Commit 13bf2cf9 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'dmaengine-4.19-rc1' of git://git.infradead.org/users/vkoul/slave-dma

Pull DMAengine updates from Vinod Koul:
 "This round brings couple of framework changes, a new driver and usual
  driver updates:

   - new managed helper for dmaengine framework registration

   - split dmaengine pause capability to pause and resume and allow
     drivers to report that individually

   - update dma_request_chan_by_mask() to handle deferred probing

   - move imx-sdma to use virt-dma

   - new driver for Actions Semi Owl family S900 controller

   - minor updates to intel, renesas, mv_xor, pl330 etc"

* tag 'dmaengine-4.19-rc1' of git://git.infradead.org/users/vkoul/slave-dma: (46 commits)
  dmaengine: Add Actions Semi Owl family S900 DMA driver
  dt-bindings: dmaengine: Add binding for Actions Semi Owl SoCs
  dmaengine: sh: rcar-dmac: Should not stop the DMAC by rcar_dmac_sync_tcr()
  dmaengine: mic_x100_dma: use the new helper to simplify the code
  dmaengine: add a new helper dmaenginem_async_device_register
  dmaengine: imx-sdma: add memcpy interface
  dmaengine: imx-sdma: add SDMA_BD_MAX_CNT to replace '0xffff'
  dmaengine: dma_request_chan_by_mask() to handle deferred probing
  dmaengine: pl330: fix irq race with terminate_all
  dmaengine: Revert "dmaengine: mv_xor_v2: enable COMPILE_TEST"
  dmaengine: mv_xor_v2: use {lower,upper}_32_bits to configure HW descriptor address
  dmaengine: mv_xor_v2: enable COMPILE_TEST
  dmaengine: mv_xor_v2: move unmap to before callback
  dmaengine: mv_xor_v2: convert callback to helper function
  dmaengine: mv_xor_v2: kill the tasklets upon exit
  dmaengine: mv_xor_v2: explicitly freeup irq
  dmaengine: sh: rcar-dmac: Add dma_pause operation
  dmaengine: sh: rcar-dmac: add a new function to clear CHCR.DE with barrier
  dmaengine: idma64: Support dmaengine_terminate_sync()
  dmaengine: hsu: Support dmaengine_terminate_sync()
  ...
parents bbd60bff 3257d861
* Actions Semi Owl SoCs DMA controller
This binding follows the generic DMA bindings defined in dma.txt.
Required properties:
- compatible: Should be "actions,s900-dma".
- reg: Should contain DMA registers location and length.
- interrupts: Should contain 4 interrupts shared by all channel.
- #dma-cells: Must be <1>. Used to represent the number of integer
cells in the dmas property of client device.
- dma-channels: Physical channels supported.
- dma-requests: Number of DMA request signals supported by the controller.
Refer to Documentation/devicetree/bindings/dma/dma.txt
- clocks: Phandle and Specifier of the clock feeding the DMA controller.
Example:
Controller:
dma: dma-controller@e0260000 {
compatible = "actions,s900-dma";
reg = <0x0 0xe0260000 0x0 0x1000>;
interrupts = <GIC_SPI 57 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 58 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 59 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 60 IRQ_TYPE_LEVEL_HIGH>;
#dma-cells = <1>;
dma-channels = <12>;
dma-requests = <46>;
clocks = <&clock CLK_DMAC>;
};
Client:
DMA clients connected to the Actions Semi Owl SoCs DMA controller must
use the format described in the dma.txt file, using a two-cell specifier
for each channel.
The two cells in order are:
1. A phandle pointing to the DMA controller.
2. The channel id.
uart5: serial@e012a000 {
...
dma-names = "tx", "rx";
dmas = <&dma 26>, <&dma 27>;
...
};
......@@ -29,6 +29,7 @@ Required Properties:
- "renesas,dmac-r8a77965" (R-Car M3-N)
- "renesas,dmac-r8a77970" (R-Car V3M)
- "renesas,dmac-r8a77980" (R-Car V3H)
- "renesas,dmac-r8a77990" (R-Car E3)
- "renesas,dmac-r8a77995" (R-Car D3)
- reg: base address and length of the registers block for the DMAC
......
......@@ -66,6 +66,8 @@ Optional child node properties:
Optional child node properties for VDMA:
- xlnx,genlock-mode: Tells Genlock synchronization is
enabled/disabled in hardware.
- xlnx,enable-vert-flip: Tells vertical flip is
enabled/disabled in hardware(S2MM path).
Optional child node properties for AXI DMA:
-dma-channels: Number of dma channels in child node.
......
......@@ -240,6 +240,7 @@ CLOCK
devm_of_clk_add_hw_provider()
DMA
dmaenginem_async_device_register()
dmam_alloc_coherent()
dmam_alloc_attrs()
dmam_declare_coherent_memory()
......
......@@ -42,6 +42,8 @@ static struct page *pq_scribble_page;
#define P(b, d) (b[d-2])
#define Q(b, d) (b[d-1])
#define MAX_DISKS 255
/**
* do_async_gen_syndrome - asynchronously calculate P and/or Q
*/
......@@ -184,7 +186,7 @@ async_gen_syndrome(struct page **blocks, unsigned int offset, int disks,
struct dma_device *device = chan ? chan->device : NULL;
struct dmaengine_unmap_data *unmap = NULL;
BUG_ON(disks > 255 || !(P(blocks, disks) || Q(blocks, disks)));
BUG_ON(disks > MAX_DISKS || !(P(blocks, disks) || Q(blocks, disks)));
if (device)
unmap = dmaengine_get_unmap_data(device->dev, disks, GFP_NOWAIT);
......@@ -196,7 +198,7 @@ async_gen_syndrome(struct page **blocks, unsigned int offset, int disks,
is_dma_pq_aligned(device, offset, 0, len)) {
struct dma_async_tx_descriptor *tx;
enum dma_ctrl_flags dma_flags = 0;
unsigned char coefs[src_cnt];
unsigned char coefs[MAX_DISKS];
int i, j;
/* run the p+q asynchronously */
......@@ -299,11 +301,11 @@ async_syndrome_val(struct page **blocks, unsigned int offset, int disks,
struct dma_chan *chan = pq_val_chan(submit, blocks, disks, len);
struct dma_device *device = chan ? chan->device : NULL;
struct dma_async_tx_descriptor *tx;
unsigned char coefs[disks-2];
unsigned char coefs[MAX_DISKS];
enum dma_ctrl_flags dma_flags = submit->cb_fn ? DMA_PREP_INTERRUPT : 0;
struct dmaengine_unmap_data *unmap = NULL;
BUG_ON(disks < 4);
BUG_ON(disks < 4 || disks > MAX_DISKS);
if (device)
unmap = dmaengine_get_unmap_data(device->dev, disks, GFP_NOWAIT);
......
......@@ -81,11 +81,13 @@ static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, stru
init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
} else {
struct page *blocks[disks];
struct page *blocks[NDISKS];
struct page *dest;
int count = 0;
int i;
BUG_ON(disks > NDISKS);
/* data+Q failure. Reconstruct data from P,
* then rebuild syndrome
*/
......
......@@ -250,6 +250,7 @@ config IMX_SDMA
tristate "i.MX SDMA support"
depends on ARCH_MXC
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Support the i.MX SDMA engine. This engine is integrated into
Freescale i.MX25/31/35/51/53/6 chips.
......@@ -413,6 +414,14 @@ config NBPFAXI_DMA
help
Support for "Type-AXI" NBPF DMA IPs from Renesas
config OWL_DMA
tristate "Actions Semi Owl SoCs DMA support"
depends on ARCH_ACTIONS
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Enable support for the Actions Semi Owl SoCs DMA controller.
config PCH_DMA
tristate "Intel EG20T PCH / LAPIS Semicon IOH(ML7213/ML7223/ML7831) DMA"
depends on PCI && (X86_32 || COMPILE_TEST)
......
......@@ -52,6 +52,7 @@ obj-$(CONFIG_MV_XOR_V2) += mv_xor_v2.o
obj-$(CONFIG_MXS_DMA) += mxs-dma.o
obj-$(CONFIG_MX3_IPU) += ipu/
obj-$(CONFIG_NBPFAXI_DMA) += nbpfaxi.o
obj-$(CONFIG_OWL_DMA) += owl-dma.o
obj-$(CONFIG_PCH_DMA) += pch_dma.o
obj-$(CONFIG_PL330_DMA) += pl330.o
obj-$(CONFIG_PPC_BESTCOMM) += bestcomm/
......
......@@ -500,12 +500,8 @@ int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
caps->max_burst = device->max_burst;
caps->residue_granularity = device->residue_granularity;
caps->descriptor_reuse = device->descriptor_reuse;
/*
* Some devices implement only pause (e.g. to get residuum) but no
* resume. However cmd_pause is advertised as pause AND resume.
*/
caps->cmd_pause = !!(device->device_pause && device->device_resume);
caps->cmd_pause = !!device->device_pause;
caps->cmd_resume = !!device->device_resume;
caps->cmd_terminate = !!device->device_terminate_all;
return 0;
......@@ -774,8 +770,14 @@ struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
return ERR_PTR(-ENODEV);
chan = __dma_request_channel(mask, NULL, NULL);
if (!chan)
chan = ERR_PTR(-ENODEV);
if (!chan) {
mutex_lock(&dma_list_mutex);
if (list_empty(&dma_device_list))
chan = ERR_PTR(-EPROBE_DEFER);
else
chan = ERR_PTR(-ENODEV);
mutex_unlock(&dma_list_mutex);
}
return chan;
}
......@@ -1139,6 +1141,41 @@ void dma_async_device_unregister(struct dma_device *device)
}
EXPORT_SYMBOL(dma_async_device_unregister);
static void dmam_device_release(struct device *dev, void *res)
{
struct dma_device *device;
device = *(struct dma_device **)res;
dma_async_device_unregister(device);
}
/**
* dmaenginem_async_device_register - registers DMA devices found
* @device: &dma_device
*
* The operation is managed and will be undone on driver detach.
*/
int dmaenginem_async_device_register(struct dma_device *device)
{
void *p;
int ret;
p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
if (!p)
return -ENOMEM;
ret = dma_async_device_register(device);
if (!ret) {
*(struct dma_device **)p = device;
devres_add(device->dev, p);
} else {
devres_free(p);
}
return ret;
}
EXPORT_SYMBOL(dmaenginem_async_device_register);
struct dmaengine_unmap_pool {
struct kmem_cache *cache;
const char *name;
......
......@@ -413,6 +413,13 @@ static void hsu_dma_free_chan_resources(struct dma_chan *chan)
vchan_free_chan_resources(to_virt_chan(chan));
}
static void hsu_dma_synchronize(struct dma_chan *chan)
{
struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
vchan_synchronize(&hsuc->vchan);
}
int hsu_dma_probe(struct hsu_dma_chip *chip)
{
struct hsu_dma *hsu;
......@@ -459,6 +466,7 @@ int hsu_dma_probe(struct hsu_dma_chip *chip)
hsu->dma.device_pause = hsu_dma_pause;
hsu->dma.device_resume = hsu_dma_resume;
hsu->dma.device_terminate_all = hsu_dma_terminate_all;
hsu->dma.device_synchronize = hsu_dma_synchronize;
hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
......
......@@ -496,6 +496,13 @@ static int idma64_terminate_all(struct dma_chan *chan)
return 0;
}
static void idma64_synchronize(struct dma_chan *chan)
{
struct idma64_chan *idma64c = to_idma64_chan(chan);
vchan_synchronize(&idma64c->vchan);
}
static int idma64_alloc_chan_resources(struct dma_chan *chan)
{
struct idma64_chan *idma64c = to_idma64_chan(chan);
......@@ -583,6 +590,7 @@ static int idma64_probe(struct idma64_chip *chip)
idma64->dma.device_pause = idma64_pause;
idma64->dma.device_resume = idma64_resume;
idma64->dma.device_terminate_all = idma64_terminate_all;
idma64->dma.device_synchronize = idma64_synchronize;
idma64->dma.src_addr_widths = IDMA64_BUSWIDTHS;
idma64->dma.dst_addr_widths = IDMA64_BUSWIDTHS;
......
......@@ -24,6 +24,7 @@
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
......@@ -41,6 +42,7 @@
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
#include "dmaengine.h"
#include "virt-dma.h"
/* SDMA registers */
#define SDMA_H_C0PTR 0x000
......@@ -183,6 +185,7 @@
* Mode/Count of data node descriptors - IPCv2
*/
struct sdma_mode_count {
#define SDMA_BD_MAX_CNT 0xffff
u32 count : 16; /* size of the buffer pointed by this BD */
u32 status : 8; /* E,R,I,C,W,D status bits stored here */
u32 command : 8; /* command mostly used for channel 0 */
......@@ -200,9 +203,9 @@ struct sdma_buffer_descriptor {
/**
* struct sdma_channel_control - Channel control Block
*
* @current_bd_ptr current buffer descriptor processed
* @base_bd_ptr first element of buffer descriptor array
* @unused padding. The SDMA engine expects an array of 128 byte
* @current_bd_ptr: current buffer descriptor processed
* @base_bd_ptr: first element of buffer descriptor array
* @unused: padding. The SDMA engine expects an array of 128 byte
* control blocks
*/
struct sdma_channel_control {
......@@ -215,10 +218,13 @@ struct sdma_channel_control {
* struct sdma_state_registers - SDMA context for a channel
*
* @pc: program counter
* @unused1: unused
* @t: test bit: status of arithmetic & test instruction
* @rpc: return program counter
* @unused0: unused
* @sf: source fault while loading data
* @spc: loop start program counter
* @unused2: unused
* @df: destination fault while storing data
* @epc: loop end program counter
* @lm: loop mode
......@@ -256,6 +262,14 @@ struct sdma_state_registers {
* @dsa: dedicated core source address register
* @ds: dedicated core status register
* @dd: dedicated core data register
* @scratch0: 1st word of dedicated ram for context switch
* @scratch1: 2nd word of dedicated ram for context switch
* @scratch2: 3rd word of dedicated ram for context switch
* @scratch3: 4th word of dedicated ram for context switch
* @scratch4: 5th word of dedicated ram for context switch
* @scratch5: 6th word of dedicated ram for context switch
* @scratch6: 7th word of dedicated ram for context switch
* @scratch7: 8th word of dedicated ram for context switch
*/
struct sdma_context_data {
struct sdma_state_registers channel_state;
......@@ -284,25 +298,67 @@ struct sdma_context_data {
u32 scratch7;
} __attribute__ ((packed));
#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
struct sdma_engine;
/**
* struct sdma_desc - descriptor structor for one transfer
* @vd: descriptor for virt dma
* @num_bd: number of descriptors currently handling
* @bd_phys: physical address of bd
* @buf_tail: ID of the buffer that was processed
* @buf_ptail: ID of the previous buffer that was processed
* @period_len: period length, used in cyclic.
* @chn_real_count: the real count updated from bd->mode.count
* @chn_count: the transfer count set
* @sdmac: sdma_channel pointer
* @bd: pointer of allocate bd
*/
struct sdma_desc {
struct virt_dma_desc vd;
unsigned int num_bd;
dma_addr_t bd_phys;
unsigned int buf_tail;
unsigned int buf_ptail;
unsigned int period_len;
unsigned int chn_real_count;
unsigned int chn_count;
struct sdma_channel *sdmac;
struct sdma_buffer_descriptor *bd;
};
/**
* struct sdma_channel - housekeeping for a SDMA channel
*
* @sdma pointer to the SDMA engine for this channel
* @channel the channel number, matches dmaengine chan_id + 1
* @direction transfer type. Needed for setting SDMA script
* @peripheral_type Peripheral type. Needed for setting SDMA script
* @event_id0 aka dma request line
* @event_id1 for channels that use 2 events
* @word_size peripheral access size
* @buf_tail ID of the buffer that was processed
* @buf_ptail ID of the previous buffer that was processed
* @num_bd max NUM_BD. number of descriptors currently handling
* @vc: virt_dma base structure
* @desc: sdma description including vd and other special member
* @sdma: pointer to the SDMA engine for this channel
* @channel: the channel number, matches dmaengine chan_id + 1
* @direction: transfer type. Needed for setting SDMA script
* @peripheral_type: Peripheral type. Needed for setting SDMA script
* @event_id0: aka dma request line
* @event_id1: for channels that use 2 events
* @word_size: peripheral access size
* @pc_from_device: script address for those device_2_memory
* @pc_to_device: script address for those memory_2_device
* @device_to_device: script address for those device_2_device
* @pc_to_pc: script address for those memory_2_memory
* @flags: loop mode or not
* @per_address: peripheral source or destination address in common case
* destination address in p_2_p case
* @per_address2: peripheral source address in p_2_p case
* @event_mask: event mask used in p_2_p script
* @watermark_level: value for gReg[7], some script will extend it from
* basic watermark such as p_2_p
* @shp_addr: value for gReg[6]
* @per_addr: value for gReg[2]
* @status: status of dma channel
* @data: specific sdma interface structure
* @bd_pool: dma_pool for bd
*/
struct sdma_channel {
struct virt_dma_chan vc;
struct sdma_desc *desc;
struct sdma_engine *sdma;
unsigned int channel;
enum dma_transfer_direction direction;
......@@ -310,28 +366,17 @@ struct sdma_channel {
unsigned int event_id0;
unsigned int event_id1;
enum dma_slave_buswidth word_size;
unsigned int buf_tail;
unsigned int buf_ptail;
unsigned int num_bd;
unsigned int period_len;
struct sdma_buffer_descriptor *bd;
dma_addr_t bd_phys;
unsigned int pc_from_device, pc_to_device;
unsigned int device_to_device;
unsigned int pc_to_pc;
unsigned long flags;
dma_addr_t per_address, per_address2;
unsigned long event_mask[2];
unsigned long watermark_level;
u32 shp_addr, per_addr;
struct dma_chan chan;
spinlock_t lock;
struct dma_async_tx_descriptor desc;
enum dma_status status;
unsigned int chn_count;
unsigned int chn_real_count;
struct tasklet_struct tasklet;
struct imx_dma_data data;
bool enabled;
struct dma_pool *bd_pool;
};
#define IMX_DMA_SG_LOOP BIT(0)
......@@ -346,15 +391,15 @@ struct sdma_channel {
/**
* struct sdma_firmware_header - Layout of the firmware image
*
* @magic "SDMA"
* @version_major increased whenever layout of struct sdma_script_start_addrs
* changes.
* @version_minor firmware minor version (for binary compatible changes)
* @script_addrs_start offset of struct sdma_script_start_addrs in this image
* @num_script_addrs Number of script addresses in this image
* @ram_code_start offset of SDMA ram image in this firmware image
* @ram_code_size size of SDMA ram image
* @script_addrs Stores the start address of the SDMA scripts
* @magic: "SDMA"
* @version_major: increased whenever layout of struct
* sdma_script_start_addrs changes.
* @version_minor: firmware minor version (for binary compatible changes)
* @script_addrs_start: offset of struct sdma_script_start_addrs in this image
* @num_script_addrs: Number of script addresses in this image
* @ram_code_start: offset of SDMA ram image in this firmware image
* @ram_code_size: size of SDMA ram image
* @script_addrs: Stores the start address of the SDMA scripts
* (in SDMA memory space)
*/
struct sdma_firmware_header {
......@@ -391,6 +436,8 @@ struct sdma_engine {
u32 spba_start_addr;
u32 spba_end_addr;
unsigned int irq;
dma_addr_t bd0_phys;
struct sdma_buffer_descriptor *bd0;
};
static struct sdma_driver_data sdma_imx31 = {
......@@ -590,14 +637,7 @@ static int sdma_config_ownership(struct sdma_channel *sdmac,
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
unsigned long flags;
struct sdma_channel *sdmac = &sdma->channel[channel];
writel(BIT(channel), sdma->regs + SDMA_H_START);
spin_lock_irqsave(&sdmac->lock, flags);
sdmac->enabled = true;
spin_unlock_irqrestore(&sdmac->lock, flags);
}
/*
......@@ -625,7 +665,7 @@ static int sdma_run_channel0(struct sdma_engine *sdma)
static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
u32 address)
{
struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
struct sdma_buffer_descriptor *bd0 = sdma->bd0;
void *buf_virt;
dma_addr_t buf_phys;
int ret;
......@@ -681,26 +721,49 @@ static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
writel_relaxed(val, sdma->regs + chnenbl);
}
static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
{
return container_of(t, struct sdma_desc, vd.tx);
}
static void sdma_start_desc(struct sdma_channel *sdmac)
{
struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
struct sdma_desc *desc;
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
if (!vd) {
sdmac->desc = NULL;
return;
}
sdmac->desc = desc = to_sdma_desc(&vd->tx);
/*
* Do not delete the node in desc_issued list in cyclic mode, otherwise
* the desc allocated will never be freed in vchan_dma_desc_free_list
*/
if (!(sdmac->flags & IMX_DMA_SG_LOOP))
list_del(&vd->node);
sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
sdma_enable_channel(sdma, sdmac->channel);
}
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
{
struct sdma_buffer_descriptor *bd;
int error = 0;
enum dma_status old_status = sdmac->status;
unsigned long flags;
spin_lock_irqsave(&sdmac->lock, flags);
if (!sdmac->enabled) {
spin_unlock_irqrestore(&sdmac->lock, flags);
return;
}
spin_unlock_irqrestore(&sdmac->lock, flags);
/*
* loop mode. Iterate over descriptors, re-setup them and
* call callback function.
*/
while (1) {
bd = &sdmac->bd[sdmac->buf_tail];
while (sdmac->desc) {
struct sdma_desc *desc = sdmac->desc;
bd = &desc->bd[desc->buf_tail];
if (bd->mode.status & BD_DONE)
break;
......@@ -716,11 +779,11 @@ static void sdma_update_channel_loop(struct sdma_channel *sdmac)
* the number of bytes present in the current buffer descriptor.
*/
sdmac->chn_real_count = bd->mode.count;
desc->chn_real_count = bd->mode.count;
bd->mode.status |= BD_DONE;
bd->mode.count = sdmac->period_len;
sdmac->buf_ptail = sdmac->buf_tail;
sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
bd->mode.count = desc->period_len;
desc->buf_ptail = desc->buf_tail;
desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
/*
* The callback is called from the interrupt context in order
......@@ -728,41 +791,38 @@ static void sdma_update_channel_loop(struct sdma_channel *sdmac)
* SDMA transaction status by the time the client tasklet is
* executed.
*/
dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
spin_unlock(&sdmac->vc.lock);
dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
spin_lock(&sdmac->vc.lock);
if (error)
sdmac->status = old_status;
}
}
static void mxc_sdma_handle_channel_normal(unsigned long data)
static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
{
struct sdma_channel *sdmac = (struct sdma_channel *) data;
struct sdma_buffer_descriptor *bd;
int i, error = 0;
sdmac->chn_real_count = 0;
sdmac->desc->chn_real_count = 0;
/*
* non loop mode. Iterate over all descriptors, collect
* errors and call callback function
*/
for (i = 0; i < sdmac->num_bd; i++) {
bd = &sdmac->bd[i];
for (i = 0; i < sdmac->desc->num_bd; i++) {
bd = &sdmac->desc->bd[i];
if (bd->mode.status & (BD_DONE | BD_RROR))
error = -EIO;
sdmac->chn_real_count += bd->mode.count;
sdmac->desc->chn_real_count += bd->mode.count;
}
if (error)
sdmac->status = DMA_ERROR;
else
sdmac->status = DMA_COMPLETE;
dma_cookie_complete(&sdmac->desc);
dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
}
static irqreturn_t sdma_int_handler(int irq, void *dev_id)
......@@ -778,12 +838,21 @@ static irqreturn_t sdma_int_handler(int irq, void *dev_id)
while (stat) {
int channel = fls(stat) - 1;
struct sdma_channel *sdmac = &sdma->channel[channel];
struct sdma_desc *desc;
spin_lock(&sdmac->vc.lock);
desc = sdmac->desc;
if (desc) {
if (sdmac->flags & IMX_DMA_SG_LOOP) {
sdma_update_channel_loop(sdmac);
} else {
mxc_sdma_handle_channel_normal(sdmac);
vchan_cookie_complete(&desc->vd);
sdma_start_desc(sdmac);
}
}
if (sdmac->flags & IMX_DMA_SG_LOOP)
sdma_update_channel_loop(sdmac);
else
tasklet_schedule(&sdmac->tasklet);
spin_unlock(&sdmac->vc.lock);
__clear_bit(channel, &stat);
}
......@@ -802,14 +871,16 @@ static void sdma_get_pc(struct sdma_channel *sdmac,
* These are needed once we start to support transfers between
* two peripherals or memory-to-memory transfers
*/
int per_2_per = 0;
int per_2_per = 0, emi_2_emi = 0;
sdmac->pc_from_device = 0;
sdmac->pc_to_device = 0;
sdmac->device_to_device = 0;
sdmac->pc_to_pc = 0;
switch (peripheral_type) {
case IMX_DMATYPE_MEMORY:
emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
break;
case IMX_DMATYPE_DSP:
emi_2_per = sdma->script_addrs->bp_2_ap_addr;
......@@ -882,6 +953,7 @@ static void sdma_get_pc(struct sdma_channel *sdmac,
sdmac->pc_from_device = per_2_emi;
sdmac->pc_to_device = emi_2_per;
sdmac->device_to_device = per_2_per;
sdmac->pc_to_pc = emi_2_emi;
}
static int sdma_load_context(struct sdma_channel *sdmac)
......@@ -890,7 +962,7 @@ static int sdma_load_context(struct sdma_channel *sdmac)
int channel = sdmac->channel;
int load_address;
struct sdma_context_data *context = sdma->context;
struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
struct sdma_buffer_descriptor *bd0 = sdma->bd0;
int ret;
unsigned long flags;
......@@ -898,6 +970,8 @@ static int sdma_load_context(struct sdma_channel *sdmac)
load_address = sdmac->pc_from_device;
else if (sdmac->direction == DMA_DEV_TO_DEV)
load_address = sdmac->device_to_device;
else if (sdmac->direction == DMA_MEM_TO_MEM)
load_address = sdmac->pc_to_pc;
else
load_address = sdmac->pc_to_device;
......@@ -939,7 +1013,7 @@ static int sdma_load_context(struct sdma_channel *sdmac)
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
return container_of(chan, struct sdma_channel, chan);
return container_of(chan, struct sdma_channel, vc.chan);
}
static int sdma_disable_channel(struct dma_chan *chan)
......@@ -947,21 +1021,25 @@ static int sdma_disable_channel(struct dma_chan *chan)
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
unsigned long flags;
writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
sdmac->status = DMA_ERROR;
spin_lock_irqsave(&sdmac->lock, flags);
sdmac->enabled = false;
spin_unlock_irqrestore(&sdmac->lock, flags);
return 0;
}
static int sdma_disable_channel_with_delay(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
sdma_disable_channel(chan);
spin_lock_irqsave(&sdmac->vc.lock, flags);
vchan_get_all_descriptors(&sdmac->vc, &head);
sdmac->desc = NULL;
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
vchan_dma_desc_free_list(&sdmac->vc, &head);
/*
* According to NXP R&D team a delay of one BD SDMA cost time
......@@ -1090,52 +1168,81 @@ static int sdma_set_channel_priority(struct sdma_channel *sdmac,
return 0;
}
static int sdma_request_channel(struct sdma_channel *sdmac)
static int sdma_request_channel0(struct sdma_engine *sdma)
{
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
int ret = -EBUSY;
sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
GFP_KERNEL);
if (!sdmac->bd) {
sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys,
GFP_NOWAIT);
if (!sdma->bd0) {
ret = -ENOMEM;
goto out;
}
sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
return 0;
out:
return ret;
}
static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
static int sdma_alloc_bd(struct sdma_desc *desc)
{
unsigned long flags;
struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
dma_cookie_t cookie;
int ret = 0;
spin_lock_irqsave(&sdmac->lock, flags);
desc->bd = dma_pool_alloc(desc->sdmac->bd_pool, GFP_NOWAIT,
&desc->bd_phys);
if (!desc->bd) {
ret = -ENOMEM;
goto out;
}
out:
return ret;
}
cookie = dma_cookie_assign(tx);
static void sdma_free_bd(struct sdma_desc *desc)
{
dma_pool_free(desc->sdmac->bd_pool, desc->bd, desc->bd_phys);
}
spin_unlock_irqrestore(&sdmac->lock, flags);
static void sdma_desc_free(struct virt_dma_desc *vd)
{
struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
return cookie;
sdma_free_bd(desc);
kfree(desc);
}
static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct imx_dma_data *data = chan->private;
struct imx_dma_data mem_data;
int prio, ret;
if (!data)
return -EINVAL;
/*
* MEMCPY may never setup chan->private by filter function such as
* dmatest, thus create 'struct imx_dma_data mem_data' for this case.
* Please note in any other slave case, you have to setup chan->private
* with 'struct imx_dma_data' in your own filter function if you want to
* request dma channel by dma_request_channel() rather than
* dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
* to warn you to correct your filter function.
*/
if (!data) {
dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
mem_data.priority = 2;
mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
mem_data.dma_request = 0;
mem_data.dma_request2 = 0;
data = &mem_data;
sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
}
switch (data->priority) {
case DMA_PRIO_HIGH:
......@@ -1161,18 +1268,13 @@ static int sdma_alloc_chan_resources(struct dma_chan *chan)
if (ret)
goto disable_clk_ipg;
ret = sdma_request_channel(sdmac);
if (ret)
goto disable_clk_ahb;
ret = sdma_set_channel_priority(sdmac, prio);
if (ret)
goto disable_clk_ahb;
dma_async_tx_descriptor_init(&sdmac->desc, chan);
sdmac->desc.tx_submit = sdma_tx_submit;
/* txd.flags will be overwritten in prep funcs */
sdmac->desc.flags = DMA_CTRL_ACK;
sdmac->bd_pool = dma_pool_create("bd_pool", chan->device->dev,
sizeof(struct sdma_buffer_descriptor),
32, 0);
return 0;
......@@ -1188,7 +1290,7 @@ static void sdma_free_chan_resources(struct dma_chan *chan)
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
sdma_disable_channel(chan);
sdma_disable_channel_with_delay(chan);
if (sdmac->event_id0)
sdma_event_disable(sdmac, sdmac->event_id0);
......@@ -1200,10 +1302,105 @@ static void sdma_free_chan_resources(struct dma_chan *chan)
sdma_set_channel_priority(sdmac, 0);
dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
clk_disable(sdma->clk_ipg);
clk_disable(sdma->clk_ahb);
dma_pool_destroy(sdmac->bd_pool);
sdmac->bd_pool = NULL;
}
static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
enum dma_transfer_direction direction, u32 bds)
{
struct sdma_desc *desc;
desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
if (!desc)
goto err_out;
sdmac->status = DMA_IN_PROGRESS;
sdmac->direction = direction;
sdmac->flags = 0;
desc->chn_count = 0;
desc->chn_real_count = 0;
desc->buf_tail = 0;
desc->buf_ptail = 0;
desc->sdmac = sdmac;
desc->num_bd = bds;
if (sdma_alloc_bd(desc))
goto err_desc_out;
/* No slave_config called in MEMCPY case, so do here */
if (direction == DMA_MEM_TO_MEM)
sdma_config_ownership(sdmac, false, true, false);
if (sdma_load_context(sdmac))
goto err_desc_out;
return desc;
err_desc_out:
kfree(desc);
err_out:
return NULL;
}
static struct dma_async_tx_descriptor *sdma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dma_dst,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
size_t count;
int i = 0, param;
struct sdma_buffer_descriptor *bd;
struct sdma_desc *desc;
if (!chan || !len)
return NULL;
dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
&dma_src, &dma_dst, len, channel);
desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
len / SDMA_BD_MAX_CNT + 1);
if (!desc)
return NULL;
do {
count = min_t(size_t, len, SDMA_BD_MAX_CNT);
bd = &desc->bd[i];
bd->buffer_addr = dma_src;
bd->ext_buffer_addr = dma_dst;
bd->mode.count = count;
desc->chn_count += count;
bd->mode.command = 0;
dma_src += count;
dma_dst += count;
len -= count;
i++;
param = BD_DONE | BD_EXTD | BD_CONT;
/* last bd */
if (!len) {
param |= BD_INTR;
param |= BD_LAST;
param &= ~BD_CONT;
}
dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
i, count, bd->buffer_addr,
param & BD_WRAP ? "wrap" : "",
param & BD_INTR ? " intr" : "");
bd->mode.status = param;
} while (len);
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
}
static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
......@@ -1213,75 +1410,54 @@ static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int ret, i, count;
int i, count;
int channel = sdmac->channel;
struct scatterlist *sg;
struct sdma_desc *desc;
if (sdmac->status == DMA_IN_PROGRESS)
return NULL;
sdmac->status = DMA_IN_PROGRESS;
sdmac->flags = 0;
sdmac->buf_tail = 0;
sdmac->buf_ptail = 0;
sdmac->chn_real_count = 0;
desc = sdma_transfer_init(sdmac, direction, sg_len);
if (!desc)
goto err_out;
dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
sg_len, channel);
sdmac->direction = direction;
ret = sdma_load_context(sdmac);
if (ret)
goto err_out;
if (sg_len > NUM_BD) {
dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
channel, sg_len, NUM_BD);
ret = -EINVAL;
goto err_out;
}
sdmac->chn_count = 0;
for_each_sg(sgl, sg, sg_len, i) {
struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
struct sdma_buffer_descriptor *bd = &desc->bd[i];
int param;
bd->buffer_addr = sg->dma_address;
count = sg_dma_len(sg);
if (count > 0xffff) {
if (count > SDMA_BD_MAX_CNT) {
dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
channel, count, 0xffff);
ret = -EINVAL;
goto err_out;
channel, count, SDMA_BD_MAX_CNT);
goto err_bd_out;
}
bd->mode.count = count;
sdmac->chn_count += count;
desc->chn_count += count;
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
ret = -EINVAL;
goto err_out;
}
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
goto err_bd_out;
switch (sdmac->word_size) {
case DMA_SLAVE_BUSWIDTH_4_BYTES:
bd->mode.command = 0;
if (count & 3 || sg->dma_address & 3)
return NULL;
goto err_bd_out;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
bd->mode.command = 2;
if (count & 1 || sg->dma_address & 1)
return NULL;
goto err_bd_out;
break;
case DMA_SLAVE_BUSWIDTH_1_BYTE:
bd->mode.command = 1;
break;
default:
return NULL;
goto err_bd_out;
}
param = BD_DONE | BD_EXTD | BD_CONT;
......@@ -1300,10 +1476,10 @@ static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
bd->mode.status = param;
}
sdmac->num_bd = sg_len;
sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
return &sdmac->desc;
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
sdma_free_bd(desc);
kfree(desc);
err_out:
sdmac->status = DMA_ERROR;
return NULL;
......@@ -1318,40 +1494,27 @@ static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
struct sdma_engine *sdma = sdmac->sdma;
int num_periods = buf_len / period_len;
int channel = sdmac->channel;
int ret, i = 0, buf = 0;
int i = 0, buf = 0;
struct sdma_desc *desc;
dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
if (sdmac->status == DMA_IN_PROGRESS)
return NULL;
sdmac->status = DMA_IN_PROGRESS;
desc = sdma_transfer_init(sdmac, direction, num_periods);
if (!desc)
goto err_out;
sdmac->buf_tail = 0;
sdmac->buf_ptail = 0;
sdmac->chn_real_count = 0;
sdmac->period_len = period_len;
desc->period_len = period_len;
sdmac->flags |= IMX_DMA_SG_LOOP;
sdmac->direction = direction;
ret = sdma_load_context(sdmac);
if (ret)
goto err_out;
if (num_periods > NUM_BD) {
dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
channel, num_periods, NUM_BD);
goto err_out;
}
if (period_len > 0xffff) {
if (period_len > SDMA_BD_MAX_CNT) {
dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
channel, period_len, 0xffff);
goto err_out;
channel, period_len, SDMA_BD_MAX_CNT);
goto err_bd_out;
}
while (buf < buf_len) {
struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
struct sdma_buffer_descriptor *bd = &desc->bd[i];
int param;
bd->buffer_addr = dma_addr;
......@@ -1359,7 +1522,7 @@ static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
bd->mode.count = period_len;
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
goto err_out;
goto err_bd_out;
if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
bd->mode.command = 0;
else
......@@ -1382,10 +1545,10 @@ static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
i++;
}
sdmac->num_bd = num_periods;
sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
return &sdmac->desc;
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
sdma_free_bd(desc);
kfree(desc);
err_out:
sdmac->status = DMA_ERROR;
return NULL;
......@@ -1424,13 +1587,31 @@ static enum dma_status sdma_tx_status(struct dma_chan *chan,
struct dma_tx_state *txstate)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_desc *desc;
u32 residue;
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
if (sdmac->flags & IMX_DMA_SG_LOOP)
residue = (sdmac->num_bd - sdmac->buf_ptail) *
sdmac->period_len - sdmac->chn_real_count;
else
residue = sdmac->chn_count - sdmac->chn_real_count;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&sdmac->vc.lock, flags);
vd = vchan_find_desc(&sdmac->vc, cookie);
if (vd) {
desc = to_sdma_desc(&vd->tx);
if (sdmac->flags & IMX_DMA_SG_LOOP)
residue = (desc->num_bd - desc->buf_ptail) *
desc->period_len - desc->chn_real_count;
else
residue = desc->chn_count - desc->chn_real_count;
} else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
} else {
residue = 0;
}
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
residue);
......@@ -1441,10 +1622,12 @@ static enum dma_status sdma_tx_status(struct dma_chan *chan,
static void sdma_issue_pending(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
unsigned long flags;
if (sdmac->status == DMA_IN_PROGRESS)
sdma_enable_channel(sdma, sdmac->channel);
spin_lock_irqsave(&sdmac->vc.lock, flags);
if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
sdma_start_desc(sdmac);
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
}
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
......@@ -1650,7 +1833,7 @@ static int sdma_init(struct sdma_engine *sdma)
for (i = 0; i < MAX_DMA_CHANNELS; i++)
writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
ret = sdma_request_channel(&sdma->channel[0]);
ret = sdma_request_channel0(sdma);
if (ret)
goto err_dma_alloc;
......@@ -1805,6 +1988,7 @@ static int sdma_probe(struct platform_device *pdev)
dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
INIT_LIST_HEAD(&sdma->dma_device.channels);
/* Initialize channel parameters */
......@@ -1812,22 +1996,16 @@ static int sdma_probe(struct platform_device *pdev)
struct sdma_channel *sdmac = &sdma->channel[i];
sdmac->sdma = sdma;
spin_lock_init(&sdmac->lock);
sdmac->chan.device = &sdma->dma_device;
dma_cookie_init(&sdmac->chan);
sdmac->channel = i;
tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
(unsigned long) sdmac);
sdmac->vc.desc_free = sdma_desc_free;
/*
* Add the channel to the DMAC list. Do not add channel 0 though
* because we need it internally in the SDMA driver. This also means
* that channel 0 in dmaengine counting matches sdma channel 1.
*/
if (i)
list_add_tail(&sdmac->chan.device_node,
&sdma->dma_device.channels);
vchan_init(&sdmac->vc, &sdma->dma_device);
}
ret = sdma_init(sdma);
......@@ -1877,9 +2055,10 @@ static int sdma_probe(struct platform_device *pdev)
sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
sdma->dma_device.device_issue_pending = sdma_issue_pending;
sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
dma_set_max_seg_size(sdma->dma_device.dev, 65535);
dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
platform_set_drvdata(pdev, sdma);
......@@ -1932,7 +2111,8 @@ static int sdma_remove(struct platform_device *pdev)
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
struct sdma_channel *sdmac = &sdma->channel[i];
tasklet_kill(&sdmac->tasklet);
tasklet_kill(&sdmac->vc.task);
sdma_free_chan_resources(&sdmac->vc.chan);
}
platform_set_drvdata(pdev, NULL);
......
......@@ -688,6 +688,12 @@ static void ioat_restart_channel(struct ioatdma_chan *ioat_chan)
{
u64 phys_complete;
/* set the completion address register again */
writel(lower_32_bits(ioat_chan->completion_dma),
ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_LOW);
writel(upper_32_bits(ioat_chan->completion_dma),
ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH);
ioat_quiesce(ioat_chan, 0);
if (ioat_cleanup_preamble(ioat_chan, &phys_complete))
__cleanup(ioat_chan, phys_complete);
......
......@@ -470,11 +470,6 @@ static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
mic_dma_chan_mask_intr(ch);
}
static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev)
{
dma_async_device_unregister(&mic_dma_dev->dma_dev);
}
static int mic_dma_setup_irq(struct mic_dma_chan *ch)
{
ch->cookie =
......@@ -630,7 +625,7 @@ static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
&mic_dma_dev->dma_dev.channels);
}
return dma_async_device_register(&mic_dma_dev->dma_dev);
return dmaenginem_async_device_register(&mic_dma_dev->dma_dev);
}
/*
......@@ -678,7 +673,6 @@ static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
{
mic_dma_unregister_dma_device(mic_dma_dev);
mic_dma_uninit(mic_dma_dev);
kfree(mic_dma_dev);
}
......
......@@ -174,6 +174,7 @@ struct mv_xor_v2_device {
int desc_size;
unsigned int npendings;
unsigned int hw_queue_idx;
struct msi_desc *msi_desc;
};
/**
......@@ -588,11 +589,9 @@ static void mv_xor_v2_tasklet(unsigned long data)
*/
dma_cookie_complete(&next_pending_sw_desc->async_tx);
if (next_pending_sw_desc->async_tx.callback)
next_pending_sw_desc->async_tx.callback(
next_pending_sw_desc->async_tx.callback_param);
dma_descriptor_unmap(&next_pending_sw_desc->async_tx);
dmaengine_desc_get_callback_invoke(
&next_pending_sw_desc->async_tx, NULL);
}
dma_run_dependencies(&next_pending_sw_desc->async_tx);
......@@ -643,9 +642,9 @@ static int mv_xor_v2_descq_init(struct mv_xor_v2_device *xor_dev)
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_SIZE_OFF);
/* write the DESQ address to the DMA enngine*/
writel(xor_dev->hw_desq & 0xFFFFFFFF,
writel(lower_32_bits(xor_dev->hw_desq),
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BALR_OFF);
writel((xor_dev->hw_desq & 0xFFFF00000000) >> 32,
writel(upper_32_bits(xor_dev->hw_desq),
xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BAHR_OFF);
/*
......@@ -780,6 +779,7 @@ static int mv_xor_v2_probe(struct platform_device *pdev)
msi_desc = first_msi_entry(&pdev->dev);
if (!msi_desc)
goto free_msi_irqs;
xor_dev->msi_desc = msi_desc;
ret = devm_request_irq(&pdev->dev, msi_desc->irq,
mv_xor_v2_interrupt_handler, 0,
......@@ -897,8 +897,12 @@ static int mv_xor_v2_remove(struct platform_device *pdev)
xor_dev->desc_size * MV_XOR_V2_DESC_NUM,
xor_dev->hw_desq_virt, xor_dev->hw_desq);
devm_free_irq(&pdev->dev, xor_dev->msi_desc->irq, xor_dev);
platform_msi_domain_free_irqs(&pdev->dev);
tasklet_kill(&xor_dev->irq_tasklet);
clk_disable_unprepare(xor_dev->clk);
return 0;
......
......@@ -479,6 +479,7 @@ static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
default:
pr_warn("%s(): invalid bus width %u\n", __func__, width);
/* fall through */
case DMA_SLAVE_BUSWIDTH_1_BYTE:
size = burst;
}
......
// SPDX-License-Identifier: GPL-2.0+
//
// Actions Semi Owl SoCs DMA driver
//
// Copyright (c) 2014 Actions Semi Inc.
// Author: David Liu <liuwei@actions-semi.com>
//
// Copyright (c) 2018 Linaro Ltd.
// Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include "virt-dma.h"
#define OWL_DMA_FRAME_MAX_LENGTH 0xfffff
/* Global DMA Controller Registers */
#define OWL_DMA_IRQ_PD0 0x00
#define OWL_DMA_IRQ_PD1 0x04
#define OWL_DMA_IRQ_PD2 0x08
#define OWL_DMA_IRQ_PD3 0x0C
#define OWL_DMA_IRQ_EN0 0x10
#define OWL_DMA_IRQ_EN1 0x14
#define OWL_DMA_IRQ_EN2 0x18
#define OWL_DMA_IRQ_EN3 0x1C
#define OWL_DMA_SECURE_ACCESS_CTL 0x20
#define OWL_DMA_NIC_QOS 0x24
#define OWL_DMA_DBGSEL 0x28
#define OWL_DMA_IDLE_STAT 0x2C
/* Channel Registers */
#define OWL_DMA_CHAN_BASE(i) (0x100 + (i) * 0x100)
#define OWL_DMAX_MODE 0x00
#define OWL_DMAX_SOURCE 0x04
#define OWL_DMAX_DESTINATION 0x08
#define OWL_DMAX_FRAME_LEN 0x0C
#define OWL_DMAX_FRAME_CNT 0x10
#define OWL_DMAX_REMAIN_FRAME_CNT 0x14
#define OWL_DMAX_REMAIN_CNT 0x18
#define OWL_DMAX_SOURCE_STRIDE 0x1C
#define OWL_DMAX_DESTINATION_STRIDE 0x20
#define OWL_DMAX_START 0x24
#define OWL_DMAX_PAUSE 0x28
#define OWL_DMAX_CHAINED_CTL 0x2C
#define OWL_DMAX_CONSTANT 0x30
#define OWL_DMAX_LINKLIST_CTL 0x34
#define OWL_DMAX_NEXT_DESCRIPTOR 0x38
#define OWL_DMAX_CURRENT_DESCRIPTOR_NUM 0x3C
#define OWL_DMAX_INT_CTL 0x40
#define OWL_DMAX_INT_STATUS 0x44
#define OWL_DMAX_CURRENT_SOURCE_POINTER 0x48
#define OWL_DMAX_CURRENT_DESTINATION_POINTER 0x4C
/* OWL_DMAX_MODE Bits */
#define OWL_DMA_MODE_TS(x) (((x) & GENMASK(5, 0)) << 0)
#define OWL_DMA_MODE_ST(x) (((x) & GENMASK(1, 0)) << 8)
#define OWL_DMA_MODE_ST_DEV OWL_DMA_MODE_ST(0)
#define OWL_DMA_MODE_ST_DCU OWL_DMA_MODE_ST(2)
#define OWL_DMA_MODE_ST_SRAM OWL_DMA_MODE_ST(3)
#define OWL_DMA_MODE_DT(x) (((x) & GENMASK(1, 0)) << 10)
#define OWL_DMA_MODE_DT_DEV OWL_DMA_MODE_DT(0)
#define OWL_DMA_MODE_DT_DCU OWL_DMA_MODE_DT(2)
#define OWL_DMA_MODE_DT_SRAM OWL_DMA_MODE_DT(3)
#define OWL_DMA_MODE_SAM(x) (((x) & GENMASK(1, 0)) << 16)
#define OWL_DMA_MODE_SAM_CONST OWL_DMA_MODE_SAM(0)
#define OWL_DMA_MODE_SAM_INC OWL_DMA_MODE_SAM(1)
#define OWL_DMA_MODE_SAM_STRIDE OWL_DMA_MODE_SAM(2)
#define OWL_DMA_MODE_DAM(x) (((x) & GENMASK(1, 0)) << 18)
#define OWL_DMA_MODE_DAM_CONST OWL_DMA_MODE_DAM(0)
#define OWL_DMA_MODE_DAM_INC OWL_DMA_MODE_DAM(1)
#define OWL_DMA_MODE_DAM_STRIDE OWL_DMA_MODE_DAM(2)
#define OWL_DMA_MODE_PW(x) (((x) & GENMASK(2, 0)) << 20)
#define OWL_DMA_MODE_CB BIT(23)
#define OWL_DMA_MODE_NDDBW(x) (((x) & 0x1) << 28)
#define OWL_DMA_MODE_NDDBW_32BIT OWL_DMA_MODE_NDDBW(0)
#define OWL_DMA_MODE_NDDBW_8BIT OWL_DMA_MODE_NDDBW(1)
#define OWL_DMA_MODE_CFE BIT(29)
#define OWL_DMA_MODE_LME BIT(30)
#define OWL_DMA_MODE_CME BIT(31)
/* OWL_DMAX_LINKLIST_CTL Bits */
#define OWL_DMA_LLC_SAV(x) (((x) & GENMASK(1, 0)) << 8)
#define OWL_DMA_LLC_SAV_INC OWL_DMA_LLC_SAV(0)
#define OWL_DMA_LLC_SAV_LOAD_NEXT OWL_DMA_LLC_SAV(1)
#define OWL_DMA_LLC_SAV_LOAD_PREV OWL_DMA_LLC_SAV(2)
#define OWL_DMA_LLC_DAV(x) (((x) & GENMASK(1, 0)) << 10)
#define OWL_DMA_LLC_DAV_INC OWL_DMA_LLC_DAV(0)
#define OWL_DMA_LLC_DAV_LOAD_NEXT OWL_DMA_LLC_DAV(1)
#define OWL_DMA_LLC_DAV_LOAD_PREV OWL_DMA_LLC_DAV(2)
#define OWL_DMA_LLC_SUSPEND BIT(16)
/* OWL_DMAX_INT_CTL Bits */
#define OWL_DMA_INTCTL_BLOCK BIT(0)
#define OWL_DMA_INTCTL_SUPER_BLOCK BIT(1)
#define OWL_DMA_INTCTL_FRAME BIT(2)
#define OWL_DMA_INTCTL_HALF_FRAME BIT(3)
#define OWL_DMA_INTCTL_LAST_FRAME BIT(4)
/* OWL_DMAX_INT_STATUS Bits */
#define OWL_DMA_INTSTAT_BLOCK BIT(0)
#define OWL_DMA_INTSTAT_SUPER_BLOCK BIT(1)
#define OWL_DMA_INTSTAT_FRAME BIT(2)
#define OWL_DMA_INTSTAT_HALF_FRAME BIT(3)
#define OWL_DMA_INTSTAT_LAST_FRAME BIT(4)
/* Pack shift and newshift in a single word */
#define BIT_FIELD(val, width, shift, newshift) \
((((val) >> (shift)) & ((BIT(width)) - 1)) << (newshift))
/**
* struct owl_dma_lli_hw - Hardware link list for dma transfer
* @next_lli: physical address of the next link list
* @saddr: source physical address
* @daddr: destination physical address
* @flen: frame length
* @fcnt: frame count
* @src_stride: source stride
* @dst_stride: destination stride
* @ctrla: dma_mode and linklist ctrl config
* @ctrlb: interrupt config
* @const_num: data for constant fill
*/
struct owl_dma_lli_hw {
u32 next_lli;
u32 saddr;
u32 daddr;
u32 flen:20;
u32 fcnt:12;
u32 src_stride;
u32 dst_stride;
u32 ctrla;
u32 ctrlb;
u32 const_num;
};
/**
* struct owl_dma_lli - Link list for dma transfer
* @hw: hardware link list
* @phys: physical address of hardware link list
* @node: node for txd's lli_list
*/
struct owl_dma_lli {
struct owl_dma_lli_hw hw;
dma_addr_t phys;
struct list_head node;
};
/**
* struct owl_dma_txd - Wrapper for struct dma_async_tx_descriptor
* @vd: virtual DMA descriptor
* @lli_list: link list of lli nodes
*/
struct owl_dma_txd {
struct virt_dma_desc vd;
struct list_head lli_list;
};
/**
* struct owl_dma_pchan - Holder for the physical channels
* @id: physical index to this channel
* @base: virtual memory base for the dma channel
* @vchan: the virtual channel currently being served by this physical channel
* @lock: a lock to use when altering an instance of this struct
*/
struct owl_dma_pchan {
u32 id;
void __iomem *base;
struct owl_dma_vchan *vchan;
spinlock_t lock;
};
/**
* struct owl_dma_pchan - Wrapper for DMA ENGINE channel
* @vc: wrappped virtual channel
* @pchan: the physical channel utilized by this channel
* @txd: active transaction on this channel
*/
struct owl_dma_vchan {
struct virt_dma_chan vc;
struct owl_dma_pchan *pchan;
struct owl_dma_txd *txd;
};
/**
* struct owl_dma - Holder for the Owl DMA controller
* @dma: dma engine for this instance
* @base: virtual memory base for the DMA controller
* @clk: clock for the DMA controller
* @lock: a lock to use when change DMA controller global register
* @lli_pool: a pool for the LLI descriptors
* @nr_pchans: the number of physical channels
* @pchans: array of data for the physical channels
* @nr_vchans: the number of physical channels
* @vchans: array of data for the physical channels
*/
struct owl_dma {
struct dma_device dma;
void __iomem *base;
struct clk *clk;
spinlock_t lock;
struct dma_pool *lli_pool;
int irq;
unsigned int nr_pchans;
struct owl_dma_pchan *pchans;
unsigned int nr_vchans;
struct owl_dma_vchan *vchans;
};
static void pchan_update(struct owl_dma_pchan *pchan, u32 reg,
u32 val, bool state)
{
u32 regval;
regval = readl(pchan->base + reg);
if (state)
regval |= val;
else
regval &= ~val;
writel(val, pchan->base + reg);
}
static void pchan_writel(struct owl_dma_pchan *pchan, u32 reg, u32 data)
{
writel(data, pchan->base + reg);
}
static u32 pchan_readl(struct owl_dma_pchan *pchan, u32 reg)
{
return readl(pchan->base + reg);
}
static void dma_update(struct owl_dma *od, u32 reg, u32 val, bool state)
{
u32 regval;
regval = readl(od->base + reg);
if (state)
regval |= val;
else
regval &= ~val;
writel(val, od->base + reg);
}
static void dma_writel(struct owl_dma *od, u32 reg, u32 data)
{
writel(data, od->base + reg);
}
static u32 dma_readl(struct owl_dma *od, u32 reg)
{
return readl(od->base + reg);
}
static inline struct owl_dma *to_owl_dma(struct dma_device *dd)
{
return container_of(dd, struct owl_dma, dma);
}
static struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static inline struct owl_dma_vchan *to_owl_vchan(struct dma_chan *chan)
{
return container_of(chan, struct owl_dma_vchan, vc.chan);
}
static inline struct owl_dma_txd *to_owl_txd(struct dma_async_tx_descriptor *tx)
{
return container_of(tx, struct owl_dma_txd, vd.tx);
}
static inline u32 llc_hw_ctrla(u32 mode, u32 llc_ctl)
{
u32 ctl;
ctl = BIT_FIELD(mode, 4, 28, 28) |
BIT_FIELD(mode, 8, 16, 20) |
BIT_FIELD(mode, 4, 8, 16) |
BIT_FIELD(mode, 6, 0, 10) |
BIT_FIELD(llc_ctl, 2, 10, 8) |
BIT_FIELD(llc_ctl, 2, 8, 6);
return ctl;
}
static inline u32 llc_hw_ctrlb(u32 int_ctl)
{
u32 ctl;
ctl = BIT_FIELD(int_ctl, 7, 0, 18);
return ctl;
}
static void owl_dma_free_lli(struct owl_dma *od,
struct owl_dma_lli *lli)
{
list_del(&lli->node);
dma_pool_free(od->lli_pool, lli, lli->phys);
}
static struct owl_dma_lli *owl_dma_alloc_lli(struct owl_dma *od)
{
struct owl_dma_lli *lli;
dma_addr_t phys;
lli = dma_pool_alloc(od->lli_pool, GFP_NOWAIT, &phys);
if (!lli)
return NULL;
INIT_LIST_HEAD(&lli->node);
lli->phys = phys;
return lli;
}
static struct owl_dma_lli *owl_dma_add_lli(struct owl_dma_txd *txd,
struct owl_dma_lli *prev,
struct owl_dma_lli *next)
{
list_add_tail(&next->node, &txd->lli_list);
if (prev) {
prev->hw.next_lli = next->phys;
prev->hw.ctrla |= llc_hw_ctrla(OWL_DMA_MODE_LME, 0);
}
return next;
}
static inline int owl_dma_cfg_lli(struct owl_dma_vchan *vchan,
struct owl_dma_lli *lli,
dma_addr_t src, dma_addr_t dst,
u32 len, enum dma_transfer_direction dir)
{
struct owl_dma_lli_hw *hw = &lli->hw;
u32 mode;
mode = OWL_DMA_MODE_PW(0);
switch (dir) {
case DMA_MEM_TO_MEM:
mode |= OWL_DMA_MODE_TS(0) | OWL_DMA_MODE_ST_DCU |
OWL_DMA_MODE_DT_DCU | OWL_DMA_MODE_SAM_INC |
OWL_DMA_MODE_DAM_INC;
break;
default:
return -EINVAL;
}
hw->next_lli = 0; /* One link list by default */
hw->saddr = src;
hw->daddr = dst;
hw->fcnt = 1; /* Frame count fixed as 1 */
hw->flen = len; /* Max frame length is 1MB */
hw->src_stride = 0;
hw->dst_stride = 0;
hw->ctrla = llc_hw_ctrla(mode,
OWL_DMA_LLC_SAV_LOAD_NEXT |
OWL_DMA_LLC_DAV_LOAD_NEXT);
hw->ctrlb = llc_hw_ctrlb(OWL_DMA_INTCTL_SUPER_BLOCK);
return 0;
}
static struct owl_dma_pchan *owl_dma_get_pchan(struct owl_dma *od,
struct owl_dma_vchan *vchan)
{
struct owl_dma_pchan *pchan = NULL;
unsigned long flags;
int i;
for (i = 0; i < od->nr_pchans; i++) {
pchan = &od->pchans[i];
spin_lock_irqsave(&pchan->lock, flags);
if (!pchan->vchan) {
pchan->vchan = vchan;
spin_unlock_irqrestore(&pchan->lock, flags);
break;
}
spin_unlock_irqrestore(&pchan->lock, flags);
}
return pchan;
}
static int owl_dma_pchan_busy(struct owl_dma *od, struct owl_dma_pchan *pchan)
{
unsigned int val;
val = dma_readl(od, OWL_DMA_IDLE_STAT);
return !(val & (1 << pchan->id));
}
static void owl_dma_terminate_pchan(struct owl_dma *od,
struct owl_dma_pchan *pchan)
{
unsigned long flags;
u32 irq_pd;
pchan_writel(pchan, OWL_DMAX_START, 0);
pchan_update(pchan, OWL_DMAX_INT_STATUS, 0xff, false);
spin_lock_irqsave(&od->lock, flags);
dma_update(od, OWL_DMA_IRQ_EN0, (1 << pchan->id), false);
irq_pd = dma_readl(od, OWL_DMA_IRQ_PD0);
if (irq_pd & (1 << pchan->id)) {
dev_warn(od->dma.dev,
"terminating pchan %d that still has pending irq\n",
pchan->id);
dma_writel(od, OWL_DMA_IRQ_PD0, (1 << pchan->id));
}
pchan->vchan = NULL;
spin_unlock_irqrestore(&od->lock, flags);
}
static int owl_dma_start_next_txd(struct owl_dma_vchan *vchan)
{
struct owl_dma *od = to_owl_dma(vchan->vc.chan.device);
struct virt_dma_desc *vd = vchan_next_desc(&vchan->vc);
struct owl_dma_pchan *pchan = vchan->pchan;
struct owl_dma_txd *txd = to_owl_txd(&vd->tx);
struct owl_dma_lli *lli;
unsigned long flags;
u32 int_ctl;
list_del(&vd->node);
vchan->txd = txd;
/* Wait for channel inactive */
while (owl_dma_pchan_busy(od, pchan))
cpu_relax();
lli = list_first_entry(&txd->lli_list,
struct owl_dma_lli, node);
int_ctl = OWL_DMA_INTCTL_SUPER_BLOCK;
pchan_writel(pchan, OWL_DMAX_MODE, OWL_DMA_MODE_LME);
pchan_writel(pchan, OWL_DMAX_LINKLIST_CTL,
OWL_DMA_LLC_SAV_LOAD_NEXT | OWL_DMA_LLC_DAV_LOAD_NEXT);
pchan_writel(pchan, OWL_DMAX_NEXT_DESCRIPTOR, lli->phys);
pchan_writel(pchan, OWL_DMAX_INT_CTL, int_ctl);
/* Clear IRQ status for this pchan */
pchan_update(pchan, OWL_DMAX_INT_STATUS, 0xff, false);
spin_lock_irqsave(&od->lock, flags);
dma_update(od, OWL_DMA_IRQ_EN0, (1 << pchan->id), true);
spin_unlock_irqrestore(&od->lock, flags);
dev_dbg(chan2dev(&vchan->vc.chan), "starting pchan %d\n", pchan->id);
/* Start DMA transfer for this pchan */
pchan_writel(pchan, OWL_DMAX_START, 0x1);
return 0;
}
static void owl_dma_phy_free(struct owl_dma *od, struct owl_dma_vchan *vchan)
{
/* Ensure that the physical channel is stopped */
owl_dma_terminate_pchan(od, vchan->pchan);
vchan->pchan = NULL;
}
static irqreturn_t owl_dma_interrupt(int irq, void *dev_id)
{
struct owl_dma *od = dev_id;
struct owl_dma_vchan *vchan;
struct owl_dma_pchan *pchan;
unsigned long pending;
int i;
unsigned int global_irq_pending, chan_irq_pending;
spin_lock(&od->lock);
pending = dma_readl(od, OWL_DMA_IRQ_PD0);
/* Clear IRQ status for each pchan */
for_each_set_bit(i, &pending, od->nr_pchans) {
pchan = &od->pchans[i];
pchan_update(pchan, OWL_DMAX_INT_STATUS, 0xff, false);
}
/* Clear pending IRQ */
dma_writel(od, OWL_DMA_IRQ_PD0, pending);
/* Check missed pending IRQ */
for (i = 0; i < od->nr_pchans; i++) {
pchan = &od->pchans[i];
chan_irq_pending = pchan_readl(pchan, OWL_DMAX_INT_CTL) &
pchan_readl(pchan, OWL_DMAX_INT_STATUS);
/* Dummy read to ensure OWL_DMA_IRQ_PD0 value is updated */
dma_readl(od, OWL_DMA_IRQ_PD0);
global_irq_pending = dma_readl(od, OWL_DMA_IRQ_PD0);
if (chan_irq_pending && !(global_irq_pending & BIT(i))) {
dev_dbg(od->dma.dev,
"global and channel IRQ pending match err\n");
/* Clear IRQ status for this pchan */
pchan_update(pchan, OWL_DMAX_INT_STATUS,
0xff, false);
/* Update global IRQ pending */
pending |= BIT(i);
}
}
spin_unlock(&od->lock);
for_each_set_bit(i, &pending, od->nr_pchans) {
struct owl_dma_txd *txd;
pchan = &od->pchans[i];
vchan = pchan->vchan;
if (!vchan) {
dev_warn(od->dma.dev, "no vchan attached on pchan %d\n",
pchan->id);
continue;
}
spin_lock(&vchan->vc.lock);
txd = vchan->txd;
if (txd) {
vchan->txd = NULL;
vchan_cookie_complete(&txd->vd);
/*
* Start the next descriptor (if any),
* otherwise free this channel.
*/
if (vchan_next_desc(&vchan->vc))
owl_dma_start_next_txd(vchan);
else
owl_dma_phy_free(od, vchan);
}
spin_unlock(&vchan->vc.lock);
}
return IRQ_HANDLED;
}
static void owl_dma_free_txd(struct owl_dma *od, struct owl_dma_txd *txd)
{
struct owl_dma_lli *lli, *_lli;
if (unlikely(!txd))
return;
list_for_each_entry_safe(lli, _lli, &txd->lli_list, node)
owl_dma_free_lli(od, lli);
kfree(txd);
}
static void owl_dma_desc_free(struct virt_dma_desc *vd)
{
struct owl_dma *od = to_owl_dma(vd->tx.chan->device);
struct owl_dma_txd *txd = to_owl_txd(&vd->tx);
owl_dma_free_txd(od, txd);
}
static int owl_dma_terminate_all(struct dma_chan *chan)
{
struct owl_dma *od = to_owl_dma(chan->device);
struct owl_dma_vchan *vchan = to_owl_vchan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&vchan->vc.lock, flags);
if (vchan->pchan)
owl_dma_phy_free(od, vchan);
if (vchan->txd) {
owl_dma_desc_free(&vchan->txd->vd);
vchan->txd = NULL;
}
vchan_get_all_descriptors(&vchan->vc, &head);
vchan_dma_desc_free_list(&vchan->vc, &head);
spin_unlock_irqrestore(&vchan->vc.lock, flags);
return 0;
}
static u32 owl_dma_getbytes_chan(struct owl_dma_vchan *vchan)
{
struct owl_dma_pchan *pchan;
struct owl_dma_txd *txd;
struct owl_dma_lli *lli;
unsigned int next_lli_phy;
size_t bytes;
pchan = vchan->pchan;
txd = vchan->txd;
if (!pchan || !txd)
return 0;
/* Get remain count of current node in link list */
bytes = pchan_readl(pchan, OWL_DMAX_REMAIN_CNT);
/* Loop through the preceding nodes to get total remaining bytes */
if (pchan_readl(pchan, OWL_DMAX_MODE) & OWL_DMA_MODE_LME) {
next_lli_phy = pchan_readl(pchan, OWL_DMAX_NEXT_DESCRIPTOR);
list_for_each_entry(lli, &txd->lli_list, node) {
/* Start from the next active node */
if (lli->phys == next_lli_phy) {
list_for_each_entry(lli, &txd->lli_list, node)
bytes += lli->hw.flen;
break;
}
}
}
return bytes;
}
static enum dma_status owl_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *state)
{
struct owl_dma_vchan *vchan = to_owl_vchan(chan);
struct owl_dma_lli *lli;
struct virt_dma_desc *vd;
struct owl_dma_txd *txd;
enum dma_status ret;
unsigned long flags;
size_t bytes = 0;
ret = dma_cookie_status(chan, cookie, state);
if (ret == DMA_COMPLETE || !state)
return ret;
spin_lock_irqsave(&vchan->vc.lock, flags);
vd = vchan_find_desc(&vchan->vc, cookie);
if (vd) {
txd = to_owl_txd(&vd->tx);
list_for_each_entry(lli, &txd->lli_list, node)
bytes += lli->hw.flen;
} else {
bytes = owl_dma_getbytes_chan(vchan);
}
spin_unlock_irqrestore(&vchan->vc.lock, flags);
dma_set_residue(state, bytes);
return ret;
}
static void owl_dma_phy_alloc_and_start(struct owl_dma_vchan *vchan)
{
struct owl_dma *od = to_owl_dma(vchan->vc.chan.device);
struct owl_dma_pchan *pchan;
pchan = owl_dma_get_pchan(od, vchan);
if (!pchan)
return;
dev_dbg(od->dma.dev, "allocated pchan %d\n", pchan->id);
vchan->pchan = pchan;
owl_dma_start_next_txd(vchan);
}
static void owl_dma_issue_pending(struct dma_chan *chan)
{
struct owl_dma_vchan *vchan = to_owl_vchan(chan);
unsigned long flags;
spin_lock_irqsave(&vchan->vc.lock, flags);
if (vchan_issue_pending(&vchan->vc)) {
if (!vchan->pchan)
owl_dma_phy_alloc_and_start(vchan);
}
spin_unlock_irqrestore(&vchan->vc.lock, flags);
}
static struct dma_async_tx_descriptor
*owl_dma_prep_memcpy(struct dma_chan *chan,
dma_addr_t dst, dma_addr_t src,
size_t len, unsigned long flags)
{
struct owl_dma *od = to_owl_dma(chan->device);
struct owl_dma_vchan *vchan = to_owl_vchan(chan);
struct owl_dma_txd *txd;
struct owl_dma_lli *lli, *prev = NULL;
size_t offset, bytes;
int ret;
if (!len)
return NULL;
txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
if (!txd)
return NULL;
INIT_LIST_HEAD(&txd->lli_list);
/* Process the transfer as frame by frame */
for (offset = 0; offset < len; offset += bytes) {
lli = owl_dma_alloc_lli(od);
if (!lli) {
dev_warn(chan2dev(chan), "failed to allocate lli\n");
goto err_txd_free;
}
bytes = min_t(size_t, (len - offset), OWL_DMA_FRAME_MAX_LENGTH);
ret = owl_dma_cfg_lli(vchan, lli, src + offset, dst + offset,
bytes, DMA_MEM_TO_MEM);
if (ret) {
dev_warn(chan2dev(chan), "failed to config lli\n");
goto err_txd_free;
}
prev = owl_dma_add_lli(txd, prev, lli);
}
return vchan_tx_prep(&vchan->vc, &txd->vd, flags);
err_txd_free:
owl_dma_free_txd(od, txd);
return NULL;
}
static void owl_dma_free_chan_resources(struct dma_chan *chan)
{
struct owl_dma_vchan *vchan = to_owl_vchan(chan);
/* Ensure all queued descriptors are freed */
vchan_free_chan_resources(&vchan->vc);
}
static inline void owl_dma_free(struct owl_dma *od)
{
struct owl_dma_vchan *vchan = NULL;
struct owl_dma_vchan *next;
list_for_each_entry_safe(vchan,
next, &od->dma.channels, vc.chan.device_node) {
list_del(&vchan->vc.chan.device_node);
tasklet_kill(&vchan->vc.task);
}
}
static int owl_dma_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct owl_dma *od;
struct resource *res;
int ret, i, nr_channels, nr_requests;
od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
if (!od)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
od->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(od->base))
return PTR_ERR(od->base);
ret = of_property_read_u32(np, "dma-channels", &nr_channels);
if (ret) {
dev_err(&pdev->dev, "can't get dma-channels\n");
return ret;
}
ret = of_property_read_u32(np, "dma-requests", &nr_requests);
if (ret) {
dev_err(&pdev->dev, "can't get dma-requests\n");
return ret;
}
dev_info(&pdev->dev, "dma-channels %d, dma-requests %d\n",
nr_channels, nr_requests);
od->nr_pchans = nr_channels;
od->nr_vchans = nr_requests;
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
platform_set_drvdata(pdev, od);
spin_lock_init(&od->lock);
dma_cap_set(DMA_MEMCPY, od->dma.cap_mask);
od->dma.dev = &pdev->dev;
od->dma.device_free_chan_resources = owl_dma_free_chan_resources;
od->dma.device_tx_status = owl_dma_tx_status;
od->dma.device_issue_pending = owl_dma_issue_pending;
od->dma.device_prep_dma_memcpy = owl_dma_prep_memcpy;
od->dma.device_terminate_all = owl_dma_terminate_all;
od->dma.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
od->dma.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
od->dma.directions = BIT(DMA_MEM_TO_MEM);
od->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
INIT_LIST_HEAD(&od->dma.channels);
od->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(od->clk)) {
dev_err(&pdev->dev, "unable to get clock\n");
return PTR_ERR(od->clk);
}
/*
* Eventhough the DMA controller is capable of generating 4
* IRQ's for DMA priority feature, we only use 1 IRQ for
* simplification.
*/
od->irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(&pdev->dev, od->irq, owl_dma_interrupt, 0,
dev_name(&pdev->dev), od);
if (ret) {
dev_err(&pdev->dev, "unable to request IRQ\n");
return ret;
}
/* Init physical channel */
od->pchans = devm_kcalloc(&pdev->dev, od->nr_pchans,
sizeof(struct owl_dma_pchan), GFP_KERNEL);
if (!od->pchans)
return -ENOMEM;
for (i = 0; i < od->nr_pchans; i++) {
struct owl_dma_pchan *pchan = &od->pchans[i];
pchan->id = i;
pchan->base = od->base + OWL_DMA_CHAN_BASE(i);
}
/* Init virtual channel */
od->vchans = devm_kcalloc(&pdev->dev, od->nr_vchans,
sizeof(struct owl_dma_vchan), GFP_KERNEL);
if (!od->vchans)
return -ENOMEM;
for (i = 0; i < od->nr_vchans; i++) {
struct owl_dma_vchan *vchan = &od->vchans[i];
vchan->vc.desc_free = owl_dma_desc_free;
vchan_init(&vchan->vc, &od->dma);
}
/* Create a pool of consistent memory blocks for hardware descriptors */
od->lli_pool = dma_pool_create(dev_name(od->dma.dev), od->dma.dev,
sizeof(struct owl_dma_lli),
__alignof__(struct owl_dma_lli),
0);
if (!od->lli_pool) {
dev_err(&pdev->dev, "unable to allocate DMA descriptor pool\n");
return -ENOMEM;
}
clk_prepare_enable(od->clk);
ret = dma_async_device_register(&od->dma);
if (ret) {
dev_err(&pdev->dev, "failed to register DMA engine device\n");
goto err_pool_free;
}
return 0;
err_pool_free:
clk_disable_unprepare(od->clk);
dma_pool_destroy(od->lli_pool);
return ret;
}
static int owl_dma_remove(struct platform_device *pdev)
{
struct owl_dma *od = platform_get_drvdata(pdev);
dma_async_device_unregister(&od->dma);
/* Mask all interrupts for this execution environment */
dma_writel(od, OWL_DMA_IRQ_EN0, 0x0);
/* Make sure we won't have any further interrupts */
devm_free_irq(od->dma.dev, od->irq, od);
owl_dma_free(od);
clk_disable_unprepare(od->clk);
return 0;
}
static const struct of_device_id owl_dma_match[] = {
{ .compatible = "actions,s900-dma", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, owl_dma_match);
static struct platform_driver owl_dma_driver = {
.probe = owl_dma_probe,
.remove = owl_dma_remove,
.driver = {
.name = "dma-owl",
.of_match_table = of_match_ptr(owl_dma_match),
},
};
static int owl_dma_init(void)
{
return platform_driver_register(&owl_dma_driver);
}
subsys_initcall(owl_dma_init);
static void __exit owl_dma_exit(void)
{
platform_driver_unregister(&owl_dma_driver);
}
module_exit(owl_dma_exit);
MODULE_AUTHOR("David Liu <liuwei@actions-semi.com>");
MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
MODULE_DESCRIPTION("Actions Semi Owl SoCs DMA driver");
MODULE_LICENSE("GPL");
......@@ -1046,13 +1046,16 @@ static bool _start(struct pl330_thread *thrd)
if (_state(thrd) == PL330_STATE_KILLING)
UNTIL(thrd, PL330_STATE_STOPPED)
/* fall through */
case PL330_STATE_FAULTING:
_stop(thrd);
/* fall through */
case PL330_STATE_KILLING:
case PL330_STATE_COMPLETING:
UNTIL(thrd, PL330_STATE_STOPPED)
/* fall through */
case PL330_STATE_STOPPED:
return _trigger(thrd);
......@@ -1779,8 +1782,6 @@ static inline void _free_event(struct pl330_thread *thrd, int ev)
static void pl330_release_channel(struct pl330_thread *thrd)
{
struct pl330_dmac *pl330;
if (!thrd || thrd->free)
return;
......@@ -1789,8 +1790,6 @@ static void pl330_release_channel(struct pl330_thread *thrd)
dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
pl330 = thrd->dmac;
_free_event(thrd, thrd->ev);
thrd->free = true;
}
......@@ -2257,13 +2256,14 @@ static int pl330_terminate_all(struct dma_chan *chan)
pm_runtime_get_sync(pl330->ddma.dev);
spin_lock_irqsave(&pch->lock, flags);
spin_lock(&pl330->lock);
_stop(pch->thread);
spin_unlock(&pl330->lock);
pch->thread->req[0].desc = NULL;
pch->thread->req[1].desc = NULL;
pch->thread->req_running = -1;
spin_unlock(&pl330->lock);
power_down = pch->active;
pch->active = false;
......
// SPDX-License-Identifier: GPL-2.0
/*
* Renesas R-Car Gen2 DMA Controller Driver
*
* Copyright (C) 2014 Renesas Electronics Inc.
*
* Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*
* This is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
......@@ -431,7 +428,8 @@ static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
}
rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
rcar_dmac_chan_write(chan, RCAR_DMACHCR,
chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
}
static int rcar_dmac_init(struct rcar_dmac *dmac)
......@@ -761,21 +759,15 @@ static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
dev_err(chan->chan.device->dev, "CHCR DE check error\n");
}
static void rcar_dmac_sync_tcr(struct rcar_dmac_chan *chan)
static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
{
u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
if (!(chcr & RCAR_DMACHCR_DE))
return;
/* set DE=0 and flush remaining data */
rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
/* make sure all remaining data was flushed */
rcar_dmac_chcr_de_barrier(chan);
/* back DE */
rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
}
static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
......@@ -783,7 +775,8 @@ static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
rcar_dmac_chcr_de_barrier(chan);
}
......@@ -812,12 +805,7 @@ static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
}
}
static void rcar_dmac_stop(struct rcar_dmac *dmac)
{
rcar_dmac_write(dmac, RCAR_DMAOR, 0);
}
static void rcar_dmac_abort(struct rcar_dmac *dmac)
static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
{
unsigned int i;
......@@ -826,14 +814,24 @@ static void rcar_dmac_abort(struct rcar_dmac *dmac)
struct rcar_dmac_chan *chan = &dmac->channels[i];
/* Stop and reinitialize the channel. */
spin_lock(&chan->lock);
spin_lock_irq(&chan->lock);
rcar_dmac_chan_halt(chan);
spin_unlock(&chan->lock);
rcar_dmac_chan_reinit(chan);
spin_unlock_irq(&chan->lock);
}
}
static int rcar_dmac_chan_pause(struct dma_chan *chan)
{
unsigned long flags;
struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
spin_lock_irqsave(&rchan->lock, flags);
rcar_dmac_clear_chcr_de(rchan);
spin_unlock_irqrestore(&rchan->lock, flags);
return 0;
}
/* -----------------------------------------------------------------------------
* Descriptors preparation
*/
......@@ -1355,9 +1353,6 @@ static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
residue += chunk->size;
}
if (desc->direction == DMA_DEV_TO_MEM)
rcar_dmac_sync_tcr(chan);
/* Add the residue for the current chunk. */
residue += rcar_dmac_chan_read(chan, RCAR_DMATCRB) << desc->xfer_shift;
......@@ -1522,11 +1517,26 @@ static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
struct rcar_dmac_chan *chan = dev;
irqreturn_t ret = IRQ_NONE;
bool reinit = false;
u32 chcr;
spin_lock(&chan->lock);
chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
if (chcr & RCAR_DMACHCR_CAE) {
struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
/*
* We don't need to call rcar_dmac_chan_halt()
* because channel is already stopped in error case.
* We need to clear register and check DE bit as recovery.
*/
rcar_dmac_write(dmac, RCAR_DMACHCLR, 1 << chan->index);
rcar_dmac_chcr_de_barrier(chan);
reinit = true;
goto spin_lock_end;
}
if (chcr & RCAR_DMACHCR_TE)
mask |= RCAR_DMACHCR_DE;
rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
......@@ -1539,8 +1549,16 @@ static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
if (chcr & RCAR_DMACHCR_TE)
ret |= rcar_dmac_isr_transfer_end(chan);
spin_lock_end:
spin_unlock(&chan->lock);
if (reinit) {
dev_err(chan->chan.device->dev, "Channel Address Error\n");
rcar_dmac_chan_reinit(chan);
ret = IRQ_HANDLED;
}
return ret;
}
......@@ -1597,24 +1615,6 @@ static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
return IRQ_HANDLED;
}
static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
{
struct rcar_dmac *dmac = data;
if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
return IRQ_NONE;
/*
* An unrecoverable error occurred on an unknown channel. Halt the DMAC,
* abort transfers on all channels, and reinitialize the DMAC.
*/
rcar_dmac_stop(dmac);
rcar_dmac_abort(dmac);
rcar_dmac_init(dmac);
return IRQ_HANDLED;
}
/* -----------------------------------------------------------------------------
* OF xlate and channel filter
*/
......@@ -1784,8 +1784,6 @@ static int rcar_dmac_probe(struct platform_device *pdev)
struct rcar_dmac *dmac;
struct resource *mem;
unsigned int i;
char *irqname;
int irq;
int ret;
dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
......@@ -1824,17 +1822,6 @@ static int rcar_dmac_probe(struct platform_device *pdev)
if (IS_ERR(dmac->iomem))
return PTR_ERR(dmac->iomem);
irq = platform_get_irq_byname(pdev, "error");
if (irq < 0) {
dev_err(&pdev->dev, "no error IRQ specified\n");
return -ENODEV;
}
irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
dev_name(dmac->dev));
if (!irqname)
return -ENOMEM;
/* Enable runtime PM and initialize the device. */
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
......@@ -1871,6 +1858,7 @@ static int rcar_dmac_probe(struct platform_device *pdev)
engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
engine->device_config = rcar_dmac_device_config;
engine->device_pause = rcar_dmac_chan_pause;
engine->device_terminate_all = rcar_dmac_chan_terminate_all;
engine->device_tx_status = rcar_dmac_tx_status;
engine->device_issue_pending = rcar_dmac_issue_pending;
......@@ -1885,14 +1873,6 @@ static int rcar_dmac_probe(struct platform_device *pdev)
goto error;
}
ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
irqname, dmac);
if (ret) {
dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
irq, ret);
return ret;
}
/* Register the DMAC as a DMA provider for DT. */
ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
NULL);
......@@ -1932,7 +1912,7 @@ static void rcar_dmac_shutdown(struct platform_device *pdev)
{
struct rcar_dmac *dmac = platform_get_drvdata(pdev);
rcar_dmac_stop(dmac);
rcar_dmac_stop_all_chan(dmac);
}
static const struct of_device_id rcar_dmac_of_ids[] = {
......
......@@ -555,6 +555,7 @@ struct d40_gen_dmac {
* @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
* later
* @reg_val_backup_chan: Backup data for standard channel parameter registers.
* @regs_interrupt: Scratch space for registers during interrupt.
* @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
* @gen_dmac: the struct for generic registers values to represent u8500/8540
* DMA controller
......@@ -592,6 +593,7 @@ struct d40_base {
u32 reg_val_backup[BACKUP_REGS_SZ];
u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
u32 *reg_val_backup_chan;
u32 *regs_interrupt;
u16 gcc_pwr_off_mask;
struct d40_gen_dmac gen_dmac;
};
......@@ -1637,7 +1639,7 @@ static irqreturn_t d40_handle_interrupt(int irq, void *data)
struct d40_chan *d40c;
unsigned long flags;
struct d40_base *base = data;
u32 regs[base->gen_dmac.il_size];
u32 *regs = base->regs_interrupt;
struct d40_interrupt_lookup *il = base->gen_dmac.il;
u32 il_size = base->gen_dmac.il_size;
......@@ -3258,13 +3260,22 @@ static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
if (!base->lcla_pool.alloc_map)
goto free_backup_chan;
base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
sizeof(*base->regs_interrupt),
GFP_KERNEL);
if (!base->regs_interrupt)
goto free_map;
base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (base->desc_slab == NULL)
goto free_map;
goto free_regs;
return base;
free_regs:
kfree(base->regs_interrupt);
free_map:
kfree(base->lcla_pool.alloc_map);
free_backup_chan:
......
......@@ -594,7 +594,7 @@ static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
chan->busy = true;
dev_dbg(chan2dev(chan), "vchan %p: started\n", &chan->vchan);
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
}
static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
......@@ -693,7 +693,7 @@ static void stm32_dma_issue_pending(struct dma_chan *c)
spin_lock_irqsave(&chan->vchan.lock, flags);
if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
dev_dbg(chan2dev(chan), "vchan %p: issued\n", &chan->vchan);
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
stm32_dma_start_transfer(chan);
}
......
......@@ -1170,7 +1170,7 @@ static void stm32_mdma_start_transfer(struct stm32_mdma_chan *chan)
chan->busy = true;
dev_dbg(chan2dev(chan), "vchan %p: started\n", &chan->vchan);
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
}
static void stm32_mdma_issue_pending(struct dma_chan *c)
......@@ -1183,7 +1183,7 @@ static void stm32_mdma_issue_pending(struct dma_chan *c)
if (!vchan_issue_pending(&chan->vchan))
goto end;
dev_dbg(chan2dev(chan), "vchan %p: issued\n", &chan->vchan);
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
if (!chan->desc && !chan->busy)
stm32_mdma_start_transfer(chan);
......@@ -1203,7 +1203,7 @@ static int stm32_mdma_pause(struct dma_chan *c)
spin_unlock_irqrestore(&chan->vchan.lock, flags);
if (!ret)
dev_dbg(chan2dev(chan), "vchan %p: pause\n", &chan->vchan);
dev_dbg(chan2dev(chan), "vchan %pK: pause\n", &chan->vchan);
return ret;
}
......@@ -1240,7 +1240,7 @@ static int stm32_mdma_resume(struct dma_chan *c)
spin_unlock_irqrestore(&chan->vchan.lock, flags);
dev_dbg(chan2dev(chan), "vchan %p: resume\n", &chan->vchan);
dev_dbg(chan2dev(chan), "vchan %pK: resume\n", &chan->vchan);
return 0;
}
......
......@@ -115,6 +115,9 @@
#define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n))
#define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n))
#define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP 0x00ec
#define XILINX_VDMA_ENABLE_VERTICAL_FLIP BIT(0)
/* HW specific definitions */
#define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x20
......@@ -340,6 +343,7 @@ struct xilinx_dma_tx_descriptor {
* @start_transfer: Differentiate b/w DMA IP's transfer
* @stop_transfer: Differentiate b/w DMA IP's quiesce
* @tdest: TDEST value for mcdma
* @has_vflip: S2MM vertical flip
*/
struct xilinx_dma_chan {
struct xilinx_dma_device *xdev;
......@@ -376,6 +380,7 @@ struct xilinx_dma_chan {
void (*start_transfer)(struct xilinx_dma_chan *chan);
int (*stop_transfer)(struct xilinx_dma_chan *chan);
u16 tdest;
bool has_vflip;
};
/**
......@@ -1092,6 +1097,14 @@ static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
desc->async_tx.phys);
/* Configure the hardware using info in the config structure */
if (chan->has_vflip) {
reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP);
reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP;
reg |= config->vflip_en;
dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP,
reg);
}
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
if (config->frm_cnt_en)
......@@ -2105,6 +2118,8 @@ int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
}
chan->config.frm_cnt_en = cfg->frm_cnt_en;
chan->config.vflip_en = cfg->vflip_en;
if (cfg->park)
chan->config.park_frm = cfg->park_frm;
else
......@@ -2428,6 +2443,13 @@ static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
chan->direction = DMA_DEV_TO_MEM;
chan->id = chan_id;
chan->tdest = chan_id - xdev->nr_channels;
chan->has_vflip = of_property_read_bool(node,
"xlnx,enable-vert-flip");
if (chan->has_vflip) {
chan->config.vflip_en = dma_read(chan,
XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) &
XILINX_VDMA_ENABLE_VERTICAL_FLIP;
}
chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET;
if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
......
......@@ -27,6 +27,7 @@
* @delay: Delay counter
* @reset: Reset Channel
* @ext_fsync: External Frame Sync source
* @vflip_en: Vertical Flip enable
*/
struct xilinx_vdma_config {
int frm_dly;
......@@ -39,6 +40,7 @@ struct xilinx_vdma_config {
int delay;
int reset;
int ext_fsync;
bool vflip_en;
};
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
......
......@@ -415,7 +415,9 @@ enum dma_residue_granularity {
* each type, the dma controller should set BIT(<TYPE>) and same
* should be checked by controller as well
* @max_burst: max burst capability per-transfer
* @cmd_pause: true, if pause and thereby resume is supported
* @cmd_pause: true, if pause is supported (i.e. for reading residue or
* for resume later)
* @cmd_resume: true, if resume is supported
* @cmd_terminate: true, if terminate cmd is supported
* @residue_granularity: granularity of the reported transfer residue
* @descriptor_reuse: if a descriptor can be reused by client and
......@@ -427,6 +429,7 @@ struct dma_slave_caps {
u32 directions;
u32 max_burst;
bool cmd_pause;
bool cmd_resume;
bool cmd_terminate;
enum dma_residue_granularity residue_granularity;
bool descriptor_reuse;
......@@ -1403,6 +1406,7 @@ static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
/* --- DMA device --- */
int dma_async_device_register(struct dma_device *device);
int dmaenginem_async_device_register(struct dma_device *device);
void dma_async_device_unregister(struct dma_device *device);
void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
......
......@@ -147,7 +147,7 @@ static int dmaengine_pcm_set_runtime_hwparams(struct snd_pcm_substream *substrea
ret = dma_get_slave_caps(chan, &dma_caps);
if (ret == 0) {
if (dma_caps.cmd_pause)
if (dma_caps.cmd_pause && dma_caps.cmd_resume)
hw.info |= SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME;
if (dma_caps.residue_granularity <= DMA_RESIDUE_GRANULARITY_SEGMENT)
hw.info |= SNDRV_PCM_INFO_BATCH;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment