Commit 23c25876 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'dmaengine-4.15-rc1' of git://git.infradead.org/users/vkoul/slave-dma

Pull dmaengine updates from Vinod Koul:
 "Updates for this cycle include:

   - new driver for Spreadtrum dma controller, ST MDMA and DMAMUX
     controllers

   - PM support for IMG MDC drivers

   - updates to bcm-sba-raid driver and improvements to sun6i driver

   - subsystem conversion for:
      - timers to use timer_setup()
      - remove usage of PCI pool API
      - usage of %p format specifier

   - minor updates to bunch of drivers"

* tag 'dmaengine-4.15-rc1' of git://git.infradead.org/users/vkoul/slave-dma: (49 commits)
  dmaengine: ti-dma-crossbar: Correct am335x/am43xx mux value type
  dmaengine: dmatest: warn user when dma test times out
  dmaengine: Revert "rcar-dmac: use TCRB instead of TCR for residue"
  dmaengine: stm32_mdma: activate pack/unpack feature
  dmaengine: at_hdmac: Remove unnecessary 0x prefixes before %pad
  dmaengine: coh901318: Remove unnecessary 0x prefixes before %pad
  MAINTAINERS: Step down from a co-maintaner of DW DMAC driver
  dmaengine: pch_dma: Replace PCI pool old API
  dmaengine: Convert timers to use timer_setup()
  dmaengine: sprd: Add Spreadtrum DMA driver
  dt-bindings: dmaengine: Add Spreadtrum SC9860 DMA controller
  dmaengine: sun6i: Retrieve channel count/max request from devicetree
  dmaengine: Build bcm-sba-raid driver as loadable module for iProc SoCs
  dmaengine: bcm-sba-raid: Use common GPL comment header
  dmaengine: bcm-sba-raid: Use only single mailbox channel
  dmaengine: bcm-sba-raid: serialize dma_cookie_complete() using reqs_lock
  dmaengine: pl330: fix descriptor allocation fail
  dmaengine: rcar-dmac: use TCRB instead of TCR for residue
  dmaengine: sun6i: Add support for Allwinner A64 and compatibles
  arm64: allwinner: a64: Add devicetree binding for DMA controller
  ...
parents e0ca3826 cecd5fc5
......@@ -3,6 +3,8 @@
Required Properties:
-compatible: "renesas,<soctype>-usb-dmac", "renesas,usb-dmac" as fallback.
Examples with soctypes are:
- "renesas,r8a7743-usb-dmac" (RZ/G1M)
- "renesas,r8a7745-usb-dmac" (RZ/G1E)
- "renesas,r8a7790-usb-dmac" (R-Car H2)
- "renesas,r8a7791-usb-dmac" (R-Car M2-W)
- "renesas,r8a7793-usb-dmac" (R-Car M2-N)
......
* Spreadtrum DMA controller
This binding follows the generic DMA bindings defined in dma.txt.
Required properties:
- compatible: Should be "sprd,sc9860-dma".
- reg: Should contain DMA registers location and length.
- interrupts: Should contain one interrupt shared by all channel.
- #dma-cells: must be <1>. Used to represent the number of integer
cells in the dmas property of client device.
- #dma-channels : Number of DMA channels supported. Should be 32.
- clock-names: Should contain the clock of the DMA controller.
- clocks: Should contain a clock specifier for each entry in clock-names.
Example:
Controller:
apdma: dma-controller@20100000 {
compatible = "sprd,sc9860-dma";
reg = <0x20100000 0x4000>;
interrupts = <GIC_SPI 50 IRQ_TYPE_LEVEL_HIGH>;
#dma-cells = <1>;
#dma-channels = <32>;
clock-names = "enable";
clocks = <&clk_ap_ahb_gates 5>;
};
Client:
DMA clients connected to the Spreadtrum DMA controller must use the format
described in the dma.txt file, using a two-cell specifier for each channel.
The two cells in order are:
1. A phandle pointing to the DMA controller.
2. The channel id.
spi0: spi@70a00000{
...
dma-names = "rx_chn", "tx_chn";
dmas = <&apdma 11>, <&apdma 12>;
...
};
......@@ -13,6 +13,7 @@ Required properties:
- #dma-cells : Must be <4>. See DMA client paragraph for more details.
Optional properties:
- dma-requests : Number of DMA requests supported.
- resets: Reference to a reset controller asserting the DMA controller
- st,mem2mem: boolean; if defined, it indicates that the controller supports
memory-to-memory transfer
......@@ -34,12 +35,13 @@ Example:
#dma-cells = <4>;
st,mem2mem;
resets = <&rcc 150>;
dma-requests = <8>;
};
* DMA client
DMA clients connected to the STM32 DMA controller must use the format
described in the dma.txt file, using a five-cell specifier for each
described in the dma.txt file, using a four-cell specifier for each
channel: a phandle to the DMA controller plus the following four integer cells:
1. The channel id
......
STM32 DMA MUX (DMA request router)
Required properties:
- compatible: "st,stm32h7-dmamux"
- reg: Memory map for accessing module
- #dma-cells: Should be set to <3>.
First parameter is request line number.
Second is DMA channel configuration
Third is Fifo threshold
For more details about the three cells, please see
stm32-dma.txt documentation binding file
- dma-masters: Phandle pointing to the DMA controllers.
Several controllers are allowed. Only "st,stm32-dma" DMA
compatible are supported.
Optional properties:
- dma-channels : Number of DMA requests supported.
- dma-requests : Number of DMAMUX requests supported.
- resets: Reference to a reset controller asserting the DMA controller
- clocks: Input clock of the DMAMUX instance.
Example:
/* DMA controller 1 */
dma1: dma-controller@40020000 {
compatible = "st,stm32-dma";
reg = <0x40020000 0x400>;
interrupts = <11>,
<12>,
<13>,
<14>,
<15>,
<16>,
<17>,
<47>;
clocks = <&timer_clk>;
#dma-cells = <4>;
st,mem2mem;
resets = <&rcc 150>;
dma-channels = <8>;
dma-requests = <8>;
};
/* DMA controller 1 */
dma2: dma@40020400 {
compatible = "st,stm32-dma";
reg = <0x40020400 0x400>;
interrupts = <56>,
<57>,
<58>,
<59>,
<60>,
<68>,
<69>,
<70>;
clocks = <&timer_clk>;
#dma-cells = <4>;
st,mem2mem;
resets = <&rcc 150>;
dma-channels = <8>;
dma-requests = <8>;
};
/* DMA mux */
dmamux1: dma-router@40020800 {
compatible = "st,stm32h7-dmamux";
reg = <0x40020800 0x3c>;
#dma-cells = <3>;
dma-requests = <128>;
dma-channels = <16>;
dma-masters = <&dma1 &dma2>;
clocks = <&timer_clk>;
};
/* DMA client */
usart1: serial@40011000 {
compatible = "st,stm32-usart", "st,stm32-uart";
reg = <0x40011000 0x400>;
interrupts = <37>;
clocks = <&timer_clk>;
dmas = <&dmamux1 41 0x414 0>,
<&dmamux1 42 0x414 0>;
dma-names = "rx", "tx";
};
* STMicroelectronics STM32 MDMA controller
The STM32 MDMA is a general-purpose direct memory access controller capable of
supporting 64 independent DMA channels with 256 HW requests.
Required properties:
- compatible: Should be "st,stm32h7-mdma"
- reg: Should contain MDMA registers location and length. This should include
all of the per-channel registers.
- interrupts: Should contain the MDMA interrupt.
- clocks: Should contain the input clock of the DMA instance.
- resets: Reference to a reset controller asserting the DMA controller.
- #dma-cells : Must be <5>. See DMA client paragraph for more details.
Optional properties:
- dma-channels: Number of DMA channels supported by the controller.
- dma-requests: Number of DMA request signals supported by the controller.
- st,ahb-addr-masks: Array of u32 mask to list memory devices addressed via
AHB bus.
Example:
mdma1: dma@52000000 {
compatible = "st,stm32h7-mdma";
reg = <0x52000000 0x1000>;
interrupts = <122>;
clocks = <&timer_clk>;
resets = <&rcc 992>;
#dma-cells = <5>;
dma-channels = <16>;
dma-requests = <32>;
st,ahb-addr-masks = <0x20000000>, <0x00000000>;
};
* DMA client
DMA clients connected to the STM32 MDMA controller must use the format
described in the dma.txt file, using a five-cell specifier for each channel:
a phandle to the MDMA controller plus the following five integer cells:
1. The request line number
2. The priority level
0x00: Low
0x01: Medium
0x10: High
0x11: Very high
3. A 32bit mask specifying the DMA channel configuration
-bit 0-1: Source increment mode
0x00: Source address pointer is fixed
0x10: Source address pointer is incremented after each data transfer
0x11: Source address pointer is decremented after each data transfer
-bit 2-3: Destination increment mode
0x00: Destination address pointer is fixed
0x10: Destination address pointer is incremented after each data
transfer
0x11: Destination address pointer is decremented after each data
transfer
-bit 8-9: Source increment offset size
0x00: byte (8bit)
0x01: half-word (16bit)
0x10: word (32bit)
0x11: double-word (64bit)
-bit 10-11: Destination increment offset size
0x00: byte (8bit)
0x01: half-word (16bit)
0x10: word (32bit)
0x11: double-word (64bit)
-bit 25-18: The number of bytes to be transferred in a single transfer
(min = 1 byte, max = 128 bytes)
-bit 29:28: Trigger Mode
0x00: Each MDMA request triggers a buffer transfer (max 128 bytes)
0x01: Each MDMA request triggers a block transfer (max 64K bytes)
0x10: Each MDMA request triggers a repeated block transfer
0x11: Each MDMA request triggers a linked list transfer
4. A 32bit value specifying the register to be used to acknowledge the request
if no HW ack signal is used by the MDMA client
5. A 32bit mask specifying the value to be written to acknowledge the request
if no HW ack signal is used by the MDMA client
Example:
i2c4: i2c@5c002000 {
compatible = "st,stm32f7-i2c";
reg = <0x5c002000 0x400>;
interrupts = <95>,
<96>;
clocks = <&timer_clk>;
#address-cells = <1>;
#size-cells = <0>;
dmas = <&mdma1 36 0x0 0x40008 0x0 0x0>,
<&mdma1 37 0x0 0x40002 0x0 0x0>;
dma-names = "rx", "tx";
status = "disabled";
};
......@@ -27,6 +27,32 @@ Example:
#dma-cells = <1>;
};
------------------------------------------------------------------------------
For A64 DMA controller:
Required properties:
- compatible: "allwinner,sun50i-a64-dma"
- dma-channels: Number of DMA channels supported by the controller.
Refer to Documentation/devicetree/bindings/dma/dma.txt
- all properties above, i.e. reg, interrupts, clocks, resets and #dma-cells
Optional properties:
- dma-requests: Number of DMA request signals supported by the controller.
Refer to Documentation/devicetree/bindings/dma/dma.txt
Example:
dma: dma-controller@1c02000 {
compatible = "allwinner,sun50i-a64-dma";
reg = <0x01c02000 0x1000>;
interrupts = <GIC_SPI 50 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_DMA>;
dma-channels = <8>;
dma-requests = <27>;
resets = <&ccu RST_BUS_DMA>;
#dma-cells = <1>;
};
------------------------------------------------------------------------------
Clients:
DMA clients connected to the A31 DMA controller must use the format
......
......@@ -12947,7 +12947,7 @@ F: Documentation/devicetree/bindings/arc/axs10*
SYNOPSYS DESIGNWARE DMAC DRIVER
M: Viresh Kumar <vireshk@kernel.org>
M: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
R: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
S: Maintained
F: include/linux/dma/dw.h
F: include/linux/platform_data/dma-dw.h
......
......@@ -115,7 +115,7 @@ config BCM_SBA_RAID
select DMA_ENGINE_RAID
select ASYNC_TX_DISABLE_XOR_VAL_DMA
select ASYNC_TX_DISABLE_PQ_VAL_DMA
default ARCH_BCM_IPROC
default m if ARCH_BCM_IPROC
help
Enable support for Broadcom SBA RAID Engine. The SBA RAID
engine is available on most of the Broadcom iProc SoCs. It
......@@ -483,6 +483,35 @@ config STM32_DMA
If you have a board based on such a MCU and wish to use DMA say Y
here.
config STM32_DMAMUX
bool "STMicroelectronics STM32 dma multiplexer support"
depends on STM32_DMA || COMPILE_TEST
help
Enable support for the on-chip DMA multiplexer on STMicroelectronics
STM32 MCUs.
If you have a board based on such a MCU and wish to use DMAMUX say Y
here.
config STM32_MDMA
bool "STMicroelectronics STM32 master dma support"
depends on ARCH_STM32 || COMPILE_TEST
depends on OF
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Enable support for the on-chip MDMA controller on STMicroelectronics
STM32 platforms.
If you have a board based on STM32 SoC and wish to use the master DMA
say Y here.
config SPRD_DMA
tristate "Spreadtrum DMA support"
depends on ARCH_SPRD || COMPILE_TEST
select DMA_ENGINE
select DMA_VIRTUAL_CHANNELS
help
Enable support for the on-chip DMA controller on Spreadtrum platform.
config S3C24XX_DMAC
bool "Samsung S3C24XX DMA support"
depends on ARCH_S3C24XX || COMPILE_TEST
......
......@@ -60,6 +60,9 @@ obj-$(CONFIG_RENESAS_DMA) += sh/
obj-$(CONFIG_SIRF_DMA) += sirf-dma.o
obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
obj-$(CONFIG_STM32_DMA) += stm32-dma.o
obj-$(CONFIG_STM32_DMAMUX) += stm32-dmamux.o
obj-$(CONFIG_STM32_MDMA) += stm32-mdma.o
obj-$(CONFIG_SPRD_DMA) += sprd-dma.o
obj-$(CONFIG_S3C24XX_DMAC) += s3c24xx-dma.o
obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o
obj-$(CONFIG_TEGRA20_APB_DMA) += tegra20-apb-dma.o
......
......@@ -385,7 +385,7 @@ static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
{
dev_crit(chan2dev(&atchan->chan_common),
" desc: s%pad d%pad ctrl0x%x:0x%x l0x%pad\n",
"desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
&lli->saddr, &lli->daddr,
lli->ctrla, lli->ctrlb, &lli->dscr);
}
......
/*
* Copyright (C) 2017 Broadcom
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
......@@ -25,11 +30,8 @@
*
* The Broadcom SBA RAID driver does not require any register programming
* except submitting request to SBA hardware device via mailbox channels.
* This driver implements a DMA device with one DMA channel using a set
* of mailbox channels provided by Broadcom SoC specific ring manager
* driver. To exploit parallelism (as described above), all DMA request
* coming to SBA RAID DMA channel are broken down to smaller requests
* and submitted to multiple mailbox channels in round-robin fashion.
* This driver implements a DMA device with one DMA channel using a single
* mailbox channel provided by Broadcom SoC specific ring manager driver.
* For having more SBA DMA channels, we can create more SBA device nodes
* in Broadcom SoC specific DTS based on number of hardware rings supported
* by Broadcom SoC ring manager.
......@@ -85,6 +87,7 @@
#define SBA_CMD_GALOIS 0xe
#define SBA_MAX_REQ_PER_MBOX_CHANNEL 8192
#define SBA_MAX_MSG_SEND_PER_MBOX_CHANNEL 8
/* Driver helper macros */
#define to_sba_request(tx) \
......@@ -142,9 +145,7 @@ struct sba_device {
u32 max_cmds_pool_size;
/* Maibox client and Mailbox channels */
struct mbox_client client;
int mchans_count;
atomic_t mchans_current;
struct mbox_chan **mchans;
struct mbox_chan *mchan;
struct device *mbox_dev;
/* DMA device and DMA channel */
struct dma_device dma_dev;
......@@ -200,14 +201,6 @@ static inline u32 __pure sba_cmd_pq_c_mdata(u32 d, u32 b1, u32 b0)
/* ====== General helper routines ===== */
static void sba_peek_mchans(struct sba_device *sba)
{
int mchan_idx;
for (mchan_idx = 0; mchan_idx < sba->mchans_count; mchan_idx++)
mbox_client_peek_data(sba->mchans[mchan_idx]);
}
static struct sba_request *sba_alloc_request(struct sba_device *sba)
{
bool found = false;
......@@ -231,7 +224,7 @@ static struct sba_request *sba_alloc_request(struct sba_device *sba)
* would have completed which will create more
* room for new requests.
*/
sba_peek_mchans(sba);
mbox_client_peek_data(sba->mchan);
return NULL;
}
......@@ -369,15 +362,11 @@ static void sba_cleanup_pending_requests(struct sba_device *sba)
static int sba_send_mbox_request(struct sba_device *sba,
struct sba_request *req)
{
int mchans_idx, ret = 0;
/* Select mailbox channel in round-robin fashion */
mchans_idx = atomic_inc_return(&sba->mchans_current);
mchans_idx = mchans_idx % sba->mchans_count;
int ret = 0;
/* Send message for the request */
req->msg.error = 0;
ret = mbox_send_message(sba->mchans[mchans_idx], &req->msg);
ret = mbox_send_message(sba->mchan, &req->msg);
if (ret < 0) {
dev_err(sba->dev, "send message failed with error %d", ret);
return ret;
......@@ -390,7 +379,7 @@ static int sba_send_mbox_request(struct sba_device *sba,
}
/* Signal txdone for mailbox channel */
mbox_client_txdone(sba->mchans[mchans_idx], ret);
mbox_client_txdone(sba->mchan, ret);
return ret;
}
......@@ -402,13 +391,8 @@ static void _sba_process_pending_requests(struct sba_device *sba)
u32 count;
struct sba_request *req;
/*
* Process few pending requests
*
* For now, we process (<number_of_mailbox_channels> * 8)
* number of requests at a time.
*/
count = sba->mchans_count * 8;
/* Process few pending requests */
count = SBA_MAX_MSG_SEND_PER_MBOX_CHANNEL;
while (!list_empty(&sba->reqs_pending_list) && count) {
/* Get the first pending request */
req = list_first_entry(&sba->reqs_pending_list,
......@@ -442,7 +426,9 @@ static void sba_process_received_request(struct sba_device *sba,
WARN_ON(tx->cookie < 0);
if (tx->cookie > 0) {
spin_lock_irqsave(&sba->reqs_lock, flags);
dma_cookie_complete(tx);
spin_unlock_irqrestore(&sba->reqs_lock, flags);
dmaengine_desc_get_callback_invoke(tx, NULL);
dma_descriptor_unmap(tx);
tx->callback = NULL;
......@@ -570,7 +556,7 @@ static enum dma_status sba_tx_status(struct dma_chan *dchan,
if (ret == DMA_COMPLETE)
return ret;
sba_peek_mchans(sba);
mbox_client_peek_data(sba->mchan);
return dma_cookie_status(dchan, cookie, txstate);
}
......@@ -1637,7 +1623,7 @@ static int sba_async_register(struct sba_device *sba)
static int sba_probe(struct platform_device *pdev)
{
int i, ret = 0, mchans_count;
int ret = 0;
struct sba_device *sba;
struct platform_device *mbox_pdev;
struct of_phandle_args args;
......@@ -1650,12 +1636,11 @@ static int sba_probe(struct platform_device *pdev)
sba->dev = &pdev->dev;
platform_set_drvdata(pdev, sba);
/* Number of channels equals number of mailbox channels */
/* Number of mailbox channels should be atleast 1 */
ret = of_count_phandle_with_args(pdev->dev.of_node,
"mboxes", "#mbox-cells");
if (ret <= 0)
return -ENODEV;
mchans_count = ret;
/* Determine SBA version from DT compatible string */
if (of_device_is_compatible(sba->dev->of_node, "brcm,iproc-sba"))
......@@ -1688,7 +1673,7 @@ static int sba_probe(struct platform_device *pdev)
default:
return -EINVAL;
}
sba->max_req = SBA_MAX_REQ_PER_MBOX_CHANNEL * mchans_count;
sba->max_req = SBA_MAX_REQ_PER_MBOX_CHANNEL;
sba->max_cmd_per_req = sba->max_pq_srcs + 3;
sba->max_xor_srcs = sba->max_cmd_per_req - 1;
sba->max_resp_pool_size = sba->max_req * sba->hw_resp_size;
......@@ -1702,55 +1687,30 @@ static int sba_probe(struct platform_device *pdev)
sba->client.knows_txdone = true;
sba->client.tx_tout = 0;
/* Allocate mailbox channel array */
sba->mchans = devm_kcalloc(&pdev->dev, mchans_count,
sizeof(*sba->mchans), GFP_KERNEL);
if (!sba->mchans)
return -ENOMEM;
/* Request mailbox channels */
sba->mchans_count = 0;
for (i = 0; i < mchans_count; i++) {
sba->mchans[i] = mbox_request_channel(&sba->client, i);
if (IS_ERR(sba->mchans[i])) {
ret = PTR_ERR(sba->mchans[i]);
goto fail_free_mchans;
}
sba->mchans_count++;
/* Request mailbox channel */
sba->mchan = mbox_request_channel(&sba->client, 0);
if (IS_ERR(sba->mchan)) {
ret = PTR_ERR(sba->mchan);
goto fail_free_mchan;
}
atomic_set(&sba->mchans_current, 0);
/* Find-out underlying mailbox device */
ret = of_parse_phandle_with_args(pdev->dev.of_node,
"mboxes", "#mbox-cells", 0, &args);
if (ret)
goto fail_free_mchans;
goto fail_free_mchan;
mbox_pdev = of_find_device_by_node(args.np);
of_node_put(args.np);
if (!mbox_pdev) {
ret = -ENODEV;
goto fail_free_mchans;
goto fail_free_mchan;
}
sba->mbox_dev = &mbox_pdev->dev;
/* All mailbox channels should be of same ring manager device */
for (i = 1; i < mchans_count; i++) {
ret = of_parse_phandle_with_args(pdev->dev.of_node,
"mboxes", "#mbox-cells", i, &args);
if (ret)
goto fail_free_mchans;
mbox_pdev = of_find_device_by_node(args.np);
of_node_put(args.np);
if (sba->mbox_dev != &mbox_pdev->dev) {
ret = -EINVAL;
goto fail_free_mchans;
}
}
/* Prealloc channel resource */
ret = sba_prealloc_channel_resources(sba);
if (ret)
goto fail_free_mchans;
goto fail_free_mchan;
/* Check availability of debugfs */
if (!debugfs_initialized())
......@@ -1777,24 +1737,22 @@ static int sba_probe(struct platform_device *pdev)
goto fail_free_resources;
/* Print device info */
dev_info(sba->dev, "%s using SBAv%d and %d mailbox channels",
dev_info(sba->dev, "%s using SBAv%d mailbox channel from %s",
dma_chan_name(&sba->dma_chan), sba->ver+1,
sba->mchans_count);
dev_name(sba->mbox_dev));
return 0;
fail_free_resources:
debugfs_remove_recursive(sba->root);
sba_freeup_channel_resources(sba);
fail_free_mchans:
for (i = 0; i < sba->mchans_count; i++)
mbox_free_channel(sba->mchans[i]);
fail_free_mchan:
mbox_free_channel(sba->mchan);
return ret;
}
static int sba_remove(struct platform_device *pdev)
{
int i;
struct sba_device *sba = platform_get_drvdata(pdev);
dma_async_device_unregister(&sba->dma_dev);
......@@ -1803,8 +1761,7 @@ static int sba_remove(struct platform_device *pdev)
sba_freeup_channel_resources(sba);
for (i = 0; i < sba->mchans_count; i++)
mbox_free_channel(sba->mchans[i]);
mbox_free_channel(sba->mchan);
return 0;
}
......
......@@ -1319,8 +1319,8 @@ static void coh901318_list_print(struct coh901318_chan *cohc,
int i = 0;
while (l) {
dev_vdbg(COHC_2_DEV(cohc), "i %d, lli %p, ctrl 0x%x, src 0x%pad"
", dst 0x%pad, link 0x%pad virt_link_addr 0x%p\n",
dev_vdbg(COHC_2_DEV(cohc), "i %d, lli %p, ctrl 0x%x, src %pad"
", dst %pad, link %pad virt_link_addr 0x%p\n",
i, l, l->control, &l->src_addr, &l->dst_addr,
&l->link_addr, l->virt_link_addr);
i++;
......@@ -2231,7 +2231,7 @@ coh901318_prep_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
spin_lock_irqsave(&cohc->lock, flg);
dev_vdbg(COHC_2_DEV(cohc),
"[%s] channel %d src 0x%pad dest 0x%pad size %zu\n",
"[%s] channel %d src %pad dest %pad size %zu\n",
__func__, cohc->id, &src, &dest, size);
if (flags & DMA_PREP_INTERRUPT)
......
......@@ -72,6 +72,9 @@
#define AXI_DMAC_FLAG_CYCLIC BIT(0)
/* The maximum ID allocated by the hardware is 31 */
#define AXI_DMAC_SG_UNUSED 32U
struct axi_dmac_sg {
dma_addr_t src_addr;
dma_addr_t dest_addr;
......@@ -80,6 +83,7 @@ struct axi_dmac_sg {
unsigned int dest_stride;
unsigned int src_stride;
unsigned int id;
bool schedule_when_free;
};
struct axi_dmac_desc {
......@@ -200,11 +204,21 @@ static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
}
sg = &desc->sg[desc->num_submitted];
/* Already queued in cyclic mode. Wait for it to finish */
if (sg->id != AXI_DMAC_SG_UNUSED) {
sg->schedule_when_free = true;
return;
}
desc->num_submitted++;
if (desc->num_submitted == desc->num_sgs)
chan->next_desc = NULL;
else
if (desc->num_submitted == desc->num_sgs) {
if (desc->cyclic)
desc->num_submitted = 0; /* Start again */
else
chan->next_desc = NULL;
} else {
chan->next_desc = desc;
}
sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
......@@ -220,9 +234,11 @@ static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
/*
* If the hardware supports cyclic transfers and there is no callback to
* call, enable hw cyclic mode to avoid unnecessary interrupts.
* call and only a single segment, enable hw cyclic mode to avoid
* unnecessary interrupts.
*/
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback)
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
desc->num_sgs == 1)
flags |= AXI_DMAC_FLAG_CYCLIC;
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
......@@ -237,37 +253,52 @@ static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
struct axi_dmac_desc, vdesc.node);
}
static void axi_dmac_transfer_done(struct axi_dmac_chan *chan,
static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
unsigned int completed_transfers)
{
struct axi_dmac_desc *active;
struct axi_dmac_sg *sg;
bool start_next = false;
active = axi_dmac_active_desc(chan);
if (!active)
return;
return false;
if (active->cyclic) {
vchan_cyclic_callback(&active->vdesc);
} else {
do {
sg = &active->sg[active->num_completed];
if (!(BIT(sg->id) & completed_transfers))
break;
active->num_completed++;
if (active->num_completed == active->num_sgs) {
do {
sg = &active->sg[active->num_completed];
if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
break;
if (!(BIT(sg->id) & completed_transfers))
break;
active->num_completed++;
sg->id = AXI_DMAC_SG_UNUSED;
if (sg->schedule_when_free) {
sg->schedule_when_free = false;
start_next = true;
}
if (active->cyclic)
vchan_cyclic_callback(&active->vdesc);
if (active->num_completed == active->num_sgs) {
if (active->cyclic) {
active->num_completed = 0; /* wrap around */
} else {
list_del(&active->vdesc.node);
vchan_cookie_complete(&active->vdesc);
active = axi_dmac_active_desc(chan);
}
} while (active);
}
}
} while (active);
return start_next;
}
static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
{
struct axi_dmac *dmac = devid;
unsigned int pending;
bool start_next = false;
pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
if (!pending)
......@@ -281,10 +312,10 @@ static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
unsigned int completed;
completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
axi_dmac_transfer_done(&dmac->chan, completed);
start_next = axi_dmac_transfer_done(&dmac->chan, completed);
}
/* Space has become available in the descriptor queue */
if (pending & AXI_DMAC_IRQ_SOT)
if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
axi_dmac_start_transfer(&dmac->chan);
spin_unlock(&dmac->chan.vchan.lock);
......@@ -334,12 +365,16 @@ static void axi_dmac_issue_pending(struct dma_chan *c)
static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
{
struct axi_dmac_desc *desc;
unsigned int i;
desc = kzalloc(sizeof(struct axi_dmac_desc) +
sizeof(struct axi_dmac_sg) * num_sgs, GFP_NOWAIT);
if (!desc)
return NULL;
for (i = 0; i < num_sgs; i++)
desc->sg[i].id = AXI_DMAC_SG_UNUSED;
desc->num_sgs = num_sgs;
return desc;
......
......@@ -702,6 +702,7 @@ static int dmatest_func(void *data)
* free it this time?" dancing. For now, just
* leave it dangling.
*/
WARN(1, "dmatest: Kernel stack may be corrupted!!\n");
dmaengine_unmap_put(um);
result("test timed out", total_tests, src_off, dst_off,
len, 0);
......
......@@ -891,6 +891,10 @@ static int edma_slave_config(struct dma_chan *chan,
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
return -EINVAL;
if (cfg->src_maxburst > chan->device->max_burst ||
cfg->dst_maxburst > chan->device->max_burst)
return -EINVAL;
memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
return 0;
......@@ -1868,6 +1872,7 @@ static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
s_ddev->dev = ecc->dev;
INIT_LIST_HEAD(&s_ddev->channels);
......
......@@ -23,6 +23,7 @@
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
......@@ -730,14 +731,23 @@ static int mdc_slave_config(struct dma_chan *chan,
return 0;
}
static int mdc_alloc_chan_resources(struct dma_chan *chan)
{
struct mdc_chan *mchan = to_mdc_chan(chan);
struct device *dev = mdma2dev(mchan->mdma);
return pm_runtime_get_sync(dev);
}
static void mdc_free_chan_resources(struct dma_chan *chan)
{
struct mdc_chan *mchan = to_mdc_chan(chan);
struct mdc_dma *mdma = mchan->mdma;
struct device *dev = mdma2dev(mdma);
mdc_terminate_all(chan);
mdma->soc->disable_chan(mchan);
pm_runtime_put(dev);
}
static irqreturn_t mdc_chan_irq(int irq, void *dev_id)
......@@ -854,6 +864,22 @@ static const struct of_device_id mdc_dma_of_match[] = {
};
MODULE_DEVICE_TABLE(of, mdc_dma_of_match);
static int img_mdc_runtime_suspend(struct device *dev)
{
struct mdc_dma *mdma = dev_get_drvdata(dev);
clk_disable_unprepare(mdma->clk);
return 0;
}
static int img_mdc_runtime_resume(struct device *dev)
{
struct mdc_dma *mdma = dev_get_drvdata(dev);
return clk_prepare_enable(mdma->clk);
}
static int mdc_dma_probe(struct platform_device *pdev)
{
struct mdc_dma *mdma;
......@@ -883,10 +909,6 @@ static int mdc_dma_probe(struct platform_device *pdev)
if (IS_ERR(mdma->clk))
return PTR_ERR(mdma->clk);
ret = clk_prepare_enable(mdma->clk);
if (ret)
return ret;
dma_cap_zero(mdma->dma_dev.cap_mask);
dma_cap_set(DMA_SLAVE, mdma->dma_dev.cap_mask);
dma_cap_set(DMA_PRIVATE, mdma->dma_dev.cap_mask);
......@@ -919,12 +941,13 @@ static int mdc_dma_probe(struct platform_device *pdev)
"img,max-burst-multiplier",
&mdma->max_burst_mult);
if (ret)
goto disable_clk;
return ret;
mdma->dma_dev.dev = &pdev->dev;
mdma->dma_dev.device_prep_slave_sg = mdc_prep_slave_sg;
mdma->dma_dev.device_prep_dma_cyclic = mdc_prep_dma_cyclic;
mdma->dma_dev.device_prep_dma_memcpy = mdc_prep_dma_memcpy;
mdma->dma_dev.device_alloc_chan_resources = mdc_alloc_chan_resources;
mdma->dma_dev.device_free_chan_resources = mdc_free_chan_resources;
mdma->dma_dev.device_tx_status = mdc_tx_status;
mdma->dma_dev.device_issue_pending = mdc_issue_pending;
......@@ -945,15 +968,14 @@ static int mdc_dma_probe(struct platform_device *pdev)
mchan->mdma = mdma;
mchan->chan_nr = i;
mchan->irq = platform_get_irq(pdev, i);
if (mchan->irq < 0) {
ret = mchan->irq;
goto disable_clk;
}
if (mchan->irq < 0)
return mchan->irq;
ret = devm_request_irq(&pdev->dev, mchan->irq, mdc_chan_irq,
IRQ_TYPE_LEVEL_HIGH,
dev_name(&pdev->dev), mchan);
if (ret < 0)
goto disable_clk;
return ret;
mchan->vc.desc_free = mdc_desc_free;
vchan_init(&mchan->vc, &mdma->dma_dev);
......@@ -962,14 +984,19 @@ static int mdc_dma_probe(struct platform_device *pdev)
mdma->desc_pool = dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
sizeof(struct mdc_hw_list_desc),
4, 0);
if (!mdma->desc_pool) {
ret = -ENOMEM;
goto disable_clk;
if (!mdma->desc_pool)
return -ENOMEM;
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = img_mdc_runtime_resume(&pdev->dev);
if (ret)
return ret;
}
ret = dma_async_device_register(&mdma->dma_dev);
if (ret)
goto disable_clk;
goto suspend;
ret = of_dma_controller_register(pdev->dev.of_node, mdc_of_xlate, mdma);
if (ret)
......@@ -982,8 +1009,10 @@ static int mdc_dma_probe(struct platform_device *pdev)
unregister:
dma_async_device_unregister(&mdma->dma_dev);
disable_clk:
clk_disable_unprepare(mdma->clk);
suspend:
if (!pm_runtime_enabled(&pdev->dev))
img_mdc_runtime_suspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return ret;
}
......@@ -1004,14 +1033,47 @@ static int mdc_dma_remove(struct platform_device *pdev)
tasklet_kill(&mchan->vc.task);
}
clk_disable_unprepare(mdma->clk);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
img_mdc_runtime_suspend(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int img_mdc_suspend_late(struct device *dev)
{
struct mdc_dma *mdma = dev_get_drvdata(dev);
int i;
/* Check that all channels are idle */
for (i = 0; i < mdma->nr_channels; i++) {
struct mdc_chan *mchan = &mdma->channels[i];
if (unlikely(mchan->desc))
return -EBUSY;
}
return pm_runtime_force_suspend(dev);
}
static int img_mdc_resume_early(struct device *dev)
{
return pm_runtime_force_resume(dev);
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops img_mdc_pm_ops = {
SET_RUNTIME_PM_OPS(img_mdc_runtime_suspend,
img_mdc_runtime_resume, NULL)
SET_LATE_SYSTEM_SLEEP_PM_OPS(img_mdc_suspend_late,
img_mdc_resume_early)
};
static struct platform_driver mdc_dma_driver = {
.driver = {
.name = "img-mdc-dma",
.pm = &img_mdc_pm_ops,
.of_match_table = of_match_ptr(mdc_dma_of_match),
},
.probe = mdc_dma_probe,
......
......@@ -364,9 +364,9 @@ static void imxdma_disable_hw(struct imxdma_channel *imxdmac)
local_irq_restore(flags);
}
static void imxdma_watchdog(unsigned long data)
static void imxdma_watchdog(struct timer_list *t)
{
struct imxdma_channel *imxdmac = (struct imxdma_channel *)data;
struct imxdma_channel *imxdmac = from_timer(imxdmac, t, watchdog);
struct imxdma_engine *imxdma = imxdmac->imxdma;
int channel = imxdmac->channel;
......@@ -1153,9 +1153,7 @@ static int __init imxdma_probe(struct platform_device *pdev)
}
imxdmac->irq = irq + i;
init_timer(&imxdmac->watchdog);
imxdmac->watchdog.function = &imxdma_watchdog;
imxdmac->watchdog.data = (unsigned long)imxdmac;
timer_setup(&imxdmac->watchdog, imxdma_watchdog, 0);
}
imxdmac->imxdma = imxdma;
......
......@@ -178,6 +178,14 @@
#define SDMA_WATERMARK_LEVEL_HWE BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT BIT(31)
#define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
#define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
BIT(DMA_MEM_TO_DEV) | \
BIT(DMA_DEV_TO_DEV))
/*
* Mode/Count of data node descriptors - IPCv2
*/
......@@ -1851,9 +1859,9 @@ static int sdma_probe(struct platform_device *pdev)
sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
sdma->dma_device.device_config = sdma_config;
sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
sdma->dma_device.device_issue_pending = sdma_issue_pending;
sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
......
......@@ -474,7 +474,7 @@ int ioat_check_space_lock(struct ioatdma_chan *ioat_chan, int num_descs)
if (time_is_before_jiffies(ioat_chan->timer.expires)
&& timer_pending(&ioat_chan->timer)) {
mod_timer(&ioat_chan->timer, jiffies + COMPLETION_TIMEOUT);
ioat_timer_event((unsigned long)ioat_chan);
ioat_timer_event(&ioat_chan->timer);
}
return -ENOMEM;
......@@ -862,9 +862,9 @@ static void check_active(struct ioatdma_chan *ioat_chan)
mod_timer(&ioat_chan->timer, jiffies + IDLE_TIMEOUT);
}
void ioat_timer_event(unsigned long data)
void ioat_timer_event(struct timer_list *t)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan((void *)data);
struct ioatdma_chan *ioat_chan = from_timer(ioat_chan, t, timer);
dma_addr_t phys_complete;
u64 status;
......
......@@ -406,10 +406,9 @@ enum dma_status
ioat_tx_status(struct dma_chan *c, dma_cookie_t cookie,
struct dma_tx_state *txstate);
void ioat_cleanup_event(unsigned long data);
void ioat_timer_event(unsigned long data);
void ioat_timer_event(struct timer_list *t);
int ioat_check_space_lock(struct ioatdma_chan *ioat_chan, int num_descs);
void ioat_issue_pending(struct dma_chan *chan);
void ioat_timer_event(unsigned long data);
/* IOAT Init functions */
bool is_bwd_ioat(struct pci_dev *pdev);
......
......@@ -760,7 +760,7 @@ ioat_init_channel(struct ioatdma_device *ioat_dma,
dma_cookie_init(&ioat_chan->dma_chan);
list_add_tail(&ioat_chan->dma_chan.device_node, &dma->channels);
ioat_dma->idx[idx] = ioat_chan;
setup_timer(&ioat_chan->timer, ioat_timer_event, data);
timer_setup(&ioat_chan->timer, ioat_timer_event, 0);
tasklet_init(&ioat_chan->cleanup_task, ioat_cleanup_event, data);
}
......
......@@ -1286,7 +1286,6 @@ MODULE_DEVICE_TABLE(of, nbpf_match);
static int nbpf_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *of_id = of_match_device(nbpf_match, dev);
struct device_node *np = dev->of_node;
struct nbpf_device *nbpf;
struct dma_device *dma_dev;
......@@ -1300,10 +1299,10 @@ static int nbpf_probe(struct platform_device *pdev)
BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
/* DT only */
if (!np || !of_id || !of_id->data)
if (!np)
return -ENODEV;
cfg = of_id->data;
cfg = of_device_get_match_data(dev);
num_channels = cfg->num_channels;
nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels *
......
......@@ -1288,6 +1288,10 @@ static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
return -EINVAL;
if (cfg->src_maxburst > chan->device->max_burst ||
cfg->dst_maxburst > chan->device->max_burst)
return -EINVAL;
memcpy(&c->cfg, cfg, sizeof(c->cfg));
return 0;
......@@ -1482,6 +1486,7 @@ static int omap_dma_probe(struct platform_device *pdev)
od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */
od->ddev.dev = &pdev->dev;
INIT_LIST_HEAD(&od->ddev.channels);
spin_lock_init(&od->lock);
......
......@@ -123,7 +123,7 @@ struct pch_dma_chan {
struct pch_dma {
struct dma_device dma;
void __iomem *membase;
struct pci_pool *pool;
struct dma_pool *pool;
struct pch_dma_regs regs;
struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
struct pch_dma_chan channels[MAX_CHAN_NR];
......@@ -437,7 +437,7 @@ static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
struct pch_dma *pd = to_pd(chan->device);
dma_addr_t addr;
desc = pci_pool_zalloc(pd->pool, flags, &addr);
desc = dma_pool_zalloc(pd->pool, flags, &addr);
if (desc) {
INIT_LIST_HEAD(&desc->tx_list);
dma_async_tx_descriptor_init(&desc->txd, chan);
......@@ -549,7 +549,7 @@ static void pd_free_chan_resources(struct dma_chan *chan)
spin_unlock_irq(&pd_chan->lock);
list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
pci_pool_free(pd->pool, desc, desc->txd.phys);
dma_pool_free(pd->pool, desc, desc->txd.phys);
pdc_enable_irq(chan, 0);
}
......@@ -880,7 +880,7 @@ static int pch_dma_probe(struct pci_dev *pdev,
goto err_iounmap;
}
pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
pd->pool = dma_pool_create("pch_dma_desc_pool", &pdev->dev,
sizeof(struct pch_dma_desc), 4, 0);
if (!pd->pool) {
dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
......@@ -931,7 +931,7 @@ static int pch_dma_probe(struct pci_dev *pdev,
return 0;
err_free_pool:
pci_pool_destroy(pd->pool);
dma_pool_destroy(pd->pool);
err_free_irq:
free_irq(pdev->irq, pd);
err_iounmap:
......@@ -963,7 +963,7 @@ static void pch_dma_remove(struct pci_dev *pdev)
tasklet_kill(&pd_chan->tasklet);
}
pci_pool_destroy(pd->pool);
dma_pool_destroy(pd->pool);
pci_iounmap(pdev, pd->membase);
pci_release_regions(pdev);
pci_disable_device(pdev);
......
......@@ -2390,7 +2390,8 @@ static inline void _init_desc(struct dma_pl330_desc *desc)
}
/* Returns the number of descriptors added to the DMAC pool */
static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
static int add_desc(struct list_head *pool, spinlock_t *lock,
gfp_t flg, int count)
{
struct dma_pl330_desc *desc;
unsigned long flags;
......@@ -2400,27 +2401,28 @@ static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
if (!desc)
return 0;
spin_lock_irqsave(&pl330->pool_lock, flags);
spin_lock_irqsave(lock, flags);
for (i = 0; i < count; i++) {
_init_desc(&desc[i]);
list_add_tail(&desc[i].node, &pl330->desc_pool);
list_add_tail(&desc[i].node, pool);
}
spin_unlock_irqrestore(&pl330->pool_lock, flags);
spin_unlock_irqrestore(lock, flags);
return count;
}
static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
spinlock_t *lock)
{
struct dma_pl330_desc *desc = NULL;
unsigned long flags;
spin_lock_irqsave(&pl330->pool_lock, flags);
spin_lock_irqsave(lock, flags);
if (!list_empty(&pl330->desc_pool)) {
desc = list_entry(pl330->desc_pool.next,
if (!list_empty(pool)) {
desc = list_entry(pool->next,
struct dma_pl330_desc, node);
list_del_init(&desc->node);
......@@ -2429,7 +2431,7 @@ static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
desc->txd.callback = NULL;
}
spin_unlock_irqrestore(&pl330->pool_lock, flags);
spin_unlock_irqrestore(lock, flags);
return desc;
}
......@@ -2441,20 +2443,18 @@ static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
struct dma_pl330_desc *desc;
/* Pluck one desc from the pool of DMAC */
desc = pluck_desc(pl330);
desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
/* If the DMAC pool is empty, alloc new */
if (!desc) {
if (!add_desc(pl330, GFP_ATOMIC, 1))
return NULL;
DEFINE_SPINLOCK(lock);
LIST_HEAD(pool);
/* Try again */
desc = pluck_desc(pl330);
if (!desc) {
dev_err(pch->dmac->ddma.dev,
"%s:%d ALERT!\n", __func__, __LINE__);
if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
return NULL;
}
desc = pluck_desc(&pool, &lock);
WARN_ON(!desc || !list_empty(&pool));
}
/* Initialize the descriptor */
......@@ -2868,7 +2868,8 @@ pl330_probe(struct amba_device *adev, const struct amba_id *id)
spin_lock_init(&pl330->pool_lock);
/* Create a descriptor pool of default size */
if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
GFP_KERNEL, NR_DEFAULT_DESC))
dev_warn(&adev->dev, "unable to allocate desc\n");
INIT_LIST_HEAD(&pd->channels);
......
......@@ -46,6 +46,7 @@
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_dma.h>
#include <linux/circ_buf.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/pm_runtime.h>
......@@ -78,6 +79,8 @@ struct bam_async_desc {
struct bam_desc_hw *curr_desc;
/* list node for the desc in the bam_chan list of descriptors */
struct list_head desc_node;
enum dma_transfer_direction dir;
size_t length;
struct bam_desc_hw desc[0];
......@@ -347,6 +350,8 @@ static const struct reg_offset_data bam_v1_7_reg_info[] = {
#define BAM_DESC_FIFO_SIZE SZ_32K
#define MAX_DESCRIPTORS (BAM_DESC_FIFO_SIZE / sizeof(struct bam_desc_hw) - 1)
#define BAM_FIFO_SIZE (SZ_32K - 8)
#define IS_BUSY(chan) (CIRC_SPACE(bchan->tail, bchan->head,\
MAX_DESCRIPTORS + 1) == 0)
struct bam_chan {
struct virt_dma_chan vc;
......@@ -356,8 +361,6 @@ struct bam_chan {
/* configuration from device tree */
u32 id;
struct bam_async_desc *curr_txd; /* current running dma */
/* runtime configuration */
struct dma_slave_config slave;
......@@ -372,6 +375,8 @@ struct bam_chan {
unsigned int initialized; /* is the channel hw initialized? */
unsigned int paused; /* is the channel paused? */
unsigned int reconfigure; /* new slave config? */
/* list of descriptors currently processed */
struct list_head desc_list;
struct list_head node;
};
......@@ -539,7 +544,7 @@ static void bam_free_chan(struct dma_chan *chan)
vchan_free_chan_resources(to_virt_chan(chan));
if (bchan->curr_txd) {
if (!list_empty(&bchan->desc_list)) {
dev_err(bchan->bdev->dev, "Cannot free busy channel\n");
goto err;
}
......@@ -632,8 +637,6 @@ static struct dma_async_tx_descriptor *bam_prep_slave_sg(struct dma_chan *chan,
if (flags & DMA_PREP_INTERRUPT)
async_desc->flags |= DESC_FLAG_EOT;
else
async_desc->flags |= DESC_FLAG_INT;
async_desc->num_desc = num_alloc;
async_desc->curr_desc = async_desc->desc;
......@@ -684,14 +687,16 @@ static struct dma_async_tx_descriptor *bam_prep_slave_sg(struct dma_chan *chan,
static int bam_dma_terminate_all(struct dma_chan *chan)
{
struct bam_chan *bchan = to_bam_chan(chan);
struct bam_async_desc *async_desc, *tmp;
unsigned long flag;
LIST_HEAD(head);
/* remove all transactions, including active transaction */
spin_lock_irqsave(&bchan->vc.lock, flag);
if (bchan->curr_txd) {
list_add(&bchan->curr_txd->vd.node, &bchan->vc.desc_issued);
bchan->curr_txd = NULL;
list_for_each_entry_safe(async_desc, tmp,
&bchan->desc_list, desc_node) {
list_add(&async_desc->vd.node, &bchan->vc.desc_issued);
list_del(&async_desc->desc_node);
}
vchan_get_all_descriptors(&bchan->vc, &head);
......@@ -763,9 +768,9 @@ static int bam_resume(struct dma_chan *chan)
*/
static u32 process_channel_irqs(struct bam_device *bdev)
{
u32 i, srcs, pipe_stts;
u32 i, srcs, pipe_stts, offset, avail;
unsigned long flags;
struct bam_async_desc *async_desc;
struct bam_async_desc *async_desc, *tmp;
srcs = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_SRCS_EE));
......@@ -785,27 +790,40 @@ static u32 process_channel_irqs(struct bam_device *bdev)
writel_relaxed(pipe_stts, bam_addr(bdev, i, BAM_P_IRQ_CLR));
spin_lock_irqsave(&bchan->vc.lock, flags);
async_desc = bchan->curr_txd;
if (async_desc) {
async_desc->num_desc -= async_desc->xfer_len;
async_desc->curr_desc += async_desc->xfer_len;
bchan->curr_txd = NULL;
offset = readl_relaxed(bam_addr(bdev, i, BAM_P_SW_OFSTS)) &
P_SW_OFSTS_MASK;
offset /= sizeof(struct bam_desc_hw);
/* Number of bytes available to read */
avail = CIRC_CNT(offset, bchan->head, MAX_DESCRIPTORS + 1);
list_for_each_entry_safe(async_desc, tmp,
&bchan->desc_list, desc_node) {
/* Not enough data to read */
if (avail < async_desc->xfer_len)
break;
/* manage FIFO */
bchan->head += async_desc->xfer_len;
bchan->head %= MAX_DESCRIPTORS;
async_desc->num_desc -= async_desc->xfer_len;
async_desc->curr_desc += async_desc->xfer_len;
avail -= async_desc->xfer_len;
/*
* if complete, process cookie. Otherwise
* if complete, process cookie. Otherwise
* push back to front of desc_issued so that
* it gets restarted by the tasklet
*/
if (!async_desc->num_desc)
if (!async_desc->num_desc) {
vchan_cookie_complete(&async_desc->vd);
else
} else {
list_add(&async_desc->vd.node,
&bchan->vc.desc_issued);
&bchan->vc.desc_issued);
}
list_del(&async_desc->desc_node);
}
spin_unlock_irqrestore(&bchan->vc.lock, flags);
......@@ -867,6 +885,7 @@ static enum dma_status bam_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct bam_chan *bchan = to_bam_chan(chan);
struct bam_async_desc *async_desc;
struct virt_dma_desc *vd;
int ret;
size_t residue = 0;
......@@ -882,11 +901,17 @@ static enum dma_status bam_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
spin_lock_irqsave(&bchan->vc.lock, flags);
vd = vchan_find_desc(&bchan->vc, cookie);
if (vd)
if (vd) {
residue = container_of(vd, struct bam_async_desc, vd)->length;
else if (bchan->curr_txd && bchan->curr_txd->vd.tx.cookie == cookie)
for (i = 0; i < bchan->curr_txd->num_desc; i++)
residue += bchan->curr_txd->curr_desc[i].size;
} else {
list_for_each_entry(async_desc, &bchan->desc_list, desc_node) {
if (async_desc->vd.tx.cookie != cookie)
continue;
for (i = 0; i < async_desc->num_desc; i++)
residue += async_desc->curr_desc[i].size;
}
}
spin_unlock_irqrestore(&bchan->vc.lock, flags);
......@@ -927,63 +952,86 @@ static void bam_start_dma(struct bam_chan *bchan)
{
struct virt_dma_desc *vd = vchan_next_desc(&bchan->vc);
struct bam_device *bdev = bchan->bdev;
struct bam_async_desc *async_desc;
struct bam_async_desc *async_desc = NULL;
struct bam_desc_hw *desc;
struct bam_desc_hw *fifo = PTR_ALIGN(bchan->fifo_virt,
sizeof(struct bam_desc_hw));
int ret;
unsigned int avail;
struct dmaengine_desc_callback cb;
lockdep_assert_held(&bchan->vc.lock);
if (!vd)
return;
list_del(&vd->node);
async_desc = container_of(vd, struct bam_async_desc, vd);
bchan->curr_txd = async_desc;
ret = pm_runtime_get_sync(bdev->dev);
if (ret < 0)
return;
/* on first use, initialize the channel hardware */
if (!bchan->initialized)
bam_chan_init_hw(bchan, async_desc->dir);
while (vd && !IS_BUSY(bchan)) {
list_del(&vd->node);
/* apply new slave config changes, if necessary */
if (bchan->reconfigure)
bam_apply_new_config(bchan, async_desc->dir);
async_desc = container_of(vd, struct bam_async_desc, vd);
desc = bchan->curr_txd->curr_desc;
/* on first use, initialize the channel hardware */
if (!bchan->initialized)
bam_chan_init_hw(bchan, async_desc->dir);
if (async_desc->num_desc > MAX_DESCRIPTORS)
async_desc->xfer_len = MAX_DESCRIPTORS;
else
async_desc->xfer_len = async_desc->num_desc;
/* apply new slave config changes, if necessary */
if (bchan->reconfigure)
bam_apply_new_config(bchan, async_desc->dir);
/* set any special flags on the last descriptor */
if (async_desc->num_desc == async_desc->xfer_len)
desc[async_desc->xfer_len - 1].flags |=
cpu_to_le16(async_desc->flags);
else
desc[async_desc->xfer_len - 1].flags |=
cpu_to_le16(DESC_FLAG_INT);
desc = async_desc->curr_desc;
avail = CIRC_SPACE(bchan->tail, bchan->head,
MAX_DESCRIPTORS + 1);
if (async_desc->num_desc > avail)
async_desc->xfer_len = avail;
else
async_desc->xfer_len = async_desc->num_desc;
/* set any special flags on the last descriptor */
if (async_desc->num_desc == async_desc->xfer_len)
desc[async_desc->xfer_len - 1].flags |=
cpu_to_le16(async_desc->flags);
if (bchan->tail + async_desc->xfer_len > MAX_DESCRIPTORS) {
u32 partial = MAX_DESCRIPTORS - bchan->tail;
vd = vchan_next_desc(&bchan->vc);
memcpy(&fifo[bchan->tail], desc,
partial * sizeof(struct bam_desc_hw));
memcpy(fifo, &desc[partial], (async_desc->xfer_len - partial) *
dmaengine_desc_get_callback(&async_desc->vd.tx, &cb);
/*
* An interrupt is generated at this desc, if
* - FIFO is FULL.
* - No more descriptors to add.
* - If a callback completion was requested for this DESC,
* In this case, BAM will deliver the completion callback
* for this desc and continue processing the next desc.
*/
if (((avail <= async_desc->xfer_len) || !vd ||
dmaengine_desc_callback_valid(&cb)) &&
!(async_desc->flags & DESC_FLAG_EOT))
desc[async_desc->xfer_len - 1].flags |=
cpu_to_le16(DESC_FLAG_INT);
if (bchan->tail + async_desc->xfer_len > MAX_DESCRIPTORS) {
u32 partial = MAX_DESCRIPTORS - bchan->tail;
memcpy(&fifo[bchan->tail], desc,
partial * sizeof(struct bam_desc_hw));
memcpy(fifo, &desc[partial],
(async_desc->xfer_len - partial) *
sizeof(struct bam_desc_hw));
} else {
memcpy(&fifo[bchan->tail], desc,
async_desc->xfer_len * sizeof(struct bam_desc_hw));
}
} else {
memcpy(&fifo[bchan->tail], desc,
async_desc->xfer_len *
sizeof(struct bam_desc_hw));
}
bchan->tail += async_desc->xfer_len;
bchan->tail %= MAX_DESCRIPTORS;
bchan->tail += async_desc->xfer_len;
bchan->tail %= MAX_DESCRIPTORS;
list_add_tail(&async_desc->desc_node, &bchan->desc_list);
}
/* ensure descriptor writes and dma start not reordered */
wmb();
......@@ -1012,7 +1060,7 @@ static void dma_tasklet(unsigned long data)
bchan = &bdev->channels[i];
spin_lock_irqsave(&bchan->vc.lock, flags);
if (!list_empty(&bchan->vc.desc_issued) && !bchan->curr_txd)
if (!list_empty(&bchan->vc.desc_issued) && !IS_BUSY(bchan))
bam_start_dma(bchan);
spin_unlock_irqrestore(&bchan->vc.lock, flags);
}
......@@ -1033,7 +1081,7 @@ static void bam_issue_pending(struct dma_chan *chan)
spin_lock_irqsave(&bchan->vc.lock, flags);
/* if work pending and idle, start a transaction */
if (vchan_issue_pending(&bchan->vc) && !bchan->curr_txd)
if (vchan_issue_pending(&bchan->vc) && !IS_BUSY(bchan))
bam_start_dma(bchan);
spin_unlock_irqrestore(&bchan->vc.lock, flags);
......@@ -1133,6 +1181,7 @@ static void bam_channel_init(struct bam_device *bdev, struct bam_chan *bchan,
vchan_init(&bchan->vc, &bdev->common);
bchan->vc.desc_free = bam_dma_free_desc;
INIT_LIST_HEAD(&bchan->desc_list);
}
static const struct of_device_id bam_of_match[] = {
......
......@@ -823,6 +823,13 @@ static const struct sa11x0_dma_channel_desc chan_desc[] = {
CD(Ser4SSPRc, DDAR_RW),
};
static const struct dma_slave_map sa11x0_dma_map[] = {
{ "sa11x0-ir", "tx", "Ser2ICPTr" },
{ "sa11x0-ir", "rx", "Ser2ICPRc" },
{ "sa11x0-ssp", "tx", "Ser4SSPTr" },
{ "sa11x0-ssp", "rx", "Ser4SSPRc" },
};
static int sa11x0_dma_init_dmadev(struct dma_device *dmadev,
struct device *dev)
{
......@@ -909,6 +916,10 @@ static int sa11x0_dma_probe(struct platform_device *pdev)
spin_lock_init(&d->lock);
INIT_LIST_HEAD(&d->chan_pending);
d->slave.filter.fn = sa11x0_dma_filter_fn;
d->slave.filter.mapcnt = ARRAY_SIZE(sa11x0_dma_map);
d->slave.filter.map = sa11x0_dma_map;
d->base = ioremap(res->start, resource_size(res));
if (!d->base) {
ret = -ENOMEM;
......
/*
* Copyright (C) 2017 Spreadtrum Communications Inc.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "virt-dma.h"
#define SPRD_DMA_CHN_REG_OFFSET 0x1000
#define SPRD_DMA_CHN_REG_LENGTH 0x40
#define SPRD_DMA_MEMCPY_MIN_SIZE 64
/* DMA global registers definition */
#define SPRD_DMA_GLB_PAUSE 0x0
#define SPRD_DMA_GLB_FRAG_WAIT 0x4
#define SPRD_DMA_GLB_REQ_PEND0_EN 0x8
#define SPRD_DMA_GLB_REQ_PEND1_EN 0xc
#define SPRD_DMA_GLB_INT_RAW_STS 0x10
#define SPRD_DMA_GLB_INT_MSK_STS 0x14
#define SPRD_DMA_GLB_REQ_STS 0x18
#define SPRD_DMA_GLB_CHN_EN_STS 0x1c
#define SPRD_DMA_GLB_DEBUG_STS 0x20
#define SPRD_DMA_GLB_ARB_SEL_STS 0x24
#define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1))
#define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000
/* DMA channel registers definition */
#define SPRD_DMA_CHN_PAUSE 0x0
#define SPRD_DMA_CHN_REQ 0x4
#define SPRD_DMA_CHN_CFG 0x8
#define SPRD_DMA_CHN_INTC 0xc
#define SPRD_DMA_CHN_SRC_ADDR 0x10
#define SPRD_DMA_CHN_DES_ADDR 0x14
#define SPRD_DMA_CHN_FRG_LEN 0x18
#define SPRD_DMA_CHN_BLK_LEN 0x1c
#define SPRD_DMA_CHN_TRSC_LEN 0x20
#define SPRD_DMA_CHN_TRSF_STEP 0x24
#define SPRD_DMA_CHN_WARP_PTR 0x28
#define SPRD_DMA_CHN_WARP_TO 0x2c
#define SPRD_DMA_CHN_LLIST_PTR 0x30
#define SPRD_DMA_CHN_FRAG_STEP 0x34
#define SPRD_DMA_CHN_SRC_BLK_STEP 0x38
#define SPRD_DMA_CHN_DES_BLK_STEP 0x3c
/* SPRD_DMA_CHN_INTC register definition */
#define SPRD_DMA_INT_MASK GENMASK(4, 0)
#define SPRD_DMA_INT_CLR_OFFSET 24
#define SPRD_DMA_FRAG_INT_EN BIT(0)
#define SPRD_DMA_BLK_INT_EN BIT(1)
#define SPRD_DMA_TRANS_INT_EN BIT(2)
#define SPRD_DMA_LIST_INT_EN BIT(3)
#define SPRD_DMA_CFG_ERR_INT_EN BIT(4)
/* SPRD_DMA_CHN_CFG register definition */
#define SPRD_DMA_CHN_EN BIT(0)
#define SPRD_DMA_WAIT_BDONE_OFFSET 24
#define SPRD_DMA_DONOT_WAIT_BDONE 1
/* SPRD_DMA_CHN_REQ register definition */
#define SPRD_DMA_REQ_EN BIT(0)
/* SPRD_DMA_CHN_PAUSE register definition */
#define SPRD_DMA_PAUSE_EN BIT(0)
#define SPRD_DMA_PAUSE_STS BIT(2)
#define SPRD_DMA_PAUSE_CNT 0x2000
/* DMA_CHN_WARP_* register definition */
#define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28)
#define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0)
#define SPRD_DMA_HIGH_ADDR_OFFSET 4
/* SPRD_DMA_CHN_INTC register definition */
#define SPRD_DMA_FRAG_INT_STS BIT(16)
#define SPRD_DMA_BLK_INT_STS BIT(17)
#define SPRD_DMA_TRSC_INT_STS BIT(18)
#define SPRD_DMA_LIST_INT_STS BIT(19)
#define SPRD_DMA_CFGERR_INT_STS BIT(20)
#define SPRD_DMA_CHN_INT_STS \
(SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \
SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \
SPRD_DMA_CFGERR_INT_STS)
/* SPRD_DMA_CHN_FRG_LEN register definition */
#define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30
#define SPRD_DMA_DES_DATAWIDTH_OFFSET 28
#define SPRD_DMA_SWT_MODE_OFFSET 26
#define SPRD_DMA_REQ_MODE_OFFSET 24
#define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0)
#define SPRD_DMA_FIX_SEL_OFFSET 21
#define SPRD_DMA_FIX_EN_OFFSET 20
#define SPRD_DMA_LLIST_END_OFFSET 19
#define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0)
/* SPRD_DMA_CHN_BLK_LEN register definition */
#define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0)
/* SPRD_DMA_CHN_TRSC_LEN register definition */
#define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0)
/* SPRD_DMA_CHN_TRSF_STEP register definition */
#define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16
#define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0
#define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0)
#define SPRD_DMA_SOFTWARE_UID 0
/*
* enum sprd_dma_req_mode: define the DMA request mode
* @SPRD_DMA_FRAG_REQ: fragment request mode
* @SPRD_DMA_BLK_REQ: block request mode
* @SPRD_DMA_TRANS_REQ: transaction request mode
* @SPRD_DMA_LIST_REQ: link-list request mode
*
* We have 4 types request mode: fragment mode, block mode, transaction mode
* and linklist mode. One transaction can contain several blocks, one block can
* contain several fragments. Link-list mode means we can save several DMA
* configuration into one reserved memory, then DMA can fetch each DMA
* configuration automatically to start transfer.
*/
enum sprd_dma_req_mode {
SPRD_DMA_FRAG_REQ,
SPRD_DMA_BLK_REQ,
SPRD_DMA_TRANS_REQ,
SPRD_DMA_LIST_REQ,
};
/*
* enum sprd_dma_int_type: define the DMA interrupt type
* @SPRD_DMA_NO_INT: do not need generate DMA interrupts.
* @SPRD_DMA_FRAG_INT: fragment done interrupt when one fragment request
* is done.
* @SPRD_DMA_BLK_INT: block done interrupt when one block request is done.
* @SPRD_DMA_BLK_FRAG_INT: block and fragment interrupt when one fragment
* or one block request is done.
* @SPRD_DMA_TRANS_INT: tansaction done interrupt when one transaction
* request is done.
* @SPRD_DMA_TRANS_FRAG_INT: transaction and fragment interrupt when one
* transaction request or fragment request is done.
* @SPRD_DMA_TRANS_BLK_INT: transaction and block interrupt when one
* transaction request or block request is done.
* @SPRD_DMA_LIST_INT: link-list done interrupt when one link-list request
* is done.
* @SPRD_DMA_CFGERR_INT: configure error interrupt when configuration is
* incorrect.
*/
enum sprd_dma_int_type {
SPRD_DMA_NO_INT,
SPRD_DMA_FRAG_INT,
SPRD_DMA_BLK_INT,
SPRD_DMA_BLK_FRAG_INT,
SPRD_DMA_TRANS_INT,
SPRD_DMA_TRANS_FRAG_INT,
SPRD_DMA_TRANS_BLK_INT,
SPRD_DMA_LIST_INT,
SPRD_DMA_CFGERR_INT,
};
/* dma channel hardware configuration */
struct sprd_dma_chn_hw {
u32 pause;
u32 req;
u32 cfg;
u32 intc;
u32 src_addr;
u32 des_addr;
u32 frg_len;
u32 blk_len;
u32 trsc_len;
u32 trsf_step;
u32 wrap_ptr;
u32 wrap_to;
u32 llist_ptr;
u32 frg_step;
u32 src_blk_step;
u32 des_blk_step;
};
/* dma request description */
struct sprd_dma_desc {
struct virt_dma_desc vd;
struct sprd_dma_chn_hw chn_hw;
};
/* dma channel description */
struct sprd_dma_chn {
struct virt_dma_chan vc;
void __iomem *chn_base;
u32 chn_num;
u32 dev_id;
struct sprd_dma_desc *cur_desc;
};
/* SPRD dma device */
struct sprd_dma_dev {
struct dma_device dma_dev;
void __iomem *glb_base;
struct clk *clk;
struct clk *ashb_clk;
int irq;
u32 total_chns;
struct sprd_dma_chn channels[0];
};
static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
static struct of_dma_filter_info sprd_dma_info = {
.filter_fn = sprd_dma_filter_fn,
};
static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
{
return container_of(c, struct sprd_dma_chn, vc.chan);
}
static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
}
static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct sprd_dma_desc, vd);
}
static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
u32 mask, u32 val)
{
u32 orig = readl(schan->chn_base + reg);
u32 tmp;
tmp = (orig & ~mask) | val;
writel(tmp, schan->chn_base + reg);
}
static int sprd_dma_enable(struct sprd_dma_dev *sdev)
{
int ret;
ret = clk_prepare_enable(sdev->clk);
if (ret)
return ret;
/*
* The ashb_clk is optional and only for AGCP DMA controller, so we
* need add one condition to check if the ashb_clk need enable.
*/
if (!IS_ERR(sdev->ashb_clk))
ret = clk_prepare_enable(sdev->ashb_clk);
return ret;
}
static void sprd_dma_disable(struct sprd_dma_dev *sdev)
{
clk_disable_unprepare(sdev->clk);
/*
* Need to check if we need disable the optional ashb_clk for AGCP DMA.
*/
if (!IS_ERR(sdev->ashb_clk))
clk_disable_unprepare(sdev->ashb_clk);
}
static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 dev_id = schan->dev_id;
if (dev_id != SPRD_DMA_SOFTWARE_UID) {
u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
SPRD_DMA_GLB_REQ_UID(dev_id);
writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
}
}
static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 dev_id = schan->dev_id;
if (dev_id != SPRD_DMA_SOFTWARE_UID) {
u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
SPRD_DMA_GLB_REQ_UID(dev_id);
writel(0, sdev->glb_base + uid_offset);
}
}
static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
}
static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
SPRD_DMA_CHN_EN);
}
static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
}
static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
SPRD_DMA_REQ_EN);
}
static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
if (enable) {
sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
do {
pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
if (pause & SPRD_DMA_PAUSE_STS)
break;
cpu_relax();
} while (--timeout > 0);
if (!timeout)
dev_warn(sdev->dma_dev.dev,
"pause dma controller timeout\n");
} else {
sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
SPRD_DMA_PAUSE_EN, 0);
}
}
static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
{
u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
if (!(cfg & SPRD_DMA_CHN_EN))
return;
sprd_dma_pause_resume(schan, true);
sprd_dma_disable_chn(schan);
}
static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
{
unsigned long addr, addr_high;
addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
SPRD_DMA_HIGH_ADDR_MASK;
return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
}
static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
SPRD_DMA_CHN_INT_STS;
switch (intc_sts) {
case SPRD_DMA_CFGERR_INT_STS:
return SPRD_DMA_CFGERR_INT;
case SPRD_DMA_LIST_INT_STS:
return SPRD_DMA_LIST_INT;
case SPRD_DMA_TRSC_INT_STS:
return SPRD_DMA_TRANS_INT;
case SPRD_DMA_BLK_INT_STS:
return SPRD_DMA_BLK_INT;
case SPRD_DMA_FRAG_INT_STS:
return SPRD_DMA_FRAG_INT;
default:
dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
return SPRD_DMA_NO_INT;
}
}
static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
{
u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
}
static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
struct sprd_dma_desc *sdesc)
{
struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
}
static void sprd_dma_start(struct sprd_dma_chn *schan)
{
struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
if (!vd)
return;
list_del(&vd->node);
schan->cur_desc = to_sprd_dma_desc(vd);
/*
* Copy the DMA configuration from DMA descriptor to this hardware
* channel.
*/
sprd_dma_set_chn_config(schan, schan->cur_desc);
sprd_dma_set_uid(schan);
sprd_dma_enable_chn(schan);
if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
sprd_dma_soft_request(schan);
}
static void sprd_dma_stop(struct sprd_dma_chn *schan)
{
sprd_dma_stop_and_disable(schan);
sprd_dma_unset_uid(schan);
sprd_dma_clear_int(schan);
}
static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
enum sprd_dma_int_type int_type,
enum sprd_dma_req_mode req_mode)
{
if (int_type == SPRD_DMA_NO_INT)
return false;
if (int_type >= req_mode + 1)
return true;
else
return false;
}
static irqreturn_t dma_irq_handle(int irq, void *dev_id)
{
struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
struct sprd_dma_chn *schan;
struct sprd_dma_desc *sdesc;
enum sprd_dma_req_mode req_type;
enum sprd_dma_int_type int_type;
bool trans_done = false;
u32 i;
while (irq_status) {
i = __ffs(irq_status);
irq_status &= (irq_status - 1);
schan = &sdev->channels[i];
spin_lock(&schan->vc.lock);
int_type = sprd_dma_get_int_type(schan);
req_type = sprd_dma_get_req_type(schan);
sprd_dma_clear_int(schan);
sdesc = schan->cur_desc;
/* Check if the dma request descriptor is done. */
trans_done = sprd_dma_check_trans_done(sdesc, int_type,
req_type);
if (trans_done == true) {
vchan_cookie_complete(&sdesc->vd);
schan->cur_desc = NULL;
sprd_dma_start(schan);
}
spin_unlock(&schan->vc.lock);
}
return IRQ_HANDLED;
}
static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
int ret;
ret = pm_runtime_get_sync(chan->device->dev);
if (ret < 0)
return ret;
schan->dev_id = SPRD_DMA_SOFTWARE_UID;
return 0;
}
static void sprd_dma_free_chan_resources(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_stop(schan);
spin_unlock_irqrestore(&schan->vc.lock, flags);
vchan_free_chan_resources(&schan->vc);
pm_runtime_put(chan->device->dev);
}
static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct virt_dma_desc *vd;
unsigned long flags;
enum dma_status ret;
u32 pos;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&schan->vc.lock, flags);
vd = vchan_find_desc(&schan->vc, cookie);
if (vd) {
struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
if (hw->trsc_len > 0)
pos = hw->trsc_len;
else if (hw->blk_len > 0)
pos = hw->blk_len;
else if (hw->frg_len > 0)
pos = hw->frg_len;
else
pos = 0;
} else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
pos = sprd_dma_get_dst_addr(schan);
} else {
pos = 0;
}
spin_unlock_irqrestore(&schan->vc.lock, flags);
dma_set_residue(txstate, pos);
return ret;
}
static void sprd_dma_issue_pending(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
sprd_dma_start(schan);
spin_unlock_irqrestore(&schan->vc.lock, flags);
}
static int sprd_dma_config(struct dma_chan *chan, struct sprd_dma_desc *sdesc,
dma_addr_t dest, dma_addr_t src, size_t len)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
u32 datawidth, src_step, des_step, fragment_len;
u32 block_len, req_mode, irq_mode, transcation_len;
u32 fix_mode = 0, fix_en = 0;
if (IS_ALIGNED(len, 4)) {
datawidth = 2;
src_step = 4;
des_step = 4;
} else if (IS_ALIGNED(len, 2)) {
datawidth = 1;
src_step = 2;
des_step = 2;
} else {
datawidth = 0;
src_step = 1;
des_step = 1;
}
fragment_len = SPRD_DMA_MEMCPY_MIN_SIZE;
if (len <= SPRD_DMA_BLK_LEN_MASK) {
block_len = len;
transcation_len = 0;
req_mode = SPRD_DMA_BLK_REQ;
irq_mode = SPRD_DMA_BLK_INT;
} else {
block_len = SPRD_DMA_MEMCPY_MIN_SIZE;
transcation_len = len;
req_mode = SPRD_DMA_TRANS_REQ;
irq_mode = SPRD_DMA_TRANS_INT;
}
hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
hw->wrap_ptr = (u32)((src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
SPRD_DMA_HIGH_ADDR_MASK);
hw->wrap_to = (u32)((dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
SPRD_DMA_HIGH_ADDR_MASK);
hw->src_addr = (u32)(src & SPRD_DMA_LOW_ADDR_MASK);
hw->des_addr = (u32)(dest & SPRD_DMA_LOW_ADDR_MASK);
if ((src_step != 0 && des_step != 0) || (src_step | des_step) == 0) {
fix_en = 0;
} else {
fix_en = 1;
if (src_step)
fix_mode = 1;
else
fix_mode = 0;
}
hw->frg_len = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET |
datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET |
req_mode << SPRD_DMA_REQ_MODE_OFFSET |
fix_mode << SPRD_DMA_FIX_SEL_OFFSET |
fix_en << SPRD_DMA_FIX_EN_OFFSET |
(fragment_len & SPRD_DMA_FRG_LEN_MASK);
hw->blk_len = block_len & SPRD_DMA_BLK_LEN_MASK;
hw->intc = SPRD_DMA_CFG_ERR_INT_EN;
switch (irq_mode) {
case SPRD_DMA_NO_INT:
break;
case SPRD_DMA_FRAG_INT:
hw->intc |= SPRD_DMA_FRAG_INT_EN;
break;
case SPRD_DMA_BLK_INT:
hw->intc |= SPRD_DMA_BLK_INT_EN;
break;
case SPRD_DMA_BLK_FRAG_INT:
hw->intc |= SPRD_DMA_BLK_INT_EN | SPRD_DMA_FRAG_INT_EN;
break;
case SPRD_DMA_TRANS_INT:
hw->intc |= SPRD_DMA_TRANS_INT_EN;
break;
case SPRD_DMA_TRANS_FRAG_INT:
hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_FRAG_INT_EN;
break;
case SPRD_DMA_TRANS_BLK_INT:
hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_BLK_INT_EN;
break;
case SPRD_DMA_LIST_INT:
hw->intc |= SPRD_DMA_LIST_INT_EN;
break;
case SPRD_DMA_CFGERR_INT:
hw->intc |= SPRD_DMA_CFG_ERR_INT_EN;
break;
default:
dev_err(sdev->dma_dev.dev, "invalid irq mode\n");
return -EINVAL;
}
if (transcation_len == 0)
hw->trsc_len = block_len & SPRD_DMA_TRSC_LEN_MASK;
else
hw->trsc_len = transcation_len & SPRD_DMA_TRSC_LEN_MASK;
hw->trsf_step = (des_step & SPRD_DMA_TRSF_STEP_MASK) <<
SPRD_DMA_DEST_TRSF_STEP_OFFSET |
(src_step & SPRD_DMA_TRSF_STEP_MASK) <<
SPRD_DMA_SRC_TRSF_STEP_OFFSET;
hw->frg_step = 0;
hw->src_blk_step = 0;
hw->des_blk_step = 0;
hw->src_blk_step = 0;
return 0;
}
struct dma_async_tx_descriptor *
sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct sprd_dma_desc *sdesc;
int ret;
sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
if (!sdesc)
return NULL;
ret = sprd_dma_config(chan, sdesc, dest, src, len);
if (ret) {
kfree(sdesc);
return NULL;
}
return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
}
static int sprd_dma_pause(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_pause_resume(schan, true);
spin_unlock_irqrestore(&schan->vc.lock, flags);
return 0;
}
static int sprd_dma_resume(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_pause_resume(schan, false);
spin_unlock_irqrestore(&schan->vc.lock, flags);
return 0;
}
static int sprd_dma_terminate_all(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_stop(schan);
vchan_get_all_descriptors(&schan->vc, &head);
spin_unlock_irqrestore(&schan->vc.lock, flags);
vchan_dma_desc_free_list(&schan->vc, &head);
return 0;
}
static void sprd_dma_free_desc(struct virt_dma_desc *vd)
{
struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
kfree(sdesc);
}
static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 req = *(u32 *)param;
if (req < sdev->total_chns)
return req == schan->chn_num + 1;
else
return false;
}
static int sprd_dma_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct sprd_dma_dev *sdev;
struct sprd_dma_chn *dma_chn;
struct resource *res;
u32 chn_count;
int ret, i;
ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
if (ret) {
dev_err(&pdev->dev, "get dma channels count failed\n");
return ret;
}
sdev = devm_kzalloc(&pdev->dev, sizeof(*sdev) +
sizeof(*dma_chn) * chn_count,
GFP_KERNEL);
if (!sdev)
return -ENOMEM;
sdev->clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(sdev->clk)) {
dev_err(&pdev->dev, "get enable clock failed\n");
return PTR_ERR(sdev->clk);
}
/* ashb clock is optional for AGCP DMA */
sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
if (IS_ERR(sdev->ashb_clk))
dev_warn(&pdev->dev, "no optional ashb eb clock\n");
/*
* We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
* DMA controller, it can or do not request the irq, which will save
* system power without resuming system by DMA interrupts if AGCP DMA
* does not request the irq. Thus the DMA interrupts property should
* be optional.
*/
sdev->irq = platform_get_irq(pdev, 0);
if (sdev->irq > 0) {
ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
0, "sprd_dma", (void *)sdev);
if (ret < 0) {
dev_err(&pdev->dev, "request dma irq failed\n");
return ret;
}
} else {
dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sdev->glb_base = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (!sdev->glb_base)
return -ENOMEM;
dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
sdev->total_chns = chn_count;
sdev->dma_dev.chancnt = chn_count;
INIT_LIST_HEAD(&sdev->dma_dev.channels);
INIT_LIST_HEAD(&sdev->dma_dev.global_node);
sdev->dma_dev.dev = &pdev->dev;
sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
sdev->dma_dev.device_pause = sprd_dma_pause;
sdev->dma_dev.device_resume = sprd_dma_resume;
sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
for (i = 0; i < chn_count; i++) {
dma_chn = &sdev->channels[i];
dma_chn->chn_num = i;
dma_chn->cur_desc = NULL;
/* get each channel's registers base address. */
dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
SPRD_DMA_CHN_REG_LENGTH * i;
dma_chn->vc.desc_free = sprd_dma_free_desc;
vchan_init(&dma_chn->vc, &sdev->dma_dev);
}
platform_set_drvdata(pdev, sdev);
ret = sprd_dma_enable(sdev);
if (ret)
return ret;
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
goto err_rpm;
ret = dma_async_device_register(&sdev->dma_dev);
if (ret < 0) {
dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
goto err_register;
}
sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
ret = of_dma_controller_register(np, of_dma_simple_xlate,
&sprd_dma_info);
if (ret)
goto err_of_register;
pm_runtime_put(&pdev->dev);
return 0;
err_of_register:
dma_async_device_unregister(&sdev->dma_dev);
err_register:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
err_rpm:
sprd_dma_disable(sdev);
return ret;
}
static int sprd_dma_remove(struct platform_device *pdev)
{
struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
struct sprd_dma_chn *c, *cn;
int ret;
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
return ret;
/* explicitly free the irq */
if (sdev->irq > 0)
devm_free_irq(&pdev->dev, sdev->irq, sdev);
list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
vc.chan.device_node) {
list_del(&c->vc.chan.device_node);
tasklet_kill(&c->vc.task);
}
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&sdev->dma_dev);
sprd_dma_disable(sdev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id sprd_dma_match[] = {
{ .compatible = "sprd,sc9860-dma", },
{},
};
static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
{
struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
sprd_dma_disable(sdev);
return 0;
}
static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
{
struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
int ret;
ret = sprd_dma_enable(sdev);
if (ret)
dev_err(sdev->dma_dev.dev, "enable dma failed\n");
return ret;
}
static const struct dev_pm_ops sprd_dma_pm_ops = {
SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
sprd_dma_runtime_resume,
NULL)
};
static struct platform_driver sprd_dma_driver = {
.probe = sprd_dma_probe,
.remove = sprd_dma_remove,
.driver = {
.name = "sprd-dma",
.of_match_table = sprd_dma_match,
.pm = &sprd_dma_pm_ops,
},
};
module_platform_driver(sprd_dma_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DMA driver for Spreadtrum");
MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
MODULE_ALIAS("platform:sprd-dma");
/*
*
* Copyright (C) STMicroelectronics SA 2017
* Author(s): M'boumba Cedric Madianga <cedric.madianga@gmail.com>
* Pierre-Yves Mordret <pierre-yves.mordret@st.com>
*
* License terms: GPL V2.0.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* DMA Router driver for STM32 DMA MUX
*
* Based on TI DMA Crossbar driver
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#define STM32_DMAMUX_CCR(x) (0x4 * (x))
#define STM32_DMAMUX_MAX_DMA_REQUESTS 32
#define STM32_DMAMUX_MAX_REQUESTS 255
struct stm32_dmamux {
u32 master;
u32 request;
u32 chan_id;
};
struct stm32_dmamux_data {
struct dma_router dmarouter;
struct clk *clk;
struct reset_control *rst;
void __iomem *iomem;
u32 dma_requests; /* Number of DMA requests connected to DMAMUX */
u32 dmamux_requests; /* Number of DMA requests routed toward DMAs */
spinlock_t lock; /* Protects register access */
unsigned long *dma_inuse; /* Used DMA channel */
u32 dma_reqs[]; /* Number of DMA Request per DMA masters.
* [0] holds number of DMA Masters.
* To be kept at very end end of this structure
*/
};
static inline u32 stm32_dmamux_read(void __iomem *iomem, u32 reg)
{
return readl_relaxed(iomem + reg);
}
static inline void stm32_dmamux_write(void __iomem *iomem, u32 reg, u32 val)
{
writel_relaxed(val, iomem + reg);
}
static void stm32_dmamux_free(struct device *dev, void *route_data)
{
struct stm32_dmamux_data *dmamux = dev_get_drvdata(dev);
struct stm32_dmamux *mux = route_data;
unsigned long flags;
/* Clear dma request */
spin_lock_irqsave(&dmamux->lock, flags);
stm32_dmamux_write(dmamux->iomem, STM32_DMAMUX_CCR(mux->chan_id), 0);
clear_bit(mux->chan_id, dmamux->dma_inuse);
if (!IS_ERR(dmamux->clk))
clk_disable(dmamux->clk);
spin_unlock_irqrestore(&dmamux->lock, flags);
dev_dbg(dev, "Unmapping DMAMUX(%u) to DMA%u(%u)\n",
mux->request, mux->master, mux->chan_id);
kfree(mux);
}
static void *stm32_dmamux_route_allocate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct platform_device *pdev = of_find_device_by_node(ofdma->of_node);
struct stm32_dmamux_data *dmamux = platform_get_drvdata(pdev);
struct stm32_dmamux *mux;
u32 i, min, max;
int ret;
unsigned long flags;
if (dma_spec->args_count != 3) {
dev_err(&pdev->dev, "invalid number of dma mux args\n");
return ERR_PTR(-EINVAL);
}
if (dma_spec->args[0] > dmamux->dmamux_requests) {
dev_err(&pdev->dev, "invalid mux request number: %d\n",
dma_spec->args[0]);
return ERR_PTR(-EINVAL);
}
mux = kzalloc(sizeof(*mux), GFP_KERNEL);
if (!mux)
return ERR_PTR(-ENOMEM);
spin_lock_irqsave(&dmamux->lock, flags);
mux->chan_id = find_first_zero_bit(dmamux->dma_inuse,
dmamux->dma_requests);
set_bit(mux->chan_id, dmamux->dma_inuse);
spin_unlock_irqrestore(&dmamux->lock, flags);
if (mux->chan_id == dmamux->dma_requests) {
dev_err(&pdev->dev, "Run out of free DMA requests\n");
ret = -ENOMEM;
goto error;
}
/* Look for DMA Master */
for (i = 1, min = 0, max = dmamux->dma_reqs[i];
i <= dmamux->dma_reqs[0];
min += dmamux->dma_reqs[i], max += dmamux->dma_reqs[++i])
if (mux->chan_id < max)
break;
mux->master = i - 1;
/* The of_node_put() will be done in of_dma_router_xlate function */
dma_spec->np = of_parse_phandle(ofdma->of_node, "dma-masters", i - 1);
if (!dma_spec->np) {
dev_err(&pdev->dev, "can't get dma master\n");
ret = -EINVAL;
goto error;
}
/* Set dma request */
spin_lock_irqsave(&dmamux->lock, flags);
if (!IS_ERR(dmamux->clk)) {
ret = clk_enable(dmamux->clk);
if (ret < 0) {
spin_unlock_irqrestore(&dmamux->lock, flags);
dev_err(&pdev->dev, "clk_prep_enable issue: %d\n", ret);
goto error;
}
}
spin_unlock_irqrestore(&dmamux->lock, flags);
mux->request = dma_spec->args[0];
/* craft DMA spec */
dma_spec->args[3] = dma_spec->args[2];
dma_spec->args[2] = dma_spec->args[1];
dma_spec->args[1] = 0;
dma_spec->args[0] = mux->chan_id - min;
dma_spec->args_count = 4;
stm32_dmamux_write(dmamux->iomem, STM32_DMAMUX_CCR(mux->chan_id),
mux->request);
dev_dbg(&pdev->dev, "Mapping DMAMUX(%u) to DMA%u(%u)\n",
mux->request, mux->master, mux->chan_id);
return mux;
error:
clear_bit(mux->chan_id, dmamux->dma_inuse);
kfree(mux);
return ERR_PTR(ret);
}
static const struct of_device_id stm32_stm32dma_master_match[] = {
{ .compatible = "st,stm32-dma", },
{},
};
static int stm32_dmamux_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
const struct of_device_id *match;
struct device_node *dma_node;
struct stm32_dmamux_data *stm32_dmamux;
struct resource *res;
void __iomem *iomem;
int i, count, ret;
u32 dma_req;
if (!node)
return -ENODEV;
count = device_property_read_u32_array(&pdev->dev, "dma-masters",
NULL, 0);
if (count < 0) {
dev_err(&pdev->dev, "Can't get DMA master(s) node\n");
return -ENODEV;
}
stm32_dmamux = devm_kzalloc(&pdev->dev, sizeof(*stm32_dmamux) +
sizeof(u32) * (count + 1), GFP_KERNEL);
if (!stm32_dmamux)
return -ENOMEM;
dma_req = 0;
for (i = 1; i <= count; i++) {
dma_node = of_parse_phandle(node, "dma-masters", i - 1);
match = of_match_node(stm32_stm32dma_master_match, dma_node);
if (!match) {
dev_err(&pdev->dev, "DMA master is not supported\n");
of_node_put(dma_node);
return -EINVAL;
}
if (of_property_read_u32(dma_node, "dma-requests",
&stm32_dmamux->dma_reqs[i])) {
dev_info(&pdev->dev,
"Missing MUX output information, using %u.\n",
STM32_DMAMUX_MAX_DMA_REQUESTS);
stm32_dmamux->dma_reqs[i] =
STM32_DMAMUX_MAX_DMA_REQUESTS;
}
dma_req += stm32_dmamux->dma_reqs[i];
of_node_put(dma_node);
}
if (dma_req > STM32_DMAMUX_MAX_DMA_REQUESTS) {
dev_err(&pdev->dev, "Too many DMA Master Requests to manage\n");
return -ENODEV;
}
stm32_dmamux->dma_requests = dma_req;
stm32_dmamux->dma_reqs[0] = count;
stm32_dmamux->dma_inuse = devm_kcalloc(&pdev->dev,
BITS_TO_LONGS(dma_req),
sizeof(unsigned long),
GFP_KERNEL);
if (!stm32_dmamux->dma_inuse)
return -ENOMEM;
if (device_property_read_u32(&pdev->dev, "dma-requests",
&stm32_dmamux->dmamux_requests)) {
stm32_dmamux->dmamux_requests = STM32_DMAMUX_MAX_REQUESTS;
dev_warn(&pdev->dev, "DMAMUX defaulting on %u requests\n",
stm32_dmamux->dmamux_requests);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
iomem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(iomem))
return PTR_ERR(iomem);
spin_lock_init(&stm32_dmamux->lock);
stm32_dmamux->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(stm32_dmamux->clk)) {
ret = PTR_ERR(stm32_dmamux->clk);
if (ret == -EPROBE_DEFER)
dev_info(&pdev->dev, "Missing controller clock\n");
return ret;
}
stm32_dmamux->rst = devm_reset_control_get(&pdev->dev, NULL);
if (!IS_ERR(stm32_dmamux->rst)) {
reset_control_assert(stm32_dmamux->rst);
udelay(2);
reset_control_deassert(stm32_dmamux->rst);
}
stm32_dmamux->iomem = iomem;
stm32_dmamux->dmarouter.dev = &pdev->dev;
stm32_dmamux->dmarouter.route_free = stm32_dmamux_free;
platform_set_drvdata(pdev, stm32_dmamux);
if (!IS_ERR(stm32_dmamux->clk)) {
ret = clk_prepare_enable(stm32_dmamux->clk);
if (ret < 0) {
dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
return ret;
}
}
/* Reset the dmamux */
for (i = 0; i < stm32_dmamux->dma_requests; i++)
stm32_dmamux_write(stm32_dmamux->iomem, STM32_DMAMUX_CCR(i), 0);
if (!IS_ERR(stm32_dmamux->clk))
clk_disable(stm32_dmamux->clk);
return of_dma_router_register(node, stm32_dmamux_route_allocate,
&stm32_dmamux->dmarouter);
}
static const struct of_device_id stm32_dmamux_match[] = {
{ .compatible = "st,stm32h7-dmamux" },
{},
};
static struct platform_driver stm32_dmamux_driver = {
.probe = stm32_dmamux_probe,
.driver = {
.name = "stm32-dmamux",
.of_match_table = stm32_dmamux_match,
},
};
static int __init stm32_dmamux_init(void)
{
return platform_driver_register(&stm32_dmamux_driver);
}
arch_initcall(stm32_dmamux_init);
MODULE_DESCRIPTION("DMA Router driver for STM32 DMA MUX");
MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
MODULE_AUTHOR("Pierre-Yves Mordret <pierre-yves.mordret@st.com>");
MODULE_LICENSE("GPL v2");
/*
*
* Copyright (C) STMicroelectronics SA 2017
* Author(s): M'boumba Cedric Madianga <cedric.madianga@gmail.com>
* Pierre-Yves Mordret <pierre-yves.mordret@st.com>
*
* License terms: GPL V2.0.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* Driver for STM32 MDMA controller
*
* Inspired by stm32-dma.c and dma-jz4780.c
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "virt-dma.h"
/* MDMA Generic getter/setter */
#define STM32_MDMA_SHIFT(n) (ffs(n) - 1)
#define STM32_MDMA_SET(n, mask) (((n) << STM32_MDMA_SHIFT(mask)) & \
(mask))
#define STM32_MDMA_GET(n, mask) (((n) & (mask)) >> \
STM32_MDMA_SHIFT(mask))
#define STM32_MDMA_GISR0 0x0000 /* MDMA Int Status Reg 1 */
#define STM32_MDMA_GISR1 0x0004 /* MDMA Int Status Reg 2 */
/* MDMA Channel x interrupt/status register */
#define STM32_MDMA_CISR(x) (0x40 + 0x40 * (x)) /* x = 0..62 */
#define STM32_MDMA_CISR_CRQA BIT(16)
#define STM32_MDMA_CISR_TCIF BIT(4)
#define STM32_MDMA_CISR_BTIF BIT(3)
#define STM32_MDMA_CISR_BRTIF BIT(2)
#define STM32_MDMA_CISR_CTCIF BIT(1)
#define STM32_MDMA_CISR_TEIF BIT(0)
/* MDMA Channel x interrupt flag clear register */
#define STM32_MDMA_CIFCR(x) (0x44 + 0x40 * (x))
#define STM32_MDMA_CIFCR_CLTCIF BIT(4)
#define STM32_MDMA_CIFCR_CBTIF BIT(3)
#define STM32_MDMA_CIFCR_CBRTIF BIT(2)
#define STM32_MDMA_CIFCR_CCTCIF BIT(1)
#define STM32_MDMA_CIFCR_CTEIF BIT(0)
#define STM32_MDMA_CIFCR_CLEAR_ALL (STM32_MDMA_CIFCR_CLTCIF \
| STM32_MDMA_CIFCR_CBTIF \
| STM32_MDMA_CIFCR_CBRTIF \
| STM32_MDMA_CIFCR_CCTCIF \
| STM32_MDMA_CIFCR_CTEIF)
/* MDMA Channel x error status register */
#define STM32_MDMA_CESR(x) (0x48 + 0x40 * (x))
#define STM32_MDMA_CESR_BSE BIT(11)
#define STM32_MDMA_CESR_ASR BIT(10)
#define STM32_MDMA_CESR_TEMD BIT(9)
#define STM32_MDMA_CESR_TELD BIT(8)
#define STM32_MDMA_CESR_TED BIT(7)
#define STM32_MDMA_CESR_TEA_MASK GENMASK(6, 0)
/* MDMA Channel x control register */
#define STM32_MDMA_CCR(x) (0x4C + 0x40 * (x))
#define STM32_MDMA_CCR_SWRQ BIT(16)
#define STM32_MDMA_CCR_WEX BIT(14)
#define STM32_MDMA_CCR_HEX BIT(13)
#define STM32_MDMA_CCR_BEX BIT(12)
#define STM32_MDMA_CCR_PL_MASK GENMASK(7, 6)
#define STM32_MDMA_CCR_PL(n) STM32_MDMA_SET(n, \
STM32_MDMA_CCR_PL_MASK)
#define STM32_MDMA_CCR_TCIE BIT(5)
#define STM32_MDMA_CCR_BTIE BIT(4)
#define STM32_MDMA_CCR_BRTIE BIT(3)
#define STM32_MDMA_CCR_CTCIE BIT(2)
#define STM32_MDMA_CCR_TEIE BIT(1)
#define STM32_MDMA_CCR_EN BIT(0)
#define STM32_MDMA_CCR_IRQ_MASK (STM32_MDMA_CCR_TCIE \
| STM32_MDMA_CCR_BTIE \
| STM32_MDMA_CCR_BRTIE \
| STM32_MDMA_CCR_CTCIE \
| STM32_MDMA_CCR_TEIE)
/* MDMA Channel x transfer configuration register */
#define STM32_MDMA_CTCR(x) (0x50 + 0x40 * (x))
#define STM32_MDMA_CTCR_BWM BIT(31)
#define STM32_MDMA_CTCR_SWRM BIT(30)
#define STM32_MDMA_CTCR_TRGM_MSK GENMASK(29, 28)
#define STM32_MDMA_CTCR_TRGM(n) STM32_MDMA_SET((n), \
STM32_MDMA_CTCR_TRGM_MSK)
#define STM32_MDMA_CTCR_TRGM_GET(n) STM32_MDMA_GET((n), \
STM32_MDMA_CTCR_TRGM_MSK)
#define STM32_MDMA_CTCR_PAM_MASK GENMASK(27, 26)
#define STM32_MDMA_CTCR_PAM(n) STM32_MDMA_SET(n, \
STM32_MDMA_CTCR_PAM_MASK)
#define STM32_MDMA_CTCR_PKE BIT(25)
#define STM32_MDMA_CTCR_TLEN_MSK GENMASK(24, 18)
#define STM32_MDMA_CTCR_TLEN(n) STM32_MDMA_SET((n), \
STM32_MDMA_CTCR_TLEN_MSK)
#define STM32_MDMA_CTCR_TLEN_GET(n) STM32_MDMA_GET((n), \
STM32_MDMA_CTCR_TLEN_MSK)
#define STM32_MDMA_CTCR_LEN2_MSK GENMASK(25, 18)
#define STM32_MDMA_CTCR_LEN2(n) STM32_MDMA_SET((n), \
STM32_MDMA_CTCR_LEN2_MSK)
#define STM32_MDMA_CTCR_LEN2_GET(n) STM32_MDMA_GET((n), \
STM32_MDMA_CTCR_LEN2_MSK)
#define STM32_MDMA_CTCR_DBURST_MASK GENMASK(17, 15)
#define STM32_MDMA_CTCR_DBURST(n) STM32_MDMA_SET(n, \
STM32_MDMA_CTCR_DBURST_MASK)
#define STM32_MDMA_CTCR_SBURST_MASK GENMASK(14, 12)
#define STM32_MDMA_CTCR_SBURST(n) STM32_MDMA_SET(n, \
STM32_MDMA_CTCR_SBURST_MASK)
#define STM32_MDMA_CTCR_DINCOS_MASK GENMASK(11, 10)
#define STM32_MDMA_CTCR_DINCOS(n) STM32_MDMA_SET((n), \
STM32_MDMA_CTCR_DINCOS_MASK)
#define STM32_MDMA_CTCR_SINCOS_MASK GENMASK(9, 8)
#define STM32_MDMA_CTCR_SINCOS(n) STM32_MDMA_SET((n), \
STM32_MDMA_CTCR_SINCOS_MASK)
#define STM32_MDMA_CTCR_DSIZE_MASK GENMASK(7, 6)
#define STM32_MDMA_CTCR_DSIZE(n) STM32_MDMA_SET(n, \
STM32_MDMA_CTCR_DSIZE_MASK)
#define STM32_MDMA_CTCR_SSIZE_MASK GENMASK(5, 4)
#define STM32_MDMA_CTCR_SSIZE(n) STM32_MDMA_SET(n, \
STM32_MDMA_CTCR_SSIZE_MASK)
#define STM32_MDMA_CTCR_DINC_MASK GENMASK(3, 2)
#define STM32_MDMA_CTCR_DINC(n) STM32_MDMA_SET((n), \
STM32_MDMA_CTCR_DINC_MASK)
#define STM32_MDMA_CTCR_SINC_MASK GENMASK(1, 0)
#define STM32_MDMA_CTCR_SINC(n) STM32_MDMA_SET((n), \
STM32_MDMA_CTCR_SINC_MASK)
#define STM32_MDMA_CTCR_CFG_MASK (STM32_MDMA_CTCR_SINC_MASK \
| STM32_MDMA_CTCR_DINC_MASK \
| STM32_MDMA_CTCR_SINCOS_MASK \
| STM32_MDMA_CTCR_DINCOS_MASK \
| STM32_MDMA_CTCR_LEN2_MSK \
| STM32_MDMA_CTCR_TRGM_MSK)
/* MDMA Channel x block number of data register */
#define STM32_MDMA_CBNDTR(x) (0x54 + 0x40 * (x))
#define STM32_MDMA_CBNDTR_BRC_MK GENMASK(31, 20)
#define STM32_MDMA_CBNDTR_BRC(n) STM32_MDMA_SET(n, \
STM32_MDMA_CBNDTR_BRC_MK)
#define STM32_MDMA_CBNDTR_BRC_GET(n) STM32_MDMA_GET((n), \
STM32_MDMA_CBNDTR_BRC_MK)
#define STM32_MDMA_CBNDTR_BRDUM BIT(19)
#define STM32_MDMA_CBNDTR_BRSUM BIT(18)
#define STM32_MDMA_CBNDTR_BNDT_MASK GENMASK(16, 0)
#define STM32_MDMA_CBNDTR_BNDT(n) STM32_MDMA_SET(n, \
STM32_MDMA_CBNDTR_BNDT_MASK)
/* MDMA Channel x source address register */
#define STM32_MDMA_CSAR(x) (0x58 + 0x40 * (x))
/* MDMA Channel x destination address register */
#define STM32_MDMA_CDAR(x) (0x5C + 0x40 * (x))
/* MDMA Channel x block repeat address update register */
#define STM32_MDMA_CBRUR(x) (0x60 + 0x40 * (x))
#define STM32_MDMA_CBRUR_DUV_MASK GENMASK(31, 16)
#define STM32_MDMA_CBRUR_DUV(n) STM32_MDMA_SET(n, \
STM32_MDMA_CBRUR_DUV_MASK)
#define STM32_MDMA_CBRUR_SUV_MASK GENMASK(15, 0)
#define STM32_MDMA_CBRUR_SUV(n) STM32_MDMA_SET(n, \
STM32_MDMA_CBRUR_SUV_MASK)
/* MDMA Channel x link address register */
#define STM32_MDMA_CLAR(x) (0x64 + 0x40 * (x))
/* MDMA Channel x trigger and bus selection register */
#define STM32_MDMA_CTBR(x) (0x68 + 0x40 * (x))
#define STM32_MDMA_CTBR_DBUS BIT(17)
#define STM32_MDMA_CTBR_SBUS BIT(16)
#define STM32_MDMA_CTBR_TSEL_MASK GENMASK(7, 0)
#define STM32_MDMA_CTBR_TSEL(n) STM32_MDMA_SET(n, \
STM32_MDMA_CTBR_TSEL_MASK)
/* MDMA Channel x mask address register */
#define STM32_MDMA_CMAR(x) (0x70 + 0x40 * (x))
/* MDMA Channel x mask data register */
#define STM32_MDMA_CMDR(x) (0x74 + 0x40 * (x))
#define STM32_MDMA_MAX_BUF_LEN 128
#define STM32_MDMA_MAX_BLOCK_LEN 65536
#define STM32_MDMA_MAX_CHANNELS 63
#define STM32_MDMA_MAX_REQUESTS 256
#define STM32_MDMA_MAX_BURST 128
#define STM32_MDMA_VERY_HIGH_PRIORITY 0x11
enum stm32_mdma_trigger_mode {
STM32_MDMA_BUFFER,
STM32_MDMA_BLOCK,
STM32_MDMA_BLOCK_REP,
STM32_MDMA_LINKED_LIST,
};
enum stm32_mdma_width {
STM32_MDMA_BYTE,
STM32_MDMA_HALF_WORD,
STM32_MDMA_WORD,
STM32_MDMA_DOUBLE_WORD,
};
enum stm32_mdma_inc_mode {
STM32_MDMA_FIXED = 0,
STM32_MDMA_INC = 2,
STM32_MDMA_DEC = 3,
};
struct stm32_mdma_chan_config {
u32 request;
u32 priority_level;
u32 transfer_config;
u32 mask_addr;
u32 mask_data;
};
struct stm32_mdma_hwdesc {
u32 ctcr;
u32 cbndtr;
u32 csar;
u32 cdar;
u32 cbrur;
u32 clar;
u32 ctbr;
u32 dummy;
u32 cmar;
u32 cmdr;
} __aligned(64);
struct stm32_mdma_desc {
struct virt_dma_desc vdesc;
u32 ccr;
struct stm32_mdma_hwdesc *hwdesc;
dma_addr_t hwdesc_phys;
bool cyclic;
u32 count;
};
struct stm32_mdma_chan {
struct virt_dma_chan vchan;
struct dma_pool *desc_pool;
u32 id;
struct stm32_mdma_desc *desc;
u32 curr_hwdesc;
struct dma_slave_config dma_config;
struct stm32_mdma_chan_config chan_config;
bool busy;
u32 mem_burst;
u32 mem_width;
};
struct stm32_mdma_device {
struct dma_device ddev;
void __iomem *base;
struct clk *clk;
int irq;
struct reset_control *rst;
u32 nr_channels;
u32 nr_requests;
u32 nr_ahb_addr_masks;
struct stm32_mdma_chan chan[STM32_MDMA_MAX_CHANNELS];
u32 ahb_addr_masks[];
};
static struct stm32_mdma_device *stm32_mdma_get_dev(
struct stm32_mdma_chan *chan)
{
return container_of(chan->vchan.chan.device, struct stm32_mdma_device,
ddev);
}
static struct stm32_mdma_chan *to_stm32_mdma_chan(struct dma_chan *c)
{
return container_of(c, struct stm32_mdma_chan, vchan.chan);
}
static struct stm32_mdma_desc *to_stm32_mdma_desc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct stm32_mdma_desc, vdesc);
}
static struct device *chan2dev(struct stm32_mdma_chan *chan)
{
return &chan->vchan.chan.dev->device;
}
static struct device *mdma2dev(struct stm32_mdma_device *mdma_dev)
{
return mdma_dev->ddev.dev;
}
static u32 stm32_mdma_read(struct stm32_mdma_device *dmadev, u32 reg)
{
return readl_relaxed(dmadev->base + reg);
}
static void stm32_mdma_write(struct stm32_mdma_device *dmadev, u32 reg, u32 val)
{
writel_relaxed(val, dmadev->base + reg);
}
static void stm32_mdma_set_bits(struct stm32_mdma_device *dmadev, u32 reg,
u32 mask)
{
void __iomem *addr = dmadev->base + reg;
writel_relaxed(readl_relaxed(addr) | mask, addr);
}
static void stm32_mdma_clr_bits(struct stm32_mdma_device *dmadev, u32 reg,
u32 mask)
{
void __iomem *addr = dmadev->base + reg;
writel_relaxed(readl_relaxed(addr) & ~mask, addr);
}
static struct stm32_mdma_desc *stm32_mdma_alloc_desc(
struct stm32_mdma_chan *chan, u32 count)
{
struct stm32_mdma_desc *desc;
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (!desc)
return NULL;
desc->hwdesc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT,
&desc->hwdesc_phys);
if (!desc->hwdesc) {
dev_err(chan2dev(chan), "Failed to allocate descriptor\n");
kfree(desc);
return NULL;
}
desc->count = count;
return desc;
}
static void stm32_mdma_desc_free(struct virt_dma_desc *vdesc)
{
struct stm32_mdma_desc *desc = to_stm32_mdma_desc(vdesc);
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(vdesc->tx.chan);
dma_pool_free(chan->desc_pool, desc->hwdesc, desc->hwdesc_phys);
kfree(desc);
}
static int stm32_mdma_get_width(struct stm32_mdma_chan *chan,
enum dma_slave_buswidth width)
{
switch (width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
case DMA_SLAVE_BUSWIDTH_2_BYTES:
case DMA_SLAVE_BUSWIDTH_4_BYTES:
case DMA_SLAVE_BUSWIDTH_8_BYTES:
return ffs(width) - 1;
default:
dev_err(chan2dev(chan), "Dma bus width %i not supported\n",
width);
return -EINVAL;
}
}
static enum dma_slave_buswidth stm32_mdma_get_max_width(dma_addr_t addr,
u32 buf_len, u32 tlen)
{
enum dma_slave_buswidth max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
for (max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
max_width > DMA_SLAVE_BUSWIDTH_1_BYTE;
max_width >>= 1) {
/*
* Address and buffer length both have to be aligned on
* bus width
*/
if ((((buf_len | addr) & (max_width - 1)) == 0) &&
tlen >= max_width)
break;
}
return max_width;
}
static u32 stm32_mdma_get_best_burst(u32 buf_len, u32 tlen, u32 max_burst,
enum dma_slave_buswidth width)
{
u32 best_burst = max_burst;
u32 burst_len = best_burst * width;
while ((burst_len > 0) && (tlen % burst_len)) {
best_burst = best_burst >> 1;
burst_len = best_burst * width;
}
return (best_burst > 0) ? best_burst : 1;
}
static int stm32_mdma_disable_chan(struct stm32_mdma_chan *chan)
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
u32 ccr, cisr, id, reg;
int ret;
id = chan->id;
reg = STM32_MDMA_CCR(id);
/* Disable interrupts */
stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_IRQ_MASK);
ccr = stm32_mdma_read(dmadev, reg);
if (ccr & STM32_MDMA_CCR_EN) {
stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_EN);
/* Ensure that any ongoing transfer has been completed */
ret = readl_relaxed_poll_timeout_atomic(
dmadev->base + STM32_MDMA_CISR(id), cisr,
(cisr & STM32_MDMA_CISR_CTCIF), 10, 1000);
if (ret) {
dev_err(chan2dev(chan), "%s: timeout!\n", __func__);
return -EBUSY;
}
}
return 0;
}
static void stm32_mdma_stop(struct stm32_mdma_chan *chan)
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
u32 status;
int ret;
/* Disable DMA */
ret = stm32_mdma_disable_chan(chan);
if (ret < 0)
return;
/* Clear interrupt status if it is there */
status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
if (status) {
dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
__func__, status);
stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
}
chan->busy = false;
}
static void stm32_mdma_set_bus(struct stm32_mdma_device *dmadev, u32 *ctbr,
u32 ctbr_mask, u32 src_addr)
{
u32 mask;
int i;
/* Check if memory device is on AHB or AXI */
*ctbr &= ~ctbr_mask;
mask = src_addr & 0xF0000000;
for (i = 0; i < dmadev->nr_ahb_addr_masks; i++) {
if (mask == dmadev->ahb_addr_masks[i]) {
*ctbr |= ctbr_mask;
break;
}
}
}
static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan,
enum dma_transfer_direction direction,
u32 *mdma_ccr, u32 *mdma_ctcr,
u32 *mdma_ctbr, dma_addr_t addr,
u32 buf_len)
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
enum dma_slave_buswidth src_addr_width, dst_addr_width;
phys_addr_t src_addr, dst_addr;
int src_bus_width, dst_bus_width;
u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
u32 ccr, ctcr, ctbr, tlen;
src_addr_width = chan->dma_config.src_addr_width;
dst_addr_width = chan->dma_config.dst_addr_width;
src_maxburst = chan->dma_config.src_maxburst;
dst_maxburst = chan->dma_config.dst_maxburst;
ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
/* Enable HW request mode */
ctcr &= ~STM32_MDMA_CTCR_SWRM;
/* Set DINC, SINC, DINCOS, SINCOS, TRGM and TLEN retrieve from DT */
ctcr &= ~STM32_MDMA_CTCR_CFG_MASK;
ctcr |= chan_config->transfer_config & STM32_MDMA_CTCR_CFG_MASK;
/*
* For buffer transfer length (TLEN) we have to set
* the number of bytes - 1 in CTCR register
*/
tlen = STM32_MDMA_CTCR_LEN2_GET(ctcr);
ctcr &= ~STM32_MDMA_CTCR_LEN2_MSK;
ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
/* Disable Pack Enable */
ctcr &= ~STM32_MDMA_CTCR_PKE;
/* Check burst size constraints */
if (src_maxburst * src_addr_width > STM32_MDMA_MAX_BURST ||
dst_maxburst * dst_addr_width > STM32_MDMA_MAX_BURST) {
dev_err(chan2dev(chan),
"burst size * bus width higher than %d bytes\n",
STM32_MDMA_MAX_BURST);
return -EINVAL;
}
if ((!is_power_of_2(src_maxburst) && src_maxburst > 0) ||
(!is_power_of_2(dst_maxburst) && dst_maxburst > 0)) {
dev_err(chan2dev(chan), "burst size must be a power of 2\n");
return -EINVAL;
}
/*
* Configure channel control:
* - Clear SW request as in this case this is a HW one
* - Clear WEX, HEX and BEX bits
* - Set priority level
*/
ccr &= ~(STM32_MDMA_CCR_SWRQ | STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK);
ccr |= STM32_MDMA_CCR_PL(chan_config->priority_level);
/* Configure Trigger selection */
ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
ctbr |= STM32_MDMA_CTBR_TSEL(chan_config->request);
switch (direction) {
case DMA_MEM_TO_DEV:
dst_addr = chan->dma_config.dst_addr;
/* Set device data size */
dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
if (dst_bus_width < 0)
return dst_bus_width;
ctcr &= ~STM32_MDMA_CTCR_DSIZE_MASK;
ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width);
/* Set device burst value */
dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
dst_maxburst,
dst_addr_width);
chan->mem_burst = dst_best_burst;
ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
/* Set memory data size */
src_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
chan->mem_width = src_addr_width;
src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
if (src_bus_width < 0)
return src_bus_width;
ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK |
STM32_MDMA_CTCR_SINCOS_MASK;
ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width) |
STM32_MDMA_CTCR_SINCOS(src_bus_width);
/* Set memory burst value */
src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width;
src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
src_maxburst,
src_addr_width);
chan->mem_burst = src_best_burst;
ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
/* Select bus */
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
dst_addr);
if (dst_bus_width != src_bus_width)
ctcr |= STM32_MDMA_CTCR_PKE;
/* Set destination address */
stm32_mdma_write(dmadev, STM32_MDMA_CDAR(chan->id), dst_addr);
break;
case DMA_DEV_TO_MEM:
src_addr = chan->dma_config.src_addr;
/* Set device data size */
src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
if (src_bus_width < 0)
return src_bus_width;
ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK;
ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width);
/* Set device burst value */
src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
src_maxburst,
src_addr_width);
ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
/* Set memory data size */
dst_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
chan->mem_width = dst_addr_width;
dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
if (dst_bus_width < 0)
return dst_bus_width;
ctcr &= ~(STM32_MDMA_CTCR_DSIZE_MASK |
STM32_MDMA_CTCR_DINCOS_MASK);
ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
STM32_MDMA_CTCR_DINCOS(dst_bus_width);
/* Set memory burst value */
dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width;
dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
dst_maxburst,
dst_addr_width);
ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
/* Select bus */
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
src_addr);
if (dst_bus_width != src_bus_width)
ctcr |= STM32_MDMA_CTCR_PKE;
/* Set source address */
stm32_mdma_write(dmadev, STM32_MDMA_CSAR(chan->id), src_addr);
break;
default:
dev_err(chan2dev(chan), "Dma direction is not supported\n");
return -EINVAL;
}
*mdma_ccr = ccr;
*mdma_ctcr = ctcr;
*mdma_ctbr = ctbr;
return 0;
}
static void stm32_mdma_dump_hwdesc(struct stm32_mdma_chan *chan,
struct stm32_mdma_hwdesc *hwdesc)
{
dev_dbg(chan2dev(chan), "hwdesc: 0x%p\n", hwdesc);
dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n", hwdesc->ctcr);
dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n", hwdesc->cbndtr);
dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n", hwdesc->csar);
dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n", hwdesc->cdar);
dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n", hwdesc->cbrur);
dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n", hwdesc->clar);
dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n", hwdesc->ctbr);
dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n", hwdesc->cmar);
dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n\n", hwdesc->cmdr);
}
static void stm32_mdma_setup_hwdesc(struct stm32_mdma_chan *chan,
struct stm32_mdma_desc *desc,
enum dma_transfer_direction dir, u32 count,
dma_addr_t src_addr, dma_addr_t dst_addr,
u32 len, u32 ctcr, u32 ctbr, bool is_last,
bool is_first, bool is_cyclic)
{
struct stm32_mdma_chan_config *config = &chan->chan_config;
struct stm32_mdma_hwdesc *hwdesc;
u32 next = count + 1;
hwdesc = &desc->hwdesc[count];
hwdesc->ctcr = ctcr;
hwdesc->cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK |
STM32_MDMA_CBNDTR_BRDUM |
STM32_MDMA_CBNDTR_BRSUM |
STM32_MDMA_CBNDTR_BNDT_MASK);
hwdesc->cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
hwdesc->csar = src_addr;
hwdesc->cdar = dst_addr;
hwdesc->cbrur = 0;
hwdesc->clar = desc->hwdesc_phys + next * sizeof(*hwdesc);
hwdesc->ctbr = ctbr;
hwdesc->cmar = config->mask_addr;
hwdesc->cmdr = config->mask_data;
if (is_last) {
if (is_cyclic)
hwdesc->clar = desc->hwdesc_phys;
else
hwdesc->clar = 0;
}
stm32_mdma_dump_hwdesc(chan, hwdesc);
}
static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan,
struct stm32_mdma_desc *desc,
struct scatterlist *sgl, u32 sg_len,
enum dma_transfer_direction direction)
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct dma_slave_config *dma_config = &chan->dma_config;
struct scatterlist *sg;
dma_addr_t src_addr, dst_addr;
u32 ccr, ctcr, ctbr;
int i, ret = 0;
for_each_sg(sgl, sg, sg_len, i) {
if (sg_dma_len(sg) > STM32_MDMA_MAX_BLOCK_LEN) {
dev_err(chan2dev(chan), "Invalid block len\n");
return -EINVAL;
}
if (direction == DMA_MEM_TO_DEV) {
src_addr = sg_dma_address(sg);
dst_addr = dma_config->dst_addr;
ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
&ctcr, &ctbr, src_addr,
sg_dma_len(sg));
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
src_addr);
} else {
src_addr = dma_config->src_addr;
dst_addr = sg_dma_address(sg);
ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
&ctcr, &ctbr, dst_addr,
sg_dma_len(sg));
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
dst_addr);
}
if (ret < 0)
return ret;
stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
dst_addr, sg_dma_len(sg), ctcr, ctbr,
i == sg_len - 1, i == 0, false);
}
/* Enable interrupts */
ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE;
if (sg_len > 1)
ccr |= STM32_MDMA_CCR_BTIE;
desc->ccr = ccr;
return 0;
}
static struct dma_async_tx_descriptor *
stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl,
u32 sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct stm32_mdma_desc *desc;
int ret;
/*
* Once DMA is in setup cyclic mode the channel we cannot assign this
* channel anymore. The DMA channel needs to be aborted or terminated
* for allowing another request.
*/
if (chan->desc && chan->desc->cyclic) {
dev_err(chan2dev(chan),
"Request not allowed when dma in cyclic mode\n");
return NULL;
}
desc = stm32_mdma_alloc_desc(chan, sg_len);
if (!desc)
return NULL;
ret = stm32_mdma_setup_xfer(chan, desc, sgl, sg_len, direction);
if (ret < 0)
goto xfer_setup_err;
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
xfer_setup_err:
dma_pool_free(chan->desc_pool, &desc->hwdesc, desc->hwdesc_phys);
kfree(desc);
return NULL;
}
static struct dma_async_tx_descriptor *
stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction direction,
unsigned long flags)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct dma_slave_config *dma_config = &chan->dma_config;
struct stm32_mdma_desc *desc;
dma_addr_t src_addr, dst_addr;
u32 ccr, ctcr, ctbr, count;
int i, ret;
/*
* Once DMA is in setup cyclic mode the channel we cannot assign this
* channel anymore. The DMA channel needs to be aborted or terminated
* for allowing another request.
*/
if (chan->desc && chan->desc->cyclic) {
dev_err(chan2dev(chan),
"Request not allowed when dma in cyclic mode\n");
return NULL;
}
if (!buf_len || !period_len || period_len > STM32_MDMA_MAX_BLOCK_LEN) {
dev_err(chan2dev(chan), "Invalid buffer/period len\n");
return NULL;
}
if (buf_len % period_len) {
dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
return NULL;
}
count = buf_len / period_len;
desc = stm32_mdma_alloc_desc(chan, count);
if (!desc)
return NULL;
/* Select bus */
if (direction == DMA_MEM_TO_DEV) {
src_addr = buf_addr;
ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
&ctbr, src_addr, period_len);
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
src_addr);
} else {
dst_addr = buf_addr;
ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
&ctbr, dst_addr, period_len);
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
dst_addr);
}
if (ret < 0)
goto xfer_setup_err;
/* Enable interrupts */
ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE | STM32_MDMA_CCR_BTIE;
desc->ccr = ccr;
/* Configure hwdesc list */
for (i = 0; i < count; i++) {
if (direction == DMA_MEM_TO_DEV) {
src_addr = buf_addr + i * period_len;
dst_addr = dma_config->dst_addr;
} else {
src_addr = dma_config->src_addr;
dst_addr = buf_addr + i * period_len;
}
stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
dst_addr, period_len, ctcr, ctbr,
i == count - 1, i == 0, true);
}
desc->cyclic = true;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
xfer_setup_err:
dma_pool_free(chan->desc_pool, &desc->hwdesc, desc->hwdesc_phys);
kfree(desc);
return NULL;
}
static struct dma_async_tx_descriptor *
stm32_mdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
enum dma_slave_buswidth max_width;
struct stm32_mdma_desc *desc;
struct stm32_mdma_hwdesc *hwdesc;
u32 ccr, ctcr, ctbr, cbndtr, count, max_burst, mdma_burst;
u32 best_burst, tlen;
size_t xfer_count, offset;
int src_bus_width, dst_bus_width;
int i;
/*
* Once DMA is in setup cyclic mode the channel we cannot assign this
* channel anymore. The DMA channel needs to be aborted or terminated
* to allow another request
*/
if (chan->desc && chan->desc->cyclic) {
dev_err(chan2dev(chan),
"Request not allowed when dma in cyclic mode\n");
return NULL;
}
count = DIV_ROUND_UP(len, STM32_MDMA_MAX_BLOCK_LEN);
desc = stm32_mdma_alloc_desc(chan, count);
if (!desc)
return NULL;
ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
/* Enable sw req, some interrupts and clear other bits */
ccr &= ~(STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK |
STM32_MDMA_CCR_IRQ_MASK);
ccr |= STM32_MDMA_CCR_TEIE;
/* Enable SW request mode, dest/src inc and clear other bits */
ctcr &= ~(STM32_MDMA_CTCR_BWM | STM32_MDMA_CTCR_TRGM_MSK |
STM32_MDMA_CTCR_PAM_MASK | STM32_MDMA_CTCR_PKE |
STM32_MDMA_CTCR_TLEN_MSK | STM32_MDMA_CTCR_DBURST_MASK |
STM32_MDMA_CTCR_SBURST_MASK | STM32_MDMA_CTCR_DINCOS_MASK |
STM32_MDMA_CTCR_SINCOS_MASK | STM32_MDMA_CTCR_DSIZE_MASK |
STM32_MDMA_CTCR_SSIZE_MASK | STM32_MDMA_CTCR_DINC_MASK |
STM32_MDMA_CTCR_SINC_MASK);
ctcr |= STM32_MDMA_CTCR_SWRM | STM32_MDMA_CTCR_SINC(STM32_MDMA_INC) |
STM32_MDMA_CTCR_DINC(STM32_MDMA_INC);
/* Reset HW request */
ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
/* Select bus */
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src);
stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dest);
/* Clear CBNDTR registers */
cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | STM32_MDMA_CBNDTR_BRDUM |
STM32_MDMA_CBNDTR_BRSUM | STM32_MDMA_CBNDTR_BNDT_MASK);
if (len <= STM32_MDMA_MAX_BLOCK_LEN) {
cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
if (len <= STM32_MDMA_MAX_BUF_LEN) {
/* Setup a buffer transfer */
ccr |= STM32_MDMA_CCR_TCIE | STM32_MDMA_CCR_CTCIE;
ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BUFFER);
} else {
/* Setup a block transfer */
ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BLOCK);
}
tlen = STM32_MDMA_MAX_BUF_LEN;
ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
/* Set source best burst size */
max_width = stm32_mdma_get_max_width(src, len, tlen);
src_bus_width = stm32_mdma_get_width(chan, max_width);
max_burst = tlen / max_width;
best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
max_width);
mdma_burst = ilog2(best_burst);
ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
STM32_MDMA_CTCR_SSIZE(src_bus_width) |
STM32_MDMA_CTCR_SINCOS(src_bus_width);
/* Set destination best burst size */
max_width = stm32_mdma_get_max_width(dest, len, tlen);
dst_bus_width = stm32_mdma_get_width(chan, max_width);
max_burst = tlen / max_width;
best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
max_width);
mdma_burst = ilog2(best_burst);
ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
STM32_MDMA_CTCR_DINCOS(dst_bus_width);
if (dst_bus_width != src_bus_width)
ctcr |= STM32_MDMA_CTCR_PKE;
/* Prepare hardware descriptor */
hwdesc = desc->hwdesc;
hwdesc->ctcr = ctcr;
hwdesc->cbndtr = cbndtr;
hwdesc->csar = src;
hwdesc->cdar = dest;
hwdesc->cbrur = 0;
hwdesc->clar = 0;
hwdesc->ctbr = ctbr;
hwdesc->cmar = 0;
hwdesc->cmdr = 0;
stm32_mdma_dump_hwdesc(chan, hwdesc);
} else {
/* Setup a LLI transfer */
ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_LINKED_LIST) |
STM32_MDMA_CTCR_TLEN((STM32_MDMA_MAX_BUF_LEN - 1));
ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
tlen = STM32_MDMA_MAX_BUF_LEN;
for (i = 0, offset = 0; offset < len;
i++, offset += xfer_count) {
xfer_count = min_t(size_t, len - offset,
STM32_MDMA_MAX_BLOCK_LEN);
/* Set source best burst size */
max_width = stm32_mdma_get_max_width(src, len, tlen);
src_bus_width = stm32_mdma_get_width(chan, max_width);
max_burst = tlen / max_width;
best_burst = stm32_mdma_get_best_burst(len, tlen,
max_burst,
max_width);
mdma_burst = ilog2(best_burst);
ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
STM32_MDMA_CTCR_SSIZE(src_bus_width) |
STM32_MDMA_CTCR_SINCOS(src_bus_width);
/* Set destination best burst size */
max_width = stm32_mdma_get_max_width(dest, len, tlen);
dst_bus_width = stm32_mdma_get_width(chan, max_width);
max_burst = tlen / max_width;
best_burst = stm32_mdma_get_best_burst(len, tlen,
max_burst,
max_width);
mdma_burst = ilog2(best_burst);
ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
STM32_MDMA_CTCR_DINCOS(dst_bus_width);
if (dst_bus_width != src_bus_width)
ctcr |= STM32_MDMA_CTCR_PKE;
/* Prepare hardware descriptor */
stm32_mdma_setup_hwdesc(chan, desc, DMA_MEM_TO_MEM, i,
src + offset, dest + offset,
xfer_count, ctcr, ctbr,
i == count - 1, i == 0, false);
}
}
desc->ccr = ccr;
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static void stm32_mdma_dump_reg(struct stm32_mdma_chan *chan)
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
dev_dbg(chan2dev(chan), "CCR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)));
dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)));
dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)));
dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CSAR(chan->id)));
dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CDAR(chan->id)));
dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CBRUR(chan->id)));
dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id)));
dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)));
dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CMAR(chan->id)));
dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n",
stm32_mdma_read(dmadev, STM32_MDMA_CMDR(chan->id)));
}
static void stm32_mdma_start_transfer(struct stm32_mdma_chan *chan)
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct virt_dma_desc *vdesc;
struct stm32_mdma_hwdesc *hwdesc;
u32 id = chan->id;
u32 status, reg;
vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc) {
chan->desc = NULL;
return;
}
chan->desc = to_stm32_mdma_desc(vdesc);
hwdesc = chan->desc->hwdesc;
chan->curr_hwdesc = 0;
stm32_mdma_write(dmadev, STM32_MDMA_CCR(id), chan->desc->ccr);
stm32_mdma_write(dmadev, STM32_MDMA_CTCR(id), hwdesc->ctcr);
stm32_mdma_write(dmadev, STM32_MDMA_CBNDTR(id), hwdesc->cbndtr);
stm32_mdma_write(dmadev, STM32_MDMA_CSAR(id), hwdesc->csar);
stm32_mdma_write(dmadev, STM32_MDMA_CDAR(id), hwdesc->cdar);
stm32_mdma_write(dmadev, STM32_MDMA_CBRUR(id), hwdesc->cbrur);
stm32_mdma_write(dmadev, STM32_MDMA_CLAR(id), hwdesc->clar);
stm32_mdma_write(dmadev, STM32_MDMA_CTBR(id), hwdesc->ctbr);
stm32_mdma_write(dmadev, STM32_MDMA_CMAR(id), hwdesc->cmar);
stm32_mdma_write(dmadev, STM32_MDMA_CMDR(id), hwdesc->cmdr);
/* Clear interrupt status if it is there */
status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id));
if (status)
stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(id), status);
stm32_mdma_dump_reg(chan);
/* Start DMA */
stm32_mdma_set_bits(dmadev, STM32_MDMA_CCR(id), STM32_MDMA_CCR_EN);
/* Set SW request in case of MEM2MEM transfer */
if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) {
reg = STM32_MDMA_CCR(id);
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
}
chan->busy = true;
dev_dbg(chan2dev(chan), "vchan %p: started\n", &chan->vchan);
}
static void stm32_mdma_issue_pending(struct dma_chan *c)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
unsigned long flags;
spin_lock_irqsave(&chan->vchan.lock, flags);
if (!vchan_issue_pending(&chan->vchan))
goto end;
dev_dbg(chan2dev(chan), "vchan %p: issued\n", &chan->vchan);
if (!chan->desc && !chan->busy)
stm32_mdma_start_transfer(chan);
end:
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static int stm32_mdma_pause(struct dma_chan *c)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
unsigned long flags;
int ret;
spin_lock_irqsave(&chan->vchan.lock, flags);
ret = stm32_mdma_disable_chan(chan);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
if (!ret)
dev_dbg(chan2dev(chan), "vchan %p: pause\n", &chan->vchan);
return ret;
}
static int stm32_mdma_resume(struct dma_chan *c)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
struct stm32_mdma_hwdesc *hwdesc;
unsigned long flags;
u32 status, reg;
hwdesc = &chan->desc->hwdesc[chan->curr_hwdesc];
spin_lock_irqsave(&chan->vchan.lock, flags);
/* Re-configure control register */
stm32_mdma_write(dmadev, STM32_MDMA_CCR(chan->id), chan->desc->ccr);
/* Clear interrupt status if it is there */
status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
if (status)
stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
stm32_mdma_dump_reg(chan);
/* Re-start DMA */
reg = STM32_MDMA_CCR(chan->id);
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_EN);
/* Set SW request in case of MEM2MEM transfer */
if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM)
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
dev_dbg(chan2dev(chan), "vchan %p: resume\n", &chan->vchan);
return 0;
}
static int stm32_mdma_terminate_all(struct dma_chan *c)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&chan->vchan.lock, flags);
if (chan->busy) {
stm32_mdma_stop(chan);
chan->desc = NULL;
}
vchan_get_all_descriptors(&chan->vchan, &head);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_dma_desc_free_list(&chan->vchan, &head);
return 0;
}
static void stm32_mdma_synchronize(struct dma_chan *c)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
vchan_synchronize(&chan->vchan);
}
static int stm32_mdma_slave_config(struct dma_chan *c,
struct dma_slave_config *config)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
memcpy(&chan->dma_config, config, sizeof(*config));
return 0;
}
static size_t stm32_mdma_desc_residue(struct stm32_mdma_chan *chan,
struct stm32_mdma_desc *desc,
u32 curr_hwdesc)
{
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
u32 cbndtr, residue, modulo, burst_size;
int i;
residue = 0;
for (i = curr_hwdesc + 1; i < desc->count; i++) {
struct stm32_mdma_hwdesc *hwdesc = &desc->hwdesc[i];
residue += STM32_MDMA_CBNDTR_BNDT(hwdesc->cbndtr);
}
cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
residue += cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK;
if (!chan->mem_burst)
return residue;
burst_size = chan->mem_burst * chan->mem_width;
modulo = residue % burst_size;
if (modulo)
residue = residue - modulo + burst_size;
return residue;
}
static enum dma_status stm32_mdma_tx_status(struct dma_chan *c,
dma_cookie_t cookie,
struct dma_tx_state *state)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
u32 residue = 0;
status = dma_cookie_status(c, cookie, state);
if ((status == DMA_COMPLETE) || (!state))
return status;
spin_lock_irqsave(&chan->vchan.lock, flags);
vdesc = vchan_find_desc(&chan->vchan, cookie);
if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
residue = stm32_mdma_desc_residue(chan, chan->desc,
chan->curr_hwdesc);
else if (vdesc)
residue = stm32_mdma_desc_residue(chan,
to_stm32_mdma_desc(vdesc), 0);
dma_set_residue(state, residue);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
return status;
}
static void stm32_mdma_xfer_end(struct stm32_mdma_chan *chan)
{
list_del(&chan->desc->vdesc.node);
vchan_cookie_complete(&chan->desc->vdesc);
chan->desc = NULL;
chan->busy = false;
/* Start the next transfer if this driver has a next desc */
stm32_mdma_start_transfer(chan);
}
static irqreturn_t stm32_mdma_irq_handler(int irq, void *devid)
{
struct stm32_mdma_device *dmadev = devid;
struct stm32_mdma_chan *chan = devid;
u32 reg, id, ien, status, flag;
/* Find out which channel generates the interrupt */
status = readl_relaxed(dmadev->base + STM32_MDMA_GISR0);
if (status) {
id = __ffs(status);
} else {
status = readl_relaxed(dmadev->base + STM32_MDMA_GISR1);
if (!status) {
dev_dbg(mdma2dev(dmadev), "spurious it\n");
return IRQ_NONE;
}
id = __ffs(status);
/*
* As GISR0 provides status for channel id from 0 to 31,
* so GISR1 provides status for channel id from 32 to 62
*/
id += 32;
}
chan = &dmadev->chan[id];
if (!chan) {
dev_err(chan2dev(chan), "MDMA channel not initialized\n");
goto exit;
}
/* Handle interrupt for the channel */
spin_lock(&chan->vchan.lock);
status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
ien = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
ien &= STM32_MDMA_CCR_IRQ_MASK;
ien >>= 1;
if (!(status & ien)) {
spin_unlock(&chan->vchan.lock);
dev_dbg(chan2dev(chan),
"spurious it (status=0x%04x, ien=0x%04x)\n",
status, ien);
return IRQ_NONE;
}
flag = __ffs(status & ien);
reg = STM32_MDMA_CIFCR(chan->id);
switch (1 << flag) {
case STM32_MDMA_CISR_TEIF:
id = chan->id;
status = readl_relaxed(dmadev->base + STM32_MDMA_CESR(id));
dev_err(chan2dev(chan), "Transfer Err: stat=0x%08x\n", status);
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CTEIF);
break;
case STM32_MDMA_CISR_CTCIF:
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CCTCIF);
stm32_mdma_xfer_end(chan);
break;
case STM32_MDMA_CISR_BRTIF:
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBRTIF);
break;
case STM32_MDMA_CISR_BTIF:
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBTIF);
chan->curr_hwdesc++;
if (chan->desc && chan->desc->cyclic) {
if (chan->curr_hwdesc == chan->desc->count)
chan->curr_hwdesc = 0;
vchan_cyclic_callback(&chan->desc->vdesc);
}
break;
case STM32_MDMA_CISR_TCIF:
stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CLTCIF);
break;
default:
dev_err(chan2dev(chan), "it %d unhandled (status=0x%04x)\n",
1 << flag, status);
}
spin_unlock(&chan->vchan.lock);
exit:
return IRQ_HANDLED;
}
static int stm32_mdma_alloc_chan_resources(struct dma_chan *c)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
int ret;
chan->desc_pool = dmam_pool_create(dev_name(&c->dev->device),
c->device->dev,
sizeof(struct stm32_mdma_hwdesc),
__alignof__(struct stm32_mdma_hwdesc),
0);
if (!chan->desc_pool) {
dev_err(chan2dev(chan), "failed to allocate descriptor pool\n");
return -ENOMEM;
}
ret = clk_prepare_enable(dmadev->clk);
if (ret < 0) {
dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
return ret;
}
ret = stm32_mdma_disable_chan(chan);
if (ret < 0)
clk_disable_unprepare(dmadev->clk);
return ret;
}
static void stm32_mdma_free_chan_resources(struct dma_chan *c)
{
struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
unsigned long flags;
dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
if (chan->busy) {
spin_lock_irqsave(&chan->vchan.lock, flags);
stm32_mdma_stop(chan);
chan->desc = NULL;
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
clk_disable_unprepare(dmadev->clk);
vchan_free_chan_resources(to_virt_chan(c));
dmam_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL;
}
static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct stm32_mdma_device *dmadev = ofdma->of_dma_data;
struct stm32_mdma_chan *chan;
struct dma_chan *c;
struct stm32_mdma_chan_config config;
if (dma_spec->args_count < 5) {
dev_err(mdma2dev(dmadev), "Bad number of args\n");
return NULL;
}
config.request = dma_spec->args[0];
config.priority_level = dma_spec->args[1];
config.transfer_config = dma_spec->args[2];
config.mask_addr = dma_spec->args[3];
config.mask_data = dma_spec->args[4];
if (config.request >= dmadev->nr_requests) {
dev_err(mdma2dev(dmadev), "Bad request line\n");
return NULL;
}
if (config.priority_level > STM32_MDMA_VERY_HIGH_PRIORITY) {
dev_err(mdma2dev(dmadev), "Priority level not supported\n");
return NULL;
}
c = dma_get_any_slave_channel(&dmadev->ddev);
if (!c) {
dev_err(mdma2dev(dmadev), "No more channel avalaible\n");
return NULL;
}
chan = to_stm32_mdma_chan(c);
chan->chan_config = config;
return c;
}
static const struct of_device_id stm32_mdma_of_match[] = {
{ .compatible = "st,stm32h7-mdma", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, stm32_mdma_of_match);
static int stm32_mdma_probe(struct platform_device *pdev)
{
struct stm32_mdma_chan *chan;
struct stm32_mdma_device *dmadev;
struct dma_device *dd;
struct device_node *of_node;
struct resource *res;
u32 nr_channels, nr_requests;
int i, count, ret;
of_node = pdev->dev.of_node;
if (!of_node)
return -ENODEV;
ret = device_property_read_u32(&pdev->dev, "dma-channels",
&nr_channels);
if (ret) {
nr_channels = STM32_MDMA_MAX_CHANNELS;
dev_warn(&pdev->dev, "MDMA defaulting on %i channels\n",
nr_channels);
}
ret = device_property_read_u32(&pdev->dev, "dma-requests",
&nr_requests);
if (ret) {
nr_requests = STM32_MDMA_MAX_REQUESTS;
dev_warn(&pdev->dev, "MDMA defaulting on %i request lines\n",
nr_requests);
}
count = device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
NULL, 0);
if (count < 0)
count = 0;
dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev) + sizeof(u32) * count,
GFP_KERNEL);
if (!dmadev)
return -ENOMEM;
dmadev->nr_channels = nr_channels;
dmadev->nr_requests = nr_requests;
device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
dmadev->ahb_addr_masks,
count);
dmadev->nr_ahb_addr_masks = count;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dmadev->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dmadev->base))
return PTR_ERR(dmadev->base);
dmadev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dmadev->clk)) {
ret = PTR_ERR(dmadev->clk);
if (ret == -EPROBE_DEFER)
dev_info(&pdev->dev, "Missing controller clock\n");
return ret;
}
dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
if (!IS_ERR(dmadev->rst)) {
reset_control_assert(dmadev->rst);
udelay(2);
reset_control_deassert(dmadev->rst);
}
dd = &dmadev->ddev;
dma_cap_set(DMA_SLAVE, dd->cap_mask);
dma_cap_set(DMA_PRIVATE, dd->cap_mask);
dma_cap_set(DMA_CYCLIC, dd->cap_mask);
dma_cap_set(DMA_MEMCPY, dd->cap_mask);
dd->device_alloc_chan_resources = stm32_mdma_alloc_chan_resources;
dd->device_free_chan_resources = stm32_mdma_free_chan_resources;
dd->device_tx_status = stm32_mdma_tx_status;
dd->device_issue_pending = stm32_mdma_issue_pending;
dd->device_prep_slave_sg = stm32_mdma_prep_slave_sg;
dd->device_prep_dma_cyclic = stm32_mdma_prep_dma_cyclic;
dd->device_prep_dma_memcpy = stm32_mdma_prep_dma_memcpy;
dd->device_config = stm32_mdma_slave_config;
dd->device_pause = stm32_mdma_pause;
dd->device_resume = stm32_mdma_resume;
dd->device_terminate_all = stm32_mdma_terminate_all;
dd->device_synchronize = stm32_mdma_synchronize;
dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
BIT(DMA_MEM_TO_MEM);
dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
dd->max_burst = STM32_MDMA_MAX_BURST;
dd->dev = &pdev->dev;
INIT_LIST_HEAD(&dd->channels);
for (i = 0; i < dmadev->nr_channels; i++) {
chan = &dmadev->chan[i];
chan->id = i;
chan->vchan.desc_free = stm32_mdma_desc_free;
vchan_init(&chan->vchan, dd);
}
dmadev->irq = platform_get_irq(pdev, 0);
if (dmadev->irq < 0) {
dev_err(&pdev->dev, "failed to get IRQ\n");
return dmadev->irq;
}
ret = devm_request_irq(&pdev->dev, dmadev->irq, stm32_mdma_irq_handler,
0, dev_name(&pdev->dev), dmadev);
if (ret) {
dev_err(&pdev->dev, "failed to request IRQ\n");
return ret;
}
ret = dma_async_device_register(dd);
if (ret)
return ret;
ret = of_dma_controller_register(of_node, stm32_mdma_of_xlate, dmadev);
if (ret < 0) {
dev_err(&pdev->dev,
"STM32 MDMA DMA OF registration failed %d\n", ret);
goto err_unregister;
}
platform_set_drvdata(pdev, dmadev);
dev_info(&pdev->dev, "STM32 MDMA driver registered\n");
return 0;
err_unregister:
dma_async_device_unregister(dd);
return ret;
}
static struct platform_driver stm32_mdma_driver = {
.probe = stm32_mdma_probe,
.driver = {
.name = "stm32-mdma",
.of_match_table = stm32_mdma_of_match,
},
};
static int __init stm32_mdma_init(void)
{
return platform_driver_register(&stm32_mdma_driver);
}
subsys_initcall(stm32_mdma_init);
MODULE_DESCRIPTION("Driver for STM32 MDMA controller");
MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
MODULE_AUTHOR("Pierre-Yves Mordret <pierre-yves.mordret@st.com>");
MODULE_LICENSE("GPL v2");
......@@ -42,12 +42,18 @@
#define DMA_STAT 0x30
/* Offset between DMA_IRQ_EN and DMA_IRQ_STAT limits number of channels */
#define DMA_MAX_CHANNELS (DMA_IRQ_CHAN_NR * 0x10 / 4)
/*
* sun8i specific registers
*/
#define SUN8I_DMA_GATE 0x20
#define SUN8I_DMA_GATE_ENABLE 0x4
#define SUNXI_H3_SECURE_REG 0x20
#define SUNXI_H3_DMA_GATE 0x28
#define SUNXI_H3_DMA_GATE_ENABLE 0x4
/*
* Channels specific registers
*/
......@@ -62,16 +68,19 @@
#define DMA_CHAN_LLI_ADDR 0x08
#define DMA_CHAN_CUR_CFG 0x0c
#define DMA_CHAN_CFG_SRC_DRQ(x) ((x) & 0x1f)
#define DMA_CHAN_MAX_DRQ 0x1f
#define DMA_CHAN_CFG_SRC_DRQ(x) ((x) & DMA_CHAN_MAX_DRQ)
#define DMA_CHAN_CFG_SRC_IO_MODE BIT(5)
#define DMA_CHAN_CFG_SRC_LINEAR_MODE (0 << 5)
#define DMA_CHAN_CFG_SRC_BURST(x) (((x) & 0x3) << 7)
#define DMA_CHAN_CFG_SRC_BURST_A31(x) (((x) & 0x3) << 7)
#define DMA_CHAN_CFG_SRC_BURST_H3(x) (((x) & 0x3) << 6)
#define DMA_CHAN_CFG_SRC_WIDTH(x) (((x) & 0x3) << 9)
#define DMA_CHAN_CFG_DST_DRQ(x) (DMA_CHAN_CFG_SRC_DRQ(x) << 16)
#define DMA_CHAN_CFG_DST_IO_MODE (DMA_CHAN_CFG_SRC_IO_MODE << 16)
#define DMA_CHAN_CFG_DST_LINEAR_MODE (DMA_CHAN_CFG_SRC_LINEAR_MODE << 16)
#define DMA_CHAN_CFG_DST_BURST(x) (DMA_CHAN_CFG_SRC_BURST(x) << 16)
#define DMA_CHAN_CFG_DST_BURST_A31(x) (DMA_CHAN_CFG_SRC_BURST_A31(x) << 16)
#define DMA_CHAN_CFG_DST_BURST_H3(x) (DMA_CHAN_CFG_SRC_BURST_H3(x) << 16)
#define DMA_CHAN_CFG_DST_WIDTH(x) (DMA_CHAN_CFG_SRC_WIDTH(x) << 16)
#define DMA_CHAN_CUR_SRC 0x10
......@@ -90,6 +99,9 @@
#define NORMAL_WAIT 8
#define DRQ_SDRAM 1
/* forward declaration */
struct sun6i_dma_dev;
/*
* Hardware channels / ports representation
*
......@@ -111,7 +123,12 @@ struct sun6i_dma_config {
* however these SoCs really have and need this bit, as seen in the
* BSP kernel source code.
*/
bool gate_needed;
void (*clock_autogate_enable)(struct sun6i_dma_dev *);
void (*set_burst_length)(u32 *p_cfg, s8 src_burst, s8 dst_burst);
u32 src_burst_lengths;
u32 dst_burst_lengths;
u32 src_addr_widths;
u32 dst_addr_widths;
};
/*
......@@ -175,6 +192,9 @@ struct sun6i_dma_dev {
struct sun6i_pchan *pchans;
struct sun6i_vchan *vchans;
const struct sun6i_dma_config *cfg;
u32 num_pchans;
u32 num_vchans;
u32 max_request;
};
static struct device *chan2dev(struct dma_chan *chan)
......@@ -251,8 +271,12 @@ static inline s8 convert_burst(u32 maxburst)
switch (maxburst) {
case 1:
return 0;
case 4:
return 1;
case 8:
return 2;
case 16:
return 3;
default:
return -EINVAL;
}
......@@ -260,11 +284,29 @@ static inline s8 convert_burst(u32 maxburst)
static inline s8 convert_buswidth(enum dma_slave_buswidth addr_width)
{
if ((addr_width < DMA_SLAVE_BUSWIDTH_1_BYTE) ||
(addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES))
return -EINVAL;
return ilog2(addr_width);
}
static void sun6i_enable_clock_autogate_a23(struct sun6i_dma_dev *sdev)
{
writel(SUN8I_DMA_GATE_ENABLE, sdev->base + SUN8I_DMA_GATE);
}
static void sun6i_enable_clock_autogate_h3(struct sun6i_dma_dev *sdev)
{
writel(SUNXI_H3_DMA_GATE_ENABLE, sdev->base + SUNXI_H3_DMA_GATE);
}
return addr_width >> 1;
static void sun6i_set_burst_length_a31(u32 *p_cfg, s8 src_burst, s8 dst_burst)
{
*p_cfg |= DMA_CHAN_CFG_SRC_BURST_A31(src_burst) |
DMA_CHAN_CFG_DST_BURST_A31(dst_burst);
}
static void sun6i_set_burst_length_h3(u32 *p_cfg, s8 src_burst, s8 dst_burst)
{
*p_cfg |= DMA_CHAN_CFG_SRC_BURST_H3(src_burst) |
DMA_CHAN_CFG_DST_BURST_H3(dst_burst);
}
static size_t sun6i_get_chan_size(struct sun6i_pchan *pchan)
......@@ -399,7 +441,6 @@ static int sun6i_dma_start_desc(struct sun6i_vchan *vchan)
static void sun6i_dma_tasklet(unsigned long data)
{
struct sun6i_dma_dev *sdev = (struct sun6i_dma_dev *)data;
const struct sun6i_dma_config *cfg = sdev->cfg;
struct sun6i_vchan *vchan;
struct sun6i_pchan *pchan;
unsigned int pchan_alloc = 0;
......@@ -427,7 +468,7 @@ static void sun6i_dma_tasklet(unsigned long data)
}
spin_lock_irq(&sdev->lock);
for (pchan_idx = 0; pchan_idx < cfg->nr_max_channels; pchan_idx++) {
for (pchan_idx = 0; pchan_idx < sdev->num_pchans; pchan_idx++) {
pchan = &sdev->pchans[pchan_idx];
if (pchan->vchan || list_empty(&sdev->pending))
......@@ -448,7 +489,7 @@ static void sun6i_dma_tasklet(unsigned long data)
}
spin_unlock_irq(&sdev->lock);
for (pchan_idx = 0; pchan_idx < cfg->nr_max_channels; pchan_idx++) {
for (pchan_idx = 0; pchan_idx < sdev->num_pchans; pchan_idx++) {
if (!(pchan_alloc & BIT(pchan_idx)))
continue;
......@@ -470,7 +511,7 @@ static irqreturn_t sun6i_dma_interrupt(int irq, void *dev_id)
int i, j, ret = IRQ_NONE;
u32 status;
for (i = 0; i < sdev->cfg->nr_max_channels / DMA_IRQ_CHAN_NR; i++) {
for (i = 0; i < sdev->num_pchans / DMA_IRQ_CHAN_NR; i++) {
status = readl(sdev->base + DMA_IRQ_STAT(i));
if (!status)
continue;
......@@ -510,47 +551,49 @@ static int set_config(struct sun6i_dma_dev *sdev,
enum dma_transfer_direction direction,
u32 *p_cfg)
{
enum dma_slave_buswidth src_addr_width, dst_addr_width;
u32 src_maxburst, dst_maxburst;
s8 src_width, dst_width, src_burst, dst_burst;
src_addr_width = sconfig->src_addr_width;
dst_addr_width = sconfig->dst_addr_width;
src_maxburst = sconfig->src_maxburst;
dst_maxburst = sconfig->dst_maxburst;
switch (direction) {
case DMA_MEM_TO_DEV:
src_burst = convert_burst(sconfig->src_maxburst ?
sconfig->src_maxburst : 8);
src_width = convert_buswidth(sconfig->src_addr_width !=
DMA_SLAVE_BUSWIDTH_UNDEFINED ?
sconfig->src_addr_width :
DMA_SLAVE_BUSWIDTH_4_BYTES);
dst_burst = convert_burst(sconfig->dst_maxburst);
dst_width = convert_buswidth(sconfig->dst_addr_width);
if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
src_maxburst = src_maxburst ? src_maxburst : 8;
break;
case DMA_DEV_TO_MEM:
src_burst = convert_burst(sconfig->src_maxburst);
src_width = convert_buswidth(sconfig->src_addr_width);
dst_burst = convert_burst(sconfig->dst_maxburst ?
sconfig->dst_maxburst : 8);
dst_width = convert_buswidth(sconfig->dst_addr_width !=
DMA_SLAVE_BUSWIDTH_UNDEFINED ?
sconfig->dst_addr_width :
DMA_SLAVE_BUSWIDTH_4_BYTES);
if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dst_maxburst = dst_maxburst ? dst_maxburst : 8;
break;
default:
return -EINVAL;
}
if (src_burst < 0)
return src_burst;
if (src_width < 0)
return src_width;
if (dst_burst < 0)
return dst_burst;
if (dst_width < 0)
return dst_width;
*p_cfg = DMA_CHAN_CFG_SRC_BURST(src_burst) |
DMA_CHAN_CFG_SRC_WIDTH(src_width) |
DMA_CHAN_CFG_DST_BURST(dst_burst) |
if (!(BIT(src_addr_width) & sdev->slave.src_addr_widths))
return -EINVAL;
if (!(BIT(dst_addr_width) & sdev->slave.dst_addr_widths))
return -EINVAL;
if (!(BIT(src_maxburst) & sdev->cfg->src_burst_lengths))
return -EINVAL;
if (!(BIT(dst_maxburst) & sdev->cfg->dst_burst_lengths))
return -EINVAL;
src_width = convert_buswidth(src_addr_width);
dst_width = convert_buswidth(dst_addr_width);
dst_burst = convert_burst(dst_maxburst);
src_burst = convert_burst(src_maxburst);
*p_cfg = DMA_CHAN_CFG_SRC_WIDTH(src_width) |
DMA_CHAN_CFG_DST_WIDTH(dst_width);
sdev->cfg->set_burst_length(p_cfg, src_burst, dst_burst);
return 0;
}
......@@ -593,11 +636,11 @@ static struct dma_async_tx_descriptor *sun6i_dma_prep_dma_memcpy(
DMA_CHAN_CFG_DST_DRQ(DRQ_SDRAM) |
DMA_CHAN_CFG_DST_LINEAR_MODE |
DMA_CHAN_CFG_SRC_LINEAR_MODE |
DMA_CHAN_CFG_SRC_BURST(burst) |
DMA_CHAN_CFG_SRC_WIDTH(width) |
DMA_CHAN_CFG_DST_BURST(burst) |
DMA_CHAN_CFG_DST_WIDTH(width);
sdev->cfg->set_burst_length(&v_lli->cfg, burst, burst);
sun6i_dma_lli_add(NULL, v_lli, p_lli, txd);
sun6i_dma_dump_lli(vchan, v_lli);
......@@ -948,7 +991,7 @@ static struct dma_chan *sun6i_dma_of_xlate(struct of_phandle_args *dma_spec,
struct dma_chan *chan;
u8 port = dma_spec->args[0];
if (port > sdev->cfg->nr_max_requests)
if (port > sdev->max_request)
return NULL;
chan = dma_get_any_slave_channel(&sdev->slave);
......@@ -981,7 +1024,7 @@ static inline void sun6i_dma_free(struct sun6i_dma_dev *sdev)
{
int i;
for (i = 0; i < sdev->cfg->nr_max_vchans; i++) {
for (i = 0; i < sdev->num_vchans; i++) {
struct sun6i_vchan *vchan = &sdev->vchans[i];
list_del(&vchan->vc.chan.device_node);
......@@ -1009,6 +1052,15 @@ static struct sun6i_dma_config sun6i_a31_dma_cfg = {
.nr_max_channels = 16,
.nr_max_requests = 30,
.nr_max_vchans = 53,
.set_burst_length = sun6i_set_burst_length_a31,
.src_burst_lengths = BIT(1) | BIT(8),
.dst_burst_lengths = BIT(1) | BIT(8),
.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
};
/*
......@@ -1020,24 +1072,76 @@ static struct sun6i_dma_config sun8i_a23_dma_cfg = {
.nr_max_channels = 8,
.nr_max_requests = 24,
.nr_max_vchans = 37,
.gate_needed = true,
.clock_autogate_enable = sun6i_enable_clock_autogate_a23,
.set_burst_length = sun6i_set_burst_length_a31,
.src_burst_lengths = BIT(1) | BIT(8),
.dst_burst_lengths = BIT(1) | BIT(8),
.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
};
static struct sun6i_dma_config sun8i_a83t_dma_cfg = {
.nr_max_channels = 8,
.nr_max_requests = 28,
.nr_max_vchans = 39,
.clock_autogate_enable = sun6i_enable_clock_autogate_a23,
.set_burst_length = sun6i_set_burst_length_a31,
.src_burst_lengths = BIT(1) | BIT(8),
.dst_burst_lengths = BIT(1) | BIT(8),
.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
};
/*
* The H3 has 12 physical channels, a maximum DRQ port id of 27,
* and a total of 34 usable source and destination endpoints.
* It also supports additional burst lengths and bus widths,
* and the burst length fields have different offsets.
*/
static struct sun6i_dma_config sun8i_h3_dma_cfg = {
.nr_max_channels = 12,
.nr_max_requests = 27,
.nr_max_vchans = 34,
.clock_autogate_enable = sun6i_enable_clock_autogate_h3,
.set_burst_length = sun6i_set_burst_length_h3,
.src_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
.dst_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
};
/*
* The A64 binding uses the number of dma channels from the
* device tree node.
*/
static struct sun6i_dma_config sun50i_a64_dma_cfg = {
.clock_autogate_enable = sun6i_enable_clock_autogate_h3,
.set_burst_length = sun6i_set_burst_length_h3,
.src_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
.dst_burst_lengths = BIT(1) | BIT(4) | BIT(8) | BIT(16),
.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES),
};
/*
......@@ -1049,7 +1153,16 @@ static struct sun6i_dma_config sun8i_v3s_dma_cfg = {
.nr_max_channels = 8,
.nr_max_requests = 23,
.nr_max_vchans = 24,
.gate_needed = true,
.clock_autogate_enable = sun6i_enable_clock_autogate_a23,
.set_burst_length = sun6i_set_burst_length_a31,
.src_burst_lengths = BIT(1) | BIT(8),
.dst_burst_lengths = BIT(1) | BIT(8),
.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES),
};
static const struct of_device_id sun6i_dma_match[] = {
......@@ -1058,13 +1171,14 @@ static const struct of_device_id sun6i_dma_match[] = {
{ .compatible = "allwinner,sun8i-a83t-dma", .data = &sun8i_a83t_dma_cfg },
{ .compatible = "allwinner,sun8i-h3-dma", .data = &sun8i_h3_dma_cfg },
{ .compatible = "allwinner,sun8i-v3s-dma", .data = &sun8i_v3s_dma_cfg },
{ .compatible = "allwinner,sun50i-a64-dma", .data = &sun50i_a64_dma_cfg },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sun6i_dma_match);
static int sun6i_dma_probe(struct platform_device *pdev)
{
const struct of_device_id *device;
struct device_node *np = pdev->dev.of_node;
struct sun6i_dma_dev *sdc;
struct resource *res;
int ret, i;
......@@ -1073,10 +1187,9 @@ static int sun6i_dma_probe(struct platform_device *pdev)
if (!sdc)
return -ENOMEM;
device = of_match_device(sun6i_dma_match, &pdev->dev);
if (!device)
sdc->cfg = of_device_get_match_data(&pdev->dev);
if (!sdc->cfg)
return -ENODEV;
sdc->cfg = device->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sdc->base = devm_ioremap_resource(&pdev->dev, res);
......@@ -1129,37 +1242,57 @@ static int sun6i_dma_probe(struct platform_device *pdev)
sdc->slave.device_pause = sun6i_dma_pause;
sdc->slave.device_resume = sun6i_dma_resume;
sdc->slave.device_terminate_all = sun6i_dma_terminate_all;
sdc->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
sdc->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
sdc->slave.src_addr_widths = sdc->cfg->src_addr_widths;
sdc->slave.dst_addr_widths = sdc->cfg->dst_addr_widths;
sdc->slave.directions = BIT(DMA_DEV_TO_MEM) |
BIT(DMA_MEM_TO_DEV);
sdc->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
sdc->slave.dev = &pdev->dev;
sdc->pchans = devm_kcalloc(&pdev->dev, sdc->cfg->nr_max_channels,
sdc->num_pchans = sdc->cfg->nr_max_channels;
sdc->num_vchans = sdc->cfg->nr_max_vchans;
sdc->max_request = sdc->cfg->nr_max_requests;
ret = of_property_read_u32(np, "dma-channels", &sdc->num_pchans);
if (ret && !sdc->num_pchans) {
dev_err(&pdev->dev, "Can't get dma-channels.\n");
return ret;
}
ret = of_property_read_u32(np, "dma-requests", &sdc->max_request);
if (ret && !sdc->max_request) {
dev_info(&pdev->dev, "Missing dma-requests, using %u.\n",
DMA_CHAN_MAX_DRQ);
sdc->max_request = DMA_CHAN_MAX_DRQ;
}
/*
* If the number of vchans is not specified, derive it from the
* highest port number, at most one channel per port and direction.
*/
if (!sdc->num_vchans)
sdc->num_vchans = 2 * (sdc->max_request + 1);
sdc->pchans = devm_kcalloc(&pdev->dev, sdc->num_pchans,
sizeof(struct sun6i_pchan), GFP_KERNEL);
if (!sdc->pchans)
return -ENOMEM;
sdc->vchans = devm_kcalloc(&pdev->dev, sdc->cfg->nr_max_vchans,
sdc->vchans = devm_kcalloc(&pdev->dev, sdc->num_vchans,
sizeof(struct sun6i_vchan), GFP_KERNEL);
if (!sdc->vchans)
return -ENOMEM;
tasklet_init(&sdc->task, sun6i_dma_tasklet, (unsigned long)sdc);
for (i = 0; i < sdc->cfg->nr_max_channels; i++) {
for (i = 0; i < sdc->num_pchans; i++) {
struct sun6i_pchan *pchan = &sdc->pchans[i];
pchan->idx = i;
pchan->base = sdc->base + 0x100 + i * 0x40;
}
for (i = 0; i < sdc->cfg->nr_max_vchans; i++) {
for (i = 0; i < sdc->num_vchans; i++) {
struct sun6i_vchan *vchan = &sdc->vchans[i];
INIT_LIST_HEAD(&vchan->node);
......@@ -1199,8 +1332,8 @@ static int sun6i_dma_probe(struct platform_device *pdev)
goto err_dma_unregister;
}
if (sdc->cfg->gate_needed)
writel(SUN8I_DMA_GATE_ENABLE, sdc->base + SUN8I_DMA_GATE);
if (sdc->cfg->clock_autogate_enable)
sdc->cfg->clock_autogate_enable(sdc);
return 0;
......
......@@ -49,12 +49,12 @@ struct ti_am335x_xbar_data {
struct ti_am335x_xbar_map {
u16 dma_line;
u16 mux_val;
u8 mux_val;
};
static inline void ti_am335x_xbar_write(void __iomem *iomem, int event, u16 val)
static inline void ti_am335x_xbar_write(void __iomem *iomem, int event, u8 val)
{
writeb_relaxed(val & 0x1f, iomem + event);
writeb_relaxed(val, iomem + event);
}
static void ti_am335x_xbar_free(struct device *dev, void *route_data)
......@@ -105,7 +105,7 @@ static void *ti_am335x_xbar_route_allocate(struct of_phandle_args *dma_spec,
}
map->dma_line = (u16)dma_spec->args[0];
map->mux_val = (u16)dma_spec->args[2];
map->mux_val = (u8)dma_spec->args[2];
dma_spec->args[2] = 0;
dma_spec->args_count = 2;
......
......@@ -366,6 +366,20 @@ struct xilinx_dma_chan {
u16 tdest;
};
/**
* enum xdma_ip_type: DMA IP type.
*
* XDMA_TYPE_AXIDMA: Axi dma ip.
* XDMA_TYPE_CDMA: Axi cdma ip.
* XDMA_TYPE_VDMA: Axi vdma ip.
*
*/
enum xdma_ip_type {
XDMA_TYPE_AXIDMA = 0,
XDMA_TYPE_CDMA,
XDMA_TYPE_VDMA,
};
struct xilinx_dma_config {
enum xdma_ip_type dmatype;
int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk,
......
......@@ -41,20 +41,6 @@ struct xilinx_vdma_config {
int ext_fsync;
};
/**
* enum xdma_ip_type: DMA IP type.
*
* XDMA_TYPE_AXIDMA: Axi dma ip.
* XDMA_TYPE_CDMA: Axi cdma ip.
* XDMA_TYPE_VDMA: Axi vdma ip.
*
*/
enum xdma_ip_type {
XDMA_TYPE_AXIDMA = 0,
XDMA_TYPE_CDMA,
XDMA_TYPE_VDMA,
};
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
struct xilinx_vdma_config *cfg);
......
......@@ -329,7 +329,7 @@ enum dma_slave_buswidth {
* @src_addr_width: this is the width in bytes of the source (RX)
* register where DMA data shall be read. If the source
* is memory this may be ignored depending on architecture.
* Legal values: 1, 2, 4, 8.
* Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
* @dst_addr_width: same as src_addr_width but for destination
* target (TX) mutatis mutandis.
* @src_maxburst: the maximum number of words (note: words, as in
......@@ -404,14 +404,16 @@ enum dma_residue_granularity {
DMA_RESIDUE_GRANULARITY_BURST = 2,
};
/* struct dma_slave_caps - expose capabilities of a slave channel only
*
* @src_addr_widths: bit mask of src addr widths the channel supports
* @dst_addr_widths: bit mask of dstn addr widths the channel supports
* @directions: bit mask of slave direction the channel supported
* since the enum dma_transfer_direction is not defined as bits for each
* type of direction, the dma controller should fill (1 << <TYPE>) and same
* should be checked by controller as well
/**
* struct dma_slave_caps - expose capabilities of a slave channel only
* @src_addr_widths: bit mask of src addr widths the channel supports.
* Width is specified in bytes, e.g. for a channel supporting
* a width of 4 the mask should have BIT(4) set.
* @dst_addr_widths: bit mask of dst addr widths the channel supports
* @directions: bit mask of slave directions the channel supports.
* Since the enum dma_transfer_direction is not defined as bit flag for
* each type, the dma controller should set BIT(<TYPE>) and same
* should be checked by controller as well
* @max_burst: max burst capability per-transfer
* @cmd_pause: true, if pause and thereby resume is supported
* @cmd_terminate: true, if terminate cmd is supported
......@@ -678,11 +680,13 @@ struct dma_filter {
* @dev_id: unique device ID
* @dev: struct device reference for dma mapping api
* @src_addr_widths: bit mask of src addr widths the device supports
* Width is specified in bytes, e.g. for a device supporting
* a width of 4 the mask should have BIT(4) set.
* @dst_addr_widths: bit mask of dst addr widths the device supports
* @directions: bit mask of slave direction the device supports since
* the enum dma_transfer_direction is not defined as bits for
* each type of direction, the dma controller should fill (1 <<
* <TYPE>) and same should be checked by controller as well
* @directions: bit mask of slave directions the device supports.
* Since the enum dma_transfer_direction is not defined as bit flag for
* each type, the dma controller should set BIT(<TYPE>) and same
* should be checked by controller as well
* @max_burst: max burst capability per-transfer
* @residue_granularity: granularity of the transfer residue reported
* by tx_status
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment