap->host->private_data;
void __iomem *hcr_base = host_priv->hcr_base; void __iomem *hcr_base = host_priv->hcr_base;
u32 hstatus, qc_active = 0; u32 hstatus, done_mask = 0;
struct ata_queued_cmd *qc; struct ata_queued_cmd *qc;
u32 SError; u32 SError;
...@@ -1116,28 +1116,28 @@ static void sata_fsl_host_intr(struct ata_port *ap) ...@@ -1116,28 +1116,28 @@ static void sata_fsl_host_intr(struct ata_port *ap)
} }
/* Read command completed register */ /* Read command completed register */
qc_active = ioread32(hcr_base + CC); done_mask = ioread32(hcr_base + CC);
VPRINTK("Status of all queues :\n"); VPRINTK("Status of all queues :\n");
VPRINTK("qc_active/CC = 0x%x, CA = 0x%x, CE=0x%x,CQ=0x%x,apqa=0x%x\n", VPRINTK("done_mask/CC = 0x%x, CA = 0x%x, CE=0x%x,CQ=0x%x,apqa=0x%x\n",
qc_active, done_mask,
ioread32(hcr_base + CA), ioread32(hcr_base + CA),
ioread32(hcr_base + CE), ioread32(hcr_base + CE),
ioread32(hcr_base + CQ), ioread32(hcr_base + CQ),
ap->qc_active); ap->qc_active);
if (qc_active & ap->qc_active) { if (done_mask & ap->qc_active) {
int i; int i;
/* clear CC bit, this will also complete the interrupt */ /* clear CC bit, this will also complete the interrupt */
iowrite32(qc_active, hcr_base + CC); iowrite32(done_mask, hcr_base + CC);
DPRINTK("Status of all queues :\n"); DPRINTK("Status of all queues :\n");
DPRINTK("qc_active/CC = 0x%x, CA = 0x%x, CE=0x%x\n", DPRINTK("done_mask/CC = 0x%x, CA = 0x%x, CE=0x%x\n",
qc_active, ioread32(hcr_base + CA), done_mask, ioread32(hcr_base + CA),
ioread32(hcr_base + CE)); ioread32(hcr_base + CE));
for (i = 0; i < SATA_FSL_QUEUE_DEPTH; i++) { for (i = 0; i < SATA_FSL_QUEUE_DEPTH; i++) {
if (qc_active & (1 << i)) { if (done_mask & (1 << i)) {
qc = ata_qc_from_tag(ap, i); qc = ata_qc_from_tag(ap, i);
if (qc) { if (qc) {
ata_qc_complete(qc); ata_qc_complete(qc);
...@@ -1164,7 +1164,7 @@ static void sata_fsl_host_intr(struct ata_port *ap) ...@@ -1164,7 +1164,7 @@ static void sata_fsl_host_intr(struct ata_port *ap)
/* Spurious Interrupt!! */ /* Spurious Interrupt!! */
DPRINTK("spurious interrupt!!, CC = 0x%x\n", DPRINTK("spurious interrupt!!, CC = 0x%x\n",
ioread32(hcr_base + CC)); ioread32(hcr_base + CC));
iowrite32(qc_active, hcr_base + CC); iowrite32(done_mask, hcr_base + CC);
return; return;
} }
} }
......
...@@ -2716,11 +2716,16 @@ static void mv_err_intr(struct ata_port *ap) ...@@ -2716,11 +2716,16 @@ static void mv_err_intr(struct ata_port *ap)
static void mv_process_crpb_response(struct ata_port *ap, static void mv_process_crpb_response(struct ata_port *ap,
struct mv_crpb *response, unsigned int tag, int ncq_enabled) struct mv_crpb *response, unsigned int tag, int ncq_enabled)
{ {
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
if (qc) {
u8 ata_status; u8 ata_status;
u16 edma_status = le16_to_cpu(response->flags); u16 edma_status = le16_to_cpu(response->flags);
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
if (unlikely(!qc)) {
ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
__func__, tag);
return;
}
/* /*
* edma_status from a response queue entry: * edma_status from a response queue entry:
* LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
...@@ -2730,8 +2735,8 @@ static void mv_process_crpb_response(struct ata_port *ap, ...@@ -2730,8 +2735,8 @@ static void mv_process_crpb_response(struct ata_port *ap,
u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
if (err_cause) { if (err_cause) {
/* /*
* Error will be seen/handled by mv_err_intr(). * Error will be seen/handled by
* So do nothing at all here. * mv_err_intr(). So do nothing at all here.
*/ */
return; return;
} }
...@@ -2740,10 +2745,6 @@ static void mv_process_crpb_response(struct ata_port *ap, ...@@ -2740,10 +2745,6 @@ static void mv_process_crpb_response(struct ata_port *ap,
if (!ac_err_mask(ata_status)) if (!ac_err_mask(ata_status))
ata_qc_complete(qc); ata_qc_complete(qc);
/* else: leave it for mv_err_intr() */ /* else: leave it for mv_err_intr() */
} else {
ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
__func__, tag);
}
} }
static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
......
...@@ -1018,7 +1018,7 @@ static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance) ...@@ -1018,7 +1018,7 @@ static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
NV_ADMA_STAT_CPBERR | NV_ADMA_STAT_CPBERR |
NV_ADMA_STAT_CMD_COMPLETE)) { NV_ADMA_STAT_CMD_COMPLETE)) {
u32 check_commands = notifier_clears[i]; u32 check_commands = notifier_clears[i];
int pos, error = 0; int pos, rc;
if (status & NV_ADMA_STAT_CPBERR) { if (status & NV_ADMA_STAT_CPBERR) {
/* check all active commands */ /* check all active commands */
...@@ -1030,10 +1030,12 @@ static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance) ...@@ -1030,10 +1030,12 @@ static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
} }
/* check CPBs for completed commands */ /* check CPBs for completed commands */
while ((pos = ffs(check_commands)) && !error) { while ((pos = ffs(check_commands))) {
pos--; pos--;
error = nv_adma_check_cpb(ap, pos, rc = nv_adma_check_cpb(ap, pos,
notifier_error & (1 << pos)); notifier_error & (1 << pos));
if (unlikely(rc))
check_commands = 0;
check_commands &= ~(1 << pos); check_commands &= ~(1 << pos);
} }
} }
...@@ -2129,7 +2131,6 @@ static int nv_swncq_sdbfis(struct ata_port *ap) ...@@ -2129,7 +2131,6 @@ static int nv_swncq_sdbfis(struct ata_port *ap)
struct nv_swncq_port_priv *pp = ap->private_data; struct nv_swncq_port_priv *pp = ap->private_data;
struct ata_eh_info *ehi = &ap->link.eh_info; struct ata_eh_info *ehi = &ap->link.eh_info;
u32 sactive; u32 sactive;
int nr_done = 0;
u32 done_mask; u32 done_mask;
int i; int i;
u8 host_stat; u8 host_stat;
...@@ -2170,22 +2171,21 @@ static int nv_swncq_sdbfis(struct ata_port *ap) ...@@ -2170,22 +2171,21 @@ static int nv_swncq_sdbfis(struct ata_port *ap)
pp->dhfis_bits &= ~(1 << i); pp->dhfis_bits &= ~(1 << i);
pp->dmafis_bits &= ~(1 << i); pp->dmafis_bits &= ~(1 << i);
pp->sdbfis_bits |= (1 << i); pp->sdbfis_bits |= (1 << i);
nr_done++;
} }
} }
if (!ap->qc_active) { if (!ap->qc_active) {
DPRINTK("over\n"); DPRINTK("over\n");
nv_swncq_pp_reinit(ap); nv_swncq_pp_reinit(ap);
return nr_done; return 0;
} }
if (pp->qc_active & pp->dhfis_bits) if (pp->qc_active & pp->dhfis_bits)
return nr_done; return 0;
if ((pp->ncq_flags & ncq_saw_backout) || if ((pp->ncq_flags & ncq_saw_backout) ||
(pp->qc_active ^ pp->dhfis_bits)) (pp->qc_active ^ pp->dhfis_bits))
/* if the controller cann't get a device to host register FIS, /* if the controller can't get a device to host register FIS,
* The driver needs to reissue the new command. * The driver needs to reissue the new command.
*/ */
lack_dhfis = 1; lack_dhfis = 1;
...@@ -2202,7 +2202,7 @@ static int nv_swncq_sdbfis(struct ata_port *ap) ...@@ -2202,7 +2202,7 @@ static int nv_swncq_sdbfis(struct ata_port *ap)
if (lack_dhfis) { if (lack_dhfis) {
qc = ata_qc_from_tag(ap, pp->last_issue_tag); qc = ata_qc_from_tag(ap, pp->last_issue_tag);
nv_swncq_issue_atacmd(ap, qc); nv_swncq_issue_atacmd(ap, qc);
return nr_done; return 0;
} }
if (pp->defer_queue.defer_bits) { if (pp->defer_queue.defer_bits) {
...@@ -2212,7 +2212,7 @@ static int nv_swncq_sdbfis(struct ata_port *ap) ...@@ -2212,7 +2212,7 @@ static int nv_swncq_sdbfis(struct ata_port *ap)
nv_swncq_issue_atacmd(ap, qc); nv_swncq_issue_atacmd(ap, qc);
} }
return nr_done; return 0;
} }
static inline u32 nv_swncq_tag(struct ata_port *ap) static inline u32 nv_swncq_tag(struct ata_port *ap)
...@@ -2224,7 +2224,7 @@ static inline u32 nv_swncq_tag(struct ata_port *ap) ...@@ -2224,7 +2224,7 @@ static inline u32 nv_swncq_tag(struct ata_port *ap)
return (tag & 0x1f); return (tag & 0x1f);
} }
static int nv_swncq_dmafis(struct ata_port *ap) static void nv_swncq_dmafis(struct ata_port *ap)
{ {
struct ata_queued_cmd *qc; struct ata_queued_cmd *qc;
unsigned int rw; unsigned int rw;
...@@ -2239,7 +2239,7 @@ static int nv_swncq_dmafis(struct ata_port *ap) ...@@ -2239,7 +2239,7 @@ static int nv_swncq_dmafis(struct ata_port *ap)
qc = ata_qc_from_tag(ap, tag); qc = ata_qc_from_tag(ap, tag);
if (unlikely(!qc)) if (unlikely(!qc))
return 0; return;
rw = qc->tf.flags & ATA_TFLAG_WRITE; rw = qc->tf.flags & ATA_TFLAG_WRITE;
...@@ -2254,8 +2254,6 @@ static int nv_swncq_dmafis(struct ata_port *ap) ...@@ -2254,8 +2254,6 @@ static int nv_swncq_dmafis(struct ata_port *ap)
dmactl |= ATA_DMA_WR; dmactl |= ATA_DMA_WR;
iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
return 1;
} }
static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
...@@ -2265,7 +2263,6 @@ static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) ...@@ -2265,7 +2263,6 @@ static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
struct ata_eh_info *ehi = &ap->link.eh_info; struct ata_eh_info *ehi = &ap->link.eh_info;
u32 serror; u32 serror;
u8 ata_stat; u8 ata_stat;
int rc = 0;
ata_stat = ap->ops->sff_check_status(ap); ata_stat = ap->ops->sff_check_status(ap);
nv_swncq_irq_clear(ap, fis); nv_swncq_irq_clear(ap, fis);
...@@ -2310,8 +2307,7 @@ static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) ...@@ -2310,8 +2307,7 @@ static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
"dhfis 0x%X dmafis 0x%X sactive 0x%X\n", "dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
ap->print_id, pp->qc_active, pp->dhfis_bits, ap->print_id, pp->qc_active, pp->dhfis_bits,
pp->dmafis_bits, readl(pp->sactive_block)); pp->dmafis_bits, readl(pp->sactive_block));
rc = nv_swncq_sdbfis(ap); if (nv_swncq_sdbfis(ap) < 0)
if (rc < 0)
goto irq_error; goto irq_error;
} }
...@@ -2348,7 +2344,7 @@ static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis) ...@@ -2348,7 +2344,7 @@ static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
*/ */
pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap)); pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
pp->ncq_flags |= ncq_saw_dmas; pp->ncq_flags |= ncq_saw_dmas;
rc = nv_swncq_dmafis(ap); nv_swncq_dmafis(ap);
} }
irq_exit: irq_exit:
......
...@@ -1459,6 +1459,7 @@ static void quirk_jmicron_ata(struct pci_dev *pdev) ...@@ -1459,6 +1459,7 @@ static void quirk_jmicron_ata(struct pci_dev *pdev)
switch (pdev->device) { switch (pdev->device) {
case PCI_DEVICE_ID_JMICRON_JMB360: /* SATA single port */ case PCI_DEVICE_ID_JMICRON_JMB360: /* SATA single port */
case PCI_DEVICE_ID_JMICRON_JMB362: /* SATA dual ports */ case PCI_DEVICE_ID_JMICRON_JMB362: /* SATA dual ports */
case PCI_DEVICE_ID_JMICRON_JMB364: /* SATA dual ports */
/* The controller should be in single function ahci mode */ /* The controller should be in single function ahci mode */
conf1 |= 0x0002A100; /* Set 8, 13, 15, 17 */ conf1 |= 0x0002A100; /* Set 8, 13, 15, 17 */
break; break;
...@@ -1470,6 +1471,7 @@ static void quirk_jmicron_ata(struct pci_dev *pdev) ...@@ -1470,6 +1471,7 @@ static void quirk_jmicron_ata(struct pci_dev *pdev)
/* Fall through */ /* Fall through */
case PCI_DEVICE_ID_JMICRON_JMB361: case PCI_DEVICE_ID_JMICRON_JMB361:
case PCI_DEVICE_ID_JMICRON_JMB363: case PCI_DEVICE_ID_JMICRON_JMB363:
case PCI_DEVICE_ID_JMICRON_JMB369:
/* Enable dual function mode, AHCI on fn 0, IDE fn1 */ /* Enable dual function mode, AHCI on fn 0, IDE fn1 */
/* Set the class codes correctly and then direct IDE 0 */ /* Set the class codes correctly and then direct IDE 0 */
conf1 |= 0x00C2A1B3; /* Set 0, 1, 4, 5, 7, 8, 13, 15, 17, 22, 23 */ conf1 |= 0x00C2A1B3; /* Set 0, 1, 4, 5, 7, 8, 13, 15, 17, 22, 23 */
...@@ -1496,16 +1498,20 @@ DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB360, qui ...@@ -1496,16 +1498,20 @@ DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB360, qui
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB361, quirk_jmicron_ata); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB361, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB362, quirk_jmicron_ata); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB362, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB363, quirk_jmicron_ata); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB363, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB364, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB365, quirk_jmicron_ata); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB365, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB366, quirk_jmicron_ata); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB366, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB368, quirk_jmicron_ata); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB368, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB369, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB360, quirk_jmicron_ata); DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB360, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB361, quirk_jmicron_ata); DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB361, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB362, quirk_jmicron_ata); DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB362, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB363, quirk_jmicron_ata); DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB363, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB364, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB365, quirk_jmicron_ata); DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB365, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB366, quirk_jmicron_ata); DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB366, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB368, quirk_jmicron_ata); DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB368, quirk_jmicron_ata);
DECLARE_PCI_FIXUP_RESUME_EARLY(PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB369, quirk_jmicron_ata);
#endif #endif
......
...@@ -15,11 +15,13 @@ ...@@ -15,11 +15,13 @@
#ifndef _AHCI_PLATFORM_H #ifndef _AHCI_PLATFORM_H
#define _AHCI_PLATFORM_H #define _AHCI_PLATFORM_H
#include <linux/compiler.h>
struct device; struct device;
struct ata_port_info; struct ata_port_info;
struct ahci_platform_data { struct ahci_platform_data {
int (*init)(struct device *dev); int (*init)(struct device *dev, void __iomem *addr);
void (*exit)(struct device *dev); void (*exit)(struct device *dev);
const struct ata_port_info *ata_port_info; const struct ata_port_info *ata_port_info;
unsigned int force_port_map; unsigned int force_port_map;
......
...@@ -2325,9 +2325,11 @@ ...@@ -2325,9 +2325,11 @@
#define PCI_DEVICE_ID_JMICRON_JMB361 0x2361 #define PCI_DEVICE_ID_JMICRON_JMB361 0x2361
#define PCI_DEVICE_ID_JMICRON_JMB362 0x2362 #define PCI_DEVICE_ID_JMICRON_JMB362 0x2362
#define PCI_DEVICE_ID_JMICRON_JMB363 0x2363 #define PCI_DEVICE_ID_JMICRON_JMB363 0x2363
#define PCI_DEVICE_ID_JMICRON_JMB364 0x2364
#define PCI_DEVICE_ID_JMICRON_JMB365 0x2365 #define PCI_DEVICE_ID_JMICRON_JMB365 0x2365
#define PCI_DEVICE_ID_JMICRON_JMB366 0x2366 #define PCI_DEVICE_ID_JMICRON_JMB366 0x2366
#define PCI_DEVICE_ID_JMICRON_JMB368 0x2368 #define PCI_DEVICE_ID_JMICRON_JMB368 0x2368
#define PCI_DEVICE_ID_JMICRON_JMB369 0x2369
#define PCI_DEVICE_ID_JMICRON_JMB38X_SD 0x2381 #define PCI_DEVICE_ID_JMICRON_JMB38X_SD 0x2381
#define PCI_DEVICE_ID_JMICRON_JMB38X_MMC 0x2382 #define PCI_DEVICE_ID_JMICRON_JMB38X_MMC 0x2382
#define PCI_DEVICE_ID_JMICRON_JMB38X_MS 0x2383 #define PCI_DEVICE_ID_JMICRON_JMB38X_MS 0x2383
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment