Commit 28a375df authored by Bryan O'Donoghue's avatar Bryan O'Donoghue Committed by Ingo Molnar

x86/intel/quark: Add Isolated Memory Regions for Quark X1000

Intel's Quark X1000 SoC contains a set of registers called
Isolated Memory Regions. IMRs are accessed over the IOSF mailbox
interface. IMRs are areas carved out of memory that define
read/write access rights to the various system agents within the
Quark system. For a given agent in the system it is possible to
specify if that agent may read or write an area of memory
defined by an IMR with a granularity of 1 KiB.

Quark_SecureBootPRM_330234_001.pdf section 4.5 details the
concept of IMRs quark-x1000-datasheet.pdf section 12.7.4 details
the implementation of IMRs in silicon.

eSRAM flush, CPU Snoop write-only, CPU SMM Mode, CPU non-SMM
mode, RMU and PCIe Virtual Channels (VC0 and VC1) can have
individual read/write access masks applied to them for a given
memory region in Quark X1000. This enables IMRs to treat each
memory transaction type listed above on an individual basis and
to filter appropriately based on the IMR access mask for the
memory region. Quark supports eight IMRs.

Since all of the DMA capable SoC components in the X1000 are
mapped to VC0 it is possible to define sections of memory as
invalid for DMA write operations originating from Ethernet, USB,
SD and any other DMA capable south-cluster component on VC0.
Similarly it is possible to mark kernel memory as non-SMM mode
read/write only or to mark BIOS runtime memory as SMM mode
accessible only depending on the particular memory footprint on
a given system.

On an IMR violation Quark SoC X1000 systems are configured to
reset the system, so ensuring that the IMR memory map is
consistent with the EFI provided memory map is critical to
ensure no IMR violations reset the system.

The API for accessing IMRs is based on MTRR code but doesn't
provide a /proc or /sys interface to manipulate IMRs. Defining
the size and extent of IMRs is exclusively the domain of
in-kernel code.

Quark firmware sets up a series of locked IMRs around pieces of
memory that firmware owns such as ACPI runtime data. During boot
a series of unlocked IMRs are placed around items in memory to
guarantee no DMA modification of those items can take place.
Grub also places an unlocked IMR around the kernel boot params
data structure and compressed kernel image. It is necessary for
the kernel to tear down all unlocked IMRs in order to ensure
that the kernel's view of memory passed via the EFI memory map
is consistent with the IMR memory map. Without tearing down all
unlocked IMRs on boot transitory IMRs such as those used to
protect the compressed kernel image will cause IMR violations and system reboots.

The IMR init code tears down all unlocked IMRs and sets a
protective IMR around the kernel .text and .rodata as one
contiguous block. This sanitizes the IMR memory map with respect
to the EFI memory map and protects the read-only portions of the
kernel from unwarranted DMA access.
Tested-by: default avatarOng, Boon Leong <boon.leong.ong@intel.com>
Signed-off-by: default avatarBryan O'Donoghue <pure.logic@nexus-software.ie>
Reviewed-by: default avatarAndy Shevchenko <andy.schevchenko@gmail.com>
Reviewed-by: default avatarDarren Hart <dvhart@linux.intel.com>
Reviewed-by: default avatarOng, Boon Leong <boon.leong.ong@intel.com>
Cc: andy.shevchenko@gmail.com
Cc: dvhart@infradead.org
Link: http://lkml.kernel.org/r/1422635379-12476-2-git-send-email-pure.logic@nexus-software.ieSigned-off-by: default avatarIngo Molnar <mingo@kernel.org>
parent e07e0d4c
......@@ -313,6 +313,19 @@ config DEBUG_NMI_SELFTEST
If unsure, say N.
config DEBUG_IMR_SELFTEST
bool "Isolated Memory Region self test"
default n
depends on INTEL_IMR
---help---
This option enables automated sanity testing of the IMR code.
Some simple tests are run to verify IMR bounds checking, alignment
and overlapping. This option is really only useful if you are
debugging an IMR memory map or are modifying the IMR code and want to
test your changes.
If unsure say N here.
config X86_DEBUG_STATIC_CPU_HAS
bool "Debug alternatives"
depends on DEBUG_KERNEL
......
/*
* imr.h: Isolated Memory Region API
*
* Copyright(c) 2013 Intel Corporation.
* Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#ifndef _IMR_H
#define _IMR_H
#include <linux/types.h>
/*
* IMR agent access mask bits
* See section 12.7.4.7 from quark-x1000-datasheet.pdf for register
* definitions.
*/
#define IMR_ESRAM_FLUSH BIT(31)
#define IMR_CPU_SNOOP BIT(30) /* Applicable only to write */
#define IMR_RMU BIT(29)
#define IMR_VC1_SAI_ID3 BIT(15)
#define IMR_VC1_SAI_ID2 BIT(14)
#define IMR_VC1_SAI_ID1 BIT(13)
#define IMR_VC1_SAI_ID0 BIT(12)
#define IMR_VC0_SAI_ID3 BIT(11)
#define IMR_VC0_SAI_ID2 BIT(10)
#define IMR_VC0_SAI_ID1 BIT(9)
#define IMR_VC0_SAI_ID0 BIT(8)
#define IMR_CPU_0 BIT(1) /* SMM mode */
#define IMR_CPU BIT(0) /* Non SMM mode */
#define IMR_ACCESS_NONE 0
/*
* Read/Write access-all bits here include some reserved bits
* These are the values firmware uses and are accepted by hardware.
* The kernel defines read/write access-all in the same way as firmware
* in order to have a consistent and crisp definition across firmware,
* bootloader and kernel.
*/
#define IMR_READ_ACCESS_ALL 0xBFFFFFFF
#define IMR_WRITE_ACCESS_ALL 0xFFFFFFFF
/* Number of IMRs provided by Quark X1000 SoC */
#define QUARK_X1000_IMR_MAX 0x08
#define QUARK_X1000_IMR_REGBASE 0x40
/* IMR alignment bits - only bits 31:10 are checked for IMR validity */
#define IMR_ALIGN 0x400
#define IMR_MASK (IMR_ALIGN - 1)
int imr_add_range(phys_addr_t base, size_t size,
unsigned int rmask, unsigned int wmask, bool lock);
int imr_remove_range(phys_addr_t base, size_t size);
#endif /* _IMR_H */
obj-$(CONFIG_INTEL_IMR) += imr.o
obj-$(CONFIG_DEBUG_IMR_SELFTEST) += imr_selftest.o
/**
* imr.c
*
* Copyright(c) 2013 Intel Corporation.
* Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
*
* IMR registers define an isolated region of memory that can
* be masked to prohibit certain system agents from accessing memory.
* When a device behind a masked port performs an access - snooped or
* not, an IMR may optionally prevent that transaction from changing
* the state of memory or from getting correct data in response to the
* operation.
*
* Write data will be dropped and reads will return 0xFFFFFFFF, the
* system will reset and system BIOS will print out an error message to
* inform the user that an IMR has been violated.
*
* This code is based on the Linux MTRR code and reference code from
* Intel's Quark BSP EFI, Linux and grub code.
*
* See quark-x1000-datasheet.pdf for register definitions.
* http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm-generic/sections.h>
#include <asm/cpu_device_id.h>
#include <asm/imr.h>
#include <asm/iosf_mbi.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/types.h>
struct imr_device {
struct dentry *file;
bool init;
struct mutex lock;
int max_imr;
int reg_base;
};
static struct imr_device imr_dev;
/*
* IMR read/write mask control registers.
* See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
* bit definitions.
*
* addr_hi
* 31 Lock bit
* 30:24 Reserved
* 23:2 1 KiB aligned lo address
* 1:0 Reserved
*
* addr_hi
* 31:24 Reserved
* 23:2 1 KiB aligned hi address
* 1:0 Reserved
*/
#define IMR_LOCK BIT(31)
struct imr_regs {
u32 addr_lo;
u32 addr_hi;
u32 rmask;
u32 wmask;
};
#define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32))
#define IMR_SHIFT 8
#define imr_to_phys(x) ((x) << IMR_SHIFT)
#define phys_to_imr(x) ((x) >> IMR_SHIFT)
/**
* imr_is_enabled - true if an IMR is enabled false otherwise.
*
* Determines if an IMR is enabled based on address range and read/write
* mask. An IMR set with an address range set to zero and a read/write
* access mask set to all is considered to be disabled. An IMR in any
* other state - for example set to zero but without read/write access
* all is considered to be enabled. This definition of disabled is how
* firmware switches off an IMR and is maintained in kernel for
* consistency.
*
* @imr: pointer to IMR descriptor.
* @return: true if IMR enabled false if disabled.
*/
static inline int imr_is_enabled(struct imr_regs *imr)
{
return !(imr->rmask == IMR_READ_ACCESS_ALL &&
imr->wmask == IMR_WRITE_ACCESS_ALL &&
imr_to_phys(imr->addr_lo) == 0 &&
imr_to_phys(imr->addr_hi) == 0);
}
/**
* imr_read - read an IMR at a given index.
*
* Requires caller to hold imr mutex.
*
* @idev: pointer to imr_device structure.
* @imr_id: IMR entry to read.
* @imr: IMR structure representing address and access masks.
* @return: 0 on success or error code passed from mbi_iosf on failure.
*/
static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
{
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
int ret;
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
reg++, &imr->addr_lo);
if (ret)
return ret;
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
reg++, &imr->addr_hi);
if (ret)
return ret;
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
reg++, &imr->rmask);
if (ret)
return ret;
ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ,
reg++, &imr->wmask);
if (ret)
return ret;
return 0;
}
/**
* imr_write - write an IMR at a given index.
*
* Requires caller to hold imr mutex.
* Note lock bits need to be written independently of address bits.
*
* @idev: pointer to imr_device structure.
* @imr_id: IMR entry to write.
* @imr: IMR structure representing address and access masks.
* @lock: indicates if the IMR lock bit should be applied.
* @return: 0 on success or error code passed from mbi_iosf on failure.
*/
static int imr_write(struct imr_device *idev, u32 imr_id,
struct imr_regs *imr, bool lock)
{
unsigned long flags;
u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
int ret;
local_irq_save(flags);
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, reg++,
imr->addr_lo);
if (ret)
goto failed;
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
reg++, imr->addr_hi);
if (ret)
goto failed;
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
reg++, imr->rmask);
if (ret)
goto failed;
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
reg++, imr->wmask);
if (ret)
goto failed;
/* Lock bit must be set separately to addr_lo address bits. */
if (lock) {
imr->addr_lo |= IMR_LOCK;
ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE,
reg - IMR_NUM_REGS, imr->addr_lo);
if (ret)
goto failed;
}
local_irq_restore(flags);
return 0;
failed:
/*
* If writing to the IOSF failed then we're in an unknown state,
* likely a very bad state. An IMR in an invalid state will almost
* certainly lead to a memory access violation.
*/
local_irq_restore(flags);
WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
return ret;
}
/**
* imr_dbgfs_state_show - print state of IMR registers.
*
* @s: pointer to seq_file for output.
* @unused: unused parameter.
* @return: 0 on success or error code passed from mbi_iosf on failure.
*/
static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
{
phys_addr_t base;
phys_addr_t end;
int i;
struct imr_device *idev = s->private;
struct imr_regs imr;
size_t size;
int ret = -ENODEV;
mutex_lock(&idev->lock);
for (i = 0; i < idev->max_imr; i++) {
ret = imr_read(idev, i, &imr);
if (ret)
break;
/*
* Remember to add IMR_ALIGN bytes to size to indicate the
* inherent IMR_ALIGN size bytes contained in the masked away
* lower ten bits.
*/
if (imr_is_enabled(&imr)) {
base = imr_to_phys(imr.addr_lo);
end = imr_to_phys(imr.addr_hi) + IMR_MASK;
} else {
base = 0;
end = 0;
}
size = end - base;
seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
"rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
&base, &end, size, imr.rmask, imr.wmask,
imr_is_enabled(&imr) ? "enabled " : "disabled",
imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
}
mutex_unlock(&idev->lock);
return ret;
}
/**
* imr_state_open - debugfs open callback.
*
* @inode: pointer to struct inode.
* @file: pointer to struct file.
* @return: result of single open.
*/
static int imr_state_open(struct inode *inode, struct file *file)
{
return single_open(file, imr_dbgfs_state_show, inode->i_private);
}
static const struct file_operations imr_state_ops = {
.open = imr_state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* imr_debugfs_register - register debugfs hooks.
*
* @idev: pointer to imr_device structure.
* @return: 0 on success - errno on failure.
*/
static int imr_debugfs_register(struct imr_device *idev)
{
idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
idev, &imr_state_ops);
if (IS_ERR(idev->file))
return PTR_ERR(idev->file);
return 0;
}
/**
* imr_debugfs_unregister - unregister debugfs hooks.
*
* @idev: pointer to imr_device structure.
* @return:
*/
static void imr_debugfs_unregister(struct imr_device *idev)
{
debugfs_remove(idev->file);
}
/**
* imr_check_params - check passed address range IMR alignment and non-zero size
*
* @base: base address of intended IMR.
* @size: size of intended IMR.
* @return: zero on valid range -EINVAL on unaligned base/size.
*/
static int imr_check_params(phys_addr_t base, size_t size)
{
if ((base & IMR_MASK) || (size & IMR_MASK)) {
pr_err("base %pa size 0x%08zx must align to 1KiB\n",
&base, size);
return -EINVAL;
}
if (size == 0)
return -EINVAL;
return 0;
}
/**
* imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
*
* IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
* value in the register. We need to subtract IMR_ALIGN bytes from input sizes
* as a result.
*
* @size: input size bytes.
* @return: reduced size.
*/
static inline size_t imr_raw_size(size_t size)
{
return size - IMR_ALIGN;
}
/**
* imr_address_overlap - detects an address overlap.
*
* @addr: address to check against an existing IMR.
* @imr: imr being checked.
* @return: true for overlap false for no overlap.
*/
static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
{
return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
}
/**
* imr_add_range - add an Isolated Memory Region.
*
* @base: physical base address of region aligned to 1KiB.
* @size: physical size of region in bytes must be aligned to 1KiB.
* @read_mask: read access mask.
* @write_mask: write access mask.
* @lock: indicates whether or not to permanently lock this region.
* @return: zero on success or negative value indicating error.
*/
int imr_add_range(phys_addr_t base, size_t size,
unsigned int rmask, unsigned int wmask, bool lock)
{
phys_addr_t end;
unsigned int i;
struct imr_device *idev = &imr_dev;
struct imr_regs imr;
size_t raw_size;
int reg;
int ret;
if (WARN_ONCE(idev->init == false, "driver not initialized"))
return -ENODEV;
ret = imr_check_params(base, size);
if (ret)
return ret;
/* Tweak the size value. */
raw_size = imr_raw_size(size);
end = base + raw_size;
/*
* Check for reserved IMR value common to firmware, kernel and grub
* indicating a disabled IMR.
*/
imr.addr_lo = phys_to_imr(base);
imr.addr_hi = phys_to_imr(end);
imr.rmask = rmask;
imr.wmask = wmask;
if (!imr_is_enabled(&imr))
return -ENOTSUPP;
mutex_lock(&idev->lock);
/*
* Find a free IMR while checking for an existing overlapping range.
* Note there's no restriction in silicon to prevent IMR overlaps.
* For the sake of simplicity and ease in defining/debugging an IMR
* memory map we exclude IMR overlaps.
*/
reg = -1;
for (i = 0; i < idev->max_imr; i++) {
ret = imr_read(idev, i, &imr);
if (ret)
goto failed;
/* Find overlap @ base or end of requested range. */
ret = -EINVAL;
if (imr_is_enabled(&imr)) {
if (imr_address_overlap(base, &imr))
goto failed;
if (imr_address_overlap(end, &imr))
goto failed;
} else {
reg = i;
}
}
/* Error out if we have no free IMR entries. */
if (reg == -1) {
ret = -ENOMEM;
goto failed;
}
pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
reg, &base, &end, raw_size, rmask, wmask);
/* Enable IMR at specified range and access mask. */
imr.addr_lo = phys_to_imr(base);
imr.addr_hi = phys_to_imr(end);
imr.rmask = rmask;
imr.wmask = wmask;
ret = imr_write(idev, reg, &imr, lock);
if (ret < 0) {
/*
* In the highly unlikely event iosf_mbi_write failed
* attempt to rollback the IMR setup skipping the trapping
* of further IOSF write failures.
*/
imr.addr_lo = 0;
imr.addr_hi = 0;
imr.rmask = IMR_READ_ACCESS_ALL;
imr.wmask = IMR_WRITE_ACCESS_ALL;
imr_write(idev, reg, &imr, false);
}
failed:
mutex_unlock(&idev->lock);
return ret;
}
EXPORT_SYMBOL_GPL(imr_add_range);
/**
* __imr_remove_range - delete an Isolated Memory Region.
*
* This function allows you to delete an IMR by its index specified by reg or
* by address range specified by base and size respectively. If you specify an
* index on its own the base and size parameters are ignored.
* imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
* imr_remove_range(-1, base, size); delete IMR from base to base+size.
*
* @reg: imr index to remove.
* @base: physical base address of region aligned to 1 KiB.
* @size: physical size of region in bytes aligned to 1 KiB.
* @return: -EINVAL on invalid range or out or range id
* -ENODEV if reg is valid but no IMR exists or is locked
* 0 on success.
*/
static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
{
phys_addr_t end;
bool found = false;
unsigned int i;
struct imr_device *idev = &imr_dev;
struct imr_regs imr;
size_t raw_size;
int ret = 0;
if (WARN_ONCE(idev->init == false, "driver not initialized"))
return -ENODEV;
/*
* Validate address range if deleting by address, else we are
* deleting by index where base and size will be ignored.
*/
if (reg == -1) {
ret = imr_check_params(base, size);
if (ret)
return ret;
}
/* Tweak the size value. */
raw_size = imr_raw_size(size);
end = base + raw_size;
mutex_lock(&idev->lock);
if (reg >= 0) {
/* If a specific IMR is given try to use it. */
ret = imr_read(idev, reg, &imr);
if (ret)
goto failed;
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
ret = -ENODEV;
goto failed;
}
found = true;
} else {
/* Search for match based on address range. */
for (i = 0; i < idev->max_imr; i++) {
ret = imr_read(idev, i, &imr);
if (ret)
goto failed;
if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
continue;
if ((imr_to_phys(imr.addr_lo) == base) &&
(imr_to_phys(imr.addr_hi) == end)) {
found = true;
reg = i;
break;
}
}
}
if (!found) {
ret = -ENODEV;
goto failed;
}
pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
/* Tear down the IMR. */
imr.addr_lo = 0;
imr.addr_hi = 0;
imr.rmask = IMR_READ_ACCESS_ALL;
imr.wmask = IMR_WRITE_ACCESS_ALL;
ret = imr_write(idev, reg, &imr, false);
failed:
mutex_unlock(&idev->lock);
return ret;
}
/**
* imr_remove_range - delete an Isolated Memory Region by address
*
* This function allows you to delete an IMR by an address range specified
* by base and size respectively.
* imr_remove_range(base, size); delete IMR from base to base+size.
*
* @base: physical base address of region aligned to 1 KiB.
* @size: physical size of region in bytes aligned to 1 KiB.
* @return: -EINVAL on invalid range or out or range id
* -ENODEV if reg is valid but no IMR exists or is locked
* 0 on success.
*/
int imr_remove_range(phys_addr_t base, size_t size)
{
return __imr_remove_range(-1, base, size);
}
EXPORT_SYMBOL_GPL(imr_remove_range);
/**
* imr_clear - delete an Isolated Memory Region by index
*
* This function allows you to delete an IMR by an address range specified
* by the index of the IMR. Useful for initial sanitization of the IMR
* address map.
* imr_ge(base, size); delete IMR from base to base+size.
*
* @reg: imr index to remove.
* @return: -EINVAL on invalid range or out or range id
* -ENODEV if reg is valid but no IMR exists or is locked
* 0 on success.
*/
static inline int imr_clear(int reg)
{
return __imr_remove_range(reg, 0, 0);
}
/**
* imr_fixup_memmap - Tear down IMRs used during bootup.
*
* BIOS and Grub both setup IMRs around compressed kernel, initrd memory
* that need to be removed before the kernel hands out one of the IMR
* encased addresses to a downstream DMA agent such as the SD or Ethernet.
* IMRs on Galileo are setup to immediately reset the system on violation.
* As a result if you're running a root filesystem from SD - you'll need
* the boot-time IMRs torn down or you'll find seemingly random resets when
* using your filesystem.
*
* @idev: pointer to imr_device structure.
* @return:
*/
static void __init imr_fixup_memmap(struct imr_device *idev)
{
phys_addr_t base = virt_to_phys(&_text);
size_t size = virt_to_phys(&__end_rodata) - base;
int i;
int ret;
/* Tear down all existing unlocked IMRs. */
for (i = 0; i < idev->max_imr; i++)
imr_clear(i);
/*
* Setup a locked IMR around the physical extent of the kernel
* from the beginning of the .text secton to the end of the
* .rodata section as one physically contiguous block.
*/
ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true);
if (ret < 0) {
pr_err("unable to setup IMR for kernel: (%p - %p)\n",
&_text, &__end_rodata);
} else {
pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n",
size / 1024, &_text, &__end_rodata);
}
}
static const struct x86_cpu_id imr_ids[] __initconst = {
{ X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */
{}
};
MODULE_DEVICE_TABLE(x86cpu, imr_ids);
/**
* imr_init - entry point for IMR driver.
*
* return: -ENODEV for no IMR support 0 if good to go.
*/
static int __init imr_init(void)
{
struct imr_device *idev = &imr_dev;
int ret;
if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
return -ENODEV;
idev->max_imr = QUARK_X1000_IMR_MAX;
idev->reg_base = QUARK_X1000_IMR_REGBASE;
idev->init = true;
mutex_init(&idev->lock);
ret = imr_debugfs_register(idev);
if (ret != 0)
pr_warn("debugfs register failed!\n");
imr_fixup_memmap(idev);
return 0;
}
/**
* imr_exit - exit point for IMR code.
*
* Deregisters debugfs, leave IMR state as-is.
*
* return:
*/
static void __exit imr_exit(void)
{
imr_debugfs_unregister(&imr_dev);
}
module_init(imr_init);
module_exit(imr_exit);
MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
MODULE_DESCRIPTION("Intel Isolated Memory Region driver");
MODULE_LICENSE("Dual BSD/GPL");
/**
* imr_selftest.c
*
* Copyright(c) 2013 Intel Corporation.
* Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
*
* IMR self test. The purpose of this module is to run a set of tests on the
* IMR API to validate it's sanity. We check for overlapping, reserved
* addresses and setup/teardown sanity.
*
*/
#include <asm-generic/sections.h>
#include <asm/imr.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/types.h>
#define SELFTEST KBUILD_MODNAME ": "
/**
* imr_self_test_result - Print result string for self test.
*
* @res: result code - true if test passed false otherwise.
* @fmt: format string.
* ... variadic argument list.
*/
static void __init imr_self_test_result(int res, const char *fmt, ...)
{
va_list vlist;
/* Print pass/fail. */
if (res)
pr_info(SELFTEST "pass ");
else
pr_info(SELFTEST "fail ");
/* Print variable string. */
va_start(vlist, fmt);
vprintk(fmt, vlist);
va_end(vlist);
/* Optional warning. */
WARN(res == 0, "test failed");
}
#undef SELFTEST
/**
* imr_self_test
*
* Verify IMR self_test with some simple tests to verify overlap,
* zero sized allocations and 1 KiB sized areas.
*
*/
static void __init imr_self_test(void)
{
phys_addr_t base = virt_to_phys(&_text);
size_t size = virt_to_phys(&__end_rodata) - base;
const char *fmt_over = "overlapped IMR @ (0x%08lx - 0x%08lx)\n";
int ret;
/* Test zero zero. */
ret = imr_add_range(0, 0, 0, 0, false);
imr_self_test_result(ret < 0, "zero sized IMR\n");
/* Test exact overlap. */
ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, false);
imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
/* Test overlap with base inside of existing. */
base += size - IMR_ALIGN;
ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, false);
imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
/* Test overlap with end inside of existing. */
base -= size + IMR_ALIGN * 2;
ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, false);
imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
/* Test that a 1 KiB IMR @ zero with read/write all will bomb out. */
ret = imr_add_range(0, IMR_ALIGN, IMR_READ_ACCESS_ALL,
IMR_WRITE_ACCESS_ALL, false);
imr_self_test_result(ret < 0, "1KiB IMR @ 0x00000000 - access-all\n");
/* Test that a 1 KiB IMR @ zero with CPU only will work. */
ret = imr_add_range(0, IMR_ALIGN, IMR_CPU, IMR_CPU, false);
imr_self_test_result(ret >= 0, "1KiB IMR @ 0x00000000 - cpu-access\n");
if (ret >= 0) {
ret = imr_remove_range(0, IMR_ALIGN);
imr_self_test_result(ret == 0, "teardown - cpu-access\n");
}
/* Test 2 KiB works. */
size = IMR_ALIGN * 2;
ret = imr_add_range(0, size, IMR_READ_ACCESS_ALL,
IMR_WRITE_ACCESS_ALL, false);
imr_self_test_result(ret >= 0, "2KiB IMR @ 0x00000000\n");
if (ret >= 0) {
ret = imr_remove_range(0, size);
imr_self_test_result(ret == 0, "teardown 2KiB\n");
}
}
/**
* imr_self_test_init - entry point for IMR driver.
*
* return: -ENODEV for no IMR support 0 if good to go.
*/
static int __init imr_self_test_init(void)
{
imr_self_test();
return 0;
}
/**
* imr_self_test_exit - exit point for IMR code.
*
* return:
*/
static void __exit imr_self_test_exit(void)
{
}
module_init(imr_self_test_init);
module_exit(imr_self_test_exit);
MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
MODULE_DESCRIPTION("Intel Isolated Memory Region self-test driver");
MODULE_LICENSE("Dual BSD/GPL");
......@@ -735,6 +735,31 @@ config INTEL_IPS
functionality. If in doubt, say Y here; it will only load on
supported platforms.
config INTEL_IMR
bool "Intel Isolated Memory Region support"
default n
depends on X86_INTEL_QUARK && IOSF_MBI
---help---
This option provides a means to manipulate Isolated Memory Regions.
IMRs are a set of registers that define read and write access masks
to prohibit certain system agents from accessing memory with 1 KiB
granularity.
IMRs make it possible to control read/write access to an address
by hardware agents inside the SoC. Read and write masks can be
defined for:
- eSRAM flush
- Dirty CPU snoop (write only)
- RMU access
- PCI Virtual Channel 0/Virtual Channel 1
- SMM mode
- Non SMM mode
Quark contains a set of eight IMR registers and makes use of those
registers during its bootup process.
If you are running on a Galileo/Quark say Y here.
config IBM_RTL
tristate "Device driver to enable PRTL support"
depends on X86 && PCI
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment