Commit 2d4c515b authored by Joerg Roedel's avatar Joerg Roedel

iommu/amd: Remove other remains of old address allocator

There are other remains in the code from the old allocatore.
Remove them all.
Signed-off-by: default avatarJoerg Roedel <jroedel@suse.de>
parent 256e4621
...@@ -133,28 +133,6 @@ static void update_domain(struct protection_domain *domain); ...@@ -133,28 +133,6 @@ static void update_domain(struct protection_domain *domain);
static int protection_domain_init(struct protection_domain *domain); static int protection_domain_init(struct protection_domain *domain);
static void detach_device(struct device *dev); static void detach_device(struct device *dev);
/*
* For dynamic growth the aperture size is split into ranges of 128MB of
* DMA address space each. This struct represents one such range.
*/
struct aperture_range {
spinlock_t bitmap_lock;
/* address allocation bitmap */
unsigned long *bitmap;
unsigned long offset;
unsigned long next_bit;
/*
* Array of PTE pages for the aperture. In this array we save all the
* leaf pages of the domain page table used for the aperture. This way
* we don't need to walk the page table to find a specific PTE. We can
* just calculate its address in constant time.
*/
u64 *pte_pages[64];
};
/* /*
* Data container for a dma_ops specific protection domain * Data container for a dma_ops specific protection domain
*/ */
...@@ -162,15 +140,6 @@ struct dma_ops_domain { ...@@ -162,15 +140,6 @@ struct dma_ops_domain {
/* generic protection domain information */ /* generic protection domain information */
struct protection_domain domain; struct protection_domain domain;
/* size of the aperture for the mappings */
unsigned long aperture_size;
/* aperture index we start searching for free addresses */
u32 __percpu *next_index;
/* address space relevant data */
struct aperture_range *aperture[APERTURE_MAX_RANGES];
/* IOVA RB-Tree */ /* IOVA RB-Tree */
struct iova_domain iovad; struct iova_domain iovad;
}; };
...@@ -409,43 +378,6 @@ static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) ...@@ -409,43 +378,6 @@ static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
return dev_data->errata & (1 << erratum) ? true : false; return dev_data->errata & (1 << erratum) ? true : false;
} }
/*
* This function actually applies the mapping to the page table of the
* dma_ops domain.
*/
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e)
{
u64 addr;
for (addr = e->address_start; addr < e->address_end;
addr += PAGE_SIZE) {
if (addr < dma_dom->aperture_size)
__set_bit(addr >> PAGE_SHIFT,
dma_dom->aperture[0]->bitmap);
}
}
/*
* Inits the unity mappings required for a specific device
*/
static void init_unity_mappings_for_device(struct device *dev,
struct dma_ops_domain *dma_dom)
{
struct unity_map_entry *e;
int devid;
devid = get_device_id(dev);
if (devid < 0)
return;
list_for_each_entry(e, &amd_iommu_unity_map, list) {
if (!(devid >= e->devid_start && devid <= e->devid_end))
continue;
alloc_unity_mapping(dma_dom, e);
}
}
/* /*
* This function checks if the driver got a valid device from the caller to * This function checks if the driver got a valid device from the caller to
* avoid dereferencing invalid pointers. * avoid dereferencing invalid pointers.
...@@ -473,24 +405,12 @@ static bool check_device(struct device *dev) ...@@ -473,24 +405,12 @@ static bool check_device(struct device *dev)
static void init_iommu_group(struct device *dev) static void init_iommu_group(struct device *dev)
{ {
struct dma_ops_domain *dma_domain;
struct iommu_domain *domain;
struct iommu_group *group; struct iommu_group *group;
group = iommu_group_get_for_dev(dev); group = iommu_group_get_for_dev(dev);
if (IS_ERR(group)) if (IS_ERR(group))
return; return;
domain = iommu_group_default_domain(group);
if (!domain)
goto out;
if (to_pdomain(domain)->flags == PD_DMA_OPS_MASK) {
dma_domain = to_pdomain(domain)->priv;
init_unity_mappings_for_device(dev, dma_domain);
}
out:
iommu_group_put(group); iommu_group_put(group);
} }
...@@ -1496,158 +1416,10 @@ static unsigned long iommu_unmap_page(struct protection_domain *dom, ...@@ -1496,158 +1416,10 @@ static unsigned long iommu_unmap_page(struct protection_domain *dom,
/**************************************************************************** /****************************************************************************
* *
* The next functions belong to the address allocator for the dma_ops * The next functions belong to the address allocator for the dma_ops
* interface functions. They work like the allocators in the other IOMMU * interface functions.
* drivers. Its basically a bitmap which marks the allocated pages in
* the aperture. Maybe it could be enhanced in the future to a more
* efficient allocator.
* *
****************************************************************************/ ****************************************************************************/
/*
* The address allocator core functions.
*
* called with domain->lock held
*/
/*
* Used to reserve address ranges in the aperture (e.g. for exclusion
* ranges.
*/
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages)
{
unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
if (start_page + pages > last_page)
pages = last_page - start_page;
for (i = start_page; i < start_page + pages; ++i) {
int index = i / APERTURE_RANGE_PAGES;
int page = i % APERTURE_RANGE_PAGES;
__set_bit(page, dom->aperture[index]->bitmap);
}
}
/*
* This function is used to add a new aperture range to an existing
* aperture in case of dma_ops domain allocation or address allocation
* failure.
*/
static int alloc_new_range(struct dma_ops_domain *dma_dom,
bool populate, gfp_t gfp)
{
int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
unsigned long i, old_size, pte_pgsize;
struct aperture_range *range;
struct amd_iommu *iommu;
unsigned long flags;
#ifdef CONFIG_IOMMU_STRESS
populate = false;
#endif
if (index >= APERTURE_MAX_RANGES)
return -ENOMEM;
range = kzalloc(sizeof(struct aperture_range), gfp);
if (!range)
return -ENOMEM;
range->bitmap = (void *)get_zeroed_page(gfp);
if (!range->bitmap)
goto out_free;
range->offset = dma_dom->aperture_size;
spin_lock_init(&range->bitmap_lock);
if (populate) {
unsigned long address = dma_dom->aperture_size;
int i, num_ptes = APERTURE_RANGE_PAGES / 512;
u64 *pte, *pte_page;
for (i = 0; i < num_ptes; ++i) {
pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
&pte_page, gfp);
if (!pte)
goto out_free;
range->pte_pages[i] = pte_page;
address += APERTURE_RANGE_SIZE / 64;
}
}
spin_lock_irqsave(&dma_dom->domain.lock, flags);
/* First take the bitmap_lock and then publish the range */
spin_lock(&range->bitmap_lock);
old_size = dma_dom->aperture_size;
dma_dom->aperture[index] = range;
dma_dom->aperture_size += APERTURE_RANGE_SIZE;
/* Reserve address range used for MSI messages */
if (old_size < MSI_ADDR_BASE_LO &&
dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
unsigned long spage;
int pages;
pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
dma_ops_reserve_addresses(dma_dom, spage, pages);
}
/* Initialize the exclusion range if necessary */
for_each_iommu(iommu) {
if (iommu->exclusion_start &&
iommu->exclusion_start >= dma_dom->aperture[index]->offset
&& iommu->exclusion_start < dma_dom->aperture_size) {
unsigned long startpage;
int pages = iommu_num_pages(iommu->exclusion_start,
iommu->exclusion_length,
PAGE_SIZE);
startpage = iommu->exclusion_start >> PAGE_SHIFT;
dma_ops_reserve_addresses(dma_dom, startpage, pages);
}
}
/*
* Check for areas already mapped as present in the new aperture
* range and mark those pages as reserved in the allocator. Such
* mappings may already exist as a result of requested unity
* mappings for devices.
*/
for (i = dma_dom->aperture[index]->offset;
i < dma_dom->aperture_size;
i += pte_pgsize) {
u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
continue;
dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
pte_pgsize >> 12);
}
update_domain(&dma_dom->domain);
spin_unlock(&range->bitmap_lock);
spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
return 0;
out_free:
update_domain(&dma_dom->domain);
free_page((unsigned long)range->bitmap);
kfree(range);
return -ENOMEM;
}
static unsigned long dma_ops_alloc_iova(struct device *dev, static unsigned long dma_ops_alloc_iova(struct device *dev,
struct dma_ops_domain *dma_dom, struct dma_ops_domain *dma_dom,
...@@ -1848,46 +1620,18 @@ static void free_gcr3_table(struct protection_domain *domain) ...@@ -1848,46 +1620,18 @@ static void free_gcr3_table(struct protection_domain *domain)
*/ */
static void dma_ops_domain_free(struct dma_ops_domain *dom) static void dma_ops_domain_free(struct dma_ops_domain *dom)
{ {
int i;
if (!dom) if (!dom)
return; return;
put_iova_domain(&dom->iovad);
free_percpu(dom->next_index);
del_domain_from_list(&dom->domain); del_domain_from_list(&dom->domain);
free_pagetable(&dom->domain); put_iova_domain(&dom->iovad);
for (i = 0; i < APERTURE_MAX_RANGES; ++i) { free_pagetable(&dom->domain);
if (!dom->aperture[i])
continue;
free_page((unsigned long)dom->aperture[i]->bitmap);
kfree(dom->aperture[i]);
}
kfree(dom); kfree(dom);
} }
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
int max_apertures)
{
int ret, i, apertures;
apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
ret = 0;
for (i = apertures; i < max_apertures; ++i) {
ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
if (ret)
break;
}
return ret;
}
/* /*
* Allocates a new protection domain usable for the dma_ops functions. * Allocates a new protection domain usable for the dma_ops functions.
* It also initializes the page table and the address allocator data * It also initializes the page table and the address allocator data
...@@ -1896,7 +1640,6 @@ static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom, ...@@ -1896,7 +1640,6 @@ static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
static struct dma_ops_domain *dma_ops_domain_alloc(void) static struct dma_ops_domain *dma_ops_domain_alloc(void)
{ {
struct dma_ops_domain *dma_dom; struct dma_ops_domain *dma_dom;
int cpu;
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
if (!dma_dom) if (!dma_dom)
...@@ -1905,10 +1648,6 @@ static struct dma_ops_domain *dma_ops_domain_alloc(void) ...@@ -1905,10 +1648,6 @@ static struct dma_ops_domain *dma_ops_domain_alloc(void)
if (protection_domain_init(&dma_dom->domain)) if (protection_domain_init(&dma_dom->domain))
goto free_dma_dom; goto free_dma_dom;
dma_dom->next_index = alloc_percpu(u32);
if (!dma_dom->next_index)
goto free_dma_dom;
dma_dom->domain.mode = PAGE_MODE_2_LEVEL; dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
dma_dom->domain.flags = PD_DMA_OPS_MASK; dma_dom->domain.flags = PD_DMA_OPS_MASK;
...@@ -1916,26 +1655,14 @@ static struct dma_ops_domain *dma_ops_domain_alloc(void) ...@@ -1916,26 +1655,14 @@ static struct dma_ops_domain *dma_ops_domain_alloc(void)
if (!dma_dom->domain.pt_root) if (!dma_dom->domain.pt_root)
goto free_dma_dom; goto free_dma_dom;
add_domain_to_list(&dma_dom->domain);
if (alloc_new_range(dma_dom, true, GFP_KERNEL))
goto free_dma_dom;
/*
* mark the first page as allocated so we never return 0 as
* a valid dma-address. So we can use 0 as error value
*/
dma_dom->aperture[0]->bitmap[0] = 1;
for_each_possible_cpu(cpu)
*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
init_iova_domain(&dma_dom->iovad, PAGE_SIZE, init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
IOVA_START_PFN, DMA_32BIT_PFN); IOVA_START_PFN, DMA_32BIT_PFN);
/* Initialize reserved ranges */ /* Initialize reserved ranges */
copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad); copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
add_domain_to_list(&dma_dom->domain);
return dma_dom; return dma_dom;
free_dma_dom: free_dma_dom:
...@@ -2510,10 +2237,6 @@ static void __unmap_single(struct dma_ops_domain *dma_dom, ...@@ -2510,10 +2237,6 @@ static void __unmap_single(struct dma_ops_domain *dma_dom,
dma_addr_t i, start; dma_addr_t i, start;
unsigned int pages; unsigned int pages;
if ((dma_addr == DMA_ERROR_CODE) ||
(dma_addr + size > dma_dom->aperture_size))
return;
flush_addr = dma_addr; flush_addr = dma_addr;
pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
dma_addr &= PAGE_MASK; dma_addr &= PAGE_MASK;
...@@ -2727,34 +2450,6 @@ static int amd_iommu_dma_supported(struct device *dev, u64 mask) ...@@ -2727,34 +2450,6 @@ static int amd_iommu_dma_supported(struct device *dev, u64 mask)
return check_device(dev); return check_device(dev);
} }
static int set_dma_mask(struct device *dev, u64 mask)
{
struct protection_domain *domain;
int max_apertures = 1;
domain = get_domain(dev);
if (IS_ERR(domain))
return PTR_ERR(domain);
if (mask == DMA_BIT_MASK(64))
max_apertures = 8;
else if (mask > DMA_BIT_MASK(32))
max_apertures = 4;
/*
* To prevent lock contention it doesn't make sense to allocate more
* apertures than online cpus
*/
if (max_apertures > num_online_cpus())
max_apertures = num_online_cpus();
if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
dev_err(dev, "Can't allocate %d iommu apertures\n",
max_apertures);
return 0;
}
static struct dma_map_ops amd_iommu_dma_ops = { static struct dma_map_ops amd_iommu_dma_ops = {
.alloc = alloc_coherent, .alloc = alloc_coherent,
.free = free_coherent, .free = free_coherent,
...@@ -2763,7 +2458,6 @@ static struct dma_map_ops amd_iommu_dma_ops = { ...@@ -2763,7 +2458,6 @@ static struct dma_map_ops amd_iommu_dma_ops = {
.map_sg = map_sg, .map_sg = map_sg,
.unmap_sg = unmap_sg, .unmap_sg = unmap_sg,
.dma_supported = amd_iommu_dma_supported, .dma_supported = amd_iommu_dma_supported,
.set_dma_mask = set_dma_mask,
}; };
static int init_reserved_iova_ranges(void) static int init_reserved_iova_ranges(void)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment