Commit 152fefa9 authored by Ingo Molnar's avatar Ingo Molnar

Merge tag 'perf-core-for-mingo' of...

Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core

Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:

. Fix some leaks in exit paths.

. Use memdup where applicable

. Remove some die() calls, allowing callers to handle exit paths
  gracefully.

. Correct typo in tools Makefile, fix from Borislav Petkov.

. Add 'perf bench numa mem' NUMA performance measurement suite, from Ingo Molnar.

. Handle dynamic array's element size properly, fix from Jiri Olsa.

. Fix memory leaks on evsel->counts, from Namhyung Kim.

. Make numa benchmark optional, allowing the build in machines where required
  numa libraries are not present, fix from Peter Hurley.

. Add interval printing in 'perf stat', from Stephane Eranian.

. Fix compile warnings in tests/attr.c, from Sukadev Bhattiprolu.

. Fix double free, pclose instead of fclose, leaks and double fclose errors
  found with the cppcheck tool, from Thomas Jarosch.
Signed-off-by: default avatarArnaldo Carvalho de Melo <acme@redhat.com>
parents a2d28d0c 5809fde0
...@@ -15,7 +15,7 @@ help: ...@@ -15,7 +15,7 @@ help:
@echo ' x86_energy_perf_policy - Intel energy policy tool' @echo ' x86_energy_perf_policy - Intel energy policy tool'
@echo '' @echo ''
@echo 'You can do:' @echo 'You can do:'
@echo ' $$ make -C tools/<tool>_install' @echo ' $$ make -C tools/ <tool>_install'
@echo '' @echo ''
@echo ' from the kernel command line to build and install one of' @echo ' from the kernel command line to build and install one of'
@echo ' the tools above' @echo ' the tools above'
......
...@@ -1223,6 +1223,34 @@ static int field_is_long(struct format_field *field) ...@@ -1223,6 +1223,34 @@ static int field_is_long(struct format_field *field)
return 0; return 0;
} }
static unsigned int type_size(const char *name)
{
/* This covers all FIELD_IS_STRING types. */
static struct {
const char *type;
unsigned int size;
} table[] = {
{ "u8", 1 },
{ "u16", 2 },
{ "u32", 4 },
{ "u64", 8 },
{ "s8", 1 },
{ "s16", 2 },
{ "s32", 4 },
{ "s64", 8 },
{ "char", 1 },
{ },
};
int i;
for (i = 0; table[i].type; i++) {
if (!strcmp(table[i].type, name))
return table[i].size;
}
return 0;
}
static int event_read_fields(struct event_format *event, struct format_field **fields) static int event_read_fields(struct event_format *event, struct format_field **fields)
{ {
struct format_field *field = NULL; struct format_field *field = NULL;
...@@ -1232,6 +1260,8 @@ static int event_read_fields(struct event_format *event, struct format_field **f ...@@ -1232,6 +1260,8 @@ static int event_read_fields(struct event_format *event, struct format_field **f
int count = 0; int count = 0;
do { do {
unsigned int size_dynamic = 0;
type = read_token(&token); type = read_token(&token);
if (type == EVENT_NEWLINE) { if (type == EVENT_NEWLINE) {
free_token(token); free_token(token);
...@@ -1390,6 +1420,7 @@ static int event_read_fields(struct event_format *event, struct format_field **f ...@@ -1390,6 +1420,7 @@ static int event_read_fields(struct event_format *event, struct format_field **f
field->type = new_type; field->type = new_type;
strcat(field->type, " "); strcat(field->type, " ");
strcat(field->type, field->name); strcat(field->type, field->name);
size_dynamic = type_size(field->name);
free_token(field->name); free_token(field->name);
strcat(field->type, brackets); strcat(field->type, brackets);
field->name = token; field->name = token;
...@@ -1478,10 +1509,14 @@ static int event_read_fields(struct event_format *event, struct format_field **f ...@@ -1478,10 +1509,14 @@ static int event_read_fields(struct event_format *event, struct format_field **f
if (field->flags & FIELD_IS_ARRAY) { if (field->flags & FIELD_IS_ARRAY) {
if (field->arraylen) if (field->arraylen)
field->elementsize = field->size / field->arraylen; field->elementsize = field->size / field->arraylen;
else if (field->flags & FIELD_IS_DYNAMIC)
field->elementsize = size_dynamic;
else if (field->flags & FIELD_IS_STRING) else if (field->flags & FIELD_IS_STRING)
field->elementsize = 1; field->elementsize = 1;
else else if (field->flags & FIELD_IS_LONG)
field->elementsize = event->pevent->long_size; field->elementsize = event->pevent ?
event->pevent->long_size :
sizeof(long);
} else } else
field->elementsize = field->size; field->elementsize = field->size;
......
...@@ -114,6 +114,10 @@ with it. --append may be used here. Examples: ...@@ -114,6 +114,10 @@ with it. --append may be used here. Examples:
perf stat --repeat 10 --null --sync --pre 'make -s O=defconfig-build/clean' -- make -s -j64 O=defconfig-build/ bzImage perf stat --repeat 10 --null --sync --pre 'make -s O=defconfig-build/clean' -- make -s -j64 O=defconfig-build/ bzImage
-I msecs::
--interval-print msecs::
print count deltas every N milliseconds (minimum: 100ms)
example: perf stat -I 1000 -e cycles -a sleep 5
EXAMPLES EXAMPLES
-------- --------
......
...@@ -47,6 +47,8 @@ include config/utilities.mak ...@@ -47,6 +47,8 @@ include config/utilities.mak
# backtrace post unwind. # backtrace post unwind.
# #
# Define NO_BACKTRACE if you do not want stack backtrace debug feature # Define NO_BACKTRACE if you do not want stack backtrace debug feature
#
# Define NO_LIBNUMA if you do not want numa perf benchmark
$(OUTPUT)PERF-VERSION-FILE: .FORCE-PERF-VERSION-FILE $(OUTPUT)PERF-VERSION-FILE: .FORCE-PERF-VERSION-FILE
@$(SHELL_PATH) util/PERF-VERSION-GEN $(OUTPUT) @$(SHELL_PATH) util/PERF-VERSION-GEN $(OUTPUT)
...@@ -838,6 +840,17 @@ ifndef NO_BACKTRACE ...@@ -838,6 +840,17 @@ ifndef NO_BACKTRACE
endif endif
endif endif
ifndef NO_LIBNUMA
FLAGS_LIBNUMA = $(ALL_CFLAGS) $(ALL_LDFLAGS) -lnuma
ifneq ($(call try-cc,$(SOURCE_LIBNUMA),$(FLAGS_LIBNUMA),libnuma),y)
msg := $(warning No numa.h found, disables 'perf bench numa mem' benchmark, please install numa-libs-devel or libnuma-dev);
else
BASIC_CFLAGS += -DLIBNUMA_SUPPORT
BUILTIN_OBJS += $(OUTPUT)bench/numa.o
EXTLIBS += -lnuma
endif
endif
ifdef ASCIIDOC8 ifdef ASCIIDOC8
export ASCIIDOC8 export ASCIIDOC8
endif endif
......
...@@ -155,6 +155,7 @@ static int perf_session_env__lookup_binutils_path(struct perf_session_env *env, ...@@ -155,6 +155,7 @@ static int perf_session_env__lookup_binutils_path(struct perf_session_env *env,
if (lookup_path(buf)) if (lookup_path(buf))
goto out; goto out;
free(buf); free(buf);
buf = NULL;
} }
if (!strcmp(arch, "arm")) if (!strcmp(arch, "arm"))
......
#ifndef BENCH_H #ifndef BENCH_H
#define BENCH_H #define BENCH_H
extern int bench_numa(int argc, const char **argv, const char *prefix);
extern int bench_sched_messaging(int argc, const char **argv, const char *prefix); extern int bench_sched_messaging(int argc, const char **argv, const char *prefix);
extern int bench_sched_pipe(int argc, const char **argv, const char *prefix); extern int bench_sched_pipe(int argc, const char **argv, const char *prefix);
extern int bench_mem_memcpy(int argc, const char **argv, extern int bench_mem_memcpy(int argc, const char **argv,
......
/*
* numa.c
*
* numa: Simulate NUMA-sensitive workload and measure their NUMA performance
*/
#include "../perf.h"
#include "../builtin.h"
#include "../util/util.h"
#include "../util/parse-options.h"
#include "bench.h"
#include <errno.h>
#include <sched.h>
#include <stdio.h>
#include <assert.h>
#include <malloc.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/prctl.h>
#include <sys/types.h>
#include <numa.h>
#include <numaif.h>
/*
* Regular printout to the terminal, supressed if -q is specified:
*/
#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
/*
* Debug printf:
*/
#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
struct thread_data {
int curr_cpu;
cpu_set_t bind_cpumask;
int bind_node;
u8 *process_data;
int process_nr;
int thread_nr;
int task_nr;
unsigned int loops_done;
u64 val;
u64 runtime_ns;
pthread_mutex_t *process_lock;
};
/* Parameters set by options: */
struct params {
/* Startup synchronization: */
bool serialize_startup;
/* Task hierarchy: */
int nr_proc;
int nr_threads;
/* Working set sizes: */
const char *mb_global_str;
const char *mb_proc_str;
const char *mb_proc_locked_str;
const char *mb_thread_str;
double mb_global;
double mb_proc;
double mb_proc_locked;
double mb_thread;
/* Access patterns to the working set: */
bool data_reads;
bool data_writes;
bool data_backwards;
bool data_zero_memset;
bool data_rand_walk;
u32 nr_loops;
u32 nr_secs;
u32 sleep_usecs;
/* Working set initialization: */
bool init_zero;
bool init_random;
bool init_cpu0;
/* Misc options: */
int show_details;
int run_all;
int thp;
long bytes_global;
long bytes_process;
long bytes_process_locked;
long bytes_thread;
int nr_tasks;
bool show_quiet;
bool show_convergence;
bool measure_convergence;
int perturb_secs;
int nr_cpus;
int nr_nodes;
/* Affinity options -C and -N: */
char *cpu_list_str;
char *node_list_str;
};
/* Global, read-writable area, accessible to all processes and threads: */
struct global_info {
u8 *data;
pthread_mutex_t startup_mutex;
int nr_tasks_started;
pthread_mutex_t startup_done_mutex;
pthread_mutex_t start_work_mutex;
int nr_tasks_working;
pthread_mutex_t stop_work_mutex;
u64 bytes_done;
struct thread_data *threads;
/* Convergence latency measurement: */
bool all_converged;
bool stop_work;
int print_once;
struct params p;
};
static struct global_info *g = NULL;
static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
struct params p0;
static const struct option options[] = {
OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"),
OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"),
OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "bzero the initial allocations"),
OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
/* Special option string parsing callbacks: */
OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
"bind the first N tasks to these specific cpus (the rest is unbound)",
parse_cpus_opt),
OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
"bind the first N tasks to these specific memory nodes (the rest is unbound)",
parse_nodes_opt),
OPT_END()
};
static const char * const bench_numa_usage[] = {
"perf bench numa <options>",
NULL
};
static const char * const numa_usage[] = {
"perf bench numa mem [<options>]",
NULL
};
static cpu_set_t bind_to_cpu(int target_cpu)
{
cpu_set_t orig_mask, mask;
int ret;
ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
BUG_ON(ret);
CPU_ZERO(&mask);
if (target_cpu == -1) {
int cpu;
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
CPU_SET(cpu, &mask);
} else {
BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
CPU_SET(target_cpu, &mask);
}
ret = sched_setaffinity(0, sizeof(mask), &mask);
BUG_ON(ret);
return orig_mask;
}
static cpu_set_t bind_to_node(int target_node)
{
int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
cpu_set_t orig_mask, mask;
int cpu;
int ret;
BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
BUG_ON(!cpus_per_node);
ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
BUG_ON(ret);
CPU_ZERO(&mask);
if (target_node == -1) {
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
CPU_SET(cpu, &mask);
} else {
int cpu_start = (target_node + 0) * cpus_per_node;
int cpu_stop = (target_node + 1) * cpus_per_node;
BUG_ON(cpu_stop > g->p.nr_cpus);
for (cpu = cpu_start; cpu < cpu_stop; cpu++)
CPU_SET(cpu, &mask);
}
ret = sched_setaffinity(0, sizeof(mask), &mask);
BUG_ON(ret);
return orig_mask;
}
static void bind_to_cpumask(cpu_set_t mask)
{
int ret;
ret = sched_setaffinity(0, sizeof(mask), &mask);
BUG_ON(ret);
}
static void mempol_restore(void)
{
int ret;
ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
BUG_ON(ret);
}
static void bind_to_memnode(int node)
{
unsigned long nodemask;
int ret;
if (node == -1)
return;
BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
nodemask = 1L << node;
ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
BUG_ON(ret);
}
#define HPSIZE (2*1024*1024)
#define set_taskname(fmt...) \
do { \
char name[20]; \
\
snprintf(name, 20, fmt); \
prctl(PR_SET_NAME, name); \
} while (0)
static u8 *alloc_data(ssize_t bytes0, int map_flags,
int init_zero, int init_cpu0, int thp, int init_random)
{
cpu_set_t orig_mask;
ssize_t bytes;
u8 *buf;
int ret;
if (!bytes0)
return NULL;
/* Allocate and initialize all memory on CPU#0: */
if (init_cpu0) {
orig_mask = bind_to_node(0);
bind_to_memnode(0);
}
bytes = bytes0 + HPSIZE;
buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
BUG_ON(buf == (void *)-1);
if (map_flags == MAP_PRIVATE) {
if (thp > 0) {
ret = madvise(buf, bytes, MADV_HUGEPAGE);
if (ret && !g->print_once) {
g->print_once = 1;
printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
}
}
if (thp < 0) {
ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
if (ret && !g->print_once) {
g->print_once = 1;
printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
}
}
}
if (init_zero) {
bzero(buf, bytes);
} else {
/* Initialize random contents, different in each word: */
if (init_random) {
u64 *wbuf = (void *)buf;
long off = rand();
long i;
for (i = 0; i < bytes/8; i++)
wbuf[i] = i + off;
}
}
/* Align to 2MB boundary: */
buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
/* Restore affinity: */
if (init_cpu0) {
bind_to_cpumask(orig_mask);
mempol_restore();
}
return buf;
}
static void free_data(void *data, ssize_t bytes)
{
int ret;
if (!data)
return;
ret = munmap(data, bytes);
BUG_ON(ret);
}
/*
* Create a shared memory buffer that can be shared between processes, zeroed:
*/
static void * zalloc_shared_data(ssize_t bytes)
{
return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
}
/*
* Create a shared memory buffer that can be shared between processes:
*/
static void * setup_shared_data(ssize_t bytes)
{
return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
}
/*
* Allocate process-local memory - this will either be shared between
* threads of this process, or only be accessed by this thread:
*/
static void * setup_private_data(ssize_t bytes)
{
return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
}
/*
* Return a process-shared (global) mutex:
*/
static void init_global_mutex(pthread_mutex_t *mutex)
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_init(mutex, &attr);
}
static int parse_cpu_list(const char *arg)
{
p0.cpu_list_str = strdup(arg);
dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
return 0;
}
static void parse_setup_cpu_list(void)
{
struct thread_data *td;
char *str0, *str;
int t;
if (!g->p.cpu_list_str)
return;
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
str0 = str = strdup(g->p.cpu_list_str);
t = 0;
BUG_ON(!str);
tprintf("# binding tasks to CPUs:\n");
tprintf("# ");
while (true) {
int bind_cpu, bind_cpu_0, bind_cpu_1;
char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
int bind_len;
int step;
int mul;
tok = strsep(&str, ",");
if (!tok)
break;
tok_end = strstr(tok, "-");
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
if (!tok_end) {
/* Single CPU specified: */
bind_cpu_0 = bind_cpu_1 = atol(tok);
} else {
/* CPU range specified (for example: "5-11"): */
bind_cpu_0 = atol(tok);
bind_cpu_1 = atol(tok_end + 1);
}
step = 1;
tok_step = strstr(tok, "#");
if (tok_step) {
step = atol(tok_step + 1);
BUG_ON(step <= 0 || step >= g->p.nr_cpus);
}
/*
* Mask length.
* Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
* where the _4 means the next 4 CPUs are allowed.
*/
bind_len = 1;
tok_len = strstr(tok, "_");
if (tok_len) {
bind_len = atol(tok_len + 1);
BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
}
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
mul = 1;
tok_mul = strstr(tok, "x");
if (tok_mul) {
mul = atol(tok_mul + 1);
BUG_ON(mul <= 0);
}
dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
BUG_ON(bind_cpu_0 < 0 || bind_cpu_0 >= g->p.nr_cpus);
BUG_ON(bind_cpu_1 < 0 || bind_cpu_1 >= g->p.nr_cpus);
BUG_ON(bind_cpu_0 > bind_cpu_1);
for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
int i;
for (i = 0; i < mul; i++) {
int cpu;
if (t >= g->p.nr_tasks) {
printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
goto out;
}
td = g->threads + t;
if (t)
tprintf(",");
if (bind_len > 1) {
tprintf("%2d/%d", bind_cpu, bind_len);
} else {
tprintf("%2d", bind_cpu);
}
CPU_ZERO(&td->bind_cpumask);
for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
CPU_SET(cpu, &td->bind_cpumask);
}
t++;
}
}
}
out:
tprintf("\n");
if (t < g->p.nr_tasks)
printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
free(str0);
}
static int parse_cpus_opt(const struct option *opt __maybe_unused,
const char *arg, int unset __maybe_unused)
{
if (!arg)
return -1;
return parse_cpu_list(arg);
}
static int parse_node_list(const char *arg)
{
p0.node_list_str = strdup(arg);
dprintf("got NODE list: {%s}\n", p0.node_list_str);
return 0;
}
static void parse_setup_node_list(void)
{
struct thread_data *td;
char *str0, *str;
int t;
if (!g->p.node_list_str)
return;
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
str0 = str = strdup(g->p.node_list_str);
t = 0;
BUG_ON(!str);
tprintf("# binding tasks to NODEs:\n");
tprintf("# ");
while (true) {
int bind_node, bind_node_0, bind_node_1;
char *tok, *tok_end, *tok_step, *tok_mul;
int step;
int mul;
tok = strsep(&str, ",");
if (!tok)
break;
tok_end = strstr(tok, "-");
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
if (!tok_end) {
/* Single NODE specified: */
bind_node_0 = bind_node_1 = atol(tok);
} else {
/* NODE range specified (for example: "5-11"): */
bind_node_0 = atol(tok);
bind_node_1 = atol(tok_end + 1);
}
step = 1;
tok_step = strstr(tok, "#");
if (tok_step) {
step = atol(tok_step + 1);
BUG_ON(step <= 0 || step >= g->p.nr_nodes);
}
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
mul = 1;
tok_mul = strstr(tok, "x");
if (tok_mul) {
mul = atol(tok_mul + 1);
BUG_ON(mul <= 0);
}
dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
BUG_ON(bind_node_0 < 0 || bind_node_0 >= g->p.nr_nodes);
BUG_ON(bind_node_1 < 0 || bind_node_1 >= g->p.nr_nodes);
BUG_ON(bind_node_0 > bind_node_1);
for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
int i;
for (i = 0; i < mul; i++) {
if (t >= g->p.nr_tasks) {
printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
goto out;
}
td = g->threads + t;
if (!t)
tprintf(" %2d", bind_node);
else
tprintf(",%2d", bind_node);
td->bind_node = bind_node;
t++;
}
}
}
out:
tprintf("\n");
if (t < g->p.nr_tasks)
printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
free(str0);
}
static int parse_nodes_opt(const struct option *opt __maybe_unused,
const char *arg, int unset __maybe_unused)
{
if (!arg)
return -1;
return parse_node_list(arg);
return 0;
}
#define BIT(x) (1ul << x)
static inline uint32_t lfsr_32(uint32_t lfsr)
{
const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
}
/*
* Make sure there's real data dependency to RAM (when read
* accesses are enabled), so the compiler, the CPU and the
* kernel (KSM, zero page, etc.) cannot optimize away RAM
* accesses:
*/
static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
{
if (g->p.data_reads)
val += *data;
if (g->p.data_writes)
*data = val + 1;
return val;
}
/*
* The worker process does two types of work, a forwards going
* loop and a backwards going loop.
*
* We do this so that on multiprocessor systems we do not create
* a 'train' of processing, with highly synchronized processes,
* skewing the whole benchmark.
*/
static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
{
long words = bytes/sizeof(u64);
u64 *data = (void *)__data;
long chunk_0, chunk_1;
u64 *d0, *d, *d1;
long off;
long i;
BUG_ON(!data && words);
BUG_ON(data && !words);
if (!data)
return val;
/* Very simple memset() work variant: */
if (g->p.data_zero_memset && !g->p.data_rand_walk) {
bzero(data, bytes);
return val;
}
/* Spread out by PID/TID nr and by loop nr: */
chunk_0 = words/nr_max;
chunk_1 = words/g->p.nr_loops;
off = nr*chunk_0 + loop*chunk_1;
while (off >= words)
off -= words;
if (g->p.data_rand_walk) {
u32 lfsr = nr + loop + val;
int j;
for (i = 0; i < words/1024; i++) {
long start, end;
lfsr = lfsr_32(lfsr);
start = lfsr % words;
end = min(start + 1024, words-1);
if (g->p.data_zero_memset) {
bzero(data + start, (end-start) * sizeof(u64));
} else {
for (j = start; j < end; j++)
val = access_data(data + j, val);
}
}
} else if (!g->p.data_backwards || (nr + loop) & 1) {
d0 = data + off;
d = data + off + 1;
d1 = data + words;
/* Process data forwards: */
for (;;) {
if (unlikely(d >= d1))
d = data;
if (unlikely(d == d0))
break;
val = access_data(d, val);
d++;
}
} else {
/* Process data backwards: */
d0 = data + off;
d = data + off - 1;
d1 = data + words;
/* Process data forwards: */
for (;;) {
if (unlikely(d < data))
d = data + words-1;
if (unlikely(d == d0))
break;
val = access_data(d, val);
d--;
}
}
return val;
}
static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
{
unsigned int cpu;
cpu = sched_getcpu();
g->threads[task_nr].curr_cpu = cpu;
prctl(0, bytes_worked);
}
#define MAX_NR_NODES 64
/*
* Count the number of nodes a process's threads
* are spread out on.
*
* A count of 1 means that the process is compressed
* to a single node. A count of g->p.nr_nodes means it's
* spread out on the whole system.
*/
static int count_process_nodes(int process_nr)
{
char node_present[MAX_NR_NODES] = { 0, };
int nodes;
int n, t;
for (t = 0; t < g->p.nr_threads; t++) {
struct thread_data *td;
int task_nr;
int node;
task_nr = process_nr*g->p.nr_threads + t;
td = g->threads + task_nr;
node = numa_node_of_cpu(td->curr_cpu);
node_present[node] = 1;
}
nodes = 0;
for (n = 0; n < MAX_NR_NODES; n++)
nodes += node_present[n];
return nodes;
}
/*
* Count the number of distinct process-threads a node contains.
*
* A count of 1 means that the node contains only a single
* process. If all nodes on the system contain at most one
* process then we are well-converged.
*/
static int count_node_processes(int node)
{
int processes = 0;
int t, p;
for (p = 0; p < g->p.nr_proc; p++) {
for (t = 0; t < g->p.nr_threads; t++) {
struct thread_data *td;
int task_nr;
int n;
task_nr = p*g->p.nr_threads + t;
td = g->threads + task_nr;
n = numa_node_of_cpu(td->curr_cpu);
if (n == node) {
processes++;
break;
}
}
}
return processes;
}
static void calc_convergence_compression(int *strong)
{
unsigned int nodes_min, nodes_max;
int p;
nodes_min = -1;
nodes_max = 0;
for (p = 0; p < g->p.nr_proc; p++) {
unsigned int nodes = count_process_nodes(p);
nodes_min = min(nodes, nodes_min);
nodes_max = max(nodes, nodes_max);
}
/* Strong convergence: all threads compress on a single node: */
if (nodes_min == 1 && nodes_max == 1) {
*strong = 1;
} else {
*strong = 0;
tprintf(" {%d-%d}", nodes_min, nodes_max);
}
}
static void calc_convergence(double runtime_ns_max, double *convergence)
{
unsigned int loops_done_min, loops_done_max;
int process_groups;
int nodes[MAX_NR_NODES];
int distance;
int nr_min;
int nr_max;
int strong;
int sum;
int nr;
int node;
int cpu;
int t;
if (!g->p.show_convergence && !g->p.measure_convergence)
return;
for (node = 0; node < g->p.nr_nodes; node++)
nodes[node] = 0;
loops_done_min = -1;
loops_done_max = 0;
for (t = 0; t < g->p.nr_tasks; t++) {
struct thread_data *td = g->threads + t;
unsigned int loops_done;
cpu = td->curr_cpu;
/* Not all threads have written it yet: */
if (cpu < 0)
continue;
node = numa_node_of_cpu(cpu);
nodes[node]++;
loops_done = td->loops_done;
loops_done_min = min(loops_done, loops_done_min);
loops_done_max = max(loops_done, loops_done_max);
}
nr_max = 0;
nr_min = g->p.nr_tasks;
sum = 0;
for (node = 0; node < g->p.nr_nodes; node++) {
nr = nodes[node];
nr_min = min(nr, nr_min);
nr_max = max(nr, nr_max);
sum += nr;
}
BUG_ON(nr_min > nr_max);
BUG_ON(sum > g->p.nr_tasks);
if (0 && (sum < g->p.nr_tasks))
return;
/*
* Count the number of distinct process groups present
* on nodes - when we are converged this will decrease
* to g->p.nr_proc:
*/
process_groups = 0;
for (node = 0; node < g->p.nr_nodes; node++) {
int processes = count_node_processes(node);
nr = nodes[node];
tprintf(" %2d/%-2d", nr, processes);
process_groups += processes;
}
distance = nr_max - nr_min;
tprintf(" [%2d/%-2d]", distance, process_groups);
tprintf(" l:%3d-%-3d (%3d)",
loops_done_min, loops_done_max, loops_done_max-loops_done_min);
if (loops_done_min && loops_done_max) {
double skew = 1.0 - (double)loops_done_min/loops_done_max;
tprintf(" [%4.1f%%]", skew * 100.0);
}
calc_convergence_compression(&strong);
if (strong && process_groups == g->p.nr_proc) {
if (!*convergence) {
*convergence = runtime_ns_max;
tprintf(" (%6.1fs converged)\n", *convergence/1e9);
if (g->p.measure_convergence) {
g->all_converged = true;
g->stop_work = true;
}
}
} else {
if (*convergence) {
tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
*convergence = 0;
}
tprintf("\n");
}
}
static void show_summary(double runtime_ns_max, int l, double *convergence)
{
tprintf("\r # %5.1f%% [%.1f mins]",
(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
calc_convergence(runtime_ns_max, convergence);
if (g->p.show_details >= 0)
fflush(stdout);
}
static void *worker_thread(void *__tdata)
{
struct thread_data *td = __tdata;
struct timeval start0, start, stop, diff;
int process_nr = td->process_nr;
int thread_nr = td->thread_nr;
unsigned long last_perturbance;
int task_nr = td->task_nr;
int details = g->p.show_details;
int first_task, last_task;
double convergence = 0;
u64 val = td->val;
double runtime_ns_max;
u8 *global_data;
u8 *process_data;
u8 *thread_data;
u64 bytes_done;
long work_done;
u32 l;
bind_to_cpumask(td->bind_cpumask);
bind_to_memnode(td->bind_node);
set_taskname("thread %d/%d", process_nr, thread_nr);
global_data = g->data;
process_data = td->process_data;
thread_data = setup_private_data(g->p.bytes_thread);
bytes_done = 0;
last_task = 0;
if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
last_task = 1;
first_task = 0;
if (process_nr == 0 && thread_nr == 0)
first_task = 1;
if (details >= 2) {
printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
process_nr, thread_nr, global_data, process_data, thread_data);
}
if (g->p.serialize_startup) {
pthread_mutex_lock(&g->startup_mutex);
g->nr_tasks_started++;
pthread_mutex_unlock(&g->startup_mutex);
/* Here we will wait for the main process to start us all at once: */
pthread_mutex_lock(&g->start_work_mutex);
g->nr_tasks_working++;
/* Last one wake the main process: */
if (g->nr_tasks_working == g->p.nr_tasks)
pthread_mutex_unlock(&g->startup_done_mutex);
pthread_mutex_unlock(&g->start_work_mutex);
}
gettimeofday(&start0, NULL);
start = stop = start0;
last_perturbance = start.tv_sec;
for (l = 0; l < g->p.nr_loops; l++) {
start = stop;
if (g->stop_work)
break;
val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
if (g->p.sleep_usecs) {
pthread_mutex_lock(td->process_lock);
usleep(g->p.sleep_usecs);
pthread_mutex_unlock(td->process_lock);
}
/*
* Amount of work to be done under a process-global lock:
*/
if (g->p.bytes_process_locked) {
pthread_mutex_lock(td->process_lock);
val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
pthread_mutex_unlock(td->process_lock);
}
work_done = g->p.bytes_global + g->p.bytes_process +
g->p.bytes_process_locked + g->p.bytes_thread;
update_curr_cpu(task_nr, work_done);
bytes_done += work_done;
if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
continue;
td->loops_done = l;
gettimeofday(&stop, NULL);
/* Check whether our max runtime timed out: */
if (g->p.nr_secs) {
timersub(&stop, &start0, &diff);
if (diff.tv_sec >= g->p.nr_secs) {
g->stop_work = true;
break;
}
}
/* Update the summary at most once per second: */
if (start.tv_sec == stop.tv_sec)
continue;
/*
* Perturb the first task's equilibrium every g->p.perturb_secs seconds,
* by migrating to CPU#0:
*/
if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
cpu_set_t orig_mask;
int target_cpu;
int this_cpu;
last_perturbance = stop.tv_sec;
/*
* Depending on where we are running, move into
* the other half of the system, to create some
* real disturbance:
*/
this_cpu = g->threads[task_nr].curr_cpu;
if (this_cpu < g->p.nr_cpus/2)
target_cpu = g->p.nr_cpus-1;
else
target_cpu = 0;
orig_mask = bind_to_cpu(target_cpu);
/* Here we are running on the target CPU already */
if (details >= 1)
printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
bind_to_cpumask(orig_mask);
}
if (details >= 3) {
timersub(&stop, &start, &diff);
runtime_ns_max = diff.tv_sec * 1000000000;
runtime_ns_max += diff.tv_usec * 1000;
if (details >= 0) {
printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016lx]\n",
process_nr, thread_nr, runtime_ns_max / bytes_done, val);
}
fflush(stdout);
}
if (!last_task)
continue;
timersub(&stop, &start0, &diff);
runtime_ns_max = diff.tv_sec * 1000000000ULL;
runtime_ns_max += diff.tv_usec * 1000ULL;
show_summary(runtime_ns_max, l, &convergence);
}
gettimeofday(&stop, NULL);
timersub(&stop, &start0, &diff);
td->runtime_ns = diff.tv_sec * 1000000000ULL;
td->runtime_ns += diff.tv_usec * 1000ULL;
free_data(thread_data, g->p.bytes_thread);
pthread_mutex_lock(&g->stop_work_mutex);
g->bytes_done += bytes_done;
pthread_mutex_unlock(&g->stop_work_mutex);
return NULL;
}
/*
* A worker process starts a couple of threads:
*/
static void worker_process(int process_nr)
{
pthread_mutex_t process_lock;
struct thread_data *td;
pthread_t *pthreads;
u8 *process_data;
int task_nr;
int ret;
int t;
pthread_mutex_init(&process_lock, NULL);
set_taskname("process %d", process_nr);
/*
* Pick up the memory policy and the CPU binding of our first thread,
* so that we initialize memory accordingly:
*/
task_nr = process_nr*g->p.nr_threads;
td = g->threads + task_nr;
bind_to_memnode(td->bind_node);
bind_to_cpumask(td->bind_cpumask);
pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
process_data = setup_private_data(g->p.bytes_process);
if (g->p.show_details >= 3) {
printf(" # process %2d global mem: %p, process mem: %p\n",
process_nr, g->data, process_data);
}
for (t = 0; t < g->p.nr_threads; t++) {
task_nr = process_nr*g->p.nr_threads + t;
td = g->threads + task_nr;
td->process_data = process_data;
td->process_nr = process_nr;
td->thread_nr = t;
td->task_nr = task_nr;
td->val = rand();
td->curr_cpu = -1;
td->process_lock = &process_lock;
ret = pthread_create(pthreads + t, NULL, worker_thread, td);
BUG_ON(ret);
}
for (t = 0; t < g->p.nr_threads; t++) {
ret = pthread_join(pthreads[t], NULL);
BUG_ON(ret);
}
free_data(process_data, g->p.bytes_process);
free(pthreads);
}
static void print_summary(void)
{
if (g->p.show_details < 0)
return;
printf("\n ###\n");
printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
printf(" # %5dx %5ldMB global shared mem operations\n",
g->p.nr_loops, g->p.bytes_global/1024/1024);
printf(" # %5dx %5ldMB process shared mem operations\n",
g->p.nr_loops, g->p.bytes_process/1024/1024);
printf(" # %5dx %5ldMB thread local mem operations\n",
g->p.nr_loops, g->p.bytes_thread/1024/1024);
printf(" ###\n");
printf("\n ###\n"); fflush(stdout);
}
static void init_thread_data(void)
{
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
int t;
g->threads = zalloc_shared_data(size);
for (t = 0; t < g->p.nr_tasks; t++) {
struct thread_data *td = g->threads + t;
int cpu;
/* Allow all nodes by default: */
td->bind_node = -1;
/* Allow all CPUs by default: */
CPU_ZERO(&td->bind_cpumask);
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
CPU_SET(cpu, &td->bind_cpumask);
}
}
static void deinit_thread_data(void)
{
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
free_data(g->threads, size);
}
static int init(void)
{
g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
/* Copy over options: */
g->p = p0;
g->p.nr_cpus = numa_num_configured_cpus();
g->p.nr_nodes = numa_max_node() + 1;
/* char array in count_process_nodes(): */
BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
if (g->p.show_quiet && !g->p.show_details)
g->p.show_details = -1;
/* Some memory should be specified: */
if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
return -1;
if (g->p.mb_global_str) {
g->p.mb_global = atof(g->p.mb_global_str);
BUG_ON(g->p.mb_global < 0);
}
if (g->p.mb_proc_str) {
g->p.mb_proc = atof(g->p.mb_proc_str);
BUG_ON(g->p.mb_proc < 0);
}
if (g->p.mb_proc_locked_str) {
g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
BUG_ON(g->p.mb_proc_locked < 0);
BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
}
if (g->p.mb_thread_str) {
g->p.mb_thread = atof(g->p.mb_thread_str);
BUG_ON(g->p.mb_thread < 0);
}
BUG_ON(g->p.nr_threads <= 0);
BUG_ON(g->p.nr_proc <= 0);
g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
g->p.bytes_global = g->p.mb_global *1024L*1024L;
g->p.bytes_process = g->p.mb_proc *1024L*1024L;
g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
g->data = setup_shared_data(g->p.bytes_global);
/* Startup serialization: */
init_global_mutex(&g->start_work_mutex);
init_global_mutex(&g->startup_mutex);
init_global_mutex(&g->startup_done_mutex);
init_global_mutex(&g->stop_work_mutex);
init_thread_data();
tprintf("#\n");
parse_setup_cpu_list();
parse_setup_node_list();
tprintf("#\n");
print_summary();
return 0;
}
static void deinit(void)
{
free_data(g->data, g->p.bytes_global);
g->data = NULL;
deinit_thread_data();
free_data(g, sizeof(*g));
g = NULL;
}
/*
* Print a short or long result, depending on the verbosity setting:
*/
static void print_res(const char *name, double val,
const char *txt_unit, const char *txt_short, const char *txt_long)
{
if (!name)
name = "main,";
if (g->p.show_quiet)
printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
else
printf(" %14.3f %s\n", val, txt_long);
}
static int __bench_numa(const char *name)
{
struct timeval start, stop, diff;
u64 runtime_ns_min, runtime_ns_sum;
pid_t *pids, pid, wpid;
double delta_runtime;
double runtime_avg;
double runtime_sec_max;
double runtime_sec_min;
int wait_stat;
double bytes;
int i, t;
if (init())
return -1;
pids = zalloc(g->p.nr_proc * sizeof(*pids));
pid = -1;
/* All threads try to acquire it, this way we can wait for them to start up: */
pthread_mutex_lock(&g->start_work_mutex);
if (g->p.serialize_startup) {
tprintf(" #\n");
tprintf(" # Startup synchronization: ..."); fflush(stdout);
}
gettimeofday(&start, NULL);
for (i = 0; i < g->p.nr_proc; i++) {
pid = fork();
dprintf(" # process %2d: PID %d\n", i, pid);
BUG_ON(pid < 0);
if (!pid) {
/* Child process: */
worker_process(i);
exit(0);
}
pids[i] = pid;
}
/* Wait for all the threads to start up: */
while (g->nr_tasks_started != g->p.nr_tasks)
usleep(1000);
BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
if (g->p.serialize_startup) {
double startup_sec;
pthread_mutex_lock(&g->startup_done_mutex);
/* This will start all threads: */
pthread_mutex_unlock(&g->start_work_mutex);
/* This mutex is locked - the last started thread will wake us: */
pthread_mutex_lock(&g->startup_done_mutex);
gettimeofday(&stop, NULL);
timersub(&stop, &start, &diff);
startup_sec = diff.tv_sec * 1000000000.0;
startup_sec += diff.tv_usec * 1000.0;
startup_sec /= 1e9;
tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
tprintf(" #\n");
start = stop;
pthread_mutex_unlock(&g->startup_done_mutex);
} else {
gettimeofday(&start, NULL);
}
/* Parent process: */
for (i = 0; i < g->p.nr_proc; i++) {
wpid = waitpid(pids[i], &wait_stat, 0);
BUG_ON(wpid < 0);
BUG_ON(!WIFEXITED(wait_stat));
}
runtime_ns_sum = 0;
runtime_ns_min = -1LL;
for (t = 0; t < g->p.nr_tasks; t++) {
u64 thread_runtime_ns = g->threads[t].runtime_ns;
runtime_ns_sum += thread_runtime_ns;
runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
}
gettimeofday(&stop, NULL);
timersub(&stop, &start, &diff);
BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
tprintf("\n ###\n");
tprintf("\n");
runtime_sec_max = diff.tv_sec * 1000000000.0;
runtime_sec_max += diff.tv_usec * 1000.0;
runtime_sec_max /= 1e9;
runtime_sec_min = runtime_ns_min/1e9;
bytes = g->bytes_done;
runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
if (g->p.measure_convergence) {
print_res(name, runtime_sec_max,
"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
}
print_res(name, runtime_sec_max,
"secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
print_res(name, runtime_sec_min,
"secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
print_res(name, runtime_avg,
"secs,", "runtime-avg/thread", "secs average thread-runtime");
delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
print_res(name, delta_runtime / runtime_sec_max * 100.0,
"%,", "spread-runtime/thread", "% difference between max/avg runtime");
print_res(name, bytes / g->p.nr_tasks / 1e9,
"GB,", "data/thread", "GB data processed, per thread");
print_res(name, bytes / 1e9,
"GB,", "data-total", "GB data processed, total");
print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
"GB/sec,", "thread-speed", "GB/sec/thread speed");
print_res(name, bytes / runtime_sec_max / 1e9,
"GB/sec,", "total-speed", "GB/sec total speed");
free(pids);
deinit();
return 0;
}
#define MAX_ARGS 50
static int command_size(const char **argv)
{
int size = 0;
while (*argv) {
size++;
argv++;
}
BUG_ON(size >= MAX_ARGS);
return size;
}
static void init_params(struct params *p, const char *name, int argc, const char **argv)
{
int i;
printf("\n # Running %s \"perf bench numa", name);
for (i = 0; i < argc; i++)
printf(" %s", argv[i]);
printf("\"\n");
memset(p, 0, sizeof(*p));
/* Initialize nonzero defaults: */
p->serialize_startup = 1;
p->data_reads = true;
p->data_writes = true;
p->data_backwards = true;
p->data_rand_walk = true;
p->nr_loops = -1;
p->init_random = true;
}
static int run_bench_numa(const char *name, const char **argv)
{
int argc = command_size(argv);
init_params(&p0, name, argc, argv);
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
if (argc)
goto err;
if (__bench_numa(name))
goto err;
return 0;
err:
usage_with_options(numa_usage, options);
return -1;
}
#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
/*
* The built-in test-suite executed by "perf bench numa -a".
*
* (A minimum of 4 nodes and 16 GB of RAM is recommended.)
*/
static const char *tests[][MAX_ARGS] = {
/* Basic single-stream NUMA bandwidth measurements: */
{ "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
"-C" , "0", "-M", "0", OPT_BW_RAM },
{ "RAM-bw-local-NOTHP,",
"mem", "-p", "1", "-t", "1", "-P", "1024",
"-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
{ "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
"-C" , "0", "-M", "1", OPT_BW_RAM },
/* 2-stream NUMA bandwidth measurements: */
{ "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
"-C", "0,2", "-M", "0x2", OPT_BW_RAM },
{ "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
"-C", "0,2", "-M", "1x2", OPT_BW_RAM },
/* Cross-stream NUMA bandwidth measurement: */
{ "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
"-C", "0,8", "-M", "1,0", OPT_BW_RAM },
/* Convergence latency measurements: */
{ " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
{ " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
{ " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
{ " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
{ " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
{ " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
{ " 4x4-convergence-NOTHP,",
"mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
{ " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
{ " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
{ " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
{ " 8x4-convergence-NOTHP,",
"mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
{ " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
{ " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
{ " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
{ "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
{ "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
/* Various NUMA process/thread layout bandwidth measurements: */
{ " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
{ " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
{ " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
{ " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
{ " 8x1-bw-process-NOTHP,",
"mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
{ "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
{ " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
{ " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
{ "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
{ "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
{ " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
{ " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
{ " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
{ " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
{ " 4x8-bw-thread-NOTHP,",
"mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
{ " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
{ " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
{ "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
{ "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
{ "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
{ "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
{ "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
{ "numa01-bw-thread-NOTHP,",
"mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
};
static int bench_all(void)
{
int nr = ARRAY_SIZE(tests);
int ret;
int i;
ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
BUG_ON(ret < 0);
for (i = 0; i < nr; i++) {
if (run_bench_numa(tests[i][0], tests[i] + 1))
return -1;
}
printf("\n");
return 0;
}
int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
{
init_params(&p0, "main,", argc, argv);
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
if (argc)
goto err;
if (p0.run_all)
return bench_all();
if (__bench_numa(NULL))
goto err;
return 0;
err:
usage_with_options(numa_usage, options);
return -1;
}
...@@ -35,6 +35,18 @@ struct bench_suite { ...@@ -35,6 +35,18 @@ struct bench_suite {
/* sentinel: easy for help */ /* sentinel: easy for help */
#define suite_all { "all", "Test all benchmark suites", NULL } #define suite_all { "all", "Test all benchmark suites", NULL }
#ifdef LIBNUMA_SUPPORT
static struct bench_suite numa_suites[] = {
{ "mem",
"Benchmark for NUMA workloads",
bench_numa },
suite_all,
{ NULL,
NULL,
NULL }
};
#endif
static struct bench_suite sched_suites[] = { static struct bench_suite sched_suites[] = {
{ "messaging", { "messaging",
"Benchmark for scheduler and IPC mechanisms", "Benchmark for scheduler and IPC mechanisms",
...@@ -68,6 +80,11 @@ struct bench_subsys { ...@@ -68,6 +80,11 @@ struct bench_subsys {
}; };
static struct bench_subsys subsystems[] = { static struct bench_subsys subsystems[] = {
#ifdef LIBNUMA_SUPPORT
{ "numa",
"NUMA scheduling and MM behavior",
numa_suites },
#endif
{ "sched", { "sched",
"scheduler and IPC mechanism", "scheduler and IPC mechanism",
sched_suites }, sched_suites },
......
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include "util/debug.h" #include "util/debug.h"
#include <linux/rbtree.h> #include <linux/rbtree.h>
#include <linux/string.h>
struct alloc_stat; struct alloc_stat;
typedef int (*sort_fn_t)(struct alloc_stat *, struct alloc_stat *); typedef int (*sort_fn_t)(struct alloc_stat *, struct alloc_stat *);
...@@ -618,12 +619,11 @@ static int sort_dimension__add(const char *tok, struct list_head *list) ...@@ -618,12 +619,11 @@ static int sort_dimension__add(const char *tok, struct list_head *list)
for (i = 0; i < NUM_AVAIL_SORTS; i++) { for (i = 0; i < NUM_AVAIL_SORTS; i++) {
if (!strcmp(avail_sorts[i]->name, tok)) { if (!strcmp(avail_sorts[i]->name, tok)) {
sort = malloc(sizeof(*sort)); sort = memdup(avail_sorts[i], sizeof(*avail_sorts[i]));
if (!sort) { if (!sort) {
pr_err("%s: malloc failed\n", __func__); pr_err("%s: memdup failed\n", __func__);
return -1; return -1;
} }
memcpy(sort, avail_sorts[i], sizeof(*sort));
list_add_tail(&sort->list, list); list_add_tail(&sort->list, list);
return 0; return 0;
} }
......
...@@ -65,6 +65,10 @@ ...@@ -65,6 +65,10 @@
#define CNTR_NOT_SUPPORTED "<not supported>" #define CNTR_NOT_SUPPORTED "<not supported>"
#define CNTR_NOT_COUNTED "<not counted>" #define CNTR_NOT_COUNTED "<not counted>"
static void print_stat(int argc, const char **argv);
static void print_counter_aggr(struct perf_evsel *counter, char *prefix);
static void print_counter(struct perf_evsel *counter, char *prefix);
static struct perf_evlist *evsel_list; static struct perf_evlist *evsel_list;
static struct perf_target target = { static struct perf_target target = {
...@@ -87,6 +91,8 @@ static FILE *output = NULL; ...@@ -87,6 +91,8 @@ static FILE *output = NULL;
static const char *pre_cmd = NULL; static const char *pre_cmd = NULL;
static const char *post_cmd = NULL; static const char *post_cmd = NULL;
static bool sync_run = false; static bool sync_run = false;
static unsigned int interval = 0;
static struct timespec ref_time;
static volatile int done = 0; static volatile int done = 0;
...@@ -94,6 +100,28 @@ struct perf_stat { ...@@ -94,6 +100,28 @@ struct perf_stat {
struct stats res_stats[3]; struct stats res_stats[3];
}; };
static inline void diff_timespec(struct timespec *r, struct timespec *a,
struct timespec *b)
{
r->tv_sec = a->tv_sec - b->tv_sec;
if (a->tv_nsec < b->tv_nsec) {
r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec;
r->tv_sec--;
} else {
r->tv_nsec = a->tv_nsec - b->tv_nsec ;
}
}
static inline struct cpu_map *perf_evsel__cpus(struct perf_evsel *evsel)
{
return (evsel->cpus && !target.cpu_list) ? evsel->cpus : evsel_list->cpus;
}
static inline int perf_evsel__nr_cpus(struct perf_evsel *evsel)
{
return perf_evsel__cpus(evsel)->nr;
}
static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel) static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel)
{ {
evsel->priv = zalloc(sizeof(struct perf_stat)); evsel->priv = zalloc(sizeof(struct perf_stat));
...@@ -106,14 +134,27 @@ static void perf_evsel__free_stat_priv(struct perf_evsel *evsel) ...@@ -106,14 +134,27 @@ static void perf_evsel__free_stat_priv(struct perf_evsel *evsel)
evsel->priv = NULL; evsel->priv = NULL;
} }
static inline struct cpu_map *perf_evsel__cpus(struct perf_evsel *evsel) static int perf_evsel__alloc_prev_raw_counts(struct perf_evsel *evsel)
{ {
return (evsel->cpus && !target.cpu_list) ? evsel->cpus : evsel_list->cpus; void *addr;
size_t sz;
sz = sizeof(*evsel->counts) +
(perf_evsel__nr_cpus(evsel) * sizeof(struct perf_counts_values));
addr = zalloc(sz);
if (!addr)
return -ENOMEM;
evsel->prev_raw_counts = addr;
return 0;
} }
static inline int perf_evsel__nr_cpus(struct perf_evsel *evsel) static void perf_evsel__free_prev_raw_counts(struct perf_evsel *evsel)
{ {
return perf_evsel__cpus(evsel)->nr; free(evsel->prev_raw_counts);
evsel->prev_raw_counts = NULL;
} }
static struct stats runtime_nsecs_stats[MAX_NR_CPUS]; static struct stats runtime_nsecs_stats[MAX_NR_CPUS];
...@@ -245,16 +286,69 @@ static int read_counter(struct perf_evsel *counter) ...@@ -245,16 +286,69 @@ static int read_counter(struct perf_evsel *counter)
return 0; return 0;
} }
static void print_interval(void)
{
static int num_print_interval;
struct perf_evsel *counter;
struct perf_stat *ps;
struct timespec ts, rs;
char prefix[64];
if (no_aggr) {
list_for_each_entry(counter, &evsel_list->entries, node) {
ps = counter->priv;
memset(ps->res_stats, 0, sizeof(ps->res_stats));
read_counter(counter);
}
} else {
list_for_each_entry(counter, &evsel_list->entries, node) {
ps = counter->priv;
memset(ps->res_stats, 0, sizeof(ps->res_stats));
read_counter_aggr(counter);
}
}
clock_gettime(CLOCK_MONOTONIC, &ts);
diff_timespec(&rs, &ts, &ref_time);
sprintf(prefix, "%6lu.%09lu%s", rs.tv_sec, rs.tv_nsec, csv_sep);
if (num_print_interval == 0 && !csv_output) {
if (no_aggr)
fprintf(output, "# time CPU counts events\n");
else
fprintf(output, "# time counts events\n");
}
if (++num_print_interval == 25)
num_print_interval = 0;
if (no_aggr) {
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter(counter, prefix);
} else {
list_for_each_entry(counter, &evsel_list->entries, node)
print_counter_aggr(counter, prefix);
}
}
static int __run_perf_stat(int argc __maybe_unused, const char **argv) static int __run_perf_stat(int argc __maybe_unused, const char **argv)
{ {
char msg[512]; char msg[512];
unsigned long long t0, t1; unsigned long long t0, t1;
struct perf_evsel *counter; struct perf_evsel *counter;
struct timespec ts;
int status = 0; int status = 0;
int child_ready_pipe[2], go_pipe[2]; int child_ready_pipe[2], go_pipe[2];
const bool forks = (argc > 0); const bool forks = (argc > 0);
char buf; char buf;
if (interval) {
ts.tv_sec = interval / 1000;
ts.tv_nsec = (interval % 1000) * 1000000;
} else {
ts.tv_sec = 1;
ts.tv_nsec = 0;
}
if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) { if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
perror("failed to create pipes"); perror("failed to create pipes");
return -1; return -1;
...@@ -347,14 +441,25 @@ static int __run_perf_stat(int argc __maybe_unused, const char **argv) ...@@ -347,14 +441,25 @@ static int __run_perf_stat(int argc __maybe_unused, const char **argv)
* Enable counters and exec the command: * Enable counters and exec the command:
*/ */
t0 = rdclock(); t0 = rdclock();
clock_gettime(CLOCK_MONOTONIC, &ref_time);
if (forks) { if (forks) {
close(go_pipe[1]); close(go_pipe[1]);
if (interval) {
while (!waitpid(child_pid, &status, WNOHANG)) {
nanosleep(&ts, NULL);
print_interval();
}
}
wait(&status); wait(&status);
if (WIFSIGNALED(status)) if (WIFSIGNALED(status))
psignal(WTERMSIG(status), argv[0]); psignal(WTERMSIG(status), argv[0]);
} else { } else {
while(!done) sleep(1); while (!done) {
nanosleep(&ts, NULL);
if (interval)
print_interval();
}
} }
t1 = rdclock(); t1 = rdclock();
...@@ -440,7 +545,7 @@ static void nsec_printout(int cpu, struct perf_evsel *evsel, double avg) ...@@ -440,7 +545,7 @@ static void nsec_printout(int cpu, struct perf_evsel *evsel, double avg)
if (evsel->cgrp) if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
if (csv_output) if (csv_output || interval)
return; return;
if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK)) if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
...@@ -654,12 +759,11 @@ static void abs_printout(int cpu, struct perf_evsel *evsel, double avg) ...@@ -654,12 +759,11 @@ static void abs_printout(int cpu, struct perf_evsel *evsel, double avg)
if (evsel->cgrp) if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name); fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
if (csv_output) if (csv_output || interval)
return; return;
if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) { if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
total = avg_stats(&runtime_cycles_stats[cpu]); total = avg_stats(&runtime_cycles_stats[cpu]);
if (total) if (total)
ratio = avg / total; ratio = avg / total;
...@@ -753,12 +857,15 @@ static void abs_printout(int cpu, struct perf_evsel *evsel, double avg) ...@@ -753,12 +857,15 @@ static void abs_printout(int cpu, struct perf_evsel *evsel, double avg)
* Print out the results of a single counter: * Print out the results of a single counter:
* aggregated counts in system-wide mode * aggregated counts in system-wide mode
*/ */
static void print_counter_aggr(struct perf_evsel *counter) static void print_counter_aggr(struct perf_evsel *counter, char *prefix)
{ {
struct perf_stat *ps = counter->priv; struct perf_stat *ps = counter->priv;
double avg = avg_stats(&ps->res_stats[0]); double avg = avg_stats(&ps->res_stats[0]);
int scaled = counter->counts->scaled; int scaled = counter->counts->scaled;
if (prefix)
fprintf(output, "%s", prefix);
if (scaled == -1) { if (scaled == -1) {
fprintf(output, "%*s%s%*s", fprintf(output, "%*s%s%*s",
csv_output ? 0 : 18, csv_output ? 0 : 18,
...@@ -801,7 +908,7 @@ static void print_counter_aggr(struct perf_evsel *counter) ...@@ -801,7 +908,7 @@ static void print_counter_aggr(struct perf_evsel *counter)
* Print out the results of a single counter: * Print out the results of a single counter:
* does not use aggregated count in system-wide * does not use aggregated count in system-wide
*/ */
static void print_counter(struct perf_evsel *counter) static void print_counter(struct perf_evsel *counter, char *prefix)
{ {
u64 ena, run, val; u64 ena, run, val;
int cpu; int cpu;
...@@ -810,6 +917,10 @@ static void print_counter(struct perf_evsel *counter) ...@@ -810,6 +917,10 @@ static void print_counter(struct perf_evsel *counter)
val = counter->counts->cpu[cpu].val; val = counter->counts->cpu[cpu].val;
ena = counter->counts->cpu[cpu].ena; ena = counter->counts->cpu[cpu].ena;
run = counter->counts->cpu[cpu].run; run = counter->counts->cpu[cpu].run;
if (prefix)
fprintf(output, "%s", prefix);
if (run == 0 || ena == 0) { if (run == 0 || ena == 0) {
fprintf(output, "CPU%*d%s%*s%s%*s", fprintf(output, "CPU%*d%s%*s%s%*s",
csv_output ? 0 : -4, csv_output ? 0 : -4,
...@@ -871,10 +982,10 @@ static void print_stat(int argc, const char **argv) ...@@ -871,10 +982,10 @@ static void print_stat(int argc, const char **argv)
if (no_aggr) { if (no_aggr) {
list_for_each_entry(counter, &evsel_list->entries, node) list_for_each_entry(counter, &evsel_list->entries, node)
print_counter(counter); print_counter(counter, NULL);
} else { } else {
list_for_each_entry(counter, &evsel_list->entries, node) list_for_each_entry(counter, &evsel_list->entries, node)
print_counter_aggr(counter); print_counter_aggr(counter, NULL);
} }
if (!csv_output) { if (!csv_output) {
...@@ -895,7 +1006,7 @@ static volatile int signr = -1; ...@@ -895,7 +1006,7 @@ static volatile int signr = -1;
static void skip_signal(int signo) static void skip_signal(int signo)
{ {
if(child_pid == -1) if ((child_pid == -1) || interval)
done = 1; done = 1;
signr = signo; signr = signo;
...@@ -1115,6 +1226,8 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused) ...@@ -1115,6 +1226,8 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
"command to run prior to the measured command"), "command to run prior to the measured command"),
OPT_STRING(0, "post", &post_cmd, "command", OPT_STRING(0, "post", &post_cmd, "command",
"command to run after to the measured command"), "command to run after to the measured command"),
OPT_UINTEGER('I', "interval-print", &interval,
"print counts at regular interval in ms (>= 100)"),
OPT_END() OPT_END()
}; };
const char * const stat_usage[] = { const char * const stat_usage[] = {
...@@ -1215,12 +1328,23 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused) ...@@ -1215,12 +1328,23 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
usage_with_options(stat_usage, options); usage_with_options(stat_usage, options);
return -1; return -1;
} }
if (interval && interval < 100) {
pr_err("print interval must be >= 100ms\n");
usage_with_options(stat_usage, options);
return -1;
}
list_for_each_entry(pos, &evsel_list->entries, node) { list_for_each_entry(pos, &evsel_list->entries, node) {
if (perf_evsel__alloc_stat_priv(pos) < 0 || if (perf_evsel__alloc_stat_priv(pos) < 0 ||
perf_evsel__alloc_counts(pos, perf_evsel__nr_cpus(pos)) < 0) perf_evsel__alloc_counts(pos, perf_evsel__nr_cpus(pos)) < 0)
goto out_free_fd; goto out_free_fd;
} }
if (interval) {
list_for_each_entry(pos, &evsel_list->entries, node) {
if (perf_evsel__alloc_prev_raw_counts(pos) < 0)
goto out_free_fd;
}
}
/* /*
* We dont want to block the signals - that would cause * We dont want to block the signals - that would cause
...@@ -1230,6 +1354,7 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused) ...@@ -1230,6 +1354,7 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
*/ */
atexit(sig_atexit); atexit(sig_atexit);
signal(SIGINT, skip_signal); signal(SIGINT, skip_signal);
signal(SIGCHLD, skip_signal);
signal(SIGALRM, skip_signal); signal(SIGALRM, skip_signal);
signal(SIGABRT, skip_signal); signal(SIGABRT, skip_signal);
...@@ -1242,11 +1367,14 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused) ...@@ -1242,11 +1367,14 @@ int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
status = run_perf_stat(argc, argv); status = run_perf_stat(argc, argv);
} }
if (status != -1) if (status != -1 && !interval)
print_stat(argc, argv); print_stat(argc, argv);
out_free_fd: out_free_fd:
list_for_each_entry(pos, &evsel_list->entries, node) list_for_each_entry(pos, &evsel_list->entries, node) {
perf_evsel__free_stat_priv(pos); perf_evsel__free_stat_priv(pos);
perf_evsel__free_counts(pos);
perf_evsel__free_prev_raw_counts(pos);
}
perf_evlist__delete_maps(evsel_list); perf_evlist__delete_maps(evsel_list);
out: out:
perf_evlist__delete(evsel_list); perf_evlist__delete(evsel_list);
......
...@@ -225,3 +225,14 @@ int main(void) ...@@ -225,3 +225,14 @@ int main(void)
return on_exit(NULL, NULL); return on_exit(NULL, NULL);
} }
endef endef
define SOURCE_LIBNUMA
#include <numa.h>
#include <numaif.h>
int main(void)
{
numa_available();
return 0;
}
endef
\ No newline at end of file
...@@ -19,6 +19,11 @@ ...@@ -19,6 +19,11 @@
* permissions. All the event text files are stored there. * permissions. All the event text files are stored there.
*/ */
/*
* Powerpc needs __SANE_USERSPACE_TYPES__ before <linux/types.h> to select
* 'int-ll64.h' and avoid compile warnings when printing __u64 with %llu.
*/
#define __SANE_USERSPACE_TYPES__
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <inttypes.h> #include <inttypes.h>
......
...@@ -98,6 +98,7 @@ int test__open_syscall_event_on_all_cpus(void) ...@@ -98,6 +98,7 @@ int test__open_syscall_event_on_all_cpus(void)
} }
} }
perf_evsel__free_counts(evsel);
out_close_fd: out_close_fd:
perf_evsel__close_fd(evsel, 1, threads->nr); perf_evsel__close_fd(evsel, 1, threads->nr);
out_evsel_delete: out_evsel_delete:
......
...@@ -96,7 +96,7 @@ int test__PERF_RECORD(void) ...@@ -96,7 +96,7 @@ int test__PERF_RECORD(void)
err = perf_evlist__prepare_workload(evlist, &opts, argv); err = perf_evlist__prepare_workload(evlist, &opts, argv);
if (err < 0) { if (err < 0) {
pr_debug("Couldn't run the workload!\n"); pr_debug("Couldn't run the workload!\n");
goto out_delete_evlist; goto out_delete_maps;
} }
/* /*
...@@ -111,7 +111,7 @@ int test__PERF_RECORD(void) ...@@ -111,7 +111,7 @@ int test__PERF_RECORD(void)
err = sched__get_first_possible_cpu(evlist->workload.pid, &cpu_mask); err = sched__get_first_possible_cpu(evlist->workload.pid, &cpu_mask);
if (err < 0) { if (err < 0) {
pr_debug("sched__get_first_possible_cpu: %s\n", strerror(errno)); pr_debug("sched__get_first_possible_cpu: %s\n", strerror(errno));
goto out_delete_evlist; goto out_delete_maps;
} }
cpu = err; cpu = err;
...@@ -121,7 +121,7 @@ int test__PERF_RECORD(void) ...@@ -121,7 +121,7 @@ int test__PERF_RECORD(void)
*/ */
if (sched_setaffinity(evlist->workload.pid, cpu_mask_size, &cpu_mask) < 0) { if (sched_setaffinity(evlist->workload.pid, cpu_mask_size, &cpu_mask) < 0) {
pr_debug("sched_setaffinity: %s\n", strerror(errno)); pr_debug("sched_setaffinity: %s\n", strerror(errno));
goto out_delete_evlist; goto out_delete_maps;
} }
/* /*
...@@ -131,7 +131,7 @@ int test__PERF_RECORD(void) ...@@ -131,7 +131,7 @@ int test__PERF_RECORD(void)
err = perf_evlist__open(evlist); err = perf_evlist__open(evlist);
if (err < 0) { if (err < 0) {
pr_debug("perf_evlist__open: %s\n", strerror(errno)); pr_debug("perf_evlist__open: %s\n", strerror(errno));
goto out_delete_evlist; goto out_delete_maps;
} }
/* /*
...@@ -142,7 +142,7 @@ int test__PERF_RECORD(void) ...@@ -142,7 +142,7 @@ int test__PERF_RECORD(void)
err = perf_evlist__mmap(evlist, opts.mmap_pages, false); err = perf_evlist__mmap(evlist, opts.mmap_pages, false);
if (err < 0) { if (err < 0) {
pr_debug("perf_evlist__mmap: %s\n", strerror(errno)); pr_debug("perf_evlist__mmap: %s\n", strerror(errno));
goto out_delete_evlist; goto out_delete_maps;
} }
/* /*
...@@ -305,6 +305,8 @@ int test__PERF_RECORD(void) ...@@ -305,6 +305,8 @@ int test__PERF_RECORD(void)
} }
out_err: out_err:
perf_evlist__munmap(evlist); perf_evlist__munmap(evlist);
out_delete_maps:
perf_evlist__delete_maps(evlist);
out_delete_evlist: out_delete_evlist:
perf_evlist__delete(evlist); perf_evlist__delete(evlist);
out: out:
......
...@@ -44,7 +44,7 @@ int test__vmlinux_matches_kallsyms(void) ...@@ -44,7 +44,7 @@ int test__vmlinux_matches_kallsyms(void)
*/ */
if (machine__create_kernel_maps(&kallsyms) < 0) { if (machine__create_kernel_maps(&kallsyms) < 0) {
pr_debug("machine__create_kernel_maps "); pr_debug("machine__create_kernel_maps ");
return -1; goto out;
} }
/* /*
...@@ -227,5 +227,7 @@ int test__vmlinux_matches_kallsyms(void) ...@@ -227,5 +227,7 @@ int test__vmlinux_matches_kallsyms(void)
map__fprintf(pos, stderr); map__fprintf(pos, stderr);
} }
out: out:
machine__exit(&kallsyms);
machine__exit(&vmlinux);
return err; return err;
} }
...@@ -273,6 +273,8 @@ void ui_browser__hide(struct ui_browser *browser __maybe_unused) ...@@ -273,6 +273,8 @@ void ui_browser__hide(struct ui_browser *browser __maybe_unused)
{ {
pthread_mutex_lock(&ui__lock); pthread_mutex_lock(&ui__lock);
ui_helpline__pop(); ui_helpline__pop();
free(browser->helpline);
browser->helpline = NULL;
pthread_mutex_unlock(&ui__lock); pthread_mutex_unlock(&ui__lock);
} }
......
...@@ -476,8 +476,10 @@ int perf_event__synthesize_kernel_mmap(struct perf_tool *tool, ...@@ -476,8 +476,10 @@ int perf_event__synthesize_kernel_mmap(struct perf_tool *tool,
} }
} }
if (kallsyms__parse(filename, &args, find_symbol_cb) <= 0) if (kallsyms__parse(filename, &args, find_symbol_cb) <= 0) {
free(event);
return -ENOENT; return -ENOENT;
}
map = machine->vmlinux_maps[MAP__FUNCTION]; map = machine->vmlinux_maps[MAP__FUNCTION];
size = snprintf(event->mmap.filename, sizeof(event->mmap.filename), size = snprintf(event->mmap.filename, sizeof(event->mmap.filename),
......
...@@ -640,6 +640,11 @@ void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads) ...@@ -640,6 +640,11 @@ void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
} }
} }
void perf_evsel__free_counts(struct perf_evsel *evsel)
{
free(evsel->counts);
}
void perf_evsel__exit(struct perf_evsel *evsel) void perf_evsel__exit(struct perf_evsel *evsel)
{ {
assert(list_empty(&evsel->node)); assert(list_empty(&evsel->node));
...@@ -659,6 +664,28 @@ void perf_evsel__delete(struct perf_evsel *evsel) ...@@ -659,6 +664,28 @@ void perf_evsel__delete(struct perf_evsel *evsel)
free(evsel); free(evsel);
} }
static inline void compute_deltas(struct perf_evsel *evsel,
int cpu,
struct perf_counts_values *count)
{
struct perf_counts_values tmp;
if (!evsel->prev_raw_counts)
return;
if (cpu == -1) {
tmp = evsel->prev_raw_counts->aggr;
evsel->prev_raw_counts->aggr = *count;
} else {
tmp = evsel->prev_raw_counts->cpu[cpu];
evsel->prev_raw_counts->cpu[cpu] = *count;
}
count->val = count->val - tmp.val;
count->ena = count->ena - tmp.ena;
count->run = count->run - tmp.run;
}
int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
int cpu, int thread, bool scale) int cpu, int thread, bool scale)
{ {
...@@ -674,6 +701,8 @@ int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, ...@@ -674,6 +701,8 @@ int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0) if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
return -errno; return -errno;
compute_deltas(evsel, cpu, &count);
if (scale) { if (scale) {
if (count.run == 0) if (count.run == 0)
count.val = 0; count.val = 0;
...@@ -712,6 +741,8 @@ int __perf_evsel__read(struct perf_evsel *evsel, ...@@ -712,6 +741,8 @@ int __perf_evsel__read(struct perf_evsel *evsel,
} }
} }
compute_deltas(evsel, -1, aggr);
evsel->counts->scaled = 0; evsel->counts->scaled = 0;
if (scale) { if (scale) {
if (aggr->run == 0) { if (aggr->run == 0) {
......
...@@ -53,6 +53,7 @@ struct perf_evsel { ...@@ -53,6 +53,7 @@ struct perf_evsel {
struct xyarray *sample_id; struct xyarray *sample_id;
u64 *id; u64 *id;
struct perf_counts *counts; struct perf_counts *counts;
struct perf_counts *prev_raw_counts;
int idx; int idx;
u32 ids; u32 ids;
struct hists hists; struct hists hists;
...@@ -116,6 +117,7 @@ int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads); ...@@ -116,6 +117,7 @@ int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads);
int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus); int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus);
void perf_evsel__free_fd(struct perf_evsel *evsel); void perf_evsel__free_fd(struct perf_evsel *evsel);
void perf_evsel__free_id(struct perf_evsel *evsel); void perf_evsel__free_id(struct perf_evsel *evsel);
void perf_evsel__free_counts(struct perf_evsel *evsel);
void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads); void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads);
void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
......
...@@ -313,7 +313,8 @@ int build_id_cache__add_s(const char *sbuild_id, const char *debugdir, ...@@ -313,7 +313,8 @@ int build_id_cache__add_s(const char *sbuild_id, const char *debugdir,
if (is_kallsyms) { if (is_kallsyms) {
if (symbol_conf.kptr_restrict) { if (symbol_conf.kptr_restrict) {
pr_debug("Not caching a kptr_restrict'ed /proc/kallsyms\n"); pr_debug("Not caching a kptr_restrict'ed /proc/kallsyms\n");
return 0; err = 0;
goto out_free;
} }
realname = (char *) name; realname = (char *) name;
} else } else
...@@ -954,6 +955,7 @@ static int write_topo_node(int fd, int node) ...@@ -954,6 +955,7 @@ static int write_topo_node(int fd, int node)
} }
fclose(fp); fclose(fp);
fp = NULL;
ret = do_write(fd, &mem_total, sizeof(u64)); ret = do_write(fd, &mem_total, sizeof(u64));
if (ret) if (ret)
...@@ -980,7 +982,8 @@ static int write_topo_node(int fd, int node) ...@@ -980,7 +982,8 @@ static int write_topo_node(int fd, int node)
ret = do_write_string(fd, buf); ret = do_write_string(fd, buf);
done: done:
free(buf); free(buf);
fclose(fp); if (fp)
fclose(fp);
return ret; return ret;
} }
...@@ -2921,16 +2924,22 @@ int perf_event__process_tracing_data(union perf_event *event, ...@@ -2921,16 +2924,22 @@ int perf_event__process_tracing_data(union perf_event *event,
session->repipe); session->repipe);
padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
if (readn(session->fd, buf, padding) < 0) if (readn(session->fd, buf, padding) < 0) {
die("reading input file"); pr_err("%s: reading input file", __func__);
return -1;
}
if (session->repipe) { if (session->repipe) {
int retw = write(STDOUT_FILENO, buf, padding); int retw = write(STDOUT_FILENO, buf, padding);
if (retw <= 0 || retw != padding) if (retw <= 0 || retw != padding) {
die("repiping tracing data padding"); pr_err("%s: repiping tracing data padding", __func__);
return -1;
}
} }
if (size_read + padding != size) if (size_read + padding != size) {
die("tracing data size mismatch"); pr_err("%s: tracing data size mismatch", __func__);
return -1;
}
perf_evlist__prepare_tracepoint_events(session->evlist, perf_evlist__prepare_tracepoint_events(session->evlist,
session->pevent); session->pevent);
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
#include "strlist.h" #include "strlist.h"
#include "vdso.h" #include "vdso.h"
#include "build-id.h" #include "build-id.h"
#include <linux/string.h>
const char *map_type__name[MAP__NR_TYPES] = { const char *map_type__name[MAP__NR_TYPES] = {
[MAP__FUNCTION] = "Functions", [MAP__FUNCTION] = "Functions",
...@@ -29,29 +30,29 @@ static inline int is_no_dso_memory(const char *filename) ...@@ -29,29 +30,29 @@ static inline int is_no_dso_memory(const char *filename)
!strcmp(filename, "[heap]"); !strcmp(filename, "[heap]");
} }
void map__init(struct map *self, enum map_type type, void map__init(struct map *map, enum map_type type,
u64 start, u64 end, u64 pgoff, struct dso *dso) u64 start, u64 end, u64 pgoff, struct dso *dso)
{ {
self->type = type; map->type = type;
self->start = start; map->start = start;
self->end = end; map->end = end;
self->pgoff = pgoff; map->pgoff = pgoff;
self->dso = dso; map->dso = dso;
self->map_ip = map__map_ip; map->map_ip = map__map_ip;
self->unmap_ip = map__unmap_ip; map->unmap_ip = map__unmap_ip;
RB_CLEAR_NODE(&self->rb_node); RB_CLEAR_NODE(&map->rb_node);
self->groups = NULL; map->groups = NULL;
self->referenced = false; map->referenced = false;
self->erange_warned = false; map->erange_warned = false;
} }
struct map *map__new(struct list_head *dsos__list, u64 start, u64 len, struct map *map__new(struct list_head *dsos__list, u64 start, u64 len,
u64 pgoff, u32 pid, char *filename, u64 pgoff, u32 pid, char *filename,
enum map_type type) enum map_type type)
{ {
struct map *self = malloc(sizeof(*self)); struct map *map = malloc(sizeof(*map));
if (self != NULL) { if (map != NULL) {
char newfilename[PATH_MAX]; char newfilename[PATH_MAX];
struct dso *dso; struct dso *dso;
int anon, no_dso, vdso; int anon, no_dso, vdso;
...@@ -74,10 +75,10 @@ struct map *map__new(struct list_head *dsos__list, u64 start, u64 len, ...@@ -74,10 +75,10 @@ struct map *map__new(struct list_head *dsos__list, u64 start, u64 len,
if (dso == NULL) if (dso == NULL)
goto out_delete; goto out_delete;
map__init(self, type, start, start + len, pgoff, dso); map__init(map, type, start, start + len, pgoff, dso);
if (anon || no_dso) { if (anon || no_dso) {
self->map_ip = self->unmap_ip = identity__map_ip; map->map_ip = map->unmap_ip = identity__map_ip;
/* /*
* Set memory without DSO as loaded. All map__find_* * Set memory without DSO as loaded. All map__find_*
...@@ -85,12 +86,12 @@ struct map *map__new(struct list_head *dsos__list, u64 start, u64 len, ...@@ -85,12 +86,12 @@ struct map *map__new(struct list_head *dsos__list, u64 start, u64 len,
* unnecessary map__load warning. * unnecessary map__load warning.
*/ */
if (no_dso) if (no_dso)
dso__set_loaded(dso, self->type); dso__set_loaded(dso, map->type);
} }
} }
return self; return map;
out_delete: out_delete:
free(self); free(map);
return NULL; return NULL;
} }
...@@ -113,48 +114,48 @@ struct map *map__new2(u64 start, struct dso *dso, enum map_type type) ...@@ -113,48 +114,48 @@ struct map *map__new2(u64 start, struct dso *dso, enum map_type type)
return map; return map;
} }
void map__delete(struct map *self) void map__delete(struct map *map)
{ {
free(self); free(map);
} }
void map__fixup_start(struct map *self) void map__fixup_start(struct map *map)
{ {
struct rb_root *symbols = &self->dso->symbols[self->type]; struct rb_root *symbols = &map->dso->symbols[map->type];
struct rb_node *nd = rb_first(symbols); struct rb_node *nd = rb_first(symbols);
if (nd != NULL) { if (nd != NULL) {
struct symbol *sym = rb_entry(nd, struct symbol, rb_node); struct symbol *sym = rb_entry(nd, struct symbol, rb_node);
self->start = sym->start; map->start = sym->start;
} }
} }
void map__fixup_end(struct map *self) void map__fixup_end(struct map *map)
{ {
struct rb_root *symbols = &self->dso->symbols[self->type]; struct rb_root *symbols = &map->dso->symbols[map->type];
struct rb_node *nd = rb_last(symbols); struct rb_node *nd = rb_last(symbols);
if (nd != NULL) { if (nd != NULL) {
struct symbol *sym = rb_entry(nd, struct symbol, rb_node); struct symbol *sym = rb_entry(nd, struct symbol, rb_node);
self->end = sym->end; map->end = sym->end;
} }
} }
#define DSO__DELETED "(deleted)" #define DSO__DELETED "(deleted)"
int map__load(struct map *self, symbol_filter_t filter) int map__load(struct map *map, symbol_filter_t filter)
{ {
const char *name = self->dso->long_name; const char *name = map->dso->long_name;
int nr; int nr;
if (dso__loaded(self->dso, self->type)) if (dso__loaded(map->dso, map->type))
return 0; return 0;
nr = dso__load(self->dso, self, filter); nr = dso__load(map->dso, map, filter);
if (nr < 0) { if (nr < 0) {
if (self->dso->has_build_id) { if (map->dso->has_build_id) {
char sbuild_id[BUILD_ID_SIZE * 2 + 1]; char sbuild_id[BUILD_ID_SIZE * 2 + 1];
build_id__sprintf(self->dso->build_id, build_id__sprintf(map->dso->build_id,
sizeof(self->dso->build_id), sizeof(map->dso->build_id),
sbuild_id); sbuild_id);
pr_warning("%s with build id %s not found", pr_warning("%s with build id %s not found",
name, sbuild_id); name, sbuild_id);
...@@ -184,43 +185,36 @@ int map__load(struct map *self, symbol_filter_t filter) ...@@ -184,43 +185,36 @@ int map__load(struct map *self, symbol_filter_t filter)
* Only applies to the kernel, as its symtabs aren't relative like the * Only applies to the kernel, as its symtabs aren't relative like the
* module ones. * module ones.
*/ */
if (self->dso->kernel) if (map->dso->kernel)
map__reloc_vmlinux(self); map__reloc_vmlinux(map);
return 0; return 0;
} }
struct symbol *map__find_symbol(struct map *self, u64 addr, struct symbol *map__find_symbol(struct map *map, u64 addr,
symbol_filter_t filter) symbol_filter_t filter)
{ {
if (map__load(self, filter) < 0) if (map__load(map, filter) < 0)
return NULL; return NULL;
return dso__find_symbol(self->dso, self->type, addr); return dso__find_symbol(map->dso, map->type, addr);
} }
struct symbol *map__find_symbol_by_name(struct map *self, const char *name, struct symbol *map__find_symbol_by_name(struct map *map, const char *name,
symbol_filter_t filter) symbol_filter_t filter)
{ {
if (map__load(self, filter) < 0) if (map__load(map, filter) < 0)
return NULL; return NULL;
if (!dso__sorted_by_name(self->dso, self->type)) if (!dso__sorted_by_name(map->dso, map->type))
dso__sort_by_name(self->dso, self->type); dso__sort_by_name(map->dso, map->type);
return dso__find_symbol_by_name(self->dso, self->type, name); return dso__find_symbol_by_name(map->dso, map->type, name);
} }
struct map *map__clone(struct map *self) struct map *map__clone(struct map *map)
{ {
struct map *map = malloc(sizeof(*self)); return memdup(map, sizeof(*map));
if (!map)
return NULL;
memcpy(map, self, sizeof(*self));
return map;
} }
int map__overlap(struct map *l, struct map *r) int map__overlap(struct map *l, struct map *r)
...@@ -237,10 +231,10 @@ int map__overlap(struct map *l, struct map *r) ...@@ -237,10 +231,10 @@ int map__overlap(struct map *l, struct map *r)
return 0; return 0;
} }
size_t map__fprintf(struct map *self, FILE *fp) size_t map__fprintf(struct map *map, FILE *fp)
{ {
return fprintf(fp, " %" PRIx64 "-%" PRIx64 " %" PRIx64 " %s\n", return fprintf(fp, " %" PRIx64 "-%" PRIx64 " %" PRIx64 " %s\n",
self->start, self->end, self->pgoff, self->dso->name); map->start, map->end, map->pgoff, map->dso->name);
} }
size_t map__fprintf_dsoname(struct map *map, FILE *fp) size_t map__fprintf_dsoname(struct map *map, FILE *fp)
...@@ -528,9 +522,9 @@ static u64 map__reloc_unmap_ip(struct map *map, u64 ip) ...@@ -528,9 +522,9 @@ static u64 map__reloc_unmap_ip(struct map *map, u64 ip)
return ip - (s64)map->pgoff; return ip - (s64)map->pgoff;
} }
void map__reloc_vmlinux(struct map *self) void map__reloc_vmlinux(struct map *map)
{ {
struct kmap *kmap = map__kmap(self); struct kmap *kmap = map__kmap(map);
s64 reloc; s64 reloc;
if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->unrelocated_addr) if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->unrelocated_addr)
...@@ -542,9 +536,9 @@ void map__reloc_vmlinux(struct map *self) ...@@ -542,9 +536,9 @@ void map__reloc_vmlinux(struct map *self)
if (!reloc) if (!reloc)
return; return;
self->map_ip = map__reloc_map_ip; map->map_ip = map__reloc_map_ip;
self->unmap_ip = map__reloc_unmap_ip; map->unmap_ip = map__reloc_unmap_ip;
self->pgoff = reloc; map->pgoff = reloc;
} }
void maps__insert(struct rb_root *maps, struct map *map) void maps__insert(struct rb_root *maps, struct map *map)
...@@ -567,9 +561,9 @@ void maps__insert(struct rb_root *maps, struct map *map) ...@@ -567,9 +561,9 @@ void maps__insert(struct rb_root *maps, struct map *map)
rb_insert_color(&map->rb_node, maps); rb_insert_color(&map->rb_node, maps);
} }
void maps__remove(struct rb_root *self, struct map *map) void maps__remove(struct rb_root *maps, struct map *map)
{ {
rb_erase(&map->rb_node, self); rb_erase(&map->rb_node, maps);
} }
struct map *maps__find(struct rb_root *maps, u64 ip) struct map *maps__find(struct rb_root *maps, u64 ip)
......
...@@ -57,9 +57,9 @@ struct map_groups { ...@@ -57,9 +57,9 @@ struct map_groups {
struct machine *machine; struct machine *machine;
}; };
static inline struct kmap *map__kmap(struct map *self) static inline struct kmap *map__kmap(struct map *map)
{ {
return (struct kmap *)(self + 1); return (struct kmap *)(map + 1);
} }
static inline u64 map__map_ip(struct map *map, u64 ip) static inline u64 map__map_ip(struct map *map, u64 ip)
...@@ -85,27 +85,27 @@ struct symbol; ...@@ -85,27 +85,27 @@ struct symbol;
typedef int (*symbol_filter_t)(struct map *map, struct symbol *sym); typedef int (*symbol_filter_t)(struct map *map, struct symbol *sym);
void map__init(struct map *self, enum map_type type, void map__init(struct map *map, enum map_type type,
u64 start, u64 end, u64 pgoff, struct dso *dso); u64 start, u64 end, u64 pgoff, struct dso *dso);
struct map *map__new(struct list_head *dsos__list, u64 start, u64 len, struct map *map__new(struct list_head *dsos__list, u64 start, u64 len,
u64 pgoff, u32 pid, char *filename, u64 pgoff, u32 pid, char *filename,
enum map_type type); enum map_type type);
struct map *map__new2(u64 start, struct dso *dso, enum map_type type); struct map *map__new2(u64 start, struct dso *dso, enum map_type type);
void map__delete(struct map *self); void map__delete(struct map *map);
struct map *map__clone(struct map *self); struct map *map__clone(struct map *map);
int map__overlap(struct map *l, struct map *r); int map__overlap(struct map *l, struct map *r);
size_t map__fprintf(struct map *self, FILE *fp); size_t map__fprintf(struct map *map, FILE *fp);
size_t map__fprintf_dsoname(struct map *map, FILE *fp); size_t map__fprintf_dsoname(struct map *map, FILE *fp);
int map__load(struct map *self, symbol_filter_t filter); int map__load(struct map *map, symbol_filter_t filter);
struct symbol *map__find_symbol(struct map *self, struct symbol *map__find_symbol(struct map *map,
u64 addr, symbol_filter_t filter); u64 addr, symbol_filter_t filter);
struct symbol *map__find_symbol_by_name(struct map *self, const char *name, struct symbol *map__find_symbol_by_name(struct map *map, const char *name,
symbol_filter_t filter); symbol_filter_t filter);
void map__fixup_start(struct map *self); void map__fixup_start(struct map *map);
void map__fixup_end(struct map *self); void map__fixup_end(struct map *map);
void map__reloc_vmlinux(struct map *self); void map__reloc_vmlinux(struct map *map);
size_t __map_groups__fprintf_maps(struct map_groups *mg, size_t __map_groups__fprintf_maps(struct map_groups *mg,
enum map_type type, int verbose, FILE *fp); enum map_type type, int verbose, FILE *fp);
......
...@@ -249,7 +249,7 @@ static int hist_entry__srcline_snprintf(struct hist_entry *self, char *bf, ...@@ -249,7 +249,7 @@ static int hist_entry__srcline_snprintf(struct hist_entry *self, char *bf,
size_t size, size_t size,
unsigned int width __maybe_unused) unsigned int width __maybe_unused)
{ {
FILE *fp; FILE *fp = NULL;
char cmd[PATH_MAX + 2], *path = self->srcline, *nl; char cmd[PATH_MAX + 2], *path = self->srcline, *nl;
size_t line_len; size_t line_len;
...@@ -270,7 +270,6 @@ static int hist_entry__srcline_snprintf(struct hist_entry *self, char *bf, ...@@ -270,7 +270,6 @@ static int hist_entry__srcline_snprintf(struct hist_entry *self, char *bf,
if (getline(&path, &line_len, fp) < 0 || !line_len) if (getline(&path, &line_len, fp) < 0 || !line_len)
goto out_ip; goto out_ip;
fclose(fp);
self->srcline = strdup(path); self->srcline = strdup(path);
if (self->srcline == NULL) if (self->srcline == NULL)
goto out_ip; goto out_ip;
...@@ -280,8 +279,12 @@ static int hist_entry__srcline_snprintf(struct hist_entry *self, char *bf, ...@@ -280,8 +279,12 @@ static int hist_entry__srcline_snprintf(struct hist_entry *self, char *bf,
*nl = '\0'; *nl = '\0';
path = self->srcline; path = self->srcline;
out_path: out_path:
if (fp)
pclose(fp);
return repsep_snprintf(bf, size, "%s", path); return repsep_snprintf(bf, size, "%s", path);
out_ip: out_ip:
if (fp)
pclose(fp);
return repsep_snprintf(bf, size, "%-#*llx", BITS_PER_LONG / 4, self->ip); return repsep_snprintf(bf, size, "%-#*llx", BITS_PER_LONG / 4, self->ip);
} }
......
...@@ -35,11 +35,11 @@ struct rb_node *strlist__node_new(struct rblist *rblist, const void *entry) ...@@ -35,11 +35,11 @@ struct rb_node *strlist__node_new(struct rblist *rblist, const void *entry)
return NULL; return NULL;
} }
static void str_node__delete(struct str_node *self, bool dupstr) static void str_node__delete(struct str_node *snode, bool dupstr)
{ {
if (dupstr) if (dupstr)
free((void *)self->s); free((void *)snode->s);
free(self); free(snode);
} }
static static
...@@ -59,12 +59,12 @@ static int strlist__node_cmp(struct rb_node *rb_node, const void *entry) ...@@ -59,12 +59,12 @@ static int strlist__node_cmp(struct rb_node *rb_node, const void *entry)
return strcmp(snode->s, str); return strcmp(snode->s, str);
} }
int strlist__add(struct strlist *self, const char *new_entry) int strlist__add(struct strlist *slist, const char *new_entry)
{ {
return rblist__add_node(&self->rblist, new_entry); return rblist__add_node(&slist->rblist, new_entry);
} }
int strlist__load(struct strlist *self, const char *filename) int strlist__load(struct strlist *slist, const char *filename)
{ {
char entry[1024]; char entry[1024];
int err; int err;
...@@ -80,7 +80,7 @@ int strlist__load(struct strlist *self, const char *filename) ...@@ -80,7 +80,7 @@ int strlist__load(struct strlist *self, const char *filename)
continue; continue;
entry[len - 1] = '\0'; entry[len - 1] = '\0';
err = strlist__add(self, entry); err = strlist__add(slist, entry);
if (err != 0) if (err != 0)
goto out; goto out;
} }
...@@ -107,56 +107,56 @@ struct str_node *strlist__find(struct strlist *slist, const char *entry) ...@@ -107,56 +107,56 @@ struct str_node *strlist__find(struct strlist *slist, const char *entry)
return snode; return snode;
} }
static int strlist__parse_list_entry(struct strlist *self, const char *s) static int strlist__parse_list_entry(struct strlist *slist, const char *s)
{ {
if (strncmp(s, "file://", 7) == 0) if (strncmp(s, "file://", 7) == 0)
return strlist__load(self, s + 7); return strlist__load(slist, s + 7);
return strlist__add(self, s); return strlist__add(slist, s);
} }
int strlist__parse_list(struct strlist *self, const char *s) int strlist__parse_list(struct strlist *slist, const char *s)
{ {
char *sep; char *sep;
int err; int err;
while ((sep = strchr(s, ',')) != NULL) { while ((sep = strchr(s, ',')) != NULL) {
*sep = '\0'; *sep = '\0';
err = strlist__parse_list_entry(self, s); err = strlist__parse_list_entry(slist, s);
*sep = ','; *sep = ',';
if (err != 0) if (err != 0)
return err; return err;
s = sep + 1; s = sep + 1;
} }
return *s ? strlist__parse_list_entry(self, s) : 0; return *s ? strlist__parse_list_entry(slist, s) : 0;
} }
struct strlist *strlist__new(bool dupstr, const char *slist) struct strlist *strlist__new(bool dupstr, const char *list)
{ {
struct strlist *self = malloc(sizeof(*self)); struct strlist *slist = malloc(sizeof(*slist));
if (self != NULL) { if (slist != NULL) {
rblist__init(&self->rblist); rblist__init(&slist->rblist);
self->rblist.node_cmp = strlist__node_cmp; slist->rblist.node_cmp = strlist__node_cmp;
self->rblist.node_new = strlist__node_new; slist->rblist.node_new = strlist__node_new;
self->rblist.node_delete = strlist__node_delete; slist->rblist.node_delete = strlist__node_delete;
self->dupstr = dupstr; slist->dupstr = dupstr;
if (slist && strlist__parse_list(self, slist) != 0) if (slist && strlist__parse_list(slist, list) != 0)
goto out_error; goto out_error;
} }
return self; return slist;
out_error: out_error:
free(self); free(slist);
return NULL; return NULL;
} }
void strlist__delete(struct strlist *self) void strlist__delete(struct strlist *slist)
{ {
if (self != NULL) if (slist != NULL)
rblist__delete(&self->rblist); rblist__delete(&slist->rblist);
} }
struct str_node *strlist__entry(const struct strlist *slist, unsigned int idx) struct str_node *strlist__entry(const struct strlist *slist, unsigned int idx)
......
...@@ -17,34 +17,34 @@ struct strlist { ...@@ -17,34 +17,34 @@ struct strlist {
}; };
struct strlist *strlist__new(bool dupstr, const char *slist); struct strlist *strlist__new(bool dupstr, const char *slist);
void strlist__delete(struct strlist *self); void strlist__delete(struct strlist *slist);
void strlist__remove(struct strlist *self, struct str_node *sn); void strlist__remove(struct strlist *slist, struct str_node *sn);
int strlist__load(struct strlist *self, const char *filename); int strlist__load(struct strlist *slist, const char *filename);
int strlist__add(struct strlist *self, const char *str); int strlist__add(struct strlist *slist, const char *str);
struct str_node *strlist__entry(const struct strlist *self, unsigned int idx); struct str_node *strlist__entry(const struct strlist *slist, unsigned int idx);
struct str_node *strlist__find(struct strlist *self, const char *entry); struct str_node *strlist__find(struct strlist *slist, const char *entry);
static inline bool strlist__has_entry(struct strlist *self, const char *entry) static inline bool strlist__has_entry(struct strlist *slist, const char *entry)
{ {
return strlist__find(self, entry) != NULL; return strlist__find(slist, entry) != NULL;
} }
static inline bool strlist__empty(const struct strlist *self) static inline bool strlist__empty(const struct strlist *slist)
{ {
return rblist__empty(&self->rblist); return rblist__empty(&slist->rblist);
} }
static inline unsigned int strlist__nr_entries(const struct strlist *self) static inline unsigned int strlist__nr_entries(const struct strlist *slist)
{ {
return rblist__nr_entries(&self->rblist); return rblist__nr_entries(&slist->rblist);
} }
/* For strlist iteration */ /* For strlist iteration */
static inline struct str_node *strlist__first(struct strlist *self) static inline struct str_node *strlist__first(struct strlist *slist)
{ {
struct rb_node *rn = rb_first(&self->rblist.entries); struct rb_node *rn = rb_first(&slist->rblist.entries);
return rn ? rb_entry(rn, struct str_node, rb_node) : NULL; return rn ? rb_entry(rn, struct str_node, rb_node) : NULL;
} }
static inline struct str_node *strlist__next(struct str_node *sn) static inline struct str_node *strlist__next(struct str_node *sn)
...@@ -59,21 +59,21 @@ static inline struct str_node *strlist__next(struct str_node *sn) ...@@ -59,21 +59,21 @@ static inline struct str_node *strlist__next(struct str_node *sn)
/** /**
* strlist_for_each - iterate over a strlist * strlist_for_each - iterate over a strlist
* @pos: the &struct str_node to use as a loop cursor. * @pos: the &struct str_node to use as a loop cursor.
* @self: the &struct strlist for loop. * @slist: the &struct strlist for loop.
*/ */
#define strlist__for_each(pos, self) \ #define strlist__for_each(pos, slist) \
for (pos = strlist__first(self); pos; pos = strlist__next(pos)) for (pos = strlist__first(slist); pos; pos = strlist__next(pos))
/** /**
* strlist_for_each_safe - iterate over a strlist safe against removal of * strlist_for_each_safe - iterate over a strlist safe against removal of
* str_node * str_node
* @pos: the &struct str_node to use as a loop cursor. * @pos: the &struct str_node to use as a loop cursor.
* @n: another &struct str_node to use as temporary storage. * @n: another &struct str_node to use as temporary storage.
* @self: the &struct strlist for loop. * @slist: the &struct strlist for loop.
*/ */
#define strlist__for_each_safe(pos, n, self) \ #define strlist__for_each_safe(pos, n, slist) \
for (pos = strlist__first(self), n = strlist__next(pos); pos;\ for (pos = strlist__first(slist), n = strlist__next(pos); pos;\
pos = n, n = strlist__next(n)) pos = n, n = strlist__next(n))
int strlist__parse_list(struct strlist *self, const char *s); int strlist__parse_list(struct strlist *slist, const char *s);
#endif /* __PERF_STRLIST_H */ #endif /* __PERF_STRLIST_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment