Commit 29440a2b authored by Bernd Schmidt's avatar Bernd Schmidt Committed by Bryan Wu

Blackfin arch: Start untangling the CPLB handling code.

 - Move cache initialization to C from assembly.
 - Move anomaly workaround for writing [ID]MEM_CONTROL to assembly, so
   that we don't have to mess around with .align directives in C source.
 - Fix a bug where bfin_write_DMEM_CONTROL would write to IMEM_CONTROL
 - Break out CPLB related code from kernel/setup.c into their own file.
 - Don't define variables in header files, only declare them.
Signed-off-by: default avatarBernd Schmidt <bernd.schmidt@analog.com>
Signed-off-by: default avatarBryan Wu <bryan.wu@analog.com>
parent 474f1a66
......@@ -7,7 +7,7 @@ extra-y := init_task.o vmlinux.lds
obj-y := \
entry.o process.o bfin_ksyms.o ptrace.o setup.o signal.o \
sys_bfin.o time.o traps.o irqchip.o dma-mapping.o flat.o \
fixed_code.o
fixed_code.o cplbinit.o cacheinit.o
obj-$(CONFIG_BF53x) += bfin_gpio.o
obj-$(CONFIG_BF561) += bfin_gpio.o
......
/*
* Copyright 2004-2007 Analog Devices Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/cpu.h>
#include <asm/cacheflush.h>
#include <asm/blackfin.h>
#include <asm/cplbinit.h>
#if defined(CONFIG_BLKFIN_CACHE)
void bfin_icache_init(void)
{
unsigned long *table = icplb_table;
unsigned long ctrl;
int i;
for (i = 0; i < MAX_CPLBS; i++) {
unsigned long addr = *table++;
unsigned long data = *table++;
if (addr == (unsigned long)-1)
break;
bfin_write32(ICPLB_ADDR0 + i * 4, addr);
bfin_write32(ICPLB_DATA0 + i * 4, data);
}
ctrl = bfin_read_IMEM_CONTROL();
ctrl |= IMC | ENICPLB;
bfin_write_IMEM_CONTROL(ctrl);
}
#endif
#if defined(CONFIG_BLKFIN_DCACHE)
void bfin_dcache_init(void)
{
unsigned long *table = dcplb_table;
unsigned long ctrl;
int i;
for (i = 0; i < MAX_CPLBS; i++) {
unsigned long addr = *table++;
unsigned long data = *table++;
if (addr == (unsigned long)-1)
break;
bfin_write32(DCPLB_ADDR0 + i * 4, addr);
bfin_write32(DCPLB_DATA0 + i * 4, data);
}
ctrl = bfin_read_DMEM_CONTROL();
ctrl |= DMEM_CNTR;
bfin_write_DMEM_CONTROL(ctrl);
}
#endif
/*
* Blackfin CPLB initialization
*
* Copyright 2004-2007 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/module.h>
#include <asm/blackfin.h>
#include <asm/cplbinit.h>
u_long icplb_table[MAX_CPLBS+1];
u_long dcplb_table[MAX_CPLBS+1];
#ifdef CONFIG_CPLB_SWITCH_TAB_L1
u_long ipdt_table[MAX_SWITCH_I_CPLBS+1]__attribute__((l1_data));
u_long dpdt_table[MAX_SWITCH_D_CPLBS+1]__attribute__((l1_data));
#ifdef CONFIG_CPLB_INFO
u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS]__attribute__((l1_data));
u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS]__attribute__((l1_data));
#endif /* CONFIG_CPLB_INFO */
#else
u_long ipdt_table[MAX_SWITCH_I_CPLBS+1];
u_long dpdt_table[MAX_SWITCH_D_CPLBS+1];
#ifdef CONFIG_CPLB_INFO
u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS];
u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS];
#endif /* CONFIG_CPLB_INFO */
#endif /*CONFIG_CPLB_SWITCH_TAB_L1*/
struct s_cplb {
struct cplb_tab init_i;
struct cplb_tab init_d;
struct cplb_tab switch_i;
struct cplb_tab switch_d;
};
#if defined(CONFIG_BLKFIN_DCACHE) || defined(CONFIG_BLKFIN_CACHE)
static struct cplb_desc cplb_data[] = {
{
.start = 0,
.end = SIZE_1K,
.psize = SIZE_1K,
.attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
.i_conf = SDRAM_OOPS,
.d_conf = SDRAM_OOPS,
#if defined(CONFIG_DEBUG_HUNT_FOR_ZERO)
.valid = 1,
#else
.valid = 0,
#endif
.name = "ZERO Pointer Saveguard",
},
{
.start = L1_CODE_START,
.end = L1_CODE_START + L1_CODE_LENGTH,
.psize = SIZE_4M,
.attr = INITIAL_T | SWITCH_T | I_CPLB,
.i_conf = L1_IMEMORY,
.d_conf = 0,
.valid = 1,
.name = "L1 I-Memory",
},
{
.start = L1_DATA_A_START,
.end = L1_DATA_B_START + L1_DATA_B_LENGTH,
.psize = SIZE_4M,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.i_conf = 0,
.d_conf = L1_DMEMORY,
#if ((L1_DATA_A_LENGTH > 0) || (L1_DATA_B_LENGTH > 0))
.valid = 1,
#else
.valid = 0,
#endif
.name = "L1 D-Memory",
},
{
.start = 0,
.end = 0, /* dynamic */
.psize = 0,
.attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
.i_conf = SDRAM_IGENERIC,
.d_conf = SDRAM_DGENERIC,
.valid = 1,
.name = "SDRAM Kernel",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = 0,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.i_conf = SDRAM_IGENERIC,
.d_conf = SDRAM_DNON_CHBL,
.valid = 1,
.name = "SDRAM RAM MTD",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = SIZE_1M,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.d_conf = SDRAM_DNON_CHBL,
.valid = 1,
.name = "SDRAM Uncached DMA ZONE",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = 0,
.attr = SWITCH_T | D_CPLB,
.i_conf = 0, /* dynamic */
.d_conf = 0, /* dynamic */
.valid = 1,
.name = "SDRAM Reserved Memory",
},
{
.start = ASYNC_BANK0_BASE,
.end = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE,
.psize = 0,
.attr = SWITCH_T | D_CPLB,
.d_conf = SDRAM_EBIU,
.valid = 1,
.name = "ASYNC Memory",
},
{
#if defined(CONFIG_BF561)
.start = L2_SRAM,
.end = L2_SRAM_END,
.psize = SIZE_1M,
.attr = SWITCH_T | D_CPLB,
.i_conf = L2_MEMORY,
.d_conf = L2_MEMORY,
.valid = 1,
#else
.valid = 0,
#endif
.name = "L2 Memory",
}
};
static u16 __init lock_kernel_check(u32 start, u32 end)
{
if ((start <= (u32) _stext && end >= (u32) _end)
|| (start >= (u32) _stext && end <= (u32) _end))
return IN_KERNEL;
return 0;
}
static unsigned short __init
fill_cplbtab(struct cplb_tab *table,
unsigned long start, unsigned long end,
unsigned long block_size, unsigned long cplb_data)
{
int i;
switch (block_size) {
case SIZE_4M:
i = 3;
break;
case SIZE_1M:
i = 2;
break;
case SIZE_4K:
i = 1;
break;
case SIZE_1K:
default:
i = 0;
break;
}
cplb_data = (cplb_data & ~(3 << 16)) | (i << 16);
while ((start < end) && (table->pos < table->size)) {
table->tab[table->pos++] = start;
if (lock_kernel_check(start, start + block_size) == IN_KERNEL)
table->tab[table->pos++] =
cplb_data | CPLB_LOCK | CPLB_DIRTY;
else
table->tab[table->pos++] = cplb_data;
start += block_size;
}
return 0;
}
static unsigned short __init
close_cplbtab(struct cplb_tab *table)
{
while (table->pos < table->size) {
table->tab[table->pos++] = 0;
table->tab[table->pos++] = 0; /* !CPLB_VALID */
}
return 0;
}
/* helper function */
static void __fill_code_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end)
{
if (cplb_data[i].psize) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
cplb_data[i].psize,
cplb_data[i].i_conf);
} else {
#if (defined(CONFIG_BLKFIN_CACHE) && defined(ANOMALY_05000263))
if (i == SDRAM_KERN) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
SIZE_4M,
cplb_data[i].i_conf);
} else
#endif
{
fill_cplbtab(t,
cplb_data[i].start,
a_start,
SIZE_1M,
cplb_data[i].i_conf);
fill_cplbtab(t,
a_start,
a_end,
SIZE_4M,
cplb_data[i].i_conf);
fill_cplbtab(t, a_end,
cplb_data[i].end,
SIZE_1M,
cplb_data[i].i_conf);
}
}
}
static void __fill_data_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end)
{
if (cplb_data[i].psize) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
cplb_data[i].psize,
cplb_data[i].d_conf);
} else {
fill_cplbtab(t,
cplb_data[i].start,
a_start, SIZE_1M,
cplb_data[i].d_conf);
fill_cplbtab(t, a_start,
a_end, SIZE_4M,
cplb_data[i].d_conf);
fill_cplbtab(t, a_end,
cplb_data[i].end,
SIZE_1M,
cplb_data[i].d_conf);
}
}
void __init generate_cpl_tables(void)
{
u16 i, j, process;
u32 a_start, a_end, as, ae, as_1m;
struct cplb_tab *t_i = NULL;
struct cplb_tab *t_d = NULL;
struct s_cplb cplb;
cplb.init_i.size = MAX_CPLBS;
cplb.init_d.size = MAX_CPLBS;
cplb.switch_i.size = MAX_SWITCH_I_CPLBS;
cplb.switch_d.size = MAX_SWITCH_D_CPLBS;
cplb.init_i.pos = 0;
cplb.init_d.pos = 0;
cplb.switch_i.pos = 0;
cplb.switch_d.pos = 0;
cplb.init_i.tab = icplb_table;
cplb.init_d.tab = dcplb_table;
cplb.switch_i.tab = ipdt_table;
cplb.switch_d.tab = dpdt_table;
cplb_data[SDRAM_KERN].end = memory_end;
#ifdef CONFIG_MTD_UCLINUX
cplb_data[SDRAM_RAM_MTD].start = memory_mtd_start;
cplb_data[SDRAM_RAM_MTD].end = memory_mtd_start + mtd_size;
cplb_data[SDRAM_RAM_MTD].valid = mtd_size > 0;
# if defined(CONFIG_ROMFS_FS)
cplb_data[SDRAM_RAM_MTD].attr |= I_CPLB;
/*
* The ROMFS_FS size is often not multiple of 1MB.
* This can cause multiple CPLB sets covering the same memory area.
* This will then cause multiple CPLB hit exceptions.
* Workaround: We ensure a contiguous memory area by extending the kernel
* memory section over the mtd section.
* For ROMFS_FS memory must be covered with ICPLBs anyways.
* So there is no difference between kernel and mtd memory setup.
*/
cplb_data[SDRAM_KERN].end = memory_mtd_start + mtd_size;;
cplb_data[SDRAM_RAM_MTD].valid = 0;
# endif
#else
cplb_data[SDRAM_RAM_MTD].valid = 0;
#endif
cplb_data[SDRAM_DMAZ].start = _ramend - DMA_UNCACHED_REGION;
cplb_data[SDRAM_DMAZ].end = _ramend;
cplb_data[RES_MEM].start = _ramend;
cplb_data[RES_MEM].end = physical_mem_end;
if (reserved_mem_dcache_on)
cplb_data[RES_MEM].d_conf = SDRAM_DGENERIC;
else
cplb_data[RES_MEM].d_conf = SDRAM_DNON_CHBL;
if (reserved_mem_icache_on)
cplb_data[RES_MEM].i_conf = SDRAM_IGENERIC;
else
cplb_data[RES_MEM].i_conf = SDRAM_INON_CHBL;
for (i = ZERO_P; i <= L2_MEM; i++) {
if (!cplb_data[i].valid)
continue;
as_1m = cplb_data[i].start % SIZE_1M;
/* We need to make sure all sections are properly 1M aligned
* However between Kernel Memory and the Kernel mtd section, depending on the
* rootfs size, there can be overlapping memory areas.
*/
if (as_1m && i != L1I_MEM && i != L1D_MEM) {
#ifdef CONFIG_MTD_UCLINUX
if (i == SDRAM_RAM_MTD) {
if ((cplb_data[SDRAM_KERN].end + 1) > cplb_data[SDRAM_RAM_MTD].start)
cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M)) + SIZE_1M;
else
cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M));
} else
#endif
printk(KERN_WARNING "Unaligned Start of %s at 0x%X\n",
cplb_data[i].name, cplb_data[i].start);
}
as = cplb_data[i].start % SIZE_4M;
ae = cplb_data[i].end % SIZE_4M;
if (as)
a_start = cplb_data[i].start + (SIZE_4M - (as));
else
a_start = cplb_data[i].start;
a_end = cplb_data[i].end - ae;
for (j = INITIAL_T; j <= SWITCH_T; j++) {
switch (j) {
case INITIAL_T:
if (cplb_data[i].attr & INITIAL_T) {
t_i = &cplb.init_i;
t_d = &cplb.init_d;
process = 1;
} else
process = 0;
break;
case SWITCH_T:
if (cplb_data[i].attr & SWITCH_T) {
t_i = &cplb.switch_i;
t_d = &cplb.switch_d;
process = 1;
} else
process = 0;
break;
default:
process = 0;
break;
}
if (!process)
continue;
if (cplb_data[i].attr & I_CPLB)
__fill_code_cplbtab(t_i, i, a_start, a_end);
if (cplb_data[i].attr & D_CPLB)
__fill_data_cplbtab(t_d, i, a_start, a_end);
}
}
/* close tables */
close_cplbtab(&cplb.init_i);
close_cplbtab(&cplb.init_d);
cplb.init_i.tab[cplb.init_i.pos] = -1;
cplb.init_d.tab[cplb.init_d.pos] = -1;
cplb.switch_i.tab[cplb.switch_i.pos] = -1;
cplb.switch_d.tab[cplb.switch_d.pos] = -1;
}
#endif
......@@ -64,10 +64,6 @@ EXPORT_SYMBOL(mtd_size);
char __initdata command_line[COMMAND_LINE_SIZE];
#if defined(CONFIG_BLKFIN_DCACHE) || defined(CONFIG_BLKFIN_CACHE)
static void generate_cpl_tables(void);
#endif
void __init bf53x_cache_init(void)
{
#if defined(CONFIG_BLKFIN_DCACHE) || defined(CONFIG_BLKFIN_CACHE)
......@@ -401,8 +397,6 @@ void __init setup_arch(char **cmdline_p)
_bfin_swrst = bfin_read_SWRST();
#endif
bf53x_cache_init();
printk(KERN_INFO "Hardware Trace Enabled\n");
bfin_write_TBUFCTL(0x03);
......@@ -426,6 +420,8 @@ void __init setup_arch(char **cmdline_p)
!= ATOMIC_AND32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
!= ATOMIC_XOR32 - FIXED_CODE_START);
bf53x_cache_init();
}
static int __init topology_init(void)
......@@ -443,287 +439,6 @@ static int __init topology_init(void)
subsys_initcall(topology_init);
#if defined(CONFIG_BLKFIN_DCACHE) || defined(CONFIG_BLKFIN_CACHE)
static u16 __init lock_kernel_check(u32 start, u32 end)
{
if ((start <= (u32) _stext && end >= (u32) _end)
|| (start >= (u32) _stext && end <= (u32) _end))
return IN_KERNEL;
return 0;
}
static unsigned short __init
fill_cplbtab(struct cplb_tab *table,
unsigned long start, unsigned long end,
unsigned long block_size, unsigned long cplb_data)
{
int i;
switch (block_size) {
case SIZE_4M:
i = 3;
break;
case SIZE_1M:
i = 2;
break;
case SIZE_4K:
i = 1;
break;
case SIZE_1K:
default:
i = 0;
break;
}
cplb_data = (cplb_data & ~(3 << 16)) | (i << 16);
while ((start < end) && (table->pos < table->size)) {
table->tab[table->pos++] = start;
if (lock_kernel_check(start, start + block_size) == IN_KERNEL)
table->tab[table->pos++] =
cplb_data | CPLB_LOCK | CPLB_DIRTY;
else
table->tab[table->pos++] = cplb_data;
start += block_size;
}
return 0;
}
static unsigned short __init
close_cplbtab(struct cplb_tab *table)
{
while (table->pos < table->size) {
table->tab[table->pos++] = 0;
table->tab[table->pos++] = 0; /* !CPLB_VALID */
}
return 0;
}
/* helper function */
static void __fill_code_cplbtab(struct cplb_tab *t, int i,
u32 a_start, u32 a_end)
{
if (cplb_data[i].psize) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
cplb_data[i].psize,
cplb_data[i].i_conf);
} else {
#if (defined(CONFIG_BLKFIN_CACHE) && defined(ANOMALY_05000263))
if (i == SDRAM_KERN) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
SIZE_4M,
cplb_data[i].i_conf);
} else
#endif
{
fill_cplbtab(t,
cplb_data[i].start,
a_start,
SIZE_1M,
cplb_data[i].i_conf);
fill_cplbtab(t,
a_start,
a_end,
SIZE_4M,
cplb_data[i].i_conf);
fill_cplbtab(t, a_end,
cplb_data[i].end,
SIZE_1M,
cplb_data[i].i_conf);
}
}
}
static void __fill_data_cplbtab(struct cplb_tab *t, int i,
u32 a_start, u32 a_end)
{
if (cplb_data[i].psize) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
cplb_data[i].psize,
cplb_data[i].d_conf);
} else {
fill_cplbtab(t,
cplb_data[i].start,
a_start, SIZE_1M,
cplb_data[i].d_conf);
fill_cplbtab(t, a_start,
a_end, SIZE_4M,
cplb_data[i].d_conf);
fill_cplbtab(t, a_end,
cplb_data[i].end,
SIZE_1M,
cplb_data[i].d_conf);
}
}
static void __init generate_cpl_tables(void)
{
u16 i, j, process;
u32 a_start, a_end, as, ae, as_1m;
struct cplb_tab *t_i = NULL;
struct cplb_tab *t_d = NULL;
struct s_cplb cplb;
cplb.init_i.size = MAX_CPLBS;
cplb.init_d.size = MAX_CPLBS;
cplb.switch_i.size = MAX_SWITCH_I_CPLBS;
cplb.switch_d.size = MAX_SWITCH_D_CPLBS;
cplb.init_i.pos = 0;
cplb.init_d.pos = 0;
cplb.switch_i.pos = 0;
cplb.switch_d.pos = 0;
cplb.init_i.tab = icplb_table;
cplb.init_d.tab = dcplb_table;
cplb.switch_i.tab = ipdt_table;
cplb.switch_d.tab = dpdt_table;
cplb_data[SDRAM_KERN].end = memory_end;
#ifdef CONFIG_MTD_UCLINUX
cplb_data[SDRAM_RAM_MTD].start = memory_mtd_start;
cplb_data[SDRAM_RAM_MTD].end = memory_mtd_start + mtd_size;
cplb_data[SDRAM_RAM_MTD].valid = mtd_size > 0;
# if defined(CONFIG_ROMFS_FS)
cplb_data[SDRAM_RAM_MTD].attr |= I_CPLB;
/*
* The ROMFS_FS size is often not multiple of 1MB.
* This can cause multiple CPLB sets covering the same memory area.
* This will then cause multiple CPLB hit exceptions.
* Workaround: We ensure a contiguous memory area by extending the kernel
* memory section over the mtd section.
* For ROMFS_FS memory must be covered with ICPLBs anyways.
* So there is no difference between kernel and mtd memory setup.
*/
cplb_data[SDRAM_KERN].end = memory_mtd_start + mtd_size;;
cplb_data[SDRAM_RAM_MTD].valid = 0;
# endif
#else
cplb_data[SDRAM_RAM_MTD].valid = 0;
#endif
cplb_data[SDRAM_DMAZ].start = _ramend - DMA_UNCACHED_REGION;
cplb_data[SDRAM_DMAZ].end = _ramend;
cplb_data[RES_MEM].start = _ramend;
cplb_data[RES_MEM].end = physical_mem_end;
if (reserved_mem_dcache_on)
cplb_data[RES_MEM].d_conf = SDRAM_DGENERIC;
else
cplb_data[RES_MEM].d_conf = SDRAM_DNON_CHBL;
if (reserved_mem_icache_on)
cplb_data[RES_MEM].i_conf = SDRAM_IGENERIC;
else
cplb_data[RES_MEM].i_conf = SDRAM_INON_CHBL;
for (i = ZERO_P; i <= L2_MEM; i++) {
if (!cplb_data[i].valid)
continue;
as_1m = cplb_data[i].start % SIZE_1M;
/*
* We need to make sure all sections are properly 1M aligned
* However between Kernel Memory and the Kernel mtd section,
* depending on the rootfs size, there can be overlapping
* memory areas.
*/
if (as_1m && i != L1I_MEM && i != L1D_MEM) {
#ifdef CONFIG_MTD_UCLINUX
if (i == SDRAM_RAM_MTD) {
if ((cplb_data[SDRAM_KERN].end + 1) >
cplb_data[SDRAM_RAM_MTD].start)
cplb_data[SDRAM_RAM_MTD].start =
(cplb_data[i].start &
(-2*SIZE_1M)) + SIZE_1M;
else
cplb_data[SDRAM_RAM_MTD].start =
(cplb_data[i].start &
(-2*SIZE_1M));
} else
#endif
printk(KERN_WARNING
"Unaligned Start of %s at 0x%X\n",
cplb_data[i].name, cplb_data[i].start);
}
as = cplb_data[i].start % SIZE_4M;
ae = cplb_data[i].end % SIZE_4M;
if (as)
a_start = cplb_data[i].start + (SIZE_4M - (as));
else
a_start = cplb_data[i].start;
a_end = cplb_data[i].end - ae;
for (j = INITIAL_T; j <= SWITCH_T; j++) {
switch (j) {
case INITIAL_T:
if (cplb_data[i].attr & INITIAL_T) {
t_i = &cplb.init_i;
t_d = &cplb.init_d;
process = 1;
} else
process = 0;
break;
case SWITCH_T:
if (cplb_data[i].attr & SWITCH_T) {
t_i = &cplb.switch_i;
t_d = &cplb.switch_d;
process = 1;
} else
process = 0;
break;
default:
process = 0;
break;
}
if (!process)
continue;
if (cplb_data[i].attr & I_CPLB)
__fill_code_cplbtab(t_i, i, a_start, a_end);
if (cplb_data[i].attr & D_CPLB)
__fill_data_cplbtab(t_d, i, a_start, a_end);
}
}
/* close tables */
close_cplbtab(&cplb.init_i);
close_cplbtab(&cplb.init_d);
cplb.init_i.tab[cplb.init_i.pos] = -1;
cplb.init_d.tab[cplb.init_d.pos] = -1;
cplb.switch_i.tab[cplb.switch_i.pos] = -1;
cplb.switch_d.tab[cplb.switch_d.pos] = -1;
}
#endif
static u_long get_vco(void)
{
u_long msel;
......
......@@ -38,104 +38,37 @@
.text
#ifdef ANOMALY_05000125
#if defined(CONFIG_BLKFIN_CACHE)
ENTRY(_bfin_icache_init)
ENTRY(_bfin_write_IMEM_CONTROL)
/* Initialize Instruction CPLBS */
I0.L = (ICPLB_ADDR0 & 0xFFFF);
I0.H = (ICPLB_ADDR0 >> 16);
I1.L = (ICPLB_DATA0 & 0xFFFF);
I1.H = (ICPLB_DATA0 >> 16);
I2.L = _icplb_table;
I2.H = _icplb_table;
r1 = -1; /* end point comparison */
r3 = 15; /* max counter */
/* read entries from table */
.Lread_iaddr:
R0 = [I2++];
CC = R0 == R1;
IF CC JUMP .Lidone;
[I0++] = R0;
.Lread_idata:
R2 = [I2++];
[I1++] = R2;
R3 = R3 + R1;
CC = R3 == R1;
IF !CC JUMP .Lread_iaddr;
.Lidone:
/* Enable Instruction Cache */
P0.l = (IMEM_CONTROL & 0xFFFF);
P0.h = (IMEM_CONTROL >> 16);
R1 = [P0];
R0 = (IMC | ENICPLB);
R0 = R0 | R1;
/* Anomaly 05000125 */
CLI R2;
CLI R1;
SSYNC; /* SSYNC required before writing to IMEM_CONTROL. */
.align 8;
[P0] = R0;
SSYNC;
STI R2;
STI R1;
RTS;
ENDPROC(_bfin_icache_init)
ENDPROC(_bfin_write_IMEM_CONTROL)
#endif
#if defined(CONFIG_BLKFIN_DCACHE)
ENTRY(_bfin_dcache_init)
/* Initialize Data CPLBS */
I0.L = (DCPLB_ADDR0 & 0xFFFF);
I0.H = (DCPLB_ADDR0 >> 16);
I1.L = (DCPLB_DATA0 & 0xFFFF);
I1.H = (DCPLB_DATA0 >> 16);
I2.L = _dcplb_table;
I2.H = _dcplb_table;
R1 = -1; /* end point comparison */
R3 = 15; /* max counter */
/* read entries from table */
.Lread_daddr:
R0 = [I2++];
cc = R0 == R1;
IF CC JUMP .Lddone;
[I0++] = R0;
.Lread_ddata:
R2 = [I2++];
[I1++] = R2;
R3 = R3 + R1;
CC = R3 == R1;
IF !CC JUMP .Lread_daddr;
.Lddone:
P0.L = (DMEM_CONTROL & 0xFFFF);
P0.H = (DMEM_CONTROL >> 16);
R1 = [P0];
R0 = DMEM_CNTR;
R0 = R0 | R1;
/* Anomaly 05000125 */
CLI R2;
ENTRY(_bfin_write_DMEM_CONTROL)
CLI R1;
SSYNC; /* SSYNC required before writing to DMEM_CONTROL. */
.align 8;
[P0] = R0;
SSYNC;
STI R2;
STI R1;
RTS;
ENDPROC(_bfin_dcache_init)
ENDPROC(_bfin_write_DMEM_CONTROL)
#endif
#endif
......@@ -57,8 +57,8 @@ struct cplb_tab {
u16 size;
};
u_long icplb_table[MAX_CPLBS+1];
u_long dcplb_table[MAX_CPLBS+1];
extern u_long icplb_table[MAX_CPLBS+1];
extern u_long dcplb_table[MAX_CPLBS+1];
/* Till here we are discussing about the static memory management model.
* However, the operating envoronments commonly define more CPLB
......@@ -70,134 +70,27 @@ u_long dcplb_table[MAX_CPLBS+1];
*/
#ifdef CONFIG_CPLB_SWITCH_TAB_L1
u_long ipdt_table[MAX_SWITCH_I_CPLBS+1]__attribute__((l1_data));
u_long dpdt_table[MAX_SWITCH_D_CPLBS+1]__attribute__((l1_data));
extern u_long ipdt_table[MAX_SWITCH_I_CPLBS+1]__attribute__((l1_data));
extern u_long dpdt_table[MAX_SWITCH_D_CPLBS+1]__attribute__((l1_data));
#ifdef CONFIG_CPLB_INFO
u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS]__attribute__((l1_data));
u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS]__attribute__((l1_data));
extern u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS]__attribute__((l1_data));
extern u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS]__attribute__((l1_data));
#endif /* CONFIG_CPLB_INFO */
#else
u_long ipdt_table[MAX_SWITCH_I_CPLBS+1];
u_long dpdt_table[MAX_SWITCH_D_CPLBS+1];
extern u_long ipdt_table[MAX_SWITCH_I_CPLBS+1];
extern u_long dpdt_table[MAX_SWITCH_D_CPLBS+1];
#ifdef CONFIG_CPLB_INFO
u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS];
u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS];
extern u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS];
extern u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS];
#endif /* CONFIG_CPLB_INFO */
#endif /*CONFIG_CPLB_SWITCH_TAB_L1*/
struct s_cplb {
struct cplb_tab init_i;
struct cplb_tab init_d;
struct cplb_tab switch_i;
struct cplb_tab switch_d;
};
extern unsigned long reserved_mem_dcache_on;
extern unsigned long reserved_mem_icache_on;
#if defined(CONFIG_BLKFIN_DCACHE) || defined(CONFIG_BLKFIN_CACHE)
static struct cplb_desc cplb_data[] = {
{
.start = 0,
.end = SIZE_1K,
.psize = SIZE_1K,
.attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
.i_conf = SDRAM_OOPS,
.d_conf = SDRAM_OOPS,
#if defined(CONFIG_DEBUG_HUNT_FOR_ZERO)
.valid = 1,
#else
.valid = 0,
#endif
.name = "ZERO Pointer Saveguard",
},
{
.start = L1_CODE_START,
.end = L1_CODE_START + L1_CODE_LENGTH,
.psize = SIZE_4M,
.attr = INITIAL_T | SWITCH_T | I_CPLB,
.i_conf = L1_IMEMORY,
.d_conf = 0,
.valid = 1,
.name = "L1 I-Memory",
},
{
.start = L1_DATA_A_START,
.end = L1_DATA_B_START + L1_DATA_B_LENGTH,
.psize = SIZE_4M,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.i_conf = 0,
.d_conf = L1_DMEMORY,
#if ((L1_DATA_A_LENGTH > 0) || (L1_DATA_B_LENGTH > 0))
.valid = 1,
#else
.valid = 0,
#endif
.name = "L1 D-Memory",
},
{
.start = 0,
.end = 0, /* dynamic */
.psize = 0,
.attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
.i_conf = SDRAM_IGENERIC,
.d_conf = SDRAM_DGENERIC,
.valid = 1,
.name = "SDRAM Kernel",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = 0,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.i_conf = SDRAM_IGENERIC,
.d_conf = SDRAM_DNON_CHBL,
.valid = 1,
.name = "SDRAM RAM MTD",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = SIZE_1M,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.d_conf = SDRAM_DNON_CHBL,
.valid = 1,//(DMA_UNCACHED_REGION > 0),
.name = "SDRAM Uncached DMA ZONE",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = 0,
.attr = SWITCH_T | D_CPLB,
.i_conf = 0, /* dynamic */
.d_conf = 0, /* dynamic */
.valid = 1,
.name = "SDRAM Reserved Memory",
},
{
.start = ASYNC_BANK0_BASE,
.end = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE,
.psize = 0,
.attr = SWITCH_T | D_CPLB,
.d_conf = SDRAM_EBIU,
.valid = 1,
.name = "ASYNC Memory",
},
{
#if defined(CONFIG_BF561)
.start = L2_SRAM,
.end = L2_SRAM_END,
.psize = SIZE_1M,
.attr = SWITCH_T | D_CPLB,
.i_conf = L2_MEMORY,
.d_conf = L2_MEMORY,
.valid = 1,
#else
.valid = 0,
#endif
.name = "L2 Memory",
}
};
#endif
extern void generate_cpl_tables(void);
......@@ -40,16 +40,7 @@
#define bfin_write_SRAM_BASE_ADDRESS(val) bfin_write32(SRAM_BASE_ADDRESS,val)
#define bfin_read_DMEM_CONTROL() bfin_read32(DMEM_CONTROL)
#ifdef ANOMALY_05000125
static __inline__ void bfin_write_DMEM_CONTROL(unsigned int val)
{
unsigned long flags, iwr;
local_irq_save(flags);
__asm__(".align 8\n");
bfin_write32(IMEM_CONTROL, val);
__builtin_bfin_ssync();
local_irq_restore(flags);
}
extern void bfin_write_DMEM_CONTROL(unsigned int val);
#else
#define bfin_write_DMEM_CONTROL(val) bfin_write32(DMEM_CONTROL,val)
#endif
......@@ -139,17 +130,7 @@ static __inline__ void bfin_write_DMEM_CONTROL(unsigned int val)
*/
#define bfin_read_IMEM_CONTROL() bfin_read32(IMEM_CONTROL)
#ifdef ANOMALY_05000125
static __inline__ void bfin_write_IMEM_CONTROL(unsigned int val)
{
unsigned long flags, iwr;
local_irq_save(flags);
__asm__(".align 8\n");
bfin_write32(IMEM_CONTROL, val);
__builtin_bfin_ssync();
local_irq_restore(flags);
}
extern void bfin_write_IMEM_CONTROL(unsigned int val);
#else
#define bfin_write_IMEM_CONTROL(val) bfin_write32(IMEM_CONTROL,val)
#endif
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment