Commit 371969b3 authored by Jeff Garzik's avatar Jeff Garzik

Merge redhat.com:/spare/repo/netdev-2.6/emac

into redhat.com:/spare/repo/net-drivers-2.6
parents 7991c128 58de38a8
...@@ -1210,6 +1210,39 @@ config IBMVETH ...@@ -1210,6 +1210,39 @@ config IBMVETH
<file:Documentation/networking/net-modules.txt>. The module will <file:Documentation/networking/net-modules.txt>. The module will
be called ibmveth. be called ibmveth.
config IBM_EMAC
tristate "IBM PPC4xx EMAC driver support"
depends on 4xx
---help---
This driver supports the IBM PPC4xx EMAC family of on-chip
Ethernet controllers.
config IBM_EMAC_ERRMSG
bool "Verbose error messages"
depends on IBM_EMAC
config IBM_EMAC_RXB
int "Number of receive buffers"
depends on IBM_EMAC
default "128" if IBM_EMAC4
default "64"
config IBM_EMAC_TXB
int "Number of transmit buffers"
depends on IBM_EMAC
default "128" if IBM_EMAC4
default "8"
config IBM_EMAC_FGAP
int "Frame gap"
depends on IBM_EMAC
default "8"
config IBM_EMAC_SKBRES
int "Skb reserve amount"
depends on IBM_EMAC
default "0"
config NET_PCI config NET_PCI
bool "EISA, VLB, PCI and on board controllers" bool "EISA, VLB, PCI and on board controllers"
depends on NET_ETHERNET && (ISA || EISA || PCI) depends on NET_ETHERNET && (ISA || EISA || PCI)
......
...@@ -7,6 +7,7 @@ ifeq ($(CONFIG_ISDN_PPP),y) ...@@ -7,6 +7,7 @@ ifeq ($(CONFIG_ISDN_PPP),y)
endif endif
obj-$(CONFIG_E1000) += e1000/ obj-$(CONFIG_E1000) += e1000/
obj-$(CONFIG_IBM_EMAC) += ibm_emac/
obj-$(CONFIG_IXGB) += ixgb/ obj-$(CONFIG_IXGB) += ixgb/
obj-$(CONFIG_BONDING) += bonding/ obj-$(CONFIG_BONDING) += bonding/
......
#
# Makefile for the IBM PPC4xx EMAC controllers
#
obj-$(CONFIG_IBM_EMAC) += ibm_emac.o
ibm_emac-objs := ibm_emac_mal.o ibm_emac_core.o ibm_emac_phy.o
# Only need this if you want to see additional debug messages
ifeq ($(CONFIG_IBM_EMAC_ERRMSG), y)
ibm_emac-objs += ibm_emac_debug.o
endif
/*
* ibm_emac.h
*
*
* Armin Kuster akuster@mvista.com
* June, 2002
*
* Copyright 2002 MontaVista Softare Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef _IBM_EMAC_H_
#define _IBM_EMAC_H_
/* General defines needed for the driver */
/* Emac */
typedef struct emac_regs {
u32 em0mr0;
u32 em0mr1;
u32 em0tmr0;
u32 em0tmr1;
u32 em0rmr;
u32 em0isr;
u32 em0iser;
u32 em0iahr;
u32 em0ialr;
u32 em0vtpid;
u32 em0vtci;
u32 em0ptr;
u32 em0iaht1;
u32 em0iaht2;
u32 em0iaht3;
u32 em0iaht4;
u32 em0gaht1;
u32 em0gaht2;
u32 em0gaht3;
u32 em0gaht4;
u32 em0lsah;
u32 em0lsal;
u32 em0ipgvr;
u32 em0stacr;
u32 em0trtr;
u32 em0rwmr;
} emac_t;
/* MODE REG 0 */
#define EMAC_M0_RXI 0x80000000
#define EMAC_M0_TXI 0x40000000
#define EMAC_M0_SRST 0x20000000
#define EMAC_M0_TXE 0x10000000
#define EMAC_M0_RXE 0x08000000
#define EMAC_M0_WKE 0x04000000
/* MODE Reg 1 */
#define EMAC_M1_FDE 0x80000000
#define EMAC_M1_ILE 0x40000000
#define EMAC_M1_VLE 0x20000000
#define EMAC_M1_EIFC 0x10000000
#define EMAC_M1_APP 0x08000000
#define EMAC_M1_AEMI 0x02000000
#define EMAC_M1_IST 0x01000000
#define EMAC_M1_MF_1000GPCS 0x00c00000 /* Internal GPCS */
#define EMAC_M1_MF_1000MBPS 0x00800000 /* External GPCS */
#define EMAC_M1_MF_100MBPS 0x00400000
#define EMAC_M1_RFS_16K 0x00280000 /* 000 for 512 byte */
#define EMAC_M1_TR 0x00008000
#ifdef CONFIG_IBM_EMAC4
#define EMAC_M1_RFS_8K 0x00200000
#define EMAC_M1_RFS_4K 0x00180000
#define EMAC_M1_RFS_2K 0x00100000
#define EMAC_M1_RFS_1K 0x00080000
#define EMAC_M1_TX_FIFO_16K 0x00050000 /* 0's for 512 byte */
#define EMAC_M1_TX_FIFO_8K 0x00040000
#define EMAC_M1_TX_FIFO_4K 0x00030000
#define EMAC_M1_TX_FIFO_2K 0x00020000
#define EMAC_M1_TX_FIFO_1K 0x00010000
#define EMAC_M1_TX_TR 0x00008000
#define EMAC_M1_TX_MWSW 0x00001000 /* 0 wait for status */
#define EMAC_M1_JUMBO_ENABLE 0x00000800 /* Upt to 9Kr status */
#define EMAC_M1_OPB_CLK_66 0x00000008 /* 66Mhz */
#define EMAC_M1_OPB_CLK_83 0x00000010 /* 83Mhz */
#define EMAC_M1_OPB_CLK_100 0x00000018 /* 100Mhz */
#define EMAC_M1_OPB_CLK_100P 0x00000020 /* 100Mhz+ */
#else /* CONFIG_IBM_EMAC4 */
#define EMAC_M1_RFS_4K 0x00300000 /* ~4k for 512 byte */
#define EMAC_M1_RFS_2K 0x00200000
#define EMAC_M1_RFS_1K 0x00100000
#define EMAC_M1_TX_FIFO_2K 0x00080000 /* 0's for 512 byte */
#define EMAC_M1_TX_FIFO_1K 0x00040000
#define EMAC_M1_TR0_DEPEND 0x00010000 /* 0'x for single packet */
#define EMAC_M1_TR1_DEPEND 0x00004000
#define EMAC_M1_TR1_MULTI 0x00002000
#define EMAC_M1_JUMBO_ENABLE 0x00001000
#endif /* CONFIG_IBM_EMAC4 */
#define EMAC_M1_BASE (EMAC_M1_TX_FIFO_2K | \
EMAC_M1_APP | \
EMAC_M1_TR)
/* Transmit Mode Register 0 */
#define EMAC_TMR0_GNP0 0x80000000
#define EMAC_TMR0_GNP1 0x40000000
#define EMAC_TMR0_GNPD 0x20000000
#define EMAC_TMR0_FC 0x10000000
#define EMAC_TMR0_TFAE_2_32 0x00000001
#define EMAC_TMR0_TFAE_4_64 0x00000002
#define EMAC_TMR0_TFAE_8_128 0x00000003
#define EMAC_TMR0_TFAE_16_256 0x00000004
#define EMAC_TMR0_TFAE_32_512 0x00000005
#define EMAC_TMR0_TFAE_64_1024 0x00000006
#define EMAC_TMR0_TFAE_128_2048 0x00000007
/* Receive Mode Register */
#define EMAC_RMR_SP 0x80000000
#define EMAC_RMR_SFCS 0x40000000
#define EMAC_RMR_ARRP 0x20000000
#define EMAC_RMR_ARP 0x10000000
#define EMAC_RMR_AROP 0x08000000
#define EMAC_RMR_ARPI 0x04000000
#define EMAC_RMR_PPP 0x02000000
#define EMAC_RMR_PME 0x01000000
#define EMAC_RMR_PMME 0x00800000
#define EMAC_RMR_IAE 0x00400000
#define EMAC_RMR_MIAE 0x00200000
#define EMAC_RMR_BAE 0x00100000
#define EMAC_RMR_MAE 0x00080000
#define EMAC_RMR_RFAF_2_32 0x00000001
#define EMAC_RMR_RFAF_4_64 0x00000002
#define EMAC_RMR_RFAF_8_128 0x00000003
#define EMAC_RMR_RFAF_16_256 0x00000004
#define EMAC_RMR_RFAF_32_512 0x00000005
#define EMAC_RMR_RFAF_64_1024 0x00000006
#define EMAC_RMR_RFAF_128_2048 0x00000007
#define EMAC_RMR_BASE (EMAC_RMR_IAE | EMAC_RMR_BAE)
/* Interrupt Status & enable Regs */
#define EMAC_ISR_OVR 0x02000000
#define EMAC_ISR_PP 0x01000000
#define EMAC_ISR_BP 0x00800000
#define EMAC_ISR_RP 0x00400000
#define EMAC_ISR_SE 0x00200000
#define EMAC_ISR_ALE 0x00100000
#define EMAC_ISR_BFCS 0x00080000
#define EMAC_ISR_PTLE 0x00040000
#define EMAC_ISR_ORE 0x00020000
#define EMAC_ISR_IRE 0x00010000
#define EMAC_ISR_DBDM 0x00000200
#define EMAC_ISR_DB0 0x00000100
#define EMAC_ISR_SE0 0x00000080
#define EMAC_ISR_TE0 0x00000040
#define EMAC_ISR_DB1 0x00000020
#define EMAC_ISR_SE1 0x00000010
#define EMAC_ISR_TE1 0x00000008
#define EMAC_ISR_MOS 0x00000002
#define EMAC_ISR_MOF 0x00000001
/* STA CONTROL REG */
#define EMAC_STACR_OC 0x00008000
#define EMAC_STACR_PHYE 0x00004000
#define EMAC_STACR_WRITE 0x00002000
#define EMAC_STACR_READ 0x00001000
#define EMAC_STACR_CLK_83MHZ 0x00000800 /* 0's for 50Mhz */
#define EMAC_STACR_CLK_66MHZ 0x00000400
#define EMAC_STACR_CLK_100MHZ 0x00000C00
/* Transmit Request Threshold Register */
#define EMAC_TRTR_1600 0x18000000 /* 0's for 64 Bytes */
#define EMAC_TRTR_1024 0x0f000000
#define EMAC_TRTR_512 0x07000000
#define EMAC_TRTR_256 0x03000000
#define EMAC_TRTR_192 0x10000000
#define EMAC_TRTR_128 0x01000000
#define EMAC_TX_CTRL_GFCS 0x0200
#define EMAC_TX_CTRL_GP 0x0100
#define EMAC_TX_CTRL_ISA 0x0080
#define EMAC_TX_CTRL_RSA 0x0040
#define EMAC_TX_CTRL_IVT 0x0020
#define EMAC_TX_CTRL_RVT 0x0010
#define EMAC_TX_CTRL_TAH_CSUM 0x000e /* TAH only */
#define EMAC_TX_CTRL_TAH_SEG4 0x000a /* TAH only */
#define EMAC_TX_CTRL_TAH_SEG3 0x0008 /* TAH only */
#define EMAC_TX_CTRL_TAH_SEG2 0x0006 /* TAH only */
#define EMAC_TX_CTRL_TAH_SEG1 0x0004 /* TAH only */
#define EMAC_TX_CTRL_TAH_SEG0 0x0002 /* TAH only */
#define EMAC_TX_CTRL_TAH_DIS 0x0000 /* TAH only */
#define EMAC_TX_CTRL_DFLT ( \
MAL_TX_CTRL_INTR | EMAC_TX_CTRL_GFCS | EMAC_TX_CTRL_GP )
/* madmal transmit status / Control bits */
#define EMAC_TX_ST_BFCS 0x0200
#define EMAC_TX_ST_BPP 0x0100
#define EMAC_TX_ST_LCS 0x0080
#define EMAC_TX_ST_ED 0x0040
#define EMAC_TX_ST_EC 0x0020
#define EMAC_TX_ST_LC 0x0010
#define EMAC_TX_ST_MC 0x0008
#define EMAC_TX_ST_SC 0x0004
#define EMAC_TX_ST_UR 0x0002
#define EMAC_TX_ST_SQE 0x0001
/* madmal receive status / Control bits */
#define EMAC_RX_ST_OE 0x0200
#define EMAC_RX_ST_PP 0x0100
#define EMAC_RX_ST_BP 0x0080
#define EMAC_RX_ST_RP 0x0040
#define EMAC_RX_ST_SE 0x0020
#define EMAC_RX_ST_AE 0x0010
#define EMAC_RX_ST_BFCS 0x0008
#define EMAC_RX_ST_PTL 0x0004
#define EMAC_RX_ST_ORE 0x0002
#define EMAC_RX_ST_IRE 0x0001
#define EMAC_BAD_RX_PACKET 0x02ff
#define EMAC_CSUM_VER_ERROR 0x0003
/* identify a bad rx packet dependent on emac features */
#ifdef CONFIG_IBM_EMAC4
#define EMAC_IS_BAD_RX_PACKET(desc) \
(((desc & (EMAC_BAD_RX_PACKET & ~EMAC_CSUM_VER_ERROR)) || \
((desc & EMAC_CSUM_VER_ERROR) == EMAC_RX_ST_ORE) || \
((desc & EMAC_CSUM_VER_ERROR) == EMAC_RX_ST_IRE)))
#else
#define EMAC_IS_BAD_RX_PACKET(desc) \
(desc & EMAC_BAD_RX_PACKET)
#endif
/* Revision specific EMAC register defaults */
#ifdef CONFIG_IBM_EMAC4
#define EMAC_M1_DEFAULT (EMAC_M1_BASE | \
EMAC_M1_OPB_CLK_83 | \
EMAC_M1_TX_MWSW)
#define EMAC_RMR_DEFAULT (EMAC_RMR_BASE | \
EMAC_RMR_RFAF_128_2048)
#define EMAC_TMR0_XMIT (EMAC_TMR0_GNP0 | \
EMAC_TMR0_TFAE_128_2048)
#define EMAC_TRTR_DEFAULT EMAC_TRTR_1024
#else /* !CONFIG_IBM_EMAC4 */
#define EMAC_M1_DEFAULT EMAC_M1_BASE
#define EMAC_RMR_DEFAULT EMAC_RMR_BASE
#define EMAC_TMR0_XMIT EMAC_TMR0_GNP0
#define EMAC_TRTR_DEFAULT EMAC_TRTR_1600
#endif /* CONFIG_IBM_EMAC4 */
/* SoC implementation specific EMAC register defaults */
#if defined(CONFIG_440GP)
#define EMAC_RWMR_DEFAULT 0x80009000
#define EMAC_TMR0_DEFAULT 0x00000000
#define EMAC_TMR1_DEFAULT 0xf8640000
#elif defined(CONFIG_440GX)
#define EMAC_RWMR_DEFAULT 0x1000a200
#define EMAC_TMR0_DEFAULT EMAC_TMR0_TFAE_128_2048
#define EMAC_TMR1_DEFAULT 0x88810000
#else
#define EMAC_RWMR_DEFAULT 0x0f002000
#define EMAC_TMR0_DEFAULT 0x00000000
#define EMAC_TMR1_DEFAULT 0x380f0000
#endif /* CONFIG_440GP */
#endif
/*
* ibm_emac_core.c
*
* Ethernet driver for the built in ethernet on the IBM 4xx PowerPC
* processors.
*
* (c) 2003 Benjamin Herrenschmidt <benh@kernel.crashing.org>
*
* Based on original work by
*
* Armin Kuster <akuster@mvista.com>
* Johnnie Peters <jpeters@mvista.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
* TODO
* - Check for races in the "remove" code path
* - Add some Power Management to the MAC and the PHY
* - Audit remaining of non-rewritten code (--BenH)
* - Cleanup message display using msglevel mecanism
* - Address all errata
* - Audit all register update paths to ensure they
* are being written post soft reset if required.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <asm/processor.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/ocp.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/crc32.h>
#include "ibm_emac_core.h"
//#define MDIO_DEBUG(fmt) printk fmt
#define MDIO_DEBUG(fmt)
//#define LINK_DEBUG(fmt) printk fmt
#define LINK_DEBUG(fmt)
//#define PKT_DEBUG(fmt) printk fmt
#define PKT_DEBUG(fmt)
#define DRV_NAME "emac"
#define DRV_VERSION "2.0"
#define DRV_AUTHOR "Benjamin Herrenschmidt <benh@kernel.crashing.org>"
#define DRV_DESC "IBM EMAC Ethernet driver"
/*
* When mdio_idx >= 0, contains a list of emac ocp_devs
* that have had their initialization deferred until the
* common MDIO controller has been initialized.
*/
LIST_HEAD(emac_init_list);
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");
static int skb_res = SKB_RES;
module_param(skb_res, int, 0444);
MODULE_PARM_DESC(skb_res, "Amount of data to reserve on skb buffs\n"
"The 405 handles a misaligned IP header fine but\n"
"this can help if you are routing to a tunnel or a\n"
"device that needs aligned data. 0..2");
#define RGMII_PRIV(ocpdev) ((struct ibm_ocp_rgmii*)ocp_get_drvdata(ocpdev))
static unsigned int rgmii_enable[] =
{ RGMII_RTBI, RGMII_RGMII, RGMII_TBI, RGMII_GMII };
static unsigned int rgmii_speed_mask[] = { 0,
0,
RGMII_MII2_SPDMASK,
RGMII_MII3_SPDMASK
};
static unsigned int rgmii_speed100[] = { 0,
0,
RGMII_MII2_100MB,
RGMII_MII3_100MB
};
static unsigned int rgmii_speed1000[] = { 0,
0,
RGMII_MII2_1000MB,
RGMII_MII3_1000MB
};
#define ZMII_PRIV(ocpdev) ((struct ibm_ocp_zmii*)ocp_get_drvdata(ocpdev))
static unsigned int zmii_enable[][4] = {
{ZMII_SMII0, ZMII_RMII0, ZMII_MII0,
~(ZMII_MDI1 | ZMII_MDI2 | ZMII_MDI3)},
{ZMII_SMII1, ZMII_RMII1, ZMII_MII1,
~(ZMII_MDI0 | ZMII_MDI2 | ZMII_MDI3)},
{ZMII_SMII2, ZMII_RMII2, ZMII_MII2,
~(ZMII_MDI0 | ZMII_MDI1 | ZMII_MDI3)},
{ZMII_SMII3, ZMII_RMII3, ZMII_MII3, ~(ZMII_MDI0 | ZMII_MDI1 | ZMII_MDI2)}
};
static unsigned int mdi_enable[] =
{ ZMII_MDI0, ZMII_MDI1, ZMII_MDI2, ZMII_MDI3 };
static unsigned int zmii_speed = 0x0;
static unsigned int zmii_speed100[] = { ZMII_MII0_100MB, ZMII_MII1_100MB };
/* Since multiple EMACs share MDIO lines in various ways, we need
* to avoid re-using the same PHY ID in cases where the arch didn't
* setup precise phy_map entries
*/
static u32 busy_phy_map = 0;
/* If EMACs share a common MDIO device, this points to it */
static struct net_device *mdio_ndev = NULL;
struct emac_def_dev {
struct list_head link;
struct ocp_device *ocpdev;
struct ibm_ocp_mal *mal;
};
static struct net_device_stats *emac_stats(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
return &fep->stats;
};
static int
emac_init_rgmii(struct ocp_device *rgmii_dev, int input, int phy_mode)
{
struct ibm_ocp_rgmii *rgmii = RGMII_PRIV(rgmii_dev);
const char *mode_name[] = { "RTBI", "RGMII", "TBI", "GMII" };
int mode = -1;
if (!rgmii) {
rgmii = kmalloc(sizeof(struct ibm_ocp_rgmii), GFP_KERNEL);
if (rgmii == NULL) {
printk(KERN_ERR
"rgmii%d: Out of memory allocating RGMII structure!\n",
rgmii_dev->def->index);
return -ENOMEM;
}
memset(rgmii, 0, sizeof(*rgmii));
rgmii->base =
(struct rgmii_regs *)ioremap(rgmii_dev->def->paddr,
sizeof(*rgmii->base));
if (rgmii->base == NULL) {
printk(KERN_ERR
"rgmii%d: Cannot ioremap bridge registers!\n",
rgmii_dev->def->index);
kfree(rgmii);
return -ENOMEM;
}
ocp_set_drvdata(rgmii_dev, rgmii);
}
if (phy_mode) {
switch (phy_mode) {
case PHY_MODE_GMII:
mode = GMII;
break;
case PHY_MODE_TBI:
mode = TBI;
break;
case PHY_MODE_RTBI:
mode = RTBI;
break;
case PHY_MODE_RGMII:
default:
mode = RGMII;
}
rgmii->base->fer &= ~RGMII_FER_MASK(input);
rgmii->base->fer |= rgmii_enable[mode] << (4 * input);
} else {
switch ((rgmii->base->fer & RGMII_FER_MASK(input)) >> (4 *
input)) {
case RGMII_RTBI:
mode = RTBI;
break;
case RGMII_RGMII:
mode = RGMII;
break;
case RGMII_TBI:
mode = TBI;
break;
case RGMII_GMII:
mode = GMII;
}
}
/* Set mode to RGMII if nothing valid is detected */
if (mode < 0)
mode = RGMII;
printk(KERN_NOTICE "rgmii%d: input %d in %s mode\n",
rgmii_dev->def->index, input, mode_name[mode]);
rgmii->mode[input] = mode;
rgmii->users++;
return 0;
}
static void
emac_rgmii_port_speed(struct ocp_device *ocpdev, int input, int speed)
{
struct ibm_ocp_rgmii *rgmii = RGMII_PRIV(ocpdev);
unsigned int rgmii_speed;
rgmii_speed = in_be32(&rgmii->base->ssr);
rgmii_speed &= ~rgmii_speed_mask[input];
if (speed == 1000)
rgmii_speed |= rgmii_speed1000[input];
else if (speed == 100)
rgmii_speed |= rgmii_speed100[input];
out_be32(&rgmii->base->ssr, rgmii_speed);
}
static void emac_close_rgmii(struct ocp_device *ocpdev)
{
struct ibm_ocp_rgmii *rgmii = RGMII_PRIV(ocpdev);
BUG_ON(!rgmii || rgmii->users == 0);
if (!--rgmii->users) {
ocp_set_drvdata(ocpdev, NULL);
iounmap((void *)rgmii->base);
kfree(rgmii);
}
}
static int emac_init_zmii(struct ocp_device *zmii_dev, int input, int phy_mode)
{
struct ibm_ocp_zmii *zmii = ZMII_PRIV(zmii_dev);
const char *mode_name[] = { "SMII", "RMII", "MII" };
int mode = -1;
if (!zmii) {
zmii = kmalloc(sizeof(struct ibm_ocp_zmii), GFP_KERNEL);
if (zmii == NULL) {
printk(KERN_ERR
"zmii%d: Out of memory allocating ZMII structure!\n",
zmii_dev->def->index);
return -ENOMEM;
}
memset(zmii, 0, sizeof(*zmii));
zmii->base =
(struct zmii_regs *)ioremap(zmii_dev->def->paddr,
sizeof(*zmii->base));
if (zmii->base == NULL) {
printk(KERN_ERR
"zmii%d: Cannot ioremap bridge registers!\n",
zmii_dev->def->index);
kfree(zmii);
return -ENOMEM;
}
ocp_set_drvdata(zmii_dev, zmii);
}
if (phy_mode) {
switch (phy_mode) {
case PHY_MODE_MII:
mode = MII;
break;
case PHY_MODE_RMII:
mode = RMII;
break;
case PHY_MODE_SMII:
default:
mode = SMII;
}
zmii->base->fer &= ~ZMII_FER_MASK(input);
zmii->base->fer |= zmii_enable[input][mode];
} else {
switch ((zmii->base->fer & ZMII_FER_MASK(input)) << (4 * input)) {
case ZMII_MII0:
mode = MII;
break;
case ZMII_RMII0:
mode = RMII;
break;
case ZMII_SMII0:
mode = SMII;
}
}
/* Set mode to SMII if nothing valid is detected */
if (mode < 0)
mode = SMII;
printk(KERN_NOTICE "zmii%d: input %d in %s mode\n",
zmii_dev->def->index, input, mode_name[mode]);
zmii->mode[input] = mode;
zmii->users++;
return 0;
}
static void emac_enable_zmii_port(struct ocp_device *ocpdev, int input)
{
u32 mask;
struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev);
mask = in_be32(&zmii->base->fer);
mask &= zmii_enable[input][MDI]; /* turn all non enabled MDI's off */
mask |= zmii_enable[input][zmii->mode[input]] | mdi_enable[input];
out_be32(&zmii->base->fer, mask);
}
static void
emac_zmii_port_speed(struct ocp_device *ocpdev, int input, int speed)
{
struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev);
if (speed == 100)
zmii_speed |= zmii_speed100[input];
else
zmii_speed &= ~zmii_speed100[input];
out_be32(&zmii->base->ssr, zmii_speed);
}
static void emac_close_zmii(struct ocp_device *ocpdev)
{
struct ibm_ocp_zmii *zmii = ZMII_PRIV(ocpdev);
BUG_ON(!zmii || zmii->users == 0);
if (!--zmii->users) {
ocp_set_drvdata(ocpdev, NULL);
iounmap((void *)zmii->base);
kfree(zmii);
}
}
int emac_phy_read(struct net_device *dev, int mii_id, int reg)
{
uint32_t stacr;
struct ocp_enet_private *fep = dev->priv;
emac_t *emacp = fep->emacp;
MDIO_DEBUG(("%s: phy_read, id: 0x%x, reg: 0x%x\n", dev->name, mii_id,
reg));
/* Enable proper ZMII port */
if (fep->zmii_dev)
emac_enable_zmii_port(fep->zmii_dev, fep->zmii_input);
/* Use the EMAC that has the MDIO port */
if (fep->mdio_dev) {
dev = fep->mdio_dev;
fep = dev->priv;
emacp = fep->emacp;
}
udelay(MDIO_DELAY);
if ((in_be32(&emacp->em0stacr) & EMAC_STACR_OC) == 0) {
printk(KERN_WARNING "%s: PHY read timeout #1!\n", dev->name);
return -1;
}
/* Clear the speed bits and make a read request to the PHY */
stacr = ((EMAC_STACR_READ | (reg & 0x1f)) & ~EMAC_STACR_CLK_100MHZ);
stacr |= ((mii_id & 0x1F) << 5);
out_be32(&emacp->em0stacr, stacr);
udelay(MDIO_DELAY);
stacr = in_be32(&emacp->em0stacr);
if ((stacr & EMAC_STACR_OC) == 0) {
printk(KERN_WARNING "%s: PHY read timeout #2!\n", dev->name);
return -1;
}
/* Check for a read error */
if (stacr & EMAC_STACR_PHYE) {
MDIO_DEBUG(("EMAC MDIO PHY error !\n"));
return -1;
}
MDIO_DEBUG((" -> 0x%x\n", stacr >> 16));
return (stacr >> 16);
}
void emac_phy_write(struct net_device *dev, int mii_id, int reg, int data)
{
uint32_t stacr;
struct ocp_enet_private *fep = dev->priv;
emac_t *emacp = fep->emacp;
MDIO_DEBUG(("%s phy_write, id: 0x%x, reg: 0x%x, data: 0x%x\n",
dev->name, mii_id, reg, data));
/* Enable proper ZMII port */
if (fep->zmii_dev)
emac_enable_zmii_port(fep->zmii_dev, fep->zmii_input);
/* Use the EMAC that has the MDIO port */
if (fep->mdio_dev) {
dev = fep->mdio_dev;
fep = dev->priv;
emacp = fep->emacp;
}
udelay(MDIO_DELAY);
if ((in_be32(&emacp->em0stacr) & EMAC_STACR_OC) == 0) {
printk(KERN_WARNING "%s: PHY write timeout #2!\n", dev->name);
return;
}
/* Clear the speed bits and make a read request to the PHY */
stacr = ((EMAC_STACR_WRITE | (reg & 0x1f)) & ~EMAC_STACR_CLK_100MHZ);
stacr |= ((mii_id & 0x1f) << 5) | ((data & 0xffff) << 16);
out_be32(&emacp->em0stacr, stacr);
udelay(MDIO_DELAY);
if ((in_be32(&emacp->em0stacr) & EMAC_STACR_OC) == 0)
printk(KERN_WARNING "%s: PHY write timeout #2!\n", dev->name);
/* Check for a write error */
if ((stacr & EMAC_STACR_PHYE) != 0) {
MDIO_DEBUG(("EMAC MDIO PHY error !\n"));
}
}
static void emac_txeob_dev(void *param, u32 chanmask)
{
struct net_device *dev = param;
struct ocp_enet_private *fep = dev->priv;
unsigned long flags;
spin_lock_irqsave(&fep->lock, flags);
PKT_DEBUG(("emac_txeob_dev() entry, tx_cnt: %d\n", fep->tx_cnt));
while (fep->tx_cnt &&
!(fep->tx_desc[fep->ack_slot].ctrl & MAL_TX_CTRL_READY)) {
if (fep->tx_desc[fep->ack_slot].ctrl & MAL_TX_CTRL_LAST) {
/* Tell the system the transmit completed. */
dma_unmap_single(&fep->ocpdev->dev,
fep->tx_desc[fep->ack_slot].data_ptr,
fep->tx_desc[fep->ack_slot].data_len,
DMA_TO_DEVICE);
dev_kfree_skb_irq(fep->tx_skb[fep->ack_slot]);
if (fep->tx_desc[fep->ack_slot].ctrl &
(EMAC_TX_ST_EC | EMAC_TX_ST_MC | EMAC_TX_ST_SC))
fep->stats.collisions++;
}
fep->tx_skb[fep->ack_slot] = (struct sk_buff *)NULL;
if (++fep->ack_slot == NUM_TX_BUFF)
fep->ack_slot = 0;
fep->tx_cnt--;
}
if (fep->tx_cnt < NUM_TX_BUFF)
netif_wake_queue(dev);
PKT_DEBUG(("emac_txeob_dev() exit, tx_cnt: %d\n", fep->tx_cnt));
spin_unlock_irqrestore(&fep->lock, flags);
}
/*
Fill/Re-fill the rx chain with valid ctrl/ptrs.
This function will fill from rx_slot up to the parm end.
So to completely fill the chain pre-set rx_slot to 0 and
pass in an end of 0.
*/
static void emac_rx_fill(struct net_device *dev, int end)
{
int i;
struct ocp_enet_private *fep = dev->priv;
i = fep->rx_slot;
do {
/* We don't want the 16 bytes skb_reserve done by dev_alloc_skb,
* it breaks our cache line alignement. However, we still allocate
* +16 so that we end up allocating the exact same size as
* dev_alloc_skb() would do.
* Also, because of the skb_res, the max DMA size we give to EMAC
* is slighly wrong, causing it to potentially DMA 2 more bytes
* from a broken/oversized packet. These 16 bytes will take care
* that we don't walk on somebody else toes with that.
*/
fep->rx_skb[i] =
alloc_skb(fep->rx_buffer_size + 16, GFP_ATOMIC);
if (fep->rx_skb[i] == NULL) {
/* Keep rx_slot here, the next time clean/fill is called
* we will try again before the MAL wraps back here
* If the MAL tries to use this descriptor with
* the EMPTY bit off it will cause the
* rxde interrupt. That is where we will
* try again to allocate an sk_buff.
*/
break;
}
if (skb_res)
skb_reserve(fep->rx_skb[i], skb_res);
/* We must NOT dma_map_single the cache line right after the
* buffer, so we must crop our sync size to account for the
* reserved space
*/
fep->rx_desc[i].data_ptr =
(unsigned char *)dma_map_single(&fep->ocpdev->dev,
(void *)fep->rx_skb[i]->
data,
fep->rx_buffer_size -
skb_res, DMA_FROM_DEVICE);
/*
* Some 4xx implementations use the previously
* reserved bits in data_len to encode the MS
* 4-bits of a 36-bit physical address (ERPN)
* This must be initialized.
*/
fep->rx_desc[i].data_len = 0;
fep->rx_desc[i].ctrl = MAL_RX_CTRL_EMPTY | MAL_RX_CTRL_INTR |
(i == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0);
} while ((i = (i + 1) % NUM_RX_BUFF) != end);
fep->rx_slot = i;
}
static void
emac_rx_csum(struct net_device *dev, unsigned short ctrl, struct sk_buff *skb)
{
struct ocp_enet_private *fep = dev->priv;
/* Exit if interface has no TAH engine */
if (!fep->tah_dev) {
skb->ip_summed = CHECKSUM_NONE;
return;
}
/* Check for TCP/UDP/IP csum error */
if (ctrl & EMAC_CSUM_VER_ERROR) {
/* Let the stack verify checksum errors */
skb->ip_summed = CHECKSUM_NONE;
/* adapter->hw_csum_err++; */
} else {
/* Csum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* adapter->hw_csum_good++; */
}
}
static int emac_rx_clean(struct net_device *dev)
{
int i, b, bnum, buf[6];
int error, frame_length;
struct ocp_enet_private *fep = dev->priv;
unsigned short ctrl;
i = fep->rx_slot;
PKT_DEBUG(("emac_rx_clean() entry, rx_slot: %d\n", fep->rx_slot));
do {
if (fep->rx_skb[i] == NULL)
continue; /*we have already handled the packet but haved failed to alloc */
/*
since rx_desc is in uncached mem we don't keep reading it directly
we pull out a local copy of ctrl and do the checks on the copy.
*/
ctrl = fep->rx_desc[i].ctrl;
if (ctrl & MAL_RX_CTRL_EMPTY)
break; /*we don't have any more ready packets */
if (EMAC_IS_BAD_RX_PACKET(ctrl)) {
fep->stats.rx_errors++;
fep->stats.rx_dropped++;
if (ctrl & EMAC_RX_ST_OE)
fep->stats.rx_fifo_errors++;
if (ctrl & EMAC_RX_ST_AE)
fep->stats.rx_frame_errors++;
if (ctrl & EMAC_RX_ST_BFCS)
fep->stats.rx_crc_errors++;
if (ctrl & (EMAC_RX_ST_RP | EMAC_RX_ST_PTL |
EMAC_RX_ST_ORE | EMAC_RX_ST_IRE))
fep->stats.rx_length_errors++;
} else {
if ((ctrl & (MAL_RX_CTRL_FIRST | MAL_RX_CTRL_LAST)) ==
(MAL_RX_CTRL_FIRST | MAL_RX_CTRL_LAST)) {
/* Single descriptor packet */
emac_rx_csum(dev, ctrl, fep->rx_skb[i]);
/* Send the skb up the chain. */
frame_length = fep->rx_desc[i].data_len - 4;
skb_put(fep->rx_skb[i], frame_length);
fep->rx_skb[i]->dev = dev;
fep->rx_skb[i]->protocol =
eth_type_trans(fep->rx_skb[i], dev);
error = netif_rx(fep->rx_skb[i]);
if ((error == NET_RX_DROP) ||
(error == NET_RX_BAD)) {
fep->stats.rx_dropped++;
} else {
fep->stats.rx_packets++;
fep->stats.rx_bytes += frame_length;
}
fep->rx_skb[i] = NULL;
} else {
/* Multiple descriptor packet */
if (ctrl & MAL_RX_CTRL_FIRST) {
if (fep->rx_desc[(i + 1) % NUM_RX_BUFF].
ctrl & MAL_RX_CTRL_EMPTY)
break;
bnum = 0;
buf[bnum] = i;
++bnum;
continue;
}
if (((ctrl & MAL_RX_CTRL_FIRST) !=
MAL_RX_CTRL_FIRST) &&
((ctrl & MAL_RX_CTRL_LAST) !=
MAL_RX_CTRL_LAST)) {
if (fep->rx_desc[(i + 1) %
NUM_RX_BUFF].ctrl &
MAL_RX_CTRL_EMPTY) {
i = buf[0];
break;
}
buf[bnum] = i;
++bnum;
continue;
}
if (ctrl & MAL_RX_CTRL_LAST) {
buf[bnum] = i;
++bnum;
skb_put(fep->rx_skb[buf[0]],
fep->rx_desc[buf[0]].data_len);
for (b = 1; b < bnum; b++) {
/*
* MAL is braindead, we need
* to copy the remainder
* of the packet from the
* latter descriptor buffers
* to the first skb. Then
* dispose of the source
* skbs.
*
* Once the stack is fixed
* to handle frags on most
* protocols we can generate
* a fragmented skb with
* no copies.
*/
memcpy(fep->rx_skb[buf[0]]->
data +
fep->rx_skb[buf[0]]->len,
fep->rx_skb[buf[b]]->
data,
fep->rx_desc[buf[b]].
data_len);
skb_put(fep->rx_skb[buf[0]],
fep->rx_desc[buf[b]].
data_len);
dma_unmap_single(&fep->ocpdev->
dev,
fep->
rx_desc[buf
[b]].
data_ptr,
fep->
rx_desc[buf
[b]].
data_len,
DMA_FROM_DEVICE);
dev_kfree_skb(fep->
rx_skb[buf[b]]);
}
emac_rx_csum(dev, ctrl,
fep->rx_skb[buf[0]]);
fep->rx_skb[buf[0]]->dev = dev;
fep->rx_skb[buf[0]]->protocol =
eth_type_trans(fep->rx_skb[buf[0]],
dev);
error = netif_rx(fep->rx_skb[buf[0]]);
if ((error == NET_RX_DROP)
|| (error == NET_RX_BAD)) {
fep->stats.rx_dropped++;
} else {
fep->stats.rx_packets++;
fep->stats.rx_bytes +=
fep->rx_skb[buf[0]]->len;
}
for (b = 0; b < bnum; b++)
fep->rx_skb[buf[b]] = NULL;
}
}
}
} while ((i = (i + 1) % NUM_RX_BUFF) != fep->rx_slot);
PKT_DEBUG(("emac_rx_clean() exit, rx_slot: %d\n", fep->rx_slot));
return i;
}
static void emac_rxeob_dev(void *param, u32 chanmask)
{
struct net_device *dev = param;
struct ocp_enet_private *fep = dev->priv;
unsigned long flags;
int n;
spin_lock_irqsave(&fep->lock, flags);
if ((n = emac_rx_clean(dev)) != fep->rx_slot)
emac_rx_fill(dev, n);
spin_unlock_irqrestore(&fep->lock, flags);
}
/*
* This interrupt should never occurr, we don't program
* the MAL for contiunous mode.
*/
static void emac_txde_dev(void *param, u32 chanmask)
{
struct net_device *dev = param;
struct ocp_enet_private *fep = dev->priv;
printk(KERN_WARNING "%s: transmit descriptor error\n", dev->name);
emac_mac_dump(dev);
emac_mal_dump(dev);
/* Reenable the transmit channel */
mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
}
/*
* This interrupt should be very rare at best. This occurs when
* the hardware has a problem with the receive descriptors. The manual
* states that it occurs when the hardware cannot the receive descriptor
* empty bit is not set. The recovery mechanism will be to
* traverse through the descriptors, handle any that are marked to be
* handled and reinitialize each along the way. At that point the driver
* will be restarted.
*/
static void emac_rxde_dev(void *param, u32 chanmask)
{
struct net_device *dev = param;
struct ocp_enet_private *fep = dev->priv;
unsigned long flags;
if (net_ratelimit()) {
printk(KERN_WARNING "%s: receive descriptor error\n",
fep->ndev->name);
emac_mac_dump(dev);
emac_mal_dump(dev);
emac_desc_dump(dev);
}
/* Disable RX channel */
spin_lock_irqsave(&fep->lock, flags);
mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
/* For now, charge the error against all emacs */
fep->stats.rx_errors++;
/* so do we have any good packets still? */
emac_rx_clean(dev);
/* When the interface is restarted it resets processing to the
* first descriptor in the table.
*/
fep->rx_slot = 0;
emac_rx_fill(dev, 0);
set_mal_dcrn(fep->mal, DCRN_MALRXEOBISR, fep->commac.rx_chan_mask);
set_mal_dcrn(fep->mal, DCRN_MALRXDEIR, fep->commac.rx_chan_mask);
/* Reenable the receive channels */
mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
spin_unlock_irqrestore(&fep->lock, flags);
}
static irqreturn_t
emac_mac_irq(int irq, void *dev_instance, struct pt_regs *regs)
{
struct net_device *dev = dev_instance;
struct ocp_enet_private *fep = dev->priv;
emac_t *emacp = fep->emacp;
unsigned long tmp_em0isr;
/* EMAC interrupt */
tmp_em0isr = in_be32(&emacp->em0isr);
if (tmp_em0isr & (EMAC_ISR_TE0 | EMAC_ISR_TE1)) {
/* This error is a hard transmit error - could retransmit */
fep->stats.tx_errors++;
/* Reenable the transmit channel */
mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
} else {
fep->stats.rx_errors++;
}
if (tmp_em0isr & EMAC_ISR_RP)
fep->stats.rx_length_errors++;
if (tmp_em0isr & EMAC_ISR_ALE)
fep->stats.rx_frame_errors++;
if (tmp_em0isr & EMAC_ISR_BFCS)
fep->stats.rx_crc_errors++;
if (tmp_em0isr & EMAC_ISR_PTLE)
fep->stats.rx_length_errors++;
if (tmp_em0isr & EMAC_ISR_ORE)
fep->stats.rx_length_errors++;
if (tmp_em0isr & EMAC_ISR_TE0)
fep->stats.tx_aborted_errors++;
emac_err_dump(dev, tmp_em0isr);
out_be32(&emacp->em0isr, tmp_em0isr);
return IRQ_HANDLED;
}
static int emac_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned short ctrl;
unsigned long flags;
struct ocp_enet_private *fep = dev->priv;
emac_t *emacp = fep->emacp;
int len = skb->len;
unsigned int offset = 0, size, f, tx_slot_first;
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
spin_lock_irqsave(&fep->lock, flags);
len -= skb->data_len;
if ((fep->tx_cnt + nr_frags + len / DESC_BUF_SIZE + 1) > NUM_TX_BUFF) {
PKT_DEBUG(("emac_start_xmit() stopping queue\n"));
netif_stop_queue(dev);
spin_unlock_irqrestore(&fep->lock, flags);
restore_flags(flags);
return -EBUSY;
}
tx_slot_first = fep->tx_slot;
while (len) {
size = min(len, DESC_BUF_SIZE);
fep->tx_desc[fep->tx_slot].data_len = (short)size;
fep->tx_desc[fep->tx_slot].data_ptr =
(unsigned char *)dma_map_single(&fep->ocpdev->dev,
(void *)((unsigned int)skb->
data + offset),
size, DMA_TO_DEVICE);
ctrl = EMAC_TX_CTRL_DFLT;
if (fep->tx_slot != tx_slot_first)
ctrl |= MAL_TX_CTRL_READY;
if ((NUM_TX_BUFF - 1) == fep->tx_slot)
ctrl |= MAL_TX_CTRL_WRAP;
if (!nr_frags && (len == size)) {
ctrl |= MAL_TX_CTRL_LAST;
fep->tx_skb[fep->tx_slot] = skb;
}
if (skb->ip_summed == CHECKSUM_HW)
ctrl |= EMAC_TX_CTRL_TAH_CSUM;
fep->tx_desc[fep->tx_slot].ctrl = ctrl;
len -= size;
offset += size;
/* Bump tx count */
if (++fep->tx_cnt == NUM_TX_BUFF)
netif_stop_queue(dev);
/* Next descriptor */
if (++fep->tx_slot == NUM_TX_BUFF)
fep->tx_slot = 0;
}
for (f = 0; f < nr_frags; f++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
len = frag->size;
offset = 0;
while (len) {
size = min(len, DESC_BUF_SIZE);
dma_map_page(&fep->ocpdev->dev,
frag->page,
frag->page_offset + offset,
size, DMA_TO_DEVICE);
ctrl = EMAC_TX_CTRL_DFLT | MAL_TX_CTRL_READY;
if ((NUM_TX_BUFF - 1) == fep->tx_slot)
ctrl |= MAL_TX_CTRL_WRAP;
if ((f == (nr_frags - 1)) && (len == size)) {
ctrl |= MAL_TX_CTRL_LAST;
fep->tx_skb[fep->tx_slot] = skb;
}
if (skb->ip_summed == CHECKSUM_HW)
ctrl |= EMAC_TX_CTRL_TAH_CSUM;
fep->tx_desc[fep->tx_slot].data_len = (short)size;
fep->tx_desc[fep->tx_slot].data_ptr =
(char *)((page_to_pfn(frag->page) << PAGE_SHIFT) +
frag->page_offset + offset);
fep->tx_desc[fep->tx_slot].ctrl = ctrl;
len -= size;
offset += size;
/* Bump tx count */
if (++fep->tx_cnt == NUM_TX_BUFF)
netif_stop_queue(dev);
/* Next descriptor */
if (++fep->tx_slot == NUM_TX_BUFF)
fep->tx_slot = 0;
}
}
/*
* Deferred set READY on first descriptor of packet to
* avoid TX MAL race.
*/
fep->tx_desc[tx_slot_first].ctrl |= MAL_TX_CTRL_READY;
/* Send the packet out. */
out_be32(&emacp->em0tmr0, EMAC_TMR0_XMIT);
fep->stats.tx_packets++;
fep->stats.tx_bytes += skb->len;
PKT_DEBUG(("emac_start_xmit() exitn"));
spin_unlock_irqrestore(&fep->lock, flags);
return 0;
}
static int emac_adjust_to_link(struct ocp_enet_private *fep)
{
emac_t *emacp = fep->emacp;
struct ibm_ocp_rgmii *rgmii;
unsigned long mode_reg;
int full_duplex, speed;
full_duplex = 0;
speed = SPEED_10;
/* set mode register 1 defaults */
mode_reg = EMAC_M1_DEFAULT;
/* Read link mode on PHY */
if (fep->phy_mii.def->ops->read_link(&fep->phy_mii) == 0) {
/* If an error occurred, we don't deal with it yet */
full_duplex = (fep->phy_mii.duplex == DUPLEX_FULL);
speed = fep->phy_mii.speed;
}
if (fep->rgmii_dev)
rgmii = RGMII_PRIV(fep->rgmii_dev);
/* set speed (default is 10Mb) */
switch (speed) {
case SPEED_1000:
mode_reg |= EMAC_M1_JUMBO_ENABLE | EMAC_M1_RFS_16K;
if ((rgmii->mode[fep->rgmii_input] == RTBI)
|| (rgmii->mode[fep->rgmii_input] == TBI))
mode_reg |= EMAC_M1_MF_1000GPCS;
else
mode_reg |= EMAC_M1_MF_1000MBPS;
if (fep->rgmii_dev)
emac_rgmii_port_speed(fep->rgmii_dev, fep->rgmii_input,
1000);
break;
case SPEED_100:
mode_reg |= EMAC_M1_MF_100MBPS | EMAC_M1_RFS_4K;
if (fep->rgmii_dev)
emac_rgmii_port_speed(fep->rgmii_dev, fep->rgmii_input,
100);
if (fep->zmii_dev)
emac_zmii_port_speed(fep->zmii_dev, fep->zmii_input,
100);
break;
case SPEED_10:
default:
mode_reg = (mode_reg & ~EMAC_M1_MF_100MBPS) | EMAC_M1_RFS_4K;
if (fep->rgmii_dev)
emac_rgmii_port_speed(fep->rgmii_dev, fep->rgmii_input,
10);
if (fep->zmii_dev)
emac_zmii_port_speed(fep->zmii_dev, fep->zmii_input,
10);
}
if (full_duplex)
mode_reg |= EMAC_M1_FDE | EMAC_M1_EIFC | EMAC_M1_IST;
else
mode_reg &= ~(EMAC_M1_FDE | EMAC_M1_EIFC | EMAC_M1_ILE);
LINK_DEBUG(("%s: adjust to link, speed: %d, duplex: %d, opened: %d\n",
fep->ndev->name, speed, full_duplex, fep->opened));
printk(KERN_INFO "%s: Speed: %d, %s duplex.\n",
fep->ndev->name, speed, full_duplex ? "Full" : "Half");
if (fep->opened)
out_be32(&emacp->em0mr1, mode_reg);
return 0;
}
static int emac_set_mac_address(struct net_device *ndev, void *p)
{
struct ocp_enet_private *fep = ndev->priv;
emac_t *emacp = fep->emacp;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
/* set the high address */
out_be32(&emacp->em0iahr,
(fep->ndev->dev_addr[0] << 8) | fep->ndev->dev_addr[1]);
/* set the low address */
out_be32(&emacp->em0ialr,
(fep->ndev->dev_addr[2] << 24) | (fep->ndev->dev_addr[3] << 16)
| (fep->ndev->dev_addr[4] << 8) | fep->ndev->dev_addr[5]);
return 0;
}
static int emac_change_mtu(struct net_device *dev, int new_mtu)
{
struct ocp_enet_private *fep = dev->priv;
int old_mtu = dev->mtu;
emac_t *emacp = fep->emacp;
u32 em0mr0;
int i, full;
unsigned long flags;
if ((new_mtu < EMAC_MIN_MTU) || (new_mtu > EMAC_MAX_MTU)) {
printk(KERN_ERR
"emac: Invalid MTU setting, MTU must be between %d and %d\n",
EMAC_MIN_MTU, EMAC_MAX_MTU);
return -EINVAL;
}
if (old_mtu != new_mtu && netif_running(dev)) {
/* Stop rx engine */
em0mr0 = in_be32(&emacp->em0mr0);
out_be32(&emacp->em0mr0, em0mr0 & ~EMAC_M0_RXE);
/* Wait for descriptors to be empty */
do {
full = 0;
for (i = 0; i < NUM_RX_BUFF; i++)
if (!(fep->rx_desc[i].ctrl & MAL_RX_CTRL_EMPTY)) {
printk(KERN_NOTICE
"emac: RX ring is still full\n");
full = 1;
}
} while (full);
spin_lock_irqsave(&fep->lock, flags);
mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
/* Destroy all old rx skbs */
for (i = 0; i < NUM_RX_BUFF; i++) {
dma_unmap_single(&fep->ocpdev->dev,
fep->rx_desc[i].data_ptr,
fep->rx_desc[i].data_len,
DMA_FROM_DEVICE);
dev_kfree_skb(fep->rx_skb[i]);
fep->rx_skb[i] = NULL;
}
/* Set new rx_buffer_size and advertise new mtu */
fep->rx_buffer_size =
new_mtu + ENET_HEADER_SIZE + ENET_FCS_SIZE;
dev->mtu = new_mtu;
/* Re-init rx skbs */
fep->rx_slot = 0;
emac_rx_fill(dev, 0);
/* Restart the rx engine */
mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
out_be32(&emacp->em0mr0, em0mr0 | EMAC_M0_RXE);
spin_unlock_irqrestore(&fep->lock, flags);
}
return 0;
}
static void __emac_set_multicast_list(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
emac_t *emacp = fep->emacp;
u32 rmr = in_be32(&emacp->em0rmr);
/* First clear all special bits, they can be set later */
rmr &= ~(EMAC_RMR_PME | EMAC_RMR_PMME | EMAC_RMR_MAE);
if (dev->flags & IFF_PROMISC) {
rmr |= EMAC_RMR_PME;
} else if (dev->flags & IFF_ALLMULTI || 32 < dev->mc_count) {
/*
* Must be setting up to use multicast
* Now check for promiscuous multicast
*/
rmr |= EMAC_RMR_PMME;
} else if (dev->flags & IFF_MULTICAST && 0 < dev->mc_count) {
unsigned short em0gaht[4] = { 0, 0, 0, 0 };
struct dev_mc_list *dmi;
/* Need to hash on the multicast address. */
for (dmi = dev->mc_list; dmi; dmi = dmi->next) {
unsigned long mc_crc;
unsigned int bit_number;
mc_crc = ether_crc(6, (char *)dmi->dmi_addr);
bit_number = 63 - (mc_crc >> 26); /* MSB: 0 LSB: 63 */
em0gaht[bit_number >> 4] |=
0x8000 >> (bit_number & 0x0f);
}
emacp->em0gaht1 = em0gaht[0];
emacp->em0gaht2 = em0gaht[1];
emacp->em0gaht3 = em0gaht[2];
emacp->em0gaht4 = em0gaht[3];
/* Turn on multicast addressing */
rmr |= EMAC_RMR_MAE;
}
out_be32(&emacp->em0rmr, rmr);
}
static int emac_init_tah(struct ocp_enet_private *fep)
{
tah_t *tahp;
/* Initialize TAH and enable checksum verification */
tahp = (tah_t *) ioremap(fep->tah_dev->def->paddr, sizeof(*tahp));
if (tahp == NULL) {
printk(KERN_ERR "tah%d: Cannot ioremap TAH registers!\n",
fep->tah_dev->def->index);
return -ENOMEM;
}
out_be32(&tahp->tah_mr, TAH_MR_SR);
/* wait for reset to complete */
while (in_be32(&tahp->tah_mr) & TAH_MR_SR) ;
/* 10KB TAH TX FIFO accomodates the max MTU of 9000 */
out_be32(&tahp->tah_mr,
TAH_MR_CVR | TAH_MR_ST_768 | TAH_MR_TFS_10KB | TAH_MR_DTFP |
TAH_MR_DIG);
iounmap(&tahp);
return 0;
}
static void emac_init_rings(struct net_device *dev)
{
struct ocp_enet_private *ep = dev->priv;
int loop;
ep->tx_desc = (struct mal_descriptor *)((char *)ep->mal->tx_virt_addr +
(ep->mal_tx_chan *
MAL_DT_ALIGN));
ep->rx_desc =
(struct mal_descriptor *)((char *)ep->mal->rx_virt_addr +
(ep->mal_rx_chan * MAL_DT_ALIGN));
/* Fill in the transmit descriptor ring. */
for (loop = 0; loop < NUM_TX_BUFF; loop++) {
if (ep->tx_skb[loop]) {
dma_unmap_single(&ep->ocpdev->dev,
ep->tx_desc[loop].data_ptr,
ep->tx_desc[loop].data_len,
DMA_TO_DEVICE);
dev_kfree_skb_irq(ep->tx_skb[loop]);
}
ep->tx_skb[loop] = NULL;
ep->tx_desc[loop].ctrl = 0;
ep->tx_desc[loop].data_len = 0;
ep->tx_desc[loop].data_ptr = NULL;
}
ep->tx_desc[loop - 1].ctrl |= MAL_TX_CTRL_WRAP;
/* Format the receive descriptor ring. */
ep->rx_slot = 0;
/* Default is MTU=1500 + Ethernet overhead */
ep->rx_buffer_size = ENET_DEF_BUF_SIZE;
emac_rx_fill(dev, 0);
if (ep->rx_slot != 0) {
printk(KERN_ERR
"%s: Not enough mem for RxChain durning Open?\n",
dev->name);
/*We couldn't fill the ring at startup?
*We could clean up and fail to open but right now we will try to
*carry on. It may be a sign of a bad NUM_RX_BUFF value
*/
}
ep->tx_cnt = 0;
ep->tx_slot = 0;
ep->ack_slot = 0;
}
static void emac_reset_configure(struct ocp_enet_private *fep)
{
emac_t *emacp = fep->emacp;
int i;
mal_disable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
/*
* Check for a link, some PHYs don't provide a clock if
* no link is present. Some EMACs will not come out of
* soft reset without a PHY clock present.
*/
if (fep->phy_mii.def->ops->poll_link(&fep->phy_mii)) {
/* Reset the EMAC */
out_be32(&emacp->em0mr0, EMAC_M0_SRST);
udelay(20);
for (i = 0; i < 100; i++) {
if ((in_be32(&emacp->em0mr0) & EMAC_M0_SRST) == 0)
break;
udelay(10);
}
if (i >= 100) {
printk(KERN_ERR "%s: Cannot reset EMAC\n",
fep->ndev->name);
return;
}
}
/* Switch IRQs off for now */
out_be32(&emacp->em0iser, 0);
/* Configure MAL rx channel */
mal_set_rcbs(fep->mal, fep->mal_rx_chan, DESC_BUF_SIZE_REG);
/* set the high address */
out_be32(&emacp->em0iahr,
(fep->ndev->dev_addr[0] << 8) | fep->ndev->dev_addr[1]);
/* set the low address */
out_be32(&emacp->em0ialr,
(fep->ndev->dev_addr[2] << 24) | (fep->ndev->dev_addr[3] << 16)
| (fep->ndev->dev_addr[4] << 8) | fep->ndev->dev_addr[5]);
/* Adjust to link */
if (netif_carrier_ok(fep->ndev))
emac_adjust_to_link(fep);
/* enable broadcast/individual address and RX FIFO defaults */
out_be32(&emacp->em0rmr, EMAC_RMR_DEFAULT);
/* set transmit request threshold register */
out_be32(&emacp->em0trtr, EMAC_TRTR_DEFAULT);
/* Reconfigure multicast */
__emac_set_multicast_list(fep->ndev);
/* Set receiver/transmitter defaults */
out_be32(&emacp->em0rwmr, EMAC_RWMR_DEFAULT);
out_be32(&emacp->em0tmr0, EMAC_TMR0_DEFAULT);
out_be32(&emacp->em0tmr1, EMAC_TMR1_DEFAULT);
/* set frame gap */
out_be32(&emacp->em0ipgvr, CONFIG_IBM_EMAC_FGAP);
/* Init ring buffers */
emac_init_rings(fep->ndev);
}
static void emac_kick(struct ocp_enet_private *fep)
{
emac_t *emacp = fep->emacp;
unsigned long emac_ier;
emac_ier = EMAC_ISR_PP | EMAC_ISR_BP | EMAC_ISR_RP |
EMAC_ISR_SE | EMAC_ISR_PTLE | EMAC_ISR_ALE |
EMAC_ISR_BFCS | EMAC_ISR_ORE | EMAC_ISR_IRE;
out_be32(&emacp->em0iser, emac_ier);
/* enable all MAL transmit and receive channels */
mal_enable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
mal_enable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
/* set transmit and receive enable */
out_be32(&emacp->em0mr0, EMAC_M0_TXE | EMAC_M0_RXE);
}
static void
emac_start_link(struct ocp_enet_private *fep, struct ethtool_cmd *ep)
{
u32 advertise;
int autoneg;
int forced_speed;
int forced_duplex;
/* Default advertise */
advertise = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full;
autoneg = fep->want_autoneg;
forced_speed = fep->phy_mii.speed;
forced_duplex = fep->phy_mii.duplex;
/* Setup link parameters */
if (ep) {
if (ep->autoneg == AUTONEG_ENABLE) {
advertise = ep->advertising;
autoneg = 1;
} else {
autoneg = 0;
forced_speed = ep->speed;
forced_duplex = ep->duplex;
}
}
/* Configure PHY & start aneg */
fep->want_autoneg = autoneg;
if (autoneg) {
LINK_DEBUG(("%s: start link aneg, advertise: 0x%x\n",
fep->ndev->name, advertise));
fep->phy_mii.def->ops->setup_aneg(&fep->phy_mii, advertise);
} else {
LINK_DEBUG(("%s: start link forced, speed: %d, duplex: %d\n",
fep->ndev->name, forced_speed, forced_duplex));
fep->phy_mii.def->ops->setup_forced(&fep->phy_mii, forced_speed,
forced_duplex);
}
fep->timer_ticks = 0;
mod_timer(&fep->link_timer, jiffies + HZ);
}
static void emac_link_timer(unsigned long data)
{
struct ocp_enet_private *fep = (struct ocp_enet_private *)data;
int link;
if (fep->going_away)
return;
spin_lock_irq(&fep->lock);
link = fep->phy_mii.def->ops->poll_link(&fep->phy_mii);
LINK_DEBUG(("%s: poll_link: %d\n", fep->ndev->name, link));
if (link == netif_carrier_ok(fep->ndev)) {
if (!link && fep->want_autoneg && (++fep->timer_ticks) > 10)
emac_start_link(fep, NULL);
goto out;
}
printk(KERN_INFO "%s: Link is %s\n", fep->ndev->name,
link ? "Up" : "Down");
if (link) {
netif_carrier_on(fep->ndev);
/* Chip needs a full reset on config change. That sucks, so I
* should ultimately move that to some tasklet to limit
* latency peaks caused by this code
*/
emac_reset_configure(fep);
if (fep->opened)
emac_kick(fep);
} else {
fep->timer_ticks = 0;
netif_carrier_off(fep->ndev);
}
out:
mod_timer(&fep->link_timer, jiffies + HZ);
spin_unlock_irq(&fep->lock);
}
static void emac_set_multicast_list(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
spin_lock_irq(&fep->lock);
__emac_set_multicast_list(dev);
spin_unlock_irq(&fep->lock);
}
static int emac_get_settings(struct net_device *ndev, struct ethtool_cmd *cmd)
{
struct ocp_enet_private *fep = ndev->priv;
cmd->supported = fep->phy_mii.def->features;
cmd->port = PORT_MII;
cmd->transceiver = XCVR_EXTERNAL;
cmd->phy_address = fep->mii_phy_addr;
spin_lock_irq(&fep->lock);
cmd->autoneg = fep->want_autoneg;
cmd->speed = fep->phy_mii.speed;
cmd->duplex = fep->phy_mii.duplex;
spin_unlock_irq(&fep->lock);
return 0;
}
static int emac_set_settings(struct net_device *ndev, struct ethtool_cmd *cmd)
{
struct ocp_enet_private *fep = ndev->priv;
unsigned long features = fep->phy_mii.def->features;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
return -EINVAL;
if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE)
switch (cmd->speed) {
case SPEED_10:
if (cmd->duplex == DUPLEX_HALF &&
(features & SUPPORTED_10baseT_Half) == 0)
return -EINVAL;
if (cmd->duplex == DUPLEX_FULL &&
(features & SUPPORTED_10baseT_Full) == 0)
return -EINVAL;
break;
case SPEED_100:
if (cmd->duplex == DUPLEX_HALF &&
(features & SUPPORTED_100baseT_Half) == 0)
return -EINVAL;
if (cmd->duplex == DUPLEX_FULL &&
(features & SUPPORTED_100baseT_Full) == 0)
return -EINVAL;
break;
case SPEED_1000:
if (cmd->duplex == DUPLEX_HALF &&
(features & SUPPORTED_1000baseT_Half) == 0)
return -EINVAL;
if (cmd->duplex == DUPLEX_FULL &&
(features & SUPPORTED_1000baseT_Full) == 0)
return -EINVAL;
break;
default:
return -EINVAL;
} else if ((features & SUPPORTED_Autoneg) == 0)
return -EINVAL;
spin_lock_irq(&fep->lock);
emac_start_link(fep, cmd);
spin_unlock_irq(&fep->lock);
return 0;
}
static void
emac_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
{
struct ocp_enet_private *fep = ndev->priv;
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
info->fw_version[0] = '\0';
sprintf(info->bus_info, "IBM EMAC %d", fep->ocpdev->def->index);
info->regdump_len = 0;
}
static int emac_nway_reset(struct net_device *ndev)
{
struct ocp_enet_private *fep = ndev->priv;
if (!fep->want_autoneg)
return -EINVAL;
spin_lock_irq(&fep->lock);
emac_start_link(fep, NULL);
spin_unlock_irq(&fep->lock);
return 0;
}
static u32 emac_get_link(struct net_device *ndev)
{
return netif_carrier_ok(ndev);
}
static struct ethtool_ops emac_ethtool_ops = {
.get_settings = emac_get_settings,
.set_settings = emac_set_settings,
.get_drvinfo = emac_get_drvinfo,
.nway_reset = emac_nway_reset,
.get_link = emac_get_link
};
static int emac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct ocp_enet_private *fep = dev->priv;
uint *data = (uint *) & rq->ifr_data;
switch (cmd) {
case SIOCGMIIPHY:
data[0] = fep->mii_phy_addr;
/* Fall through */
case SIOCGMIIREG:
data[3] = emac_phy_read(dev, fep->mii_phy_addr, data[1]);
return 0;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
emac_phy_write(dev, fep->mii_phy_addr, data[1], data[2]);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int emac_open(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
int rc;
spin_lock_irq(&fep->lock);
fep->opened = 1;
netif_carrier_off(dev);
/* Reset & configure the chip */
emac_reset_configure(fep);
spin_unlock_irq(&fep->lock);
/* Request our interrupt lines */
rc = request_irq(dev->irq, emac_mac_irq, 0, "IBM EMAC MAC", dev);
if (rc != 0) {
printk("dev->irq %d failed\n", dev->irq);
goto bail;
}
/* Kick the chip rx & tx channels into life */
spin_lock_irq(&fep->lock);
emac_kick(fep);
spin_unlock_irq(&fep->lock);
netif_start_queue(dev);
bail:
return rc;
}
static int emac_close(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
emac_t *emacp = fep->emacp;
/* XXX Stop IRQ emitting here */
spin_lock_irq(&fep->lock);
fep->opened = 0;
mal_disable_tx_channels(fep->mal, fep->commac.tx_chan_mask);
mal_disable_rx_channels(fep->mal, fep->commac.rx_chan_mask);
netif_carrier_off(dev);
netif_stop_queue(dev);
/*
* Check for a link, some PHYs don't provide a clock if
* no link is present. Some EMACs will not come out of
* soft reset without a PHY clock present.
*/
if (fep->phy_mii.def->ops->poll_link(&fep->phy_mii)) {
out_be32(&emacp->em0mr0, EMAC_M0_SRST);
udelay(10);
if (emacp->em0mr0 & EMAC_M0_SRST) {
/*not sure what to do here hopefully it clears before another open */
printk(KERN_ERR
"%s: Phy SoftReset didn't clear, no link?\n",
dev->name);
}
}
/* Free the irq's */
free_irq(dev->irq, dev);
spin_unlock_irq(&fep->lock);
return 0;
}
static void emac_remove(struct ocp_device *ocpdev)
{
struct net_device *dev = ocp_get_drvdata(ocpdev);
struct ocp_enet_private *ep = dev->priv;
/* FIXME: locking, races, ... */
ep->going_away = 1;
ocp_set_drvdata(ocpdev, NULL);
if (ep->rgmii_dev)
emac_close_rgmii(ep->rgmii_dev);
if (ep->zmii_dev)
emac_close_zmii(ep->zmii_dev);
unregister_netdev(dev);
del_timer_sync(&ep->link_timer);
mal_unregister_commac(ep->mal, &ep->commac);
iounmap((void *)ep->emacp);
kfree(dev);
}
struct mal_commac_ops emac_commac_ops = {
.txeob = &emac_txeob_dev,
.txde = &emac_txde_dev,
.rxeob = &emac_rxeob_dev,
.rxde = &emac_rxde_dev,
};
static int emac_init_device(struct ocp_device *ocpdev, struct ibm_ocp_mal *mal)
{
int deferred_init = 0;
int rc = 0, i;
struct net_device *ndev;
struct ocp_enet_private *ep;
struct ocp_func_emac_data *emacdata;
int commac_reg = 0;
u32 phy_map;
emacdata = (struct ocp_func_emac_data *)ocpdev->def->additions;
if (!emacdata) {
printk(KERN_ERR "emac%d: Missing additional data!\n",
ocpdev->def->index);
return -ENODEV;
}
/* Allocate our net_device structure */
ndev = alloc_etherdev(sizeof(struct ocp_enet_private));
if (ndev == NULL) {
printk(KERN_ERR
"emac%d: Could not allocate ethernet device.\n",
ocpdev->def->index);
return -ENOMEM;
}
ep = ndev->priv;
ep->ndev = ndev;
ep->ocpdev = ocpdev;
ndev->irq = ocpdev->def->irq;
ep->wol_irq = emacdata->wol_irq;
if (emacdata->mdio_idx >= 0) {
if (emacdata->mdio_idx == ocpdev->def->index) {
/* Set the common MDIO net_device */
mdio_ndev = ndev;
deferred_init = 1;
}
ep->mdio_dev = mdio_ndev;
} else {
ep->mdio_dev = ndev;
}
ocp_set_drvdata(ocpdev, ndev);
spin_lock_init(&ep->lock);
/* Fill out MAL informations and register commac */
ep->mal = mal;
ep->mal_tx_chan = emacdata->mal_tx_chan;
ep->mal_rx_chan = emacdata->mal_rx_chan;
ep->commac.ops = &emac_commac_ops;
ep->commac.dev = ndev;
ep->commac.tx_chan_mask = MAL_CHAN_MASK(ep->mal_tx_chan);
ep->commac.rx_chan_mask = MAL_CHAN_MASK(ep->mal_rx_chan);
rc = mal_register_commac(ep->mal, &ep->commac);
if (rc != 0)
goto bail;
commac_reg = 1;
/* Map our MMIOs */
ep->emacp = (emac_t *) ioremap(ocpdev->def->paddr, sizeof(emac_t));
/* Check if we need to attach to a ZMII */
if (emacdata->zmii_idx >= 0) {
ep->zmii_input = emacdata->zmii_mux;
ep->zmii_dev =
ocp_find_device(OCP_ANY_ID, OCP_FUNC_ZMII,
emacdata->zmii_idx);
if (ep->zmii_dev == NULL)
printk(KERN_WARNING
"emac%d: ZMII %d requested but not found !\n",
ocpdev->def->index, emacdata->zmii_idx);
else if ((rc =
emac_init_zmii(ep->zmii_dev, ep->zmii_input,
emacdata->phy_mode)) != 0)
goto bail;
}
/* Check if we need to attach to a RGMII */
if (emacdata->rgmii_idx >= 0) {
ep->rgmii_input = emacdata->rgmii_mux;
ep->rgmii_dev =
ocp_find_device(OCP_ANY_ID, OCP_FUNC_RGMII,
emacdata->rgmii_idx);
if (ep->rgmii_dev == NULL)
printk(KERN_WARNING
"emac%d: RGMII %d requested but not found !\n",
ocpdev->def->index, emacdata->rgmii_idx);
else if ((rc =
emac_init_rgmii(ep->rgmii_dev, ep->rgmii_input,
emacdata->phy_mode)) != 0)
goto bail;
}
/* Check if we need to attach to a TAH */
if (emacdata->tah_idx >= 0) {
ep->tah_dev =
ocp_find_device(OCP_ANY_ID, OCP_FUNC_TAH,
emacdata->tah_idx);
if (ep->tah_dev == NULL)
printk(KERN_WARNING
"emac%d: TAH %d requested but not found !\n",
ocpdev->def->index, emacdata->tah_idx);
else if ((rc = emac_init_tah(ep)) != 0)
goto bail;
}
if (deferred_init) {
if (!list_empty(&emac_init_list)) {
struct list_head *entry;
struct emac_def_dev *ddev;
list_for_each(entry, &emac_init_list) {
ddev =
list_entry(entry, struct emac_def_dev,
link);
emac_init_device(ddev->ocpdev, ddev->mal);
}
}
}
/* Init link monitoring timer */
init_timer(&ep->link_timer);
ep->link_timer.function = emac_link_timer;
ep->link_timer.data = (unsigned long)ep;
ep->timer_ticks = 0;
/* Fill up the mii_phy structure */
ep->phy_mii.dev = ndev;
ep->phy_mii.mdio_read = emac_phy_read;
ep->phy_mii.mdio_write = emac_phy_write;
ep->phy_mii.mode = emacdata->phy_mode;
/* Find PHY */
phy_map = emacdata->phy_map | busy_phy_map;
for (i = 0; i <= 0x1f; i++, phy_map >>= 1) {
if ((phy_map & 0x1) == 0) {
int val = emac_phy_read(ndev, i, MII_BMCR);
if (val != 0xffff && val != -1)
break;
}
}
if (i == 0x20) {
printk(KERN_WARNING "emac%d: Can't find PHY.\n",
ocpdev->def->index);
rc = -ENODEV;
goto bail;
}
busy_phy_map |= 1 << i;
ep->mii_phy_addr = i;
rc = mii_phy_probe(&ep->phy_mii, i);
if (rc) {
printk(KERN_WARNING "emac%d: Failed to probe PHY type.\n",
ocpdev->def->index);
rc = -ENODEV;
goto bail;
}
/* Setup initial PHY config & startup aneg */
if (ep->phy_mii.def->ops->init)
ep->phy_mii.def->ops->init(&ep->phy_mii);
netif_carrier_off(ndev);
if (ep->phy_mii.def->features & SUPPORTED_Autoneg)
ep->want_autoneg = 1;
emac_start_link(ep, NULL);
/* read the MAC Address */
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = emacdata->mac_addr[i];
/* Fill in the driver function table */
ndev->open = &emac_open;
ndev->hard_start_xmit = &emac_start_xmit;
ndev->stop = &emac_close;
ndev->get_stats = &emac_stats;
if (emacdata->jumbo)
ndev->change_mtu = &emac_change_mtu;
ndev->set_mac_address = &emac_set_mac_address;
ndev->set_multicast_list = &emac_set_multicast_list;
ndev->do_ioctl = &emac_ioctl;
SET_ETHTOOL_OPS(ndev, &emac_ethtool_ops);
if (emacdata->tah_idx >= 0)
ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG;
SET_MODULE_OWNER(ndev);
rc = register_netdev(ndev);
if (rc != 0)
goto bail;
printk("%s: IBM emac, MAC %02x:%02x:%02x:%02x:%02x:%02x\n",
ndev->name,
ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
printk(KERN_INFO "%s: Found %s PHY (0x%02x)\n",
ndev->name, ep->phy_mii.def->name, ep->mii_phy_addr);
bail:
if (rc && commac_reg)
mal_unregister_commac(ep->mal, &ep->commac);
if (rc && ndev)
kfree(ndev);
return rc;
}
static int emac_probe(struct ocp_device *ocpdev)
{
struct ocp_device *maldev;
struct ibm_ocp_mal *mal;
struct ocp_func_emac_data *emacdata;
emacdata = (struct ocp_func_emac_data *)ocpdev->def->additions;
if (emacdata == NULL) {
printk(KERN_ERR "emac%d: Missing additional datas !\n",
ocpdev->def->index);
return -ENODEV;
}
/* Get the MAL device */
maldev = ocp_find_device(OCP_ANY_ID, OCP_FUNC_MAL, emacdata->mal_idx);
if (maldev == NULL) {
printk("No maldev\n");
return -ENODEV;
}
/*
* Get MAL driver data, it must be here due to link order.
* When the driver is modularized, symbol dependencies will
* ensure the MAL driver is already present if built as a
* module.
*/
mal = (struct ibm_ocp_mal *)ocp_get_drvdata(maldev);
if (mal == NULL) {
printk("No maldrv\n");
return -ENODEV;
}
/* If we depend on another EMAC for MDIO, wait for it to show up */
if (emacdata->mdio_idx >= 0 &&
(emacdata->mdio_idx != ocpdev->def->index) && !mdio_ndev) {
struct emac_def_dev *ddev;
/* Add this index to the deferred init table */
ddev = kmalloc(sizeof(struct emac_def_dev), GFP_KERNEL);
ddev->ocpdev = ocpdev;
ddev->mal = mal;
list_add_tail(&ddev->link, &emac_init_list);
} else {
emac_init_device(ocpdev, mal);
}
return 0;
}
/* Structure for a device driver */
static struct ocp_device_id emac_ids[] = {
{.vendor = OCP_ANY_ID,.function = OCP_FUNC_EMAC},
{.vendor = OCP_VENDOR_INVALID}
};
static struct ocp_driver emac_driver = {
.name = "emac",
.id_table = emac_ids,
.probe = emac_probe,
.remove = emac_remove,
};
static int __init emac_init(void)
{
int rc;
printk(KERN_INFO DRV_NAME ": " DRV_DESC ", version " DRV_VERSION "\n");
printk(KERN_INFO "Maintained by " DRV_AUTHOR "\n");
if (skb_res > 2) {
printk(KERN_WARNING "Invalid skb_res: %d, cropping to 2\n",
skb_res);
skb_res = 2;
}
rc = ocp_register_driver(&emac_driver);
if (rc < 0) {
ocp_unregister_driver(&emac_driver);
return -ENODEV;
}
return 0;
}
static void __exit emac_exit(void)
{
ocp_unregister_driver(&emac_driver);
}
module_init(emac_init);
module_exit(emac_exit);
/*
* ibm_emac_core.h
*
* Ethernet driver for the built in ethernet on the IBM 405 PowerPC
* processor.
*
* Armin Kuster akuster@mvista.com
* Sept, 2001
*
* Orignial driver
* Johnnie Peters
* jpeters@mvista.com
*
* Copyright 2000 MontaVista Softare Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef _IBM_EMAC_CORE_H_
#define _IBM_EMAC_CORE_H_
#include <linux/netdevice.h>
#include <asm/ocp.h>
#include <asm/mmu.h> /* For phys_addr_t */
#include "ibm_emac.h"
#include "ibm_emac_phy.h"
#include "ibm_emac_rgmii.h"
#include "ibm_emac_zmii.h"
#include "ibm_emac_mal.h"
#include "ibm_emac_tah.h"
#ifndef CONFIG_IBM_EMAC_TXB
#define NUM_TX_BUFF 64
#define NUM_RX_BUFF 64
#else
#define NUM_TX_BUFF CONFIG_IBM_EMAC_TXB
#define NUM_RX_BUFF CONFIG_IBM_EMAC_RXB
#endif
/* This does 16 byte alignment, exactly what we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
#ifndef CONFIG_IBM_EMAC_SKBRES
#define SKB_RES 2
#else
#define SKB_RES CONFIG_IBM_EMAC_SKBRES
#endif
/* Note about alignement. alloc_skb() returns a cache line
* aligned buffer. However, dev_alloc_skb() will add 16 more
* bytes and "reserve" them, so our buffer will actually end
* on a half cache line. What we do is to use directly
* alloc_skb, allocate 16 more bytes to match the total amount
* allocated by dev_alloc_skb(), but we don't reserve.
*/
#define MAX_NUM_BUF_DESC 255
#define DESC_BUF_SIZE 4080 /* max 4096-16 */
#define DESC_BUF_SIZE_REG (DESC_BUF_SIZE / 16)
/* Transmitter timeout. */
#define TX_TIMEOUT (2*HZ)
/* MDIO latency delay */
#define MDIO_DELAY 50
/* Power managment shift registers */
#define IBM_CPM_EMMII 0 /* Shift value for MII */
#define IBM_CPM_EMRX 1 /* Shift value for recv */
#define IBM_CPM_EMTX 2 /* Shift value for MAC */
#define IBM_CPM_EMAC(x) (((x)>>IBM_CPM_EMMII) | ((x)>>IBM_CPM_EMRX) | ((x)>>IBM_CPM_EMTX))
#define ENET_HEADER_SIZE 14
#define ENET_FCS_SIZE 4
#define ENET_DEF_MTU_SIZE 1500
#define ENET_DEF_BUF_SIZE (ENET_DEF_MTU_SIZE + ENET_HEADER_SIZE + ENET_FCS_SIZE)
#define EMAC_MIN_FRAME 64
#define EMAC_MAX_FRAME 9018
#define EMAC_MIN_MTU (EMAC_MIN_FRAME - ENET_HEADER_SIZE - ENET_FCS_SIZE)
#define EMAC_MAX_MTU (EMAC_MAX_FRAME - ENET_HEADER_SIZE - ENET_FCS_SIZE)
#ifdef CONFIG_IBM_EMAC_ERRMSG
void emac_serr_dump_0(struct net_device *dev);
void emac_serr_dump_1(struct net_device *dev);
void emac_err_dump(struct net_device *dev, int em0isr);
void emac_phy_dump(struct net_device *);
void emac_desc_dump(struct net_device *);
void emac_mac_dump(struct net_device *);
void emac_mal_dump(struct net_device *);
#else
#define emac_serr_dump_0(dev) do { } while (0)
#define emac_serr_dump_1(dev) do { } while (0)
#define emac_err_dump(dev,x) do { } while (0)
#define emac_phy_dump(dev) do { } while (0)
#define emac_desc_dump(dev) do { } while (0)
#define emac_mac_dump(dev) do { } while (0)
#define emac_mal_dump(dev) do { } while (0)
#endif
struct ocp_enet_private {
struct sk_buff *tx_skb[NUM_TX_BUFF];
struct sk_buff *rx_skb[NUM_RX_BUFF];
struct mal_descriptor *tx_desc;
struct mal_descriptor *rx_desc;
struct mal_descriptor *rx_dirty;
struct net_device_stats stats;
int tx_cnt;
int rx_slot;
int dirty_rx;
int tx_slot;
int ack_slot;
int rx_buffer_size;
struct mii_phy phy_mii;
int mii_phy_addr;
int want_autoneg;
int timer_ticks;
struct timer_list link_timer;
struct net_device *mdio_dev;
struct ocp_device *rgmii_dev;
int rgmii_input;
struct ocp_device *zmii_dev;
int zmii_input;
struct ibm_ocp_mal *mal;
int mal_tx_chan, mal_rx_chan;
struct mal_commac commac;
struct ocp_device *tah_dev;
int opened;
int going_away;
int wol_irq;
emac_t *emacp;
struct ocp_device *ocpdev;
struct net_device *ndev;
spinlock_t lock;
};
#endif /* _IBM_EMAC_CORE_H_ */
/*
* ibm_ocp_debug.c
*
* This has all the debug routines that where in *_enet.c
*
* Armin Kuster akuster@mvista.com
* April , 2002
*
* Copyright 2002 MontaVista Softare Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <asm/io.h>
#include "ibm_ocp_mal.h"
#include "ibm_ocp_zmii.h"
#include "ibm_ocp_enet.h"
extern int emac_phy_read(struct net_device *dev, int mii_id, int reg);
void emac_phy_dump(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
unsigned long i;
uint data;
printk(KERN_DEBUG " Prepare for Phy dump....\n");
for (i = 0; i < 0x1A; i++) {
data = emac_phy_read(dev, fep->mii_phy_addr, i);
printk(KERN_DEBUG "Phy reg 0x%lx ==> %4x\n", i, data);
if (i == 0x07)
i = 0x0f;
}
}
void emac_desc_dump(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
int curr_slot;
printk(KERN_DEBUG
"dumping the receive descriptors: current slot is %d\n",
fep->rx_slot);
for (curr_slot = 0; curr_slot < NUM_RX_BUFF; curr_slot++) {
printk(KERN_DEBUG
"Desc %02d: status 0x%04x, length %3d, addr 0x%x\n",
curr_slot, fep->rx_desc[curr_slot].ctrl,
fep->rx_desc[curr_slot].data_len,
(unsigned int)fep->rx_desc[curr_slot].data_ptr);
}
}
void emac_mac_dump(struct net_device *dev)
{
struct ocp_enet_private *fep = dev->priv;
volatile emac_t *emacp = fep->emacp;
printk(KERN_DEBUG "EMAC DEBUG ********** \n");
printk(KERN_DEBUG "EMAC_M0 ==> 0x%x\n", in_be32(&emacp->em0mr0));
printk(KERN_DEBUG "EMAC_M1 ==> 0x%x\n", in_be32(&emacp->em0mr1));
printk(KERN_DEBUG "EMAC_TXM0==> 0x%x\n", in_be32(&emacp->em0tmr0));
printk(KERN_DEBUG "EMAC_TXM1==> 0x%x\n", in_be32(&emacp->em0tmr1));
printk(KERN_DEBUG "EMAC_RXM ==> 0x%x\n", in_be32(&emacp->em0rmr));
printk(KERN_DEBUG "EMAC_ISR ==> 0x%x\n", in_be32(&emacp->em0isr));
printk(KERN_DEBUG "EMAC_IER ==> 0x%x\n", in_be32(&emacp->em0iser));
printk(KERN_DEBUG "EMAC_IAH ==> 0x%x\n", in_be32(&emacp->em0iahr));
printk(KERN_DEBUG "EMAC_IAL ==> 0x%x\n", in_be32(&emacp->em0ialr));
printk(KERN_DEBUG "EMAC_VLAN_TPID_REG ==> 0x%x\n",
in_be32(&emacp->em0vtpid));
}
void emac_mal_dump(struct net_device *dev)
{
struct ibm_ocp_mal *mal = ((struct ocp_enet_private *)dev->priv)->mal;
printk(KERN_DEBUG " MAL DEBUG ********** \n");
printk(KERN_DEBUG " MCR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALCR));
printk(KERN_DEBUG " ESR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALESR));
printk(KERN_DEBUG " IER ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALIER));
#ifdef CONFIG_40x
printk(KERN_DEBUG " DBR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALDBR));
#endif /* CONFIG_40x */
printk(KERN_DEBUG " TXCASR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXCASR));
printk(KERN_DEBUG " TXCARR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXCARR));
printk(KERN_DEBUG " TXEOBISR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXEOBISR));
printk(KERN_DEBUG " TXDEIR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXDEIR));
printk(KERN_DEBUG " RXCASR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRXCASR));
printk(KERN_DEBUG " RXCARR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRXCARR));
printk(KERN_DEBUG " RXEOBISR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRXEOBISR));
printk(KERN_DEBUG " RXDEIR ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRXDEIR));
printk(KERN_DEBUG " TXCTP0R ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXCTP0R));
printk(KERN_DEBUG " TXCTP1R ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXCTP1R));
printk(KERN_DEBUG " TXCTP2R ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXCTP2R));
printk(KERN_DEBUG " TXCTP3R ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALTXCTP3R));
printk(KERN_DEBUG " RXCTP0R ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRXCTP0R));
printk(KERN_DEBUG " RXCTP1R ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRXCTP1R));
printk(KERN_DEBUG " RCBS0 ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRCBS0));
printk(KERN_DEBUG " RCBS1 ==> 0x%x\n",
(unsigned int)get_mal_dcrn(mal, DCRN_MALRCBS1));
}
void emac_serr_dump_0(struct net_device *dev)
{
struct ibm_ocp_mal *mal = ((struct ocp_enet_private *)dev->priv)->mal;
unsigned long int mal_error, plb_error, plb_addr;
mal_error = get_mal_dcrn(mal, DCRN_MALESR);
printk(KERN_DEBUG "ppc405_eth_serr: %s channel %ld \n",
(mal_error & 0x40000000) ? "Receive" :
"Transmit", (mal_error & 0x3e000000) >> 25);
printk(KERN_DEBUG " ----- latched error -----\n");
if (mal_error & MALESR_DE)
printk(KERN_DEBUG " DE: descriptor error\n");
if (mal_error & MALESR_OEN)
printk(KERN_DEBUG " ONE: OPB non-fullword error\n");
if (mal_error & MALESR_OTE)
printk(KERN_DEBUG " OTE: OPB timeout error\n");
if (mal_error & MALESR_OSE)
printk(KERN_DEBUG " OSE: OPB slave error\n");
if (mal_error & MALESR_PEIN) {
plb_error = mfdcr(DCRN_PLB0_BESR);
printk(KERN_DEBUG
" PEIN: PLB error, PLB0_BESR is 0x%x\n",
(unsigned int)plb_error);
plb_addr = mfdcr(DCRN_PLB0_BEAR);
printk(KERN_DEBUG
" PEIN: PLB error, PLB0_BEAR is 0x%x\n",
(unsigned int)plb_addr);
}
}
void emac_serr_dump_1(struct net_device *dev)
{
struct ibm_ocp_mal *mal = ((struct ocp_enet_private *)dev->priv)->mal;
int mal_error = get_mal_dcrn(mal, DCRN_MALESR);
printk(KERN_DEBUG " ----- cumulative errors -----\n");
if (mal_error & MALESR_DEI)
printk(KERN_DEBUG " DEI: descriptor error interrupt\n");
if (mal_error & MALESR_ONEI)
printk(KERN_DEBUG " OPB non-fullword error interrupt\n");
if (mal_error & MALESR_OTEI)
printk(KERN_DEBUG " OTEI: timeout error interrupt\n");
if (mal_error & MALESR_OSEI)
printk(KERN_DEBUG " OSEI: slave error interrupt\n");
if (mal_error & MALESR_PBEI)
printk(KERN_DEBUG " PBEI: PLB bus error interrupt\n");
}
void emac_err_dump(struct net_device *dev, int em0isr)
{
printk(KERN_DEBUG "%s: on-chip ethernet error:\n", dev->name);
if (em0isr & EMAC_ISR_OVR)
printk(KERN_DEBUG " OVR: overrun\n");
if (em0isr & EMAC_ISR_PP)
printk(KERN_DEBUG " PP: control pause packet\n");
if (em0isr & EMAC_ISR_BP)
printk(KERN_DEBUG " BP: packet error\n");
if (em0isr & EMAC_ISR_RP)
printk(KERN_DEBUG " RP: runt packet\n");
if (em0isr & EMAC_ISR_SE)
printk(KERN_DEBUG " SE: short event\n");
if (em0isr & EMAC_ISR_ALE)
printk(KERN_DEBUG " ALE: odd number of nibbles in packet\n");
if (em0isr & EMAC_ISR_BFCS)
printk(KERN_DEBUG " BFCS: bad FCS\n");
if (em0isr & EMAC_ISR_PTLE)
printk(KERN_DEBUG " PTLE: oversized packet\n");
if (em0isr & EMAC_ISR_ORE)
printk(KERN_DEBUG
" ORE: packet length field > max allowed LLC\n");
if (em0isr & EMAC_ISR_IRE)
printk(KERN_DEBUG " IRE: In Range error\n");
if (em0isr & EMAC_ISR_DBDM)
printk(KERN_DEBUG " DBDM: xmit error or SQE\n");
if (em0isr & EMAC_ISR_DB0)
printk(KERN_DEBUG " DB0: xmit error or SQE on TX channel 0\n");
if (em0isr & EMAC_ISR_SE0)
printk(KERN_DEBUG
" SE0: Signal Quality Error test failure from TX channel 0\n");
if (em0isr & EMAC_ISR_TE0)
printk(KERN_DEBUG " TE0: xmit channel 0 aborted\n");
if (em0isr & EMAC_ISR_DB1)
printk(KERN_DEBUG " DB1: xmit error or SQE on TX channel \n");
if (em0isr & EMAC_ISR_SE1)
printk(KERN_DEBUG
" SE1: Signal Quality Error test failure from TX channel 1\n");
if (em0isr & EMAC_ISR_TE1)
printk(KERN_DEBUG " TE1: xmit channel 1 aborted\n");
if (em0isr & EMAC_ISR_MOS)
printk(KERN_DEBUG " MOS\n");
if (em0isr & EMAC_ISR_MOF)
printk(KERN_DEBUG " MOF\n");
emac_mac_dump(dev);
emac_mal_dump(dev);
}
/*
* ibm_ocp_mal.c
*
* Armin Kuster akuster@mvista.com
* Juen, 2002
*
* Copyright 2002 MontaVista Softare Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/ocp.h>
#include "ibm_emac_mal.h"
// Locking: Should we share a lock with the client ? The client could provide
// a lock pointer (optionally) in the commac structure... I don't think this is
// really necessary though
/* This lock protects the commac list. On today UP implementations, it's
* really only used as IRQ protection in mal_{register,unregister}_commac()
*/
static rwlock_t mal_list_lock = RW_LOCK_UNLOCKED;
int mal_register_commac(struct ibm_ocp_mal *mal, struct mal_commac *commac)
{
unsigned long flags;
write_lock_irqsave(&mal_list_lock, flags);
/* Don't let multiple commacs claim the same channel */
if ((mal->tx_chan_mask & commac->tx_chan_mask) ||
(mal->rx_chan_mask & commac->rx_chan_mask)) {
write_unlock_irqrestore(&mal_list_lock, flags);
return -EBUSY;
}
mal->tx_chan_mask |= commac->tx_chan_mask;
mal->rx_chan_mask |= commac->rx_chan_mask;
list_add(&commac->list, &mal->commac);
write_unlock_irqrestore(&mal_list_lock, flags);
MOD_INC_USE_COUNT;
return 0;
}
int mal_unregister_commac(struct ibm_ocp_mal *mal, struct mal_commac *commac)
{
unsigned long flags;
write_lock_irqsave(&mal_list_lock, flags);
mal->tx_chan_mask &= ~commac->tx_chan_mask;
mal->rx_chan_mask &= ~commac->rx_chan_mask;
list_del_init(&commac->list);
write_unlock_irqrestore(&mal_list_lock, flags);
MOD_DEC_USE_COUNT;
return 0;
}
int mal_set_rcbs(struct ibm_ocp_mal *mal, int channel, unsigned long size)
{
switch (channel) {
case 0:
set_mal_dcrn(mal, DCRN_MALRCBS0, size);
break;
#ifdef DCRN_MALRCBS1
case 1:
set_mal_dcrn(mal, DCRN_MALRCBS1, size);
break;
#endif
#ifdef DCRN_MALRCBS2
case 2:
set_mal_dcrn(mal, DCRN_MALRCBS2, size);
break;
#endif
#ifdef DCRN_MALRCBS3
case 3:
set_mal_dcrn(mal, DCRN_MALRCBS3, size);
break;
#endif
default:
return -EINVAL;
}
return 0;
}
static irqreturn_t mal_serr(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
unsigned long mal_error;
/*
* This SERR applies to one of the devices on the MAL, here we charge
* it against the first EMAC registered for the MAL.
*/
mal_error = get_mal_dcrn(mal, DCRN_MALESR);
printk(KERN_ERR "%s: System Error (MALESR=%lx)\n",
"MAL" /* FIXME: get the name right */ , mal_error);
/* FIXME: decipher error */
/* DIXME: distribute to commacs, if possible */
/* Clear the error status register */
set_mal_dcrn(mal, DCRN_MALESR, mal_error);
return IRQ_HANDLED;
}
static irqreturn_t mal_txeob(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long isr;
isr = get_mal_dcrn(mal, DCRN_MALTXEOBISR);
set_mal_dcrn(mal, DCRN_MALTXEOBISR, isr);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (isr & mc->tx_chan_mask) {
mc->ops->txeob(mc->dev, isr & mc->tx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
static irqreturn_t mal_rxeob(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long isr;
isr = get_mal_dcrn(mal, DCRN_MALRXEOBISR);
set_mal_dcrn(mal, DCRN_MALRXEOBISR, isr);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (isr & mc->rx_chan_mask) {
mc->ops->rxeob(mc->dev, isr & mc->rx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
static irqreturn_t mal_txde(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long deir;
deir = get_mal_dcrn(mal, DCRN_MALTXDEIR);
/* FIXME: print which MAL correctly */
printk(KERN_WARNING "%s: Tx descriptor error (MALTXDEIR=%lx)\n",
"MAL", deir);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (deir & mc->tx_chan_mask) {
mc->ops->txde(mc->dev, deir & mc->tx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
/*
* This interrupt should be very rare at best. This occurs when
* the hardware has a problem with the receive descriptors. The manual
* states that it occurs when the hardware cannot the receive descriptor
* empty bit is not set. The recovery mechanism will be to
* traverse through the descriptors, handle any that are marked to be
* handled and reinitialize each along the way. At that point the driver
* will be restarted.
*/
static irqreturn_t mal_rxde(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long deir;
deir = get_mal_dcrn(mal, DCRN_MALRXDEIR);
/*
* This really is needed. This case encountered in stress testing.
*/
if (deir == 0)
return IRQ_HANDLED;
/* FIXME: print which MAL correctly */
printk(KERN_WARNING "%s: Rx descriptor error (MALRXDEIR=%lx)\n",
"MAL", deir);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (deir & mc->rx_chan_mask) {
mc->ops->rxde(mc->dev, deir & mc->rx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
static int __init mal_probe(struct ocp_device *ocpdev)
{
struct ibm_ocp_mal *mal = NULL;
struct ocp_func_mal_data *maldata;
int err = 0;
maldata = (struct ocp_func_mal_data *)ocpdev->def->additions;
if (maldata == NULL) {
printk(KERN_ERR "mal%d: Missing additional datas !\n",
ocpdev->def->index);
return -ENODEV;
}
mal = kmalloc(sizeof(struct ibm_ocp_mal), GFP_KERNEL);
if (mal == NULL) {
printk(KERN_ERR
"mal%d: Out of memory allocating MAL structure !\n",
ocpdev->def->index);
return -ENOMEM;
}
memset(mal, 0, sizeof(*mal));
switch (ocpdev->def->index) {
case 0:
mal->dcrbase = DCRN_MAL_BASE;
break;
#ifdef DCRN_MAL1_BASE
case 1:
mal->dcrbase = DCRN_MAL1_BASE;
break;
#endif
default:
BUG();
}
/**************************/
INIT_LIST_HEAD(&mal->commac);
set_mal_dcrn(mal, DCRN_MALRXCARR, 0xFFFFFFFF);
set_mal_dcrn(mal, DCRN_MALTXCARR, 0xFFFFFFFF);
set_mal_dcrn(mal, DCRN_MALCR, MALCR_MMSR); /* 384 */
/* FIXME: Add delay */
/* Set the MAL configuration register */
set_mal_dcrn(mal, DCRN_MALCR,
MALCR_PLBB | MALCR_OPBBL | MALCR_LEA |
MALCR_PLBLT_DEFAULT);
/* It would be nice to allocate buffers separately for each
* channel, but we can't because the channels share the upper
* 13 bits of address lines. Each channels buffer must also
* be 4k aligned, so we allocate 4k for each channel. This is
* inefficient FIXME: do better, if possible */
mal->tx_virt_addr = dma_alloc_coherent(&ocpdev->dev,
MAL_DT_ALIGN *
maldata->num_tx_chans,
&mal->tx_phys_addr, GFP_KERNEL);
if (mal->tx_virt_addr == NULL) {
printk(KERN_ERR
"mal%d: Out of memory allocating MAL descriptors !\n",
ocpdev->def->index);
err = -ENOMEM;
goto fail;
}
/* God, oh, god, I hate DCRs */
set_mal_dcrn(mal, DCRN_MALTXCTP0R, mal->tx_phys_addr);
#ifdef DCRN_MALTXCTP1R
if (maldata->num_tx_chans > 1)
set_mal_dcrn(mal, DCRN_MALTXCTP1R,
mal->tx_phys_addr + MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP1R */
#ifdef DCRN_MALTXCTP2R
if (maldata->num_tx_chans > 2)
set_mal_dcrn(mal, DCRN_MALTXCTP2R,
mal->tx_phys_addr + 2 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP2R */
#ifdef DCRN_MALTXCTP3R
if (maldata->num_tx_chans > 3)
set_mal_dcrn(mal, DCRN_MALTXCTP3R,
mal->tx_phys_addr + 3 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP3R */
#ifdef DCRN_MALTXCTP4R
if (maldata->num_tx_chans > 4)
set_mal_dcrn(mal, DCRN_MALTXCTP4R,
mal->tx_phys_addr + 4 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP4R */
#ifdef DCRN_MALTXCTP5R
if (maldata->num_tx_chans > 5)
set_mal_dcrn(mal, DCRN_MALTXCTP5R,
mal->tx_phys_addr + 5 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP5R */
#ifdef DCRN_MALTXCTP6R
if (maldata->num_tx_chans > 6)
set_mal_dcrn(mal, DCRN_MALTXCTP6R,
mal->tx_phys_addr + 6 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP6R */
#ifdef DCRN_MALTXCTP7R
if (maldata->num_tx_chans > 7)
set_mal_dcrn(mal, DCRN_MALTXCTP7R,
mal->tx_phys_addr + 7 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP7R */
mal->rx_virt_addr = dma_alloc_coherent(&ocpdev->dev,
MAL_DT_ALIGN *
maldata->num_rx_chans,
&mal->rx_phys_addr, GFP_KERNEL);
set_mal_dcrn(mal, DCRN_MALRXCTP0R, mal->rx_phys_addr);
#ifdef DCRN_MALRXCTP1R
if (maldata->num_rx_chans > 1)
set_mal_dcrn(mal, DCRN_MALRXCTP1R,
mal->rx_phys_addr + MAL_DT_ALIGN);
#endif /* DCRN_MALRXCTP1R */
#ifdef DCRN_MALRXCTP2R
if (maldata->num_rx_chans > 2)
set_mal_dcrn(mal, DCRN_MALRXCTP2R,
mal->rx_phys_addr + 2 * MAL_DT_ALIGN);
#endif /* DCRN_MALRXCTP2R */
#ifdef DCRN_MALRXCTP3R
if (maldata->num_rx_chans > 3)
set_mal_dcrn(mal, DCRN_MALRXCTP3R,
mal->rx_phys_addr + 3 * MAL_DT_ALIGN);
#endif /* DCRN_MALRXCTP3R */
err = request_irq(maldata->serr_irq, mal_serr, 0, "MAL SERR", mal);
if (err)
goto fail;
err = request_irq(maldata->txde_irq, mal_txde, 0, "MAL TX DE ", mal);
if (err)
goto fail;
err = request_irq(maldata->txeob_irq, mal_txeob, 0, "MAL TX EOB", mal);
if (err)
goto fail;
err = request_irq(maldata->rxde_irq, mal_rxde, 0, "MAL RX DE", mal);
if (err)
goto fail;
err = request_irq(maldata->rxeob_irq, mal_rxeob, 0, "MAL RX EOB", mal);
if (err)
goto fail;
set_mal_dcrn(mal, DCRN_MALIER,
MALIER_DE | MALIER_NE | MALIER_TE |
MALIER_OPBE | MALIER_PLBE);
/* Advertise me to the rest of the world */
ocp_set_drvdata(ocpdev, mal);
printk(KERN_INFO "mal%d: Initialized, %d tx channels, %d rx channels\n",
ocpdev->def->index, maldata->num_tx_chans,
maldata->num_rx_chans);
return 0;
fail:
/* FIXME: dispose requested IRQs ! */
if (err && mal)
kfree(mal);
return err;
}
static void __exit mal_remove(struct ocp_device *ocpdev)
{
struct ibm_ocp_mal *mal = ocp_get_drvdata(ocpdev);
struct ocp_func_mal_data *maldata = ocpdev->def->additions;
BUG_ON(!maldata);
ocp_set_drvdata(ocpdev, NULL);
/* FIXME: shut down the MAL, deal with dependency with emac */
free_irq(maldata->serr_irq, mal);
free_irq(maldata->txde_irq, mal);
free_irq(maldata->txeob_irq, mal);
free_irq(maldata->rxde_irq, mal);
free_irq(maldata->rxeob_irq, mal);
if (mal->tx_virt_addr)
dma_free_coherent(&ocpdev->dev,
MAL_DT_ALIGN * maldata->num_tx_chans,
mal->tx_virt_addr, mal->tx_phys_addr);
if (mal->rx_virt_addr)
dma_free_coherent(&ocpdev->dev,
MAL_DT_ALIGN * maldata->num_rx_chans,
mal->rx_virt_addr, mal->rx_phys_addr);
kfree(mal);
}
/* Structure for a device driver */
static struct ocp_device_id mal_ids[] = {
{.vendor = OCP_ANY_ID,.function = OCP_FUNC_MAL},
{.vendor = OCP_VENDOR_INVALID}
};
static struct ocp_driver mal_driver = {
.name = "mal",
.id_table = mal_ids,
.probe = mal_probe,
.remove = mal_remove,
};
static int __init init_mals(void)
{
int rc;
rc = ocp_register_driver(&mal_driver);
if (rc < 0) {
ocp_unregister_driver(&mal_driver);
return -ENODEV;
}
return 0;
}
static void __exit exit_mals(void)
{
ocp_unregister_driver(&mal_driver);
}
module_init(init_mals);
module_exit(exit_mals);
#ifndef _IBM_EMAC_MAL_H
#define _IBM_EMAC_MAL_H
#include <linux/list.h>
#define MAL_DT_ALIGN (4096) /* Alignment for each channel's descriptor table */
#define MAL_CHAN_MASK(chan) (0x80000000 >> (chan))
/* MAL Buffer Descriptor structure */
struct mal_descriptor {
unsigned short ctrl; /* MAL / Commac status control bits */
short data_len; /* Max length is 4K-1 (12 bits) */
unsigned char *data_ptr; /* pointer to actual data buffer */
} __attribute__ ((packed));
/* the following defines are for the MadMAL status and control registers. */
/* MADMAL transmit and receive status/control bits */
#define MAL_RX_CTRL_EMPTY 0x8000
#define MAL_RX_CTRL_WRAP 0x4000
#define MAL_RX_CTRL_CM 0x2000
#define MAL_RX_CTRL_LAST 0x1000
#define MAL_RX_CTRL_FIRST 0x0800
#define MAL_RX_CTRL_INTR 0x0400
#define MAL_TX_CTRL_READY 0x8000
#define MAL_TX_CTRL_WRAP 0x4000
#define MAL_TX_CTRL_CM 0x2000
#define MAL_TX_CTRL_LAST 0x1000
#define MAL_TX_CTRL_INTR 0x0400
struct mal_commac_ops {
void (*txeob) (void *dev, u32 chanmask);
void (*txde) (void *dev, u32 chanmask);
void (*rxeob) (void *dev, u32 chanmask);
void (*rxde) (void *dev, u32 chanmask);
};
struct mal_commac {
struct mal_commac_ops *ops;
void *dev;
u32 tx_chan_mask, rx_chan_mask;
struct list_head list;
};
struct ibm_ocp_mal {
int dcrbase;
struct list_head commac;
u32 tx_chan_mask, rx_chan_mask;
dma_addr_t tx_phys_addr;
struct mal_descriptor *tx_virt_addr;
dma_addr_t rx_phys_addr;
struct mal_descriptor *rx_virt_addr;
};
#define GET_MAL_STANZA(base,dcrn) \
case base: \
x = mfdcr(dcrn(base)); \
break;
#define SET_MAL_STANZA(base,dcrn, val) \
case base: \
mtdcr(dcrn(base), (val)); \
break;
#define GET_MAL0_STANZA(dcrn) GET_MAL_STANZA(DCRN_MAL_BASE,dcrn)
#define SET_MAL0_STANZA(dcrn,val) SET_MAL_STANZA(DCRN_MAL_BASE,dcrn,val)
#ifdef DCRN_MAL1_BASE
#define GET_MAL1_STANZA(dcrn) GET_MAL_STANZA(DCRN_MAL1_BASE,dcrn)
#define SET_MAL1_STANZA(dcrn,val) SET_MAL_STANZA(DCRN_MAL1_BASE,dcrn,val)
#else /* ! DCRN_MAL1_BASE */
#define GET_MAL1_STANZA(dcrn)
#define SET_MAL1_STANZA(dcrn,val)
#endif
#define get_mal_dcrn(mal, dcrn) ({ \
u32 x; \
switch ((mal)->dcrbase) { \
GET_MAL0_STANZA(dcrn) \
GET_MAL1_STANZA(dcrn) \
default: \
BUG(); \
} \
x; })
#define set_mal_dcrn(mal, dcrn, val) do { \
switch ((mal)->dcrbase) { \
SET_MAL0_STANZA(dcrn,val) \
SET_MAL1_STANZA(dcrn,val) \
default: \
BUG(); \
} } while (0)
static inline void mal_enable_tx_channels(struct ibm_ocp_mal *mal, u32 chanmask)
{
set_mal_dcrn(mal, DCRN_MALTXCASR,
get_mal_dcrn(mal, DCRN_MALTXCASR) | chanmask);
}
static inline void mal_disable_tx_channels(struct ibm_ocp_mal *mal,
u32 chanmask)
{
set_mal_dcrn(mal, DCRN_MALTXCARR, chanmask);
}
static inline void mal_enable_rx_channels(struct ibm_ocp_mal *mal, u32 chanmask)
{
set_mal_dcrn(mal, DCRN_MALRXCASR,
get_mal_dcrn(mal, DCRN_MALRXCASR) | chanmask);
}
static inline void mal_disable_rx_channels(struct ibm_ocp_mal *mal,
u32 chanmask)
{
set_mal_dcrn(mal, DCRN_MALRXCARR, chanmask);
}
extern int mal_register_commac(struct ibm_ocp_mal *mal,
struct mal_commac *commac);
extern int mal_unregister_commac(struct ibm_ocp_mal *mal,
struct mal_commac *commac);
extern int mal_set_rcbs(struct ibm_ocp_mal *mal, int channel,
unsigned long size);
#endif /* _IBM_EMAC_MAL_H */
/*
* ibm_ocp_phy.c
*
* PHY drivers for the ibm ocp ethernet driver. Borrowed
* from sungem_phy.c, though I only kept the generic MII
* driver for now.
*
* This file should be shared with other drivers or eventually
* merged as the "low level" part of miilib
*
* (c) 2003, Benjamin Herrenscmidt (benh@kernel.crashing.org)
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/delay.h>
#include "ibm_emac_phy.h"
static int reset_one_mii_phy(struct mii_phy *phy, int phy_id)
{
u16 val;
int limit = 10000;
val = __phy_read(phy, phy_id, MII_BMCR);
val &= ~BMCR_ISOLATE;
val |= BMCR_RESET;
__phy_write(phy, phy_id, MII_BMCR, val);
udelay(100);
while (limit--) {
val = __phy_read(phy, phy_id, MII_BMCR);
if ((val & BMCR_RESET) == 0)
break;
udelay(10);
}
if ((val & BMCR_ISOLATE) && limit > 0)
__phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
return (limit <= 0);
}
static int cis8201_init(struct mii_phy *phy)
{
u16 epcr;
epcr = phy_read(phy, MII_CIS8201_EPCR);
epcr &= ~EPCR_MODE_MASK;
switch (phy->mode) {
case PHY_MODE_TBI:
epcr |= EPCR_TBI_MODE;
break;
case PHY_MODE_RTBI:
epcr |= EPCR_RTBI_MODE;
break;
case PHY_MODE_GMII:
epcr |= EPCR_GMII_MODE;
break;
case PHY_MODE_RGMII:
default:
epcr |= EPCR_RGMII_MODE;
}
phy_write(phy, MII_CIS8201_EPCR, epcr);
return 0;
}
static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
{
u16 ctl, adv;
phy->autoneg = 1;
phy->speed = SPEED_10;
phy->duplex = DUPLEX_HALF;
phy->pause = 0;
phy->advertising = advertise;
/* Setup standard advertise */
adv = phy_read(phy, MII_ADVERTISE);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (advertise & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (advertise & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (advertise & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (advertise & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
phy_write(phy, MII_ADVERTISE, adv);
/* Start/Restart aneg */
ctl = phy_read(phy, MII_BMCR);
ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
{
u16 ctl;
phy->autoneg = 0;
phy->speed = speed;
phy->duplex = fd;
phy->pause = 0;
ctl = phy_read(phy, MII_BMCR);
ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE);
/* First reset the PHY */
phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
/* Select speed & duplex */
switch (speed) {
case SPEED_10:
break;
case SPEED_100:
ctl |= BMCR_SPEED100;
break;
case SPEED_1000:
default:
return -EINVAL;
}
if (fd == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
phy_write(phy, MII_BMCR, ctl);
return 0;
}
static int genmii_poll_link(struct mii_phy *phy)
{
u16 status;
(void)phy_read(phy, MII_BMSR);
status = phy_read(phy, MII_BMSR);
if ((status & BMSR_LSTATUS) == 0)
return 0;
if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
return 0;
return 1;
}
#define MII_CIS8201_ACSR 0x1c
#define ACSR_DUPLEX_STATUS 0x0020
#define ACSR_SPEED_1000BASET 0x0010
#define ACSR_SPEED_100BASET 0x0008
static int cis8201_read_link(struct mii_phy *phy)
{
u16 acsr;
if (phy->autoneg) {
acsr = phy_read(phy, MII_CIS8201_ACSR);
if (acsr & ACSR_DUPLEX_STATUS)
phy->duplex = DUPLEX_FULL;
else
phy->duplex = DUPLEX_HALF;
if (acsr & ACSR_SPEED_1000BASET) {
phy->speed = SPEED_1000;
} else if (acsr & ACSR_SPEED_100BASET)
phy->speed = SPEED_100;
else
phy->speed = SPEED_10;
phy->pause = 0;
}
/* On non-aneg, we assume what we put in BMCR is the speed,
* though magic-aneg shouldn't prevent this case from occurring
*/
return 0;
}
static int genmii_read_link(struct mii_phy *phy)
{
u16 lpa;
if (phy->autoneg) {
lpa = phy_read(phy, MII_LPA);
if (lpa & (LPA_10FULL | LPA_100FULL))
phy->duplex = DUPLEX_FULL;
else
phy->duplex = DUPLEX_HALF;
if (lpa & (LPA_100FULL | LPA_100HALF))
phy->speed = SPEED_100;
else
phy->speed = SPEED_10;
phy->pause = 0;
}
/* On non-aneg, we assume what we put in BMCR is the speed,
* though magic-aneg shouldn't prevent this case from occurring
*/
return 0;
}
#define MII_BASIC_FEATURES (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII)
#define MII_GBIT_FEATURES (MII_BASIC_FEATURES | \
SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
/* CIS8201 phy ops */
static struct mii_phy_ops cis8201_phy_ops = {
init:cis8201_init,
setup_aneg:genmii_setup_aneg,
setup_forced:genmii_setup_forced,
poll_link:genmii_poll_link,
read_link:cis8201_read_link
};
/* Generic implementation for most 10/100 PHYs */
static struct mii_phy_ops generic_phy_ops = {
setup_aneg:genmii_setup_aneg,
setup_forced:genmii_setup_forced,
poll_link:genmii_poll_link,
read_link:genmii_read_link
};
static struct mii_phy_def cis8201_phy_def = {
phy_id:0x000fc410,
phy_id_mask:0x000ffff0,
name:"CIS8201 Gigabit Ethernet",
features:MII_GBIT_FEATURES,
magic_aneg:0,
ops:&cis8201_phy_ops
};
static struct mii_phy_def genmii_phy_def = {
phy_id:0x00000000,
phy_id_mask:0x00000000,
name:"Generic MII",
features:MII_BASIC_FEATURES,
magic_aneg:0,
ops:&generic_phy_ops
};
static struct mii_phy_def *mii_phy_table[] = {
&cis8201_phy_def,
&genmii_phy_def,
NULL
};
int mii_phy_probe(struct mii_phy *phy, int mii_id)
{
int rc;
u32 id;
struct mii_phy_def *def;
int i;
phy->autoneg = 0;
phy->advertising = 0;
phy->mii_id = mii_id;
phy->speed = 0;
phy->duplex = 0;
phy->pause = 0;
/* Take PHY out of isloate mode and reset it. */
rc = reset_one_mii_phy(phy, mii_id);
if (rc)
return -ENODEV;
/* Read ID and find matching entry */
id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2))
& 0xfffffff0;
for (i = 0; (def = mii_phy_table[i]) != NULL; i++)
if ((id & def->phy_id_mask) == def->phy_id)
break;
/* Should never be NULL (we have a generic entry), but... */
if (def == NULL)
return -ENODEV;
phy->def = def;
/* Setup default advertising */
phy->advertising = def->features;
return 0;
}
MODULE_LICENSE("GPL");
/*
* ibm_emac_phy.h
*
*
* Benjamin Herrenschmidt <benh@kernel.crashing.org>
* February 2003
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* This file basically duplicates sungem_phy.{c,h} with different PHYs
* supported. I'm looking into merging that in a single mii layer more
* flexible than mii.c
*/
#ifndef _IBM_EMAC_PHY_H_
#define _IBM_EMAC_PHY_H_
/*
* PHY mode settings
* Used for multi-mode capable PHYs
*/
#define PHY_MODE_NA 0
#define PHY_MODE_MII 1
#define PHY_MODE_RMII 2
#define PHY_MODE_SMII 3
#define PHY_MODE_RGMII 4
#define PHY_MODE_TBI 5
#define PHY_MODE_GMII 6
#define PHY_MODE_RTBI 7
#define PHY_MODE_SGMII 8
/*
* PHY specific registers/values
*/
/* CIS8201 */
#define MII_CIS8201_EPCR 0x17
#define EPCR_MODE_MASK 0x3000
#define EPCR_GMII_MODE 0x0000
#define EPCR_RGMII_MODE 0x1000
#define EPCR_TBI_MODE 0x2000
#define EPCR_RTBI_MODE 0x3000
struct mii_phy;
/* Operations supported by any kind of PHY */
struct mii_phy_ops {
int (*init) (struct mii_phy * phy);
int (*suspend) (struct mii_phy * phy, int wol_options);
int (*setup_aneg) (struct mii_phy * phy, u32 advertise);
int (*setup_forced) (struct mii_phy * phy, int speed, int fd);
int (*poll_link) (struct mii_phy * phy);
int (*read_link) (struct mii_phy * phy);
};
/* Structure used to statically define an mii/gii based PHY */
struct mii_phy_def {
u32 phy_id; /* Concatenated ID1 << 16 | ID2 */
u32 phy_id_mask; /* Significant bits */
u32 features; /* Ethtool SUPPORTED_* defines */
int magic_aneg; /* Autoneg does all speed test for us */
const char *name;
const struct mii_phy_ops *ops;
};
/* An instance of a PHY, partially borrowed from mii_if_info */
struct mii_phy {
struct mii_phy_def *def;
int advertising;
int mii_id;
/* 1: autoneg enabled, 0: disabled */
int autoneg;
/* forced speed & duplex (no autoneg)
* partner speed & duplex & pause (autoneg)
*/
int speed;
int duplex;
int pause;
/* PHY mode - if needed */
int mode;
/* Provided by host chip */
struct net_device *dev;
int (*mdio_read) (struct net_device * dev, int mii_id, int reg);
void (*mdio_write) (struct net_device * dev, int mii_id, int reg,
int val);
};
/* Pass in a struct mii_phy with dev, mdio_read and mdio_write
* filled, the remaining fields will be filled on return
*/
extern int mii_phy_probe(struct mii_phy *phy, int mii_id);
static inline int __phy_read(struct mii_phy *phy, int id, int reg)
{
return phy->mdio_read(phy->dev, id, reg);
}
static inline void __phy_write(struct mii_phy *phy, int id, int reg, int val)
{
phy->mdio_write(phy->dev, id, reg, val);
}
static inline int phy_read(struct mii_phy *phy, int reg)
{
return phy->mdio_read(phy->dev, phy->mii_id, reg);
}
static inline void phy_write(struct mii_phy *phy, int reg, int val)
{
phy->mdio_write(phy->dev, phy->mii_id, reg, val);
}
#endif /* _IBM_EMAC_PHY_H_ */
/*
* Defines for the IBM RGMII bridge
*
* Based on ocp_zmii.h/ibm_emac_zmii.h
* Armin Kuster akuster@mvista.com
*
* Copyright 2004 MontaVista Software, Inc.
* Matt Porter <mporter@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef _IBM_EMAC_RGMII_H_
#define _IBM_EMAC_RGMII_H_
#include <linux/config.h>
/* RGMII bridge */
typedef struct rgmii_regs {
u32 fer; /* Function enable register */
u32 ssr; /* Speed select register */
} rgmii_t;
#define RGMII_INPUTS 4
/* RGMII device */
struct ibm_ocp_rgmii {
struct rgmii_regs *base;
int mode[RGMII_INPUTS];
int users; /* number of EMACs using this RGMII bridge */
};
/* Fuctional Enable Reg */
#define RGMII_FER_MASK(x) (0x00000007 << (4*x))
#define RGMII_RTBI 0x00000004
#define RGMII_RGMII 0x00000005
#define RGMII_TBI 0x00000006
#define RGMII_GMII 0x00000007
/* Speed Selection reg */
#define RGMII_SP2_100 0x00000002
#define RGMII_SP2_1000 0x00000004
#define RGMII_SP3_100 0x00000200
#define RGMII_SP3_1000 0x00000400
#define RGMII_MII2_SPDMASK 0x00000007
#define RGMII_MII3_SPDMASK 0x00000700
#define RGMII_MII2_100MB RGMII_SP2_100 & ~RGMII_SP2_1000
#define RGMII_MII2_1000MB RGMII_SP2_1000 & ~RGMII_SP2_100
#define RGMII_MII2_10MB ~(RGMII_SP2_100 | RGMII_SP2_1000)
#define RGMII_MII3_100MB RGMII_SP3_100 & ~RGMII_SP3_1000
#define RGMII_MII3_1000MB RGMII_SP3_1000 & ~RGMII_SP3_100
#define RGMII_MII3_10MB ~(RGMII_SP3_100 | RGMII_SP3_1000)
#define RTBI 0
#define RGMII 1
#define TBI 2
#define GMII 3
#endif /* _IBM_EMAC_RGMII_H_ */
/*
* Defines for the IBM TAH
*
* Copyright 2004 MontaVista Software, Inc.
* Matt Porter <mporter@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef _IBM_EMAC_TAH_H
#define _IBM_EMAC_TAH_H
/* TAH */
typedef struct tah_regs {
u32 tah_revid;
u32 pad[3];
u32 tah_mr;
u32 tah_ssr0;
u32 tah_ssr1;
u32 tah_ssr2;
u32 tah_ssr3;
u32 tah_ssr4;
u32 tah_ssr5;
u32 tah_tsr;
} tah_t;
/* TAH engine */
#define TAH_MR_CVR 0x80000000
#define TAH_MR_SR 0x40000000
#define TAH_MR_ST_256 0x01000000
#define TAH_MR_ST_512 0x02000000
#define TAH_MR_ST_768 0x03000000
#define TAH_MR_ST_1024 0x04000000
#define TAH_MR_ST_1280 0x05000000
#define TAH_MR_ST_1536 0x06000000
#define TAH_MR_TFS_16KB 0x00000000
#define TAH_MR_TFS_2KB 0x00200000
#define TAH_MR_TFS_4KB 0x00400000
#define TAH_MR_TFS_6KB 0x00600000
#define TAH_MR_TFS_8KB 0x00800000
#define TAH_MR_TFS_10KB 0x00a00000
#define TAH_MR_DTFP 0x00100000
#define TAH_MR_DIG 0x00080000
#endif /* _IBM_EMAC_TAH_H */
/*
* ocp_zmii.h
*
* Defines for the IBM ZMII bridge
*
* Armin Kuster akuster@mvista.com
* Dec, 2001
*
* Copyright 2001 MontaVista Softare Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef _IBM_EMAC_ZMII_H_
#define _IBM_EMAC_ZMII_H_
#include <linux/config.h>
/* ZMII bridge registers */
struct zmii_regs {
u32 fer; /* Function enable reg */
u32 ssr; /* Speed select reg */
u32 smiirs; /* SMII status reg */
};
#define ZMII_INPUTS 4
/* ZMII device */
struct ibm_ocp_zmii {
struct zmii_regs *base;
int mode[ZMII_INPUTS];
int users; /* number of EMACs using this ZMII bridge */
};
/* Fuctional Enable Reg */
#define ZMII_FER_MASK(x) (0xf0000000 >> (4*x))
#define ZMII_MDI0 0x80000000
#define ZMII_SMII0 0x40000000
#define ZMII_RMII0 0x20000000
#define ZMII_MII0 0x10000000
#define ZMII_MDI1 0x08000000
#define ZMII_SMII1 0x04000000
#define ZMII_RMII1 0x02000000
#define ZMII_MII1 0x01000000
#define ZMII_MDI2 0x00800000
#define ZMII_SMII2 0x00400000
#define ZMII_RMII2 0x00200000
#define ZMII_MII2 0x00100000
#define ZMII_MDI3 0x00080000
#define ZMII_SMII3 0x00040000
#define ZMII_RMII3 0x00020000
#define ZMII_MII3 0x00010000
/* Speed Selection reg */
#define ZMII_SCI0 0x40000000
#define ZMII_FSS0 0x20000000
#define ZMII_SP0 0x10000000
#define ZMII_SCI1 0x04000000
#define ZMII_FSS1 0x02000000
#define ZMII_SP1 0x01000000
#define ZMII_SCI2 0x00400000
#define ZMII_FSS2 0x00200000
#define ZMII_SP2 0x00100000
#define ZMII_SCI3 0x00040000
#define ZMII_FSS3 0x00020000
#define ZMII_SP3 0x00010000
#define ZMII_MII0_100MB ZMII_SP0
#define ZMII_MII0_10MB ~ZMII_SP0
#define ZMII_MII1_100MB ZMII_SP1
#define ZMII_MII1_10MB ~ZMII_SP1
#define ZMII_MII2_100MB ZMII_SP2
#define ZMII_MII2_10MB ~ZMII_SP2
#define ZMII_MII3_100MB ZMII_SP3
#define ZMII_MII3_10MB ~ZMII_SP3
/* SMII Status reg */
#define ZMII_STS0 0xFF000000 /* EMAC0 smii status mask */
#define ZMII_STS1 0x00FF0000 /* EMAC1 smii status mask */
#define SMII 0
#define RMII 1
#define MII 2
#define MDI 3
#endif /* _IBM_EMAC_ZMII_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment