Commit 3eb5b893 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'x86-mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 MPX support from Thomas Gleixner:
 "This enables support for x86 MPX.

  MPX is a new debug feature for bound checking in user space.  It
  requires kernel support to handle the bound tables and decode the
  bound violating instruction in the trap handler"

* 'x86-mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  asm-generic: Remove asm-generic arch_bprm_mm_init()
  mm: Make arch_unmap()/bprm_mm_init() available to all architectures
  x86: Cleanly separate use of asm-generic/mm_hooks.h
  x86 mpx: Change return type of get_reg_offset()
  fs: Do not include mpx.h in exec.c
  x86, mpx: Add documentation on Intel MPX
  x86, mpx: Cleanup unused bound tables
  x86, mpx: On-demand kernel allocation of bounds tables
  x86, mpx: Decode MPX instruction to get bound violation information
  x86, mpx: Add MPX-specific mmap interface
  x86, mpx: Introduce VM_MPX to indicate that a VMA is MPX specific
  x86, mpx: Add MPX to disabled features
  ia64: Sync struct siginfo with general version
  mips: Sync struct siginfo with general version
  mpx: Extend siginfo structure to include bound violation information
  x86, mpx: Rename cfg_reg_u and status_reg
  x86: mpx: Give bndX registers actual names
  x86: Remove arbitrary instruction size limit in instruction decoder
parents 9e66645d 9f7789f8
1. Intel(R) MPX Overview
========================
Intel(R) Memory Protection Extensions (Intel(R) MPX) is a new capability
introduced into Intel Architecture. Intel MPX provides hardware features
that can be used in conjunction with compiler changes to check memory
references, for those references whose compile-time normal intentions are
usurped at runtime due to buffer overflow or underflow.
For more information, please refer to Intel(R) Architecture Instruction
Set Extensions Programming Reference, Chapter 9: Intel(R) Memory Protection
Extensions.
Note: Currently no hardware with MPX ISA is available but it is always
possible to use SDE (Intel(R) Software Development Emulator) instead, which
can be downloaded from
http://software.intel.com/en-us/articles/intel-software-development-emulator
2. How to get the advantage of MPX
==================================
For MPX to work, changes are required in the kernel, binutils and compiler.
No source changes are required for applications, just a recompile.
There are a lot of moving parts of this to all work right. The following
is how we expect the compiler, application and kernel to work together.
1) Application developer compiles with -fmpx. The compiler will add the
instrumentation as well as some setup code called early after the app
starts. New instruction prefixes are noops for old CPUs.
2) That setup code allocates (virtual) space for the "bounds directory",
points the "bndcfgu" register to the directory and notifies the kernel
(via the new prctl(PR_MPX_ENABLE_MANAGEMENT)) that the app will be using
MPX.
3) The kernel detects that the CPU has MPX, allows the new prctl() to
succeed, and notes the location of the bounds directory. Userspace is
expected to keep the bounds directory at that locationWe note it
instead of reading it each time because the 'xsave' operation needed
to access the bounds directory register is an expensive operation.
4) If the application needs to spill bounds out of the 4 registers, it
issues a bndstx instruction. Since the bounds directory is empty at
this point, a bounds fault (#BR) is raised, the kernel allocates a
bounds table (in the user address space) and makes the relevant entry
in the bounds directory point to the new table.
5) If the application violates the bounds specified in the bounds registers,
a separate kind of #BR is raised which will deliver a signal with
information about the violation in the 'struct siginfo'.
6) Whenever memory is freed, we know that it can no longer contain valid
pointers, and we attempt to free the associated space in the bounds
tables. If an entire table becomes unused, we will attempt to free
the table and remove the entry in the directory.
To summarize, there are essentially three things interacting here:
GCC with -fmpx:
* enables annotation of code with MPX instructions and prefixes
* inserts code early in the application to call in to the "gcc runtime"
GCC MPX Runtime:
* Checks for hardware MPX support in cpuid leaf
* allocates virtual space for the bounds directory (malloc() essentially)
* points the hardware BNDCFGU register at the directory
* calls a new prctl(PR_MPX_ENABLE_MANAGEMENT) to notify the kernel to
start managing the bounds directories
Kernel MPX Code:
* Checks for hardware MPX support in cpuid leaf
* Handles #BR exceptions and sends SIGSEGV to the app when it violates
bounds, like during a buffer overflow.
* When bounds are spilled in to an unallocated bounds table, the kernel
notices in the #BR exception, allocates the virtual space, then
updates the bounds directory to point to the new table. It keeps
special track of the memory with a VM_MPX flag.
* Frees unused bounds tables at the time that the memory they described
is unmapped.
3. How does MPX kernel code work
================================
Handling #BR faults caused by MPX
---------------------------------
When MPX is enabled, there are 2 new situations that can generate
#BR faults.
* new bounds tables (BT) need to be allocated to save bounds.
* bounds violation caused by MPX instructions.
We hook #BR handler to handle these two new situations.
On-demand kernel allocation of bounds tables
--------------------------------------------
MPX only has 4 hardware registers for storing bounds information. If
MPX-enabled code needs more than these 4 registers, it needs to spill
them somewhere. It has two special instructions for this which allow
the bounds to be moved between the bounds registers and some new "bounds
tables".
#BR exceptions are a new class of exceptions just for MPX. They are
similar conceptually to a page fault and will be raised by the MPX
hardware during both bounds violations or when the tables are not
present. The kernel handles those #BR exceptions for not-present tables
by carving the space out of the normal processes address space and then
pointing the bounds-directory over to it.
The tables need to be accessed and controlled by userspace because
the instructions for moving bounds in and out of them are extremely
frequent. They potentially happen every time a register points to
memory. Any direct kernel involvement (like a syscall) to access the
tables would obviously destroy performance.
Why not do this in userspace? MPX does not strictly require anything in
the kernel. It can theoretically be done completely from userspace. Here
are a few ways this could be done. We don't think any of them are practical
in the real-world, but here they are.
Q: Can virtual space simply be reserved for the bounds tables so that we
never have to allocate them?
A: MPX-enabled application will possibly create a lot of bounds tables in
process address space to save bounds information. These tables can take
up huge swaths of memory (as much as 80% of the memory on the system)
even if we clean them up aggressively. In the worst-case scenario, the
tables can be 4x the size of the data structure being tracked. IOW, a
1-page structure can require 4 bounds-table pages. An X-GB virtual
area needs 4*X GB of virtual space, plus 2GB for the bounds directory.
If we were to preallocate them for the 128TB of user virtual address
space, we would need to reserve 512TB+2GB, which is larger than the
entire virtual address space today. This means they can not be reserved
ahead of time. Also, a single process's pre-popualated bounds directory
consumes 2GB of virtual *AND* physical memory. IOW, it's completely
infeasible to prepopulate bounds directories.
Q: Can we preallocate bounds table space at the same time memory is
allocated which might contain pointers that might eventually need
bounds tables?
A: This would work if we could hook the site of each and every memory
allocation syscall. This can be done for small, constrained applications.
But, it isn't practical at a larger scale since a given app has no
way of controlling how all the parts of the app might allocate memory
(think libraries). The kernel is really the only place to intercept
these calls.
Q: Could a bounds fault be handed to userspace and the tables allocated
there in a signal handler intead of in the kernel?
A: mmap() is not on the list of safe async handler functions and even
if mmap() would work it still requires locking or nasty tricks to
keep track of the allocation state there.
Having ruled out all of the userspace-only approaches for managing
bounds tables that we could think of, we create them on demand in
the kernel.
Decoding MPX instructions
-------------------------
If a #BR is generated due to a bounds violation caused by MPX.
We need to decode MPX instructions to get violation address and
set this address into extended struct siginfo.
The _sigfault feild of struct siginfo is extended as follow:
87 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
88 struct {
89 void __user *_addr; /* faulting insn/memory ref. */
90 #ifdef __ARCH_SI_TRAPNO
91 int _trapno; /* TRAP # which caused the signal */
92 #endif
93 short _addr_lsb; /* LSB of the reported address */
94 struct {
95 void __user *_lower;
96 void __user *_upper;
97 } _addr_bnd;
98 } _sigfault;
The '_addr' field refers to violation address, and new '_addr_and'
field refers to the upper/lower bounds when a #BR is caused.
Glibc will be also updated to support this new siginfo. So user
can get violation address and bounds when bounds violations occur.
Cleanup unused bounds tables
----------------------------
When a BNDSTX instruction attempts to save bounds to a bounds directory
entry marked as invalid, a #BR is generated. This is an indication that
no bounds table exists for this entry. In this case the fault handler
will allocate a new bounds table on demand.
Since the kernel allocated those tables on-demand without userspace
knowledge, it is also responsible for freeing them when the associated
mappings go away.
Here, the solution for this issue is to hook do_munmap() to check
whether one process is MPX enabled. If yes, those bounds tables covered
in the virtual address region which is being unmapped will be freed also.
Adding new prctl commands
-------------------------
Two new prctl commands are added to enable and disable MPX bounds tables
management in kernel.
155 #define PR_MPX_ENABLE_MANAGEMENT 43
156 #define PR_MPX_DISABLE_MANAGEMENT 44
Runtime library in userspace is responsible for allocation of bounds
directory. So kernel have to use XSAVE instruction to get the base
of bounds directory from BNDCFG register.
But XSAVE is expected to be very expensive. In order to do performance
optimization, we have to get the base of bounds directory and save it
into struct mm_struct to be used in future during PR_MPX_ENABLE_MANAGEMENT
command execution.
4. Special rules
================
1) If userspace is requesting help from the kernel to do the management
of bounds tables, it may not create or modify entries in the bounds directory.
Certainly users can allocate bounds tables and forcibly point the bounds
directory at them through XSAVE instruction, and then set valid bit
of bounds entry to have this entry valid. But, the kernel will decline
to assist in managing these tables.
2) Userspace may not take multiple bounds directory entries and point
them at the same bounds table.
This is allowed architecturally. See more information "Intel(R) Architecture
Instruction Set Extensions Programming Reference" (9.3.4).
However, if users did this, the kernel might be fooled in to unmaping an
in-use bounds table since it does not recognize sharing.
...@@ -63,6 +63,10 @@ typedef struct siginfo { ...@@ -63,6 +63,10 @@ typedef struct siginfo {
unsigned int _flags; /* see below */ unsigned int _flags; /* see below */
unsigned long _isr; /* isr */ unsigned long _isr; /* isr */
short _addr_lsb; /* lsb of faulting address */ short _addr_lsb; /* lsb of faulting address */
struct {
void __user *_lower;
void __user *_upper;
} _addr_bnd;
} _sigfault; } _sigfault;
/* SIGPOLL */ /* SIGPOLL */
...@@ -110,9 +114,9 @@ typedef struct siginfo { ...@@ -110,9 +114,9 @@ typedef struct siginfo {
/* /*
* SIGSEGV si_codes * SIGSEGV si_codes
*/ */
#define __SEGV_PSTKOVF (__SI_FAULT|3) /* paragraph stack overflow */ #define __SEGV_PSTKOVF (__SI_FAULT|4) /* paragraph stack overflow */
#undef NSIGSEGV #undef NSIGSEGV
#define NSIGSEGV 3 #define NSIGSEGV 4
#undef NSIGTRAP #undef NSIGTRAP
#define NSIGTRAP 4 #define NSIGTRAP 4
......
...@@ -92,6 +92,10 @@ typedef struct siginfo { ...@@ -92,6 +92,10 @@ typedef struct siginfo {
int _trapno; /* TRAP # which caused the signal */ int _trapno; /* TRAP # which caused the signal */
#endif #endif
short _addr_lsb; short _addr_lsb;
struct {
void __user *_lower;
void __user *_upper;
} _addr_bnd;
} _sigfault; } _sigfault;
/* SIGPOLL, SIGXFSZ (To do ...) */ /* SIGPOLL, SIGXFSZ (To do ...) */
......
...@@ -120,4 +120,15 @@ static inline void arch_exit_mmap(struct mm_struct *mm) ...@@ -120,4 +120,15 @@ static inline void arch_exit_mmap(struct mm_struct *mm)
{ {
} }
static inline void arch_unmap(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
static inline void arch_bprm_mm_init(struct mm_struct *mm,
struct vm_area_struct *vma)
{
}
#endif /* __S390_MMU_CONTEXT_H */ #endif /* __S390_MMU_CONTEXT_H */
...@@ -10,7 +10,26 @@ ...@@ -10,7 +10,26 @@
#include <asm/mmu.h> #include <asm/mmu.h>
extern void uml_setup_stubs(struct mm_struct *mm); extern void uml_setup_stubs(struct mm_struct *mm);
/*
* Needed since we do not use the asm-generic/mm_hooks.h:
*/
static inline void arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
{
uml_setup_stubs(mm);
}
extern void arch_exit_mmap(struct mm_struct *mm); extern void arch_exit_mmap(struct mm_struct *mm);
static inline void arch_unmap(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
static inline void arch_bprm_mm_init(struct mm_struct *mm,
struct vm_area_struct *vma)
{
}
/*
* end asm-generic/mm_hooks.h functions
*/
#define deactivate_mm(tsk,mm) do { } while (0) #define deactivate_mm(tsk,mm) do { } while (0)
...@@ -41,11 +60,6 @@ static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, ...@@ -41,11 +60,6 @@ static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
} }
} }
static inline void arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
{
uml_setup_stubs(mm);
}
static inline void enter_lazy_tlb(struct mm_struct *mm, static inline void enter_lazy_tlb(struct mm_struct *mm,
struct task_struct *tsk) struct task_struct *tsk)
{ {
......
...@@ -86,4 +86,15 @@ static inline void arch_dup_mmap(struct mm_struct *oldmm, ...@@ -86,4 +86,15 @@ static inline void arch_dup_mmap(struct mm_struct *oldmm,
{ {
} }
static inline void arch_unmap(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
static inline void arch_bprm_mm_init(struct mm_struct *mm,
struct vm_area_struct *vma)
{
}
#endif #endif
...@@ -248,6 +248,10 @@ config HAVE_INTEL_TXT ...@@ -248,6 +248,10 @@ config HAVE_INTEL_TXT
def_bool y def_bool y
depends on INTEL_IOMMU && ACPI depends on INTEL_IOMMU && ACPI
config X86_INTEL_MPX
def_bool y
depends on CPU_SUP_INTEL
config X86_32_SMP config X86_32_SMP
def_bool y def_bool y
depends on X86_32 && SMP depends on X86_32 && SMP
......
...@@ -10,6 +10,12 @@ ...@@ -10,6 +10,12 @@
* cpu_feature_enabled(). * cpu_feature_enabled().
*/ */
#ifdef CONFIG_X86_INTEL_MPX
# define DISABLE_MPX 0
#else
# define DISABLE_MPX (1<<(X86_FEATURE_MPX & 31))
#endif
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
# define DISABLE_VME (1<<(X86_FEATURE_VME & 31)) # define DISABLE_VME (1<<(X86_FEATURE_VME & 31))
# define DISABLE_K6_MTRR (1<<(X86_FEATURE_K6_MTRR & 31)) # define DISABLE_K6_MTRR (1<<(X86_FEATURE_K6_MTRR & 31))
...@@ -34,6 +40,6 @@ ...@@ -34,6 +40,6 @@
#define DISABLED_MASK6 0 #define DISABLED_MASK6 0
#define DISABLED_MASK7 0 #define DISABLED_MASK7 0
#define DISABLED_MASK8 0 #define DISABLED_MASK8 0
#define DISABLED_MASK9 0 #define DISABLED_MASK9 (DISABLE_MPX)
#endif /* _ASM_X86_DISABLED_FEATURES_H */ #endif /* _ASM_X86_DISABLED_FEATURES_H */
...@@ -65,6 +65,7 @@ struct insn { ...@@ -65,6 +65,7 @@ struct insn {
unsigned char x86_64; unsigned char x86_64;
const insn_byte_t *kaddr; /* kernel address of insn to analyze */ const insn_byte_t *kaddr; /* kernel address of insn to analyze */
const insn_byte_t *end_kaddr; /* kernel address of last insn in buffer */
const insn_byte_t *next_byte; const insn_byte_t *next_byte;
}; };
...@@ -96,7 +97,7 @@ struct insn { ...@@ -96,7 +97,7 @@ struct insn {
#define X86_VEX_P(vex) ((vex) & 0x03) /* VEX3 Byte2, VEX2 Byte1 */ #define X86_VEX_P(vex) ((vex) & 0x03) /* VEX3 Byte2, VEX2 Byte1 */
#define X86_VEX_M_MAX 0x1f /* VEX3.M Maximum value */ #define X86_VEX_M_MAX 0x1f /* VEX3.M Maximum value */
extern void insn_init(struct insn *insn, const void *kaddr, int x86_64); extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64);
extern void insn_get_prefixes(struct insn *insn); extern void insn_get_prefixes(struct insn *insn);
extern void insn_get_opcode(struct insn *insn); extern void insn_get_opcode(struct insn *insn);
extern void insn_get_modrm(struct insn *insn); extern void insn_get_modrm(struct insn *insn);
...@@ -115,12 +116,13 @@ static inline void insn_get_attribute(struct insn *insn) ...@@ -115,12 +116,13 @@ static inline void insn_get_attribute(struct insn *insn)
extern int insn_rip_relative(struct insn *insn); extern int insn_rip_relative(struct insn *insn);
/* Init insn for kernel text */ /* Init insn for kernel text */
static inline void kernel_insn_init(struct insn *insn, const void *kaddr) static inline void kernel_insn_init(struct insn *insn,
const void *kaddr, int buf_len)
{ {
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
insn_init(insn, kaddr, 1); insn_init(insn, kaddr, buf_len, 1);
#else /* CONFIG_X86_32 */ #else /* CONFIG_X86_32 */
insn_init(insn, kaddr, 0); insn_init(insn, kaddr, buf_len, 0);
#endif #endif
} }
......
...@@ -10,9 +10,8 @@ ...@@ -10,9 +10,8 @@
#include <asm/pgalloc.h> #include <asm/pgalloc.h>
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
#include <asm/paravirt.h> #include <asm/paravirt.h>
#include <asm/mpx.h>
#ifndef CONFIG_PARAVIRT #ifndef CONFIG_PARAVIRT
#include <asm-generic/mm_hooks.h>
static inline void paravirt_activate_mm(struct mm_struct *prev, static inline void paravirt_activate_mm(struct mm_struct *prev,
struct mm_struct *next) struct mm_struct *next)
{ {
...@@ -102,4 +101,27 @@ do { \ ...@@ -102,4 +101,27 @@ do { \
} while (0) } while (0)
#endif #endif
static inline void arch_dup_mmap(struct mm_struct *oldmm,
struct mm_struct *mm)
{
paravirt_arch_dup_mmap(oldmm, mm);
}
static inline void arch_exit_mmap(struct mm_struct *mm)
{
paravirt_arch_exit_mmap(mm);
}
static inline void arch_bprm_mm_init(struct mm_struct *mm,
struct vm_area_struct *vma)
{
mpx_mm_init(mm);
}
static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
mpx_notify_unmap(mm, vma, start, end);
}
#endif /* _ASM_X86_MMU_CONTEXT_H */ #endif /* _ASM_X86_MMU_CONTEXT_H */
#ifndef _ASM_X86_MPX_H
#define _ASM_X86_MPX_H
#include <linux/types.h>
#include <asm/ptrace.h>
#include <asm/insn.h>
/*
* NULL is theoretically a valid place to put the bounds
* directory, so point this at an invalid address.
*/
#define MPX_INVALID_BOUNDS_DIR ((void __user *)-1)
#define MPX_BNDCFG_ENABLE_FLAG 0x1
#define MPX_BD_ENTRY_VALID_FLAG 0x1
#ifdef CONFIG_X86_64
/* upper 28 bits [47:20] of the virtual address in 64-bit used to
* index into bounds directory (BD).
*/
#define MPX_BD_ENTRY_OFFSET 28
#define MPX_BD_ENTRY_SHIFT 3
/* bits [19:3] of the virtual address in 64-bit used to index into
* bounds table (BT).
*/
#define MPX_BT_ENTRY_OFFSET 17
#define MPX_BT_ENTRY_SHIFT 5
#define MPX_IGN_BITS 3
#define MPX_BD_ENTRY_TAIL 3
#else
#define MPX_BD_ENTRY_OFFSET 20
#define MPX_BD_ENTRY_SHIFT 2
#define MPX_BT_ENTRY_OFFSET 10
#define MPX_BT_ENTRY_SHIFT 4
#define MPX_IGN_BITS 2
#define MPX_BD_ENTRY_TAIL 2
#endif
#define MPX_BD_SIZE_BYTES (1UL<<(MPX_BD_ENTRY_OFFSET+MPX_BD_ENTRY_SHIFT))
#define MPX_BT_SIZE_BYTES (1UL<<(MPX_BT_ENTRY_OFFSET+MPX_BT_ENTRY_SHIFT))
#define MPX_BNDSTA_TAIL 2
#define MPX_BNDCFG_TAIL 12
#define MPX_BNDSTA_ADDR_MASK (~((1UL<<MPX_BNDSTA_TAIL)-1))
#define MPX_BNDCFG_ADDR_MASK (~((1UL<<MPX_BNDCFG_TAIL)-1))
#define MPX_BT_ADDR_MASK (~((1UL<<MPX_BD_ENTRY_TAIL)-1))
#define MPX_BNDCFG_ADDR_MASK (~((1UL<<MPX_BNDCFG_TAIL)-1))
#define MPX_BNDSTA_ERROR_CODE 0x3
#define MPX_BD_ENTRY_MASK ((1<<MPX_BD_ENTRY_OFFSET)-1)
#define MPX_BT_ENTRY_MASK ((1<<MPX_BT_ENTRY_OFFSET)-1)
#define MPX_GET_BD_ENTRY_OFFSET(addr) ((((addr)>>(MPX_BT_ENTRY_OFFSET+ \
MPX_IGN_BITS)) & MPX_BD_ENTRY_MASK) << MPX_BD_ENTRY_SHIFT)
#define MPX_GET_BT_ENTRY_OFFSET(addr) ((((addr)>>MPX_IGN_BITS) & \
MPX_BT_ENTRY_MASK) << MPX_BT_ENTRY_SHIFT)
#ifdef CONFIG_X86_INTEL_MPX
siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
struct xsave_struct *xsave_buf);
int mpx_handle_bd_fault(struct xsave_struct *xsave_buf);
static inline int kernel_managing_mpx_tables(struct mm_struct *mm)
{
return (mm->bd_addr != MPX_INVALID_BOUNDS_DIR);
}
static inline void mpx_mm_init(struct mm_struct *mm)
{
/*
* NULL is theoretically a valid place to put the bounds
* directory, so point this at an invalid address.
*/
mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
}
void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long start, unsigned long end);
#else
static inline siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
struct xsave_struct *xsave_buf)
{
return NULL;
}
static inline int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
{
return -EINVAL;
}
static inline int kernel_managing_mpx_tables(struct mm_struct *mm)
{
return 0;
}
static inline void mpx_mm_init(struct mm_struct *mm)
{
}
static inline void mpx_notify_unmap(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_X86_INTEL_MPX */
#endif /* _ASM_X86_MPX_H */
...@@ -330,13 +330,13 @@ static inline void paravirt_activate_mm(struct mm_struct *prev, ...@@ -330,13 +330,13 @@ static inline void paravirt_activate_mm(struct mm_struct *prev,
PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next); PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
} }
static inline void arch_dup_mmap(struct mm_struct *oldmm, static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm,
struct mm_struct *mm) struct mm_struct *mm)
{ {
PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm); PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
} }
static inline void arch_exit_mmap(struct mm_struct *mm) static inline void paravirt_arch_exit_mmap(struct mm_struct *mm)
{ {
PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm); PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
} }
...@@ -986,5 +986,15 @@ extern void default_banner(void); ...@@ -986,5 +986,15 @@ extern void default_banner(void);
#endif /* __ASSEMBLY__ */ #endif /* __ASSEMBLY__ */
#else /* CONFIG_PARAVIRT */ #else /* CONFIG_PARAVIRT */
# define default_banner x86_init_noop # define default_banner x86_init_noop
#ifndef __ASSEMBLY__
static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm,
struct mm_struct *mm)
{
}
static inline void paravirt_arch_exit_mmap(struct mm_struct *mm)
{
}
#endif /* __ASSEMBLY__ */
#endif /* !CONFIG_PARAVIRT */ #endif /* !CONFIG_PARAVIRT */
#endif /* _ASM_X86_PARAVIRT_H */ #endif /* _ASM_X86_PARAVIRT_H */
...@@ -374,13 +374,14 @@ struct lwp_struct { ...@@ -374,13 +374,14 @@ struct lwp_struct {
u8 reserved[128]; u8 reserved[128];
}; };
struct bndregs_struct { struct bndreg {
u64 bndregs[8]; u64 lower_bound;
u64 upper_bound;
} __packed; } __packed;
struct bndcsr_struct { struct bndcsr {
u64 cfg_reg_u; u64 bndcfgu;
u64 status_reg; u64 bndstatus;
} __packed; } __packed;
struct xsave_hdr_struct { struct xsave_hdr_struct {
...@@ -394,8 +395,8 @@ struct xsave_struct { ...@@ -394,8 +395,8 @@ struct xsave_struct {
struct xsave_hdr_struct xsave_hdr; struct xsave_hdr_struct xsave_hdr;
struct ymmh_struct ymmh; struct ymmh_struct ymmh;
struct lwp_struct lwp; struct lwp_struct lwp;
struct bndregs_struct bndregs; struct bndreg bndreg[4];
struct bndcsr_struct bndcsr; struct bndcsr bndcsr;
/* new processor state extensions will go here */ /* new processor state extensions will go here */
} __attribute__ ((packed, aligned (64))); } __attribute__ ((packed, aligned (64)));
...@@ -953,6 +954,24 @@ extern void start_thread(struct pt_regs *regs, unsigned long new_ip, ...@@ -953,6 +954,24 @@ extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
extern int get_tsc_mode(unsigned long adr); extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val); extern int set_tsc_mode(unsigned int val);
/* Register/unregister a process' MPX related resource */
#define MPX_ENABLE_MANAGEMENT(tsk) mpx_enable_management((tsk))
#define MPX_DISABLE_MANAGEMENT(tsk) mpx_disable_management((tsk))
#ifdef CONFIG_X86_INTEL_MPX
extern int mpx_enable_management(struct task_struct *tsk);
extern int mpx_disable_management(struct task_struct *tsk);
#else
static inline int mpx_enable_management(struct task_struct *tsk)
{
return -EINVAL;
}
static inline int mpx_disable_management(struct task_struct *tsk)
{
return -EINVAL;
}
#endif /* CONFIG_X86_INTEL_MPX */
extern u16 amd_get_nb_id(int cpu); extern u16 amd_get_nb_id(int cpu);
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
......
...@@ -724,6 +724,7 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) ...@@ -724,6 +724,7 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
unsigned long ip = regs->ip; unsigned long ip = regs->ip;
int is_64bit = 0; int is_64bit = 0;
void *kaddr; void *kaddr;
int size;
/* /*
* We don't need to fixup if the PEBS assist is fault like * We don't need to fixup if the PEBS assist is fault like
...@@ -758,11 +759,12 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) ...@@ -758,11 +759,12 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
return 1; return 1;
} }
size = ip - to;
if (!kernel_ip(ip)) { if (!kernel_ip(ip)) {
int size, bytes; int bytes;
u8 *buf = this_cpu_read(insn_buffer); u8 *buf = this_cpu_read(insn_buffer);
size = ip - to; /* Must fit our buffer, see above */ /* 'size' must fit our buffer, see above */
bytes = copy_from_user_nmi(buf, (void __user *)to, size); bytes = copy_from_user_nmi(buf, (void __user *)to, size);
if (bytes != 0) if (bytes != 0)
return 0; return 0;
...@@ -780,11 +782,20 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) ...@@ -780,11 +782,20 @@ static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32); is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
#endif #endif
insn_init(&insn, kaddr, is_64bit); insn_init(&insn, kaddr, size, is_64bit);
insn_get_length(&insn); insn_get_length(&insn);
/*
* Make sure there was not a problem decoding the
* instruction and getting the length. This is
* doubly important because we have an infinite
* loop if insn.length=0.
*/
if (!insn.length)
break;
to += insn.length; to += insn.length;
kaddr += insn.length; kaddr += insn.length;
size -= insn.length;
} while (to < ip); } while (to < ip);
if (to == ip) { if (to == ip) {
......
...@@ -465,7 +465,7 @@ static int branch_type(unsigned long from, unsigned long to, int abort) ...@@ -465,7 +465,7 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
{ {
struct insn insn; struct insn insn;
void *addr; void *addr;
int bytes, size = MAX_INSN_SIZE; int bytes_read, bytes_left;
int ret = X86_BR_NONE; int ret = X86_BR_NONE;
int ext, to_plm, from_plm; int ext, to_plm, from_plm;
u8 buf[MAX_INSN_SIZE]; u8 buf[MAX_INSN_SIZE];
...@@ -493,8 +493,10 @@ static int branch_type(unsigned long from, unsigned long to, int abort) ...@@ -493,8 +493,10 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
return X86_BR_NONE; return X86_BR_NONE;
/* may fail if text not present */ /* may fail if text not present */
bytes = copy_from_user_nmi(buf, (void __user *)from, size); bytes_left = copy_from_user_nmi(buf, (void __user *)from,
if (bytes != 0) MAX_INSN_SIZE);
bytes_read = MAX_INSN_SIZE - bytes_left;
if (!bytes_read)
return X86_BR_NONE; return X86_BR_NONE;
addr = buf; addr = buf;
...@@ -505,10 +507,19 @@ static int branch_type(unsigned long from, unsigned long to, int abort) ...@@ -505,10 +507,19 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
* Ensure we don't blindy read any address by validating it is * Ensure we don't blindy read any address by validating it is
* a known text address. * a known text address.
*/ */
if (kernel_text_address(from)) if (kernel_text_address(from)) {
addr = (void *)from; addr = (void *)from;
else /*
* Assume we can get the maximum possible size
* when grabbing kernel data. This is not
* _strictly_ true since we could possibly be
* executing up next to a memory hole, but
* it is very unlikely to be a problem.
*/
bytes_read = MAX_INSN_SIZE;
} else {
return X86_BR_NONE; return X86_BR_NONE;
}
} }
/* /*
...@@ -518,8 +529,10 @@ static int branch_type(unsigned long from, unsigned long to, int abort) ...@@ -518,8 +529,10 @@ static int branch_type(unsigned long from, unsigned long to, int abort)
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32); is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
#endif #endif
insn_init(&insn, addr, is64); insn_init(&insn, addr, bytes_read, is64);
insn_get_opcode(&insn); insn_get_opcode(&insn);
if (!insn.opcode.got)
return X86_BR_ABORT;
switch (insn.opcode.bytes[0]) { switch (insn.opcode.bytes[0]) {
case 0xf: case 0xf:
......
...@@ -285,7 +285,7 @@ static int can_probe(unsigned long paddr) ...@@ -285,7 +285,7 @@ static int can_probe(unsigned long paddr)
* normally used, we just go through if there is no kprobe. * normally used, we just go through if there is no kprobe.
*/ */
__addr = recover_probed_instruction(buf, addr); __addr = recover_probed_instruction(buf, addr);
kernel_insn_init(&insn, (void *)__addr); kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
insn_get_length(&insn); insn_get_length(&insn);
/* /*
...@@ -330,8 +330,10 @@ int __copy_instruction(u8 *dest, u8 *src) ...@@ -330,8 +330,10 @@ int __copy_instruction(u8 *dest, u8 *src)
{ {
struct insn insn; struct insn insn;
kprobe_opcode_t buf[MAX_INSN_SIZE]; kprobe_opcode_t buf[MAX_INSN_SIZE];
unsigned long recovered_insn =
recover_probed_instruction(buf, (unsigned long)src);
kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src)); kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
insn_get_length(&insn); insn_get_length(&insn);
/* Another subsystem puts a breakpoint, failed to recover */ /* Another subsystem puts a breakpoint, failed to recover */
if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
...@@ -342,7 +344,7 @@ int __copy_instruction(u8 *dest, u8 *src) ...@@ -342,7 +344,7 @@ int __copy_instruction(u8 *dest, u8 *src)
if (insn_rip_relative(&insn)) { if (insn_rip_relative(&insn)) {
s64 newdisp; s64 newdisp;
u8 *disp; u8 *disp;
kernel_insn_init(&insn, dest); kernel_insn_init(&insn, dest, insn.length);
insn_get_displacement(&insn); insn_get_displacement(&insn);
/* /*
* The copied instruction uses the %rip-relative addressing * The copied instruction uses the %rip-relative addressing
......
...@@ -251,13 +251,15 @@ static int can_optimize(unsigned long paddr) ...@@ -251,13 +251,15 @@ static int can_optimize(unsigned long paddr)
/* Decode instructions */ /* Decode instructions */
addr = paddr - offset; addr = paddr - offset;
while (addr < paddr - offset + size) { /* Decode until function end */ while (addr < paddr - offset + size) { /* Decode until function end */
unsigned long recovered_insn;
if (search_exception_tables(addr)) if (search_exception_tables(addr))
/* /*
* Since some fixup code will jumps into this function, * Since some fixup code will jumps into this function,
* we can't optimize kprobe in this function. * we can't optimize kprobe in this function.
*/ */
return 0; return 0;
kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, addr)); recovered_insn = recover_probed_instruction(buf, addr);
kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
insn_get_length(&insn); insn_get_length(&insn);
/* Another subsystem puts a breakpoint */ /* Another subsystem puts a breakpoint */
if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
......
...@@ -960,6 +960,8 @@ void __init setup_arch(char **cmdline_p) ...@@ -960,6 +960,8 @@ void __init setup_arch(char **cmdline_p)
init_mm.end_data = (unsigned long) _edata; init_mm.end_data = (unsigned long) _edata;
init_mm.brk = _brk_end; init_mm.brk = _brk_end;
mpx_mm_init(&init_mm);
code_resource.start = __pa_symbol(_text); code_resource.start = __pa_symbol(_text);
code_resource.end = __pa_symbol(_etext)-1; code_resource.end = __pa_symbol(_etext)-1;
data_resource.start = __pa_symbol(_etext); data_resource.start = __pa_symbol(_etext);
......
...@@ -60,6 +60,7 @@ ...@@ -60,6 +60,7 @@
#include <asm/fixmap.h> #include <asm/fixmap.h>
#include <asm/mach_traps.h> #include <asm/mach_traps.h>
#include <asm/alternative.h> #include <asm/alternative.h>
#include <asm/mpx.h>
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
#include <asm/x86_init.h> #include <asm/x86_init.h>
...@@ -228,7 +229,6 @@ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ ...@@ -228,7 +229,6 @@ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
...@@ -286,6 +286,89 @@ dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) ...@@ -286,6 +286,89 @@ dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
} }
#endif #endif
dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk = current;
struct xsave_struct *xsave_buf;
enum ctx_state prev_state;
struct bndcsr *bndcsr;
siginfo_t *info;
prev_state = exception_enter();
if (notify_die(DIE_TRAP, "bounds", regs, error_code,
X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
goto exit;
conditional_sti(regs);
if (!user_mode(regs))
die("bounds", regs, error_code);
if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
/* The exception is not from Intel MPX */
goto exit_trap;
}
/*
* We need to look at BNDSTATUS to resolve this exception.
* It is not directly accessible, though, so we need to
* do an xsave and then pull it out of the xsave buffer.
*/
fpu_save_init(&tsk->thread.fpu);
xsave_buf = &(tsk->thread.fpu.state->xsave);
bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
if (!bndcsr)
goto exit_trap;
/*
* The error code field of the BNDSTATUS register communicates status
* information of a bound range exception #BR or operation involving
* bound directory.
*/
switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
case 2: /* Bound directory has invalid entry. */
if (mpx_handle_bd_fault(xsave_buf))
goto exit_trap;
break; /* Success, it was handled */
case 1: /* Bound violation. */
info = mpx_generate_siginfo(regs, xsave_buf);
if (PTR_ERR(info)) {
/*
* We failed to decode the MPX instruction. Act as if
* the exception was not caused by MPX.
*/
goto exit_trap;
}
/*
* Success, we decoded the instruction and retrieved
* an 'info' containing the address being accessed
* which caused the exception. This information
* allows and application to possibly handle the
* #BR exception itself.
*/
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
kfree(info);
break;
case 0: /* No exception caused by Intel MPX operations. */
goto exit_trap;
default:
die("bounds", regs, error_code);
}
exit:
exception_exit(prev_state);
return;
exit_trap:
/*
* This path out is for all the cases where we could not
* handle the exception in some way (like allocating a
* table or telling userspace about it. We will also end
* up here if the kernel has MPX turned off at compile
* time..
*/
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
exception_exit(prev_state);
}
dotraplinkage void dotraplinkage void
do_general_protection(struct pt_regs *regs, long error_code) do_general_protection(struct pt_regs *regs, long error_code)
{ {
......
...@@ -219,7 +219,7 @@ static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool ...@@ -219,7 +219,7 @@ static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool
{ {
u32 volatile *good_insns; u32 volatile *good_insns;
insn_init(insn, auprobe->insn, x86_64); insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
/* has the side-effect of processing the entire instruction */ /* has the side-effect of processing the entire instruction */
insn_get_length(insn); insn_get_length(insn);
if (WARN_ON_ONCE(!insn_complete(insn))) if (WARN_ON_ONCE(!insn_complete(insn)))
......
...@@ -28,7 +28,7 @@ ...@@ -28,7 +28,7 @@
/* Verify next sizeof(t) bytes can be on the same instruction */ /* Verify next sizeof(t) bytes can be on the same instruction */
#define validate_next(t, insn, n) \ #define validate_next(t, insn, n) \
((insn)->next_byte + sizeof(t) + n - (insn)->kaddr <= MAX_INSN_SIZE) ((insn)->next_byte + sizeof(t) + n < (insn)->end_kaddr)
#define __get_next(t, insn) \ #define __get_next(t, insn) \
({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; }) ({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
...@@ -50,10 +50,11 @@ ...@@ -50,10 +50,11 @@
* @kaddr: address (in kernel memory) of instruction (or copy thereof) * @kaddr: address (in kernel memory) of instruction (or copy thereof)
* @x86_64: !0 for 64-bit kernel or 64-bit app * @x86_64: !0 for 64-bit kernel or 64-bit app
*/ */
void insn_init(struct insn *insn, const void *kaddr, int x86_64) void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
{ {
memset(insn, 0, sizeof(*insn)); memset(insn, 0, sizeof(*insn));
insn->kaddr = kaddr; insn->kaddr = kaddr;
insn->end_kaddr = kaddr + buf_len;
insn->next_byte = kaddr; insn->next_byte = kaddr;
insn->x86_64 = x86_64 ? 1 : 0; insn->x86_64 = x86_64 ? 1 : 0;
insn->opnd_bytes = 4; insn->opnd_bytes = 4;
......
...@@ -30,3 +30,5 @@ obj-$(CONFIG_ACPI_NUMA) += srat.o ...@@ -30,3 +30,5 @@ obj-$(CONFIG_ACPI_NUMA) += srat.o
obj-$(CONFIG_NUMA_EMU) += numa_emulation.o obj-$(CONFIG_NUMA_EMU) += numa_emulation.o
obj-$(CONFIG_MEMTEST) += memtest.o obj-$(CONFIG_MEMTEST) += memtest.o
obj-$(CONFIG_X86_INTEL_MPX) += mpx.o
/*
* mpx.c - Memory Protection eXtensions
*
* Copyright (c) 2014, Intel Corporation.
* Qiaowei Ren <qiaowei.ren@intel.com>
* Dave Hansen <dave.hansen@intel.com>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <linux/sched/sysctl.h>
#include <asm/i387.h>
#include <asm/insn.h>
#include <asm/mman.h>
#include <asm/mmu_context.h>
#include <asm/mpx.h>
#include <asm/processor.h>
#include <asm/fpu-internal.h>
static const char *mpx_mapping_name(struct vm_area_struct *vma)
{
return "[mpx]";
}
static struct vm_operations_struct mpx_vma_ops = {
.name = mpx_mapping_name,
};
static int is_mpx_vma(struct vm_area_struct *vma)
{
return (vma->vm_ops == &mpx_vma_ops);
}
/*
* This is really a simplified "vm_mmap". it only handles MPX
* bounds tables (the bounds directory is user-allocated).
*
* Later on, we use the vma->vm_ops to uniquely identify these
* VMAs.
*/
static unsigned long mpx_mmap(unsigned long len)
{
unsigned long ret;
unsigned long addr, pgoff;
struct mm_struct *mm = current->mm;
vm_flags_t vm_flags;
struct vm_area_struct *vma;
/* Only bounds table and bounds directory can be allocated here */
if (len != MPX_BD_SIZE_BYTES && len != MPX_BT_SIZE_BYTES)
return -EINVAL;
down_write(&mm->mmap_sem);
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count) {
ret = -ENOMEM;
goto out;
}
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
addr = get_unmapped_area(NULL, 0, len, 0, MAP_ANONYMOUS | MAP_PRIVATE);
if (addr & ~PAGE_MASK) {
ret = addr;
goto out;
}
vm_flags = VM_READ | VM_WRITE | VM_MPX |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
/* Set pgoff according to addr for anon_vma */
pgoff = addr >> PAGE_SHIFT;
ret = mmap_region(NULL, addr, len, vm_flags, pgoff);
if (IS_ERR_VALUE(ret))
goto out;
vma = find_vma(mm, ret);
if (!vma) {
ret = -ENOMEM;
goto out;
}
vma->vm_ops = &mpx_vma_ops;
if (vm_flags & VM_LOCKED) {
up_write(&mm->mmap_sem);
mm_populate(ret, len);
return ret;
}
out:
up_write(&mm->mmap_sem);
return ret;
}
enum reg_type {
REG_TYPE_RM = 0,
REG_TYPE_INDEX,
REG_TYPE_BASE,
};
static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
enum reg_type type)
{
int regno = 0;
static const int regoff[] = {
offsetof(struct pt_regs, ax),
offsetof(struct pt_regs, cx),
offsetof(struct pt_regs, dx),
offsetof(struct pt_regs, bx),
offsetof(struct pt_regs, sp),
offsetof(struct pt_regs, bp),
offsetof(struct pt_regs, si),
offsetof(struct pt_regs, di),
#ifdef CONFIG_X86_64
offsetof(struct pt_regs, r8),
offsetof(struct pt_regs, r9),
offsetof(struct pt_regs, r10),
offsetof(struct pt_regs, r11),
offsetof(struct pt_regs, r12),
offsetof(struct pt_regs, r13),
offsetof(struct pt_regs, r14),
offsetof(struct pt_regs, r15),
#endif
};
int nr_registers = ARRAY_SIZE(regoff);
/*
* Don't possibly decode a 32-bit instructions as
* reading a 64-bit-only register.
*/
if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
nr_registers -= 8;
switch (type) {
case REG_TYPE_RM:
regno = X86_MODRM_RM(insn->modrm.value);
if (X86_REX_B(insn->rex_prefix.value) == 1)
regno += 8;
break;
case REG_TYPE_INDEX:
regno = X86_SIB_INDEX(insn->sib.value);
if (X86_REX_X(insn->rex_prefix.value) == 1)
regno += 8;
break;
case REG_TYPE_BASE:
regno = X86_SIB_BASE(insn->sib.value);
if (X86_REX_B(insn->rex_prefix.value) == 1)
regno += 8;
break;
default:
pr_err("invalid register type");
BUG();
break;
}
if (regno > nr_registers) {
WARN_ONCE(1, "decoded an instruction with an invalid register");
return -EINVAL;
}
return regoff[regno];
}
/*
* return the address being referenced be instruction
* for rm=3 returning the content of the rm reg
* for rm!=3 calculates the address using SIB and Disp
*/
static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
{
unsigned long addr, base, indx;
int addr_offset, base_offset, indx_offset;
insn_byte_t sib;
insn_get_modrm(insn);
insn_get_sib(insn);
sib = insn->sib.value;
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
if (addr_offset < 0)
goto out_err;
addr = regs_get_register(regs, addr_offset);
} else {
if (insn->sib.nbytes) {
base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
if (base_offset < 0)
goto out_err;
indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
if (indx_offset < 0)
goto out_err;
base = regs_get_register(regs, base_offset);
indx = regs_get_register(regs, indx_offset);
addr = base + indx * (1 << X86_SIB_SCALE(sib));
} else {
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
if (addr_offset < 0)
goto out_err;
addr = regs_get_register(regs, addr_offset);
}
addr += insn->displacement.value;
}
return (void __user *)addr;
out_err:
return (void __user *)-1;
}
static int mpx_insn_decode(struct insn *insn,
struct pt_regs *regs)
{
unsigned char buf[MAX_INSN_SIZE];
int x86_64 = !test_thread_flag(TIF_IA32);
int not_copied;
int nr_copied;
not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
nr_copied = sizeof(buf) - not_copied;
/*
* The decoder _should_ fail nicely if we pass it a short buffer.
* But, let's not depend on that implementation detail. If we
* did not get anything, just error out now.
*/
if (!nr_copied)
return -EFAULT;
insn_init(insn, buf, nr_copied, x86_64);
insn_get_length(insn);
/*
* copy_from_user() tries to get as many bytes as we could see in
* the largest possible instruction. If the instruction we are
* after is shorter than that _and_ we attempt to copy from
* something unreadable, we might get a short read. This is OK
* as long as the read did not stop in the middle of the
* instruction. Check to see if we got a partial instruction.
*/
if (nr_copied < insn->length)
return -EFAULT;
insn_get_opcode(insn);
/*
* We only _really_ need to decode bndcl/bndcn/bndcu
* Error out on anything else.
*/
if (insn->opcode.bytes[0] != 0x0f)
goto bad_opcode;
if ((insn->opcode.bytes[1] != 0x1a) &&
(insn->opcode.bytes[1] != 0x1b))
goto bad_opcode;
return 0;
bad_opcode:
return -EINVAL;
}
/*
* If a bounds overflow occurs then a #BR is generated. This
* function decodes MPX instructions to get violation address
* and set this address into extended struct siginfo.
*
* Note that this is not a super precise way of doing this.
* Userspace could have, by the time we get here, written
* anything it wants in to the instructions. We can not
* trust anything about it. They might not be valid
* instructions or might encode invalid registers, etc...
*
* The caller is expected to kfree() the returned siginfo_t.
*/
siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
struct xsave_struct *xsave_buf)
{
struct bndreg *bndregs, *bndreg;
siginfo_t *info = NULL;
struct insn insn;
uint8_t bndregno;
int err;
err = mpx_insn_decode(&insn, regs);
if (err)
goto err_out;
/*
* We know at this point that we are only dealing with
* MPX instructions.
*/
insn_get_modrm(&insn);
bndregno = X86_MODRM_REG(insn.modrm.value);
if (bndregno > 3) {
err = -EINVAL;
goto err_out;
}
/* get the bndregs _area_ of the xsave structure */
bndregs = get_xsave_addr(xsave_buf, XSTATE_BNDREGS);
if (!bndregs) {
err = -EINVAL;
goto err_out;
}
/* now go select the individual register in the set of 4 */
bndreg = &bndregs[bndregno];
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
err = -ENOMEM;
goto err_out;
}
/*
* The registers are always 64-bit, but the upper 32
* bits are ignored in 32-bit mode. Also, note that the
* upper bounds are architecturally represented in 1's
* complement form.
*
* The 'unsigned long' cast is because the compiler
* complains when casting from integers to different-size
* pointers.
*/
info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
info->si_addr_lsb = 0;
info->si_signo = SIGSEGV;
info->si_errno = 0;
info->si_code = SEGV_BNDERR;
info->si_addr = mpx_get_addr_ref(&insn, regs);
/*
* We were not able to extract an address from the instruction,
* probably because there was something invalid in it.
*/
if (info->si_addr == (void *)-1) {
err = -EINVAL;
goto err_out;
}
return info;
err_out:
/* info might be NULL, but kfree() handles that */
kfree(info);
return ERR_PTR(err);
}
static __user void *task_get_bounds_dir(struct task_struct *tsk)
{
struct bndcsr *bndcsr;
if (!cpu_feature_enabled(X86_FEATURE_MPX))
return MPX_INVALID_BOUNDS_DIR;
/*
* The bounds directory pointer is stored in a register
* only accessible if we first do an xsave.
*/
fpu_save_init(&tsk->thread.fpu);
bndcsr = get_xsave_addr(&tsk->thread.fpu.state->xsave, XSTATE_BNDCSR);
if (!bndcsr)
return MPX_INVALID_BOUNDS_DIR;
/*
* Make sure the register looks valid by checking the
* enable bit.
*/
if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
return MPX_INVALID_BOUNDS_DIR;
/*
* Lastly, mask off the low bits used for configuration
* flags, and return the address of the bounds table.
*/
return (void __user *)(unsigned long)
(bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
}
int mpx_enable_management(struct task_struct *tsk)
{
void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
struct mm_struct *mm = tsk->mm;
int ret = 0;
/*
* runtime in the userspace will be responsible for allocation of
* the bounds directory. Then, it will save the base of the bounds
* directory into XSAVE/XRSTOR Save Area and enable MPX through
* XRSTOR instruction.
*
* fpu_xsave() is expected to be very expensive. Storing the bounds
* directory here means that we do not have to do xsave in the unmap
* path; we can just use mm->bd_addr instead.
*/
bd_base = task_get_bounds_dir(tsk);
down_write(&mm->mmap_sem);
mm->bd_addr = bd_base;
if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
ret = -ENXIO;
up_write(&mm->mmap_sem);
return ret;
}
int mpx_disable_management(struct task_struct *tsk)
{
struct mm_struct *mm = current->mm;
if (!cpu_feature_enabled(X86_FEATURE_MPX))
return -ENXIO;
down_write(&mm->mmap_sem);
mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
up_write(&mm->mmap_sem);
return 0;
}
/*
* With 32-bit mode, MPX_BT_SIZE_BYTES is 4MB, and the size of each
* bounds table is 16KB. With 64-bit mode, MPX_BT_SIZE_BYTES is 2GB,
* and the size of each bounds table is 4MB.
*/
static int allocate_bt(long __user *bd_entry)
{
unsigned long expected_old_val = 0;
unsigned long actual_old_val = 0;
unsigned long bt_addr;
int ret = 0;
/*
* Carve the virtual space out of userspace for the new
* bounds table:
*/
bt_addr = mpx_mmap(MPX_BT_SIZE_BYTES);
if (IS_ERR((void *)bt_addr))
return PTR_ERR((void *)bt_addr);
/*
* Set the valid flag (kinda like _PAGE_PRESENT in a pte)
*/
bt_addr = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
/*
* Go poke the address of the new bounds table in to the
* bounds directory entry out in userspace memory. Note:
* we may race with another CPU instantiating the same table.
* In that case the cmpxchg will see an unexpected
* 'actual_old_val'.
*
* This can fault, but that's OK because we do not hold
* mmap_sem at this point, unlike some of the other part
* of the MPX code that have to pagefault_disable().
*/
ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
expected_old_val, bt_addr);
if (ret)
goto out_unmap;
/*
* The user_atomic_cmpxchg_inatomic() will only return nonzero
* for faults, *not* if the cmpxchg itself fails. Now we must
* verify that the cmpxchg itself completed successfully.
*/
/*
* We expected an empty 'expected_old_val', but instead found
* an apparently valid entry. Assume we raced with another
* thread to instantiate this table and desclare succecss.
*/
if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
ret = 0;
goto out_unmap;
}
/*
* We found a non-empty bd_entry but it did not have the
* VALID_FLAG set. Return an error which will result in
* a SEGV since this probably means that somebody scribbled
* some invalid data in to a bounds table.
*/
if (expected_old_val != actual_old_val) {
ret = -EINVAL;
goto out_unmap;
}
return 0;
out_unmap:
vm_munmap(bt_addr & MPX_BT_ADDR_MASK, MPX_BT_SIZE_BYTES);
return ret;
}
/*
* When a BNDSTX instruction attempts to save bounds to a bounds
* table, it will first attempt to look up the table in the
* first-level bounds directory. If it does not find a table in
* the directory, a #BR is generated and we get here in order to
* allocate a new table.
*
* With 32-bit mode, the size of BD is 4MB, and the size of each
* bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
* and the size of each bound table is 4MB.
*/
static int do_mpx_bt_fault(struct xsave_struct *xsave_buf)
{
unsigned long bd_entry, bd_base;
struct bndcsr *bndcsr;
bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
if (!bndcsr)
return -EINVAL;
/*
* Mask off the preserve and enable bits
*/
bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
/*
* The hardware provides the address of the missing or invalid
* entry via BNDSTATUS, so we don't have to go look it up.
*/
bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
/*
* Make sure the directory entry is within where we think
* the directory is.
*/
if ((bd_entry < bd_base) ||
(bd_entry >= bd_base + MPX_BD_SIZE_BYTES))
return -EINVAL;
return allocate_bt((long __user *)bd_entry);
}
int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
{
/*
* Userspace never asked us to manage the bounds tables,
* so refuse to help.
*/
if (!kernel_managing_mpx_tables(current->mm))
return -EINVAL;
if (do_mpx_bt_fault(xsave_buf)) {
force_sig(SIGSEGV, current);
/*
* The force_sig() is essentially "handling" this
* exception, so we do not pass up the error
* from do_mpx_bt_fault().
*/
}
return 0;
}
/*
* A thin wrapper around get_user_pages(). Returns 0 if the
* fault was resolved or -errno if not.
*/
static int mpx_resolve_fault(long __user *addr, int write)
{
long gup_ret;
int nr_pages = 1;
int force = 0;
gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
nr_pages, write, force, NULL, NULL);
/*
* get_user_pages() returns number of pages gotten.
* 0 means we failed to fault in and get anything,
* probably because 'addr' is bad.
*/
if (!gup_ret)
return -EFAULT;
/* Other error, return it */
if (gup_ret < 0)
return gup_ret;
/* must have gup'd a page and gup_ret>0, success */
return 0;
}
/*
* Get the base of bounds tables pointed by specific bounds
* directory entry.
*/
static int get_bt_addr(struct mm_struct *mm,
long __user *bd_entry, unsigned long *bt_addr)
{
int ret;
int valid_bit;
if (!access_ok(VERIFY_READ, (bd_entry), sizeof(*bd_entry)))
return -EFAULT;
while (1) {
int need_write = 0;
pagefault_disable();
ret = get_user(*bt_addr, bd_entry);
pagefault_enable();
if (!ret)
break;
if (ret == -EFAULT)
ret = mpx_resolve_fault(bd_entry, need_write);
/*
* If we could not resolve the fault, consider it
* userspace's fault and error out.
*/
if (ret)
return ret;
}
valid_bit = *bt_addr & MPX_BD_ENTRY_VALID_FLAG;
*bt_addr &= MPX_BT_ADDR_MASK;
/*
* When the kernel is managing bounds tables, a bounds directory
* entry will either have a valid address (plus the valid bit)
* *OR* be completely empty. If we see a !valid entry *and* some
* data in the address field, we know something is wrong. This
* -EINVAL return will cause a SIGSEGV.
*/
if (!valid_bit && *bt_addr)
return -EINVAL;
/*
* Do we have an completely zeroed bt entry? That is OK. It
* just means there was no bounds table for this memory. Make
* sure to distinguish this from -EINVAL, which will cause
* a SEGV.
*/
if (!valid_bit)
return -ENOENT;
return 0;
}
/*
* Free the backing physical pages of bounds table 'bt_addr'.
* Assume start...end is within that bounds table.
*/
static int zap_bt_entries(struct mm_struct *mm,
unsigned long bt_addr,
unsigned long start, unsigned long end)
{
struct vm_area_struct *vma;
unsigned long addr, len;
/*
* Find the first overlapping vma. If vma->vm_start > start, there
* will be a hole in the bounds table. This -EINVAL return will
* cause a SIGSEGV.
*/
vma = find_vma(mm, start);
if (!vma || vma->vm_start > start)
return -EINVAL;
/*
* A NUMA policy on a VM_MPX VMA could cause this bouds table to
* be split. So we need to look across the entire 'start -> end'
* range of this bounds table, find all of the VM_MPX VMAs, and
* zap only those.
*/
addr = start;
while (vma && vma->vm_start < end) {
/*
* We followed a bounds directory entry down
* here. If we find a non-MPX VMA, that's bad,
* so stop immediately and return an error. This
* probably results in a SIGSEGV.
*/
if (!is_mpx_vma(vma))
return -EINVAL;
len = min(vma->vm_end, end) - addr;
zap_page_range(vma, addr, len, NULL);
vma = vma->vm_next;
addr = vma->vm_start;
}
return 0;
}
static int unmap_single_bt(struct mm_struct *mm,
long __user *bd_entry, unsigned long bt_addr)
{
unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
unsigned long actual_old_val = 0;
int ret;
while (1) {
int need_write = 1;
pagefault_disable();
ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
expected_old_val, 0);
pagefault_enable();
if (!ret)
break;
if (ret == -EFAULT)
ret = mpx_resolve_fault(bd_entry, need_write);
/*
* If we could not resolve the fault, consider it
* userspace's fault and error out.
*/
if (ret)
return ret;
}
/*
* The cmpxchg was performed, check the results.
*/
if (actual_old_val != expected_old_val) {
/*
* Someone else raced with us to unmap the table.
* There was no bounds table pointed to by the
* directory, so declare success. Somebody freed
* it.
*/
if (!actual_old_val)
return 0;
/*
* Something messed with the bounds directory
* entry. We hold mmap_sem for read or write
* here, so it could not be a _new_ bounds table
* that someone just allocated. Something is
* wrong, so pass up the error and SIGSEGV.
*/
return -EINVAL;
}
/*
* Note, we are likely being called under do_munmap() already. To
* avoid recursion, do_munmap() will check whether it comes
* from one bounds table through VM_MPX flag.
*/
return do_munmap(mm, bt_addr, MPX_BT_SIZE_BYTES);
}
/*
* If the bounds table pointed by bounds directory 'bd_entry' is
* not shared, unmap this whole bounds table. Otherwise, only free
* those backing physical pages of bounds table entries covered
* in this virtual address region start...end.
*/
static int unmap_shared_bt(struct mm_struct *mm,
long __user *bd_entry, unsigned long start,
unsigned long end, bool prev_shared, bool next_shared)
{
unsigned long bt_addr;
int ret;
ret = get_bt_addr(mm, bd_entry, &bt_addr);
/*
* We could see an "error" ret for not-present bounds
* tables (not really an error), or actual errors, but
* stop unmapping either way.
*/
if (ret)
return ret;
if (prev_shared && next_shared)
ret = zap_bt_entries(mm, bt_addr,
bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
else if (prev_shared)
ret = zap_bt_entries(mm, bt_addr,
bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
bt_addr+MPX_BT_SIZE_BYTES);
else if (next_shared)
ret = zap_bt_entries(mm, bt_addr, bt_addr,
bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
else
ret = unmap_single_bt(mm, bd_entry, bt_addr);
return ret;
}
/*
* A virtual address region being munmap()ed might share bounds table
* with adjacent VMAs. We only need to free the backing physical
* memory of these shared bounds tables entries covered in this virtual
* address region.
*/
static int unmap_edge_bts(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
int ret;
long __user *bde_start, *bde_end;
struct vm_area_struct *prev, *next;
bool prev_shared = false, next_shared = false;
bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
/*
* Check whether bde_start and bde_end are shared with adjacent
* VMAs.
*
* We already unliked the VMAs from the mm's rbtree so 'start'
* is guaranteed to be in a hole. This gets us the first VMA
* before the hole in to 'prev' and the next VMA after the hole
* in to 'next'.
*/
next = find_vma_prev(mm, start, &prev);
if (prev && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(prev->vm_end-1))
== bde_start)
prev_shared = true;
if (next && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(next->vm_start))
== bde_end)
next_shared = true;
/*
* This virtual address region being munmap()ed is only
* covered by one bounds table.
*
* In this case, if this table is also shared with adjacent
* VMAs, only part of the backing physical memory of the bounds
* table need be freeed. Otherwise the whole bounds table need
* be unmapped.
*/
if (bde_start == bde_end) {
return unmap_shared_bt(mm, bde_start, start, end,
prev_shared, next_shared);
}
/*
* If more than one bounds tables are covered in this virtual
* address region being munmap()ed, we need to separately check
* whether bde_start and bde_end are shared with adjacent VMAs.
*/
ret = unmap_shared_bt(mm, bde_start, start, end, prev_shared, false);
if (ret)
return ret;
ret = unmap_shared_bt(mm, bde_end, start, end, false, next_shared);
if (ret)
return ret;
return 0;
}
static int mpx_unmap_tables(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
int ret;
long __user *bd_entry, *bde_start, *bde_end;
unsigned long bt_addr;
/*
* "Edge" bounds tables are those which are being used by the region
* (start -> end), but that may be shared with adjacent areas. If they
* turn out to be completely unshared, they will be freed. If they are
* shared, we will free the backing store (like an MADV_DONTNEED) for
* areas used by this region.
*/
ret = unmap_edge_bts(mm, start, end);
switch (ret) {
/* non-present tables are OK */
case 0:
case -ENOENT:
/* Success, or no tables to unmap */
break;
case -EINVAL:
case -EFAULT:
default:
return ret;
}
/*
* Only unmap the bounds table that are
* 1. fully covered
* 2. not at the edges of the mapping, even if full aligned
*/
bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
for (bd_entry = bde_start + 1; bd_entry < bde_end; bd_entry++) {
ret = get_bt_addr(mm, bd_entry, &bt_addr);
switch (ret) {
case 0:
break;
case -ENOENT:
/* No table here, try the next one */
continue;
case -EINVAL:
case -EFAULT:
default:
/*
* Note: we are being strict here.
* Any time we run in to an issue
* unmapping tables, we stop and
* SIGSEGV.
*/
return ret;
}
ret = unmap_single_bt(mm, bd_entry, bt_addr);
if (ret)
return ret;
}
return 0;
}
/*
* Free unused bounds tables covered in a virtual address region being
* munmap()ed. Assume end > start.
*
* This function will be called by do_munmap(), and the VMAs covering
* the virtual address region start...end have already been split if
* necessary, and the 'vma' is the first vma in this range (start -> end).
*/
void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
int ret;
/*
* Refuse to do anything unless userspace has asked
* the kernel to help manage the bounds tables,
*/
if (!kernel_managing_mpx_tables(current->mm))
return;
/*
* This will look across the entire 'start -> end' range,
* and find all of the non-VM_MPX VMAs.
*
* To avoid recursion, if a VM_MPX vma is found in the range
* (start->end), we will not continue follow-up work. This
* recursion represents having bounds tables for bounds tables,
* which should not occur normally. Being strict about it here
* helps ensure that we do not have an exploitable stack overflow.
*/
do {
if (vma->vm_flags & VM_MPX)
return;
vma = vma->vm_next;
} while (vma && vma->vm_start < end);
ret = mpx_unmap_tables(mm, start, end);
if (ret)
force_sig(SIGSEGV, current);
}
...@@ -254,7 +254,7 @@ int main(int argc, char **argv) ...@@ -254,7 +254,7 @@ int main(int argc, char **argv)
continue; continue;
/* Decode an instruction */ /* Decode an instruction */
insn_init(&insn, insn_buf, x86_64); insn_init(&insn, insn_buf, sizeof(insn_buf), x86_64);
insn_get_length(&insn); insn_get_length(&insn);
if (insn.next_byte <= insn.kaddr || if (insn.next_byte <= insn.kaddr ||
......
...@@ -149,7 +149,7 @@ int main(int argc, char **argv) ...@@ -149,7 +149,7 @@ int main(int argc, char **argv)
break; break;
} }
/* Decode an instruction */ /* Decode an instruction */
insn_init(&insn, insn_buf, x86_64); insn_init(&insn, insn_buf, sizeof(insn_buf), x86_64);
insn_get_length(&insn); insn_get_length(&insn);
if (insn.length != nb) { if (insn.length != nb) {
warnings++; warnings++;
......
...@@ -277,6 +277,7 @@ static int __bprm_mm_init(struct linux_binprm *bprm) ...@@ -277,6 +277,7 @@ static int __bprm_mm_init(struct linux_binprm *bprm)
goto err; goto err;
mm->stack_vm = mm->total_vm = 1; mm->stack_vm = mm->total_vm = 1;
arch_bprm_mm_init(mm, vma);
up_write(&mm->mmap_sem); up_write(&mm->mmap_sem);
bprm->p = vma->vm_end - sizeof(void *); bprm->p = vma->vm_end - sizeof(void *);
return 0; return 0;
......
...@@ -552,6 +552,9 @@ static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) ...@@ -552,6 +552,9 @@ static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
[ilog2(VM_GROWSDOWN)] = "gd", [ilog2(VM_GROWSDOWN)] = "gd",
[ilog2(VM_PFNMAP)] = "pf", [ilog2(VM_PFNMAP)] = "pf",
[ilog2(VM_DENYWRITE)] = "dw", [ilog2(VM_DENYWRITE)] = "dw",
#ifdef CONFIG_X86_INTEL_MPX
[ilog2(VM_MPX)] = "mp",
#endif
[ilog2(VM_LOCKED)] = "lo", [ilog2(VM_LOCKED)] = "lo",
[ilog2(VM_IO)] = "io", [ilog2(VM_IO)] = "io",
[ilog2(VM_SEQ_READ)] = "sr", [ilog2(VM_SEQ_READ)] = "sr",
......
/* /*
* Define generic no-op hooks for arch_dup_mmap and arch_exit_mmap, to * Define generic no-op hooks for arch_dup_mmap, arch_exit_mmap
* be included in asm-FOO/mmu_context.h for any arch FOO which doesn't * and arch_unmap to be included in asm-FOO/mmu_context.h for any
* need to hook these. * arch FOO which doesn't need to hook these.
*/ */
#ifndef _ASM_GENERIC_MM_HOOKS_H #ifndef _ASM_GENERIC_MM_HOOKS_H
#define _ASM_GENERIC_MM_HOOKS_H #define _ASM_GENERIC_MM_HOOKS_H
...@@ -15,4 +15,15 @@ static inline void arch_exit_mmap(struct mm_struct *mm) ...@@ -15,4 +15,15 @@ static inline void arch_exit_mmap(struct mm_struct *mm)
{ {
} }
static inline void arch_unmap(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
static inline void arch_bprm_mm_init(struct mm_struct *mm,
struct vm_area_struct *vma)
{
}
#endif /* _ASM_GENERIC_MM_HOOKS_H */ #endif /* _ASM_GENERIC_MM_HOOKS_H */
...@@ -128,6 +128,7 @@ extern unsigned int kobjsize(const void *objp); ...@@ -128,6 +128,7 @@ extern unsigned int kobjsize(const void *objp);
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
#define VM_ARCH_2 0x02000000
#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
#ifdef CONFIG_MEM_SOFT_DIRTY #ifdef CONFIG_MEM_SOFT_DIRTY
...@@ -155,6 +156,11 @@ extern unsigned int kobjsize(const void *objp); ...@@ -155,6 +156,11 @@ extern unsigned int kobjsize(const void *objp);
# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
#endif #endif
#if defined(CONFIG_X86)
/* MPX specific bounds table or bounds directory */
# define VM_MPX VM_ARCH_2
#endif
#ifndef VM_GROWSUP #ifndef VM_GROWSUP
# define VM_GROWSUP VM_NONE # define VM_GROWSUP VM_NONE
#endif #endif
......
...@@ -454,6 +454,10 @@ struct mm_struct { ...@@ -454,6 +454,10 @@ struct mm_struct {
bool tlb_flush_pending; bool tlb_flush_pending;
#endif #endif
struct uprobes_state uprobes_state; struct uprobes_state uprobes_state;
#ifdef CONFIG_X86_INTEL_MPX
/* address of the bounds directory */
void __user *bd_addr;
#endif
}; };
static inline void mm_init_cpumask(struct mm_struct *mm) static inline void mm_init_cpumask(struct mm_struct *mm)
......
...@@ -91,6 +91,10 @@ typedef struct siginfo { ...@@ -91,6 +91,10 @@ typedef struct siginfo {
int _trapno; /* TRAP # which caused the signal */ int _trapno; /* TRAP # which caused the signal */
#endif #endif
short _addr_lsb; /* LSB of the reported address */ short _addr_lsb; /* LSB of the reported address */
struct {
void __user *_lower;
void __user *_upper;
} _addr_bnd;
} _sigfault; } _sigfault;
/* SIGPOLL */ /* SIGPOLL */
...@@ -131,6 +135,8 @@ typedef struct siginfo { ...@@ -131,6 +135,8 @@ typedef struct siginfo {
#define si_trapno _sifields._sigfault._trapno #define si_trapno _sifields._sigfault._trapno
#endif #endif
#define si_addr_lsb _sifields._sigfault._addr_lsb #define si_addr_lsb _sifields._sigfault._addr_lsb
#define si_lower _sifields._sigfault._addr_bnd._lower
#define si_upper _sifields._sigfault._addr_bnd._upper
#define si_band _sifields._sigpoll._band #define si_band _sifields._sigpoll._band
#define si_fd _sifields._sigpoll._fd #define si_fd _sifields._sigpoll._fd
#ifdef __ARCH_SIGSYS #ifdef __ARCH_SIGSYS
...@@ -199,7 +205,8 @@ typedef struct siginfo { ...@@ -199,7 +205,8 @@ typedef struct siginfo {
*/ */
#define SEGV_MAPERR (__SI_FAULT|1) /* address not mapped to object */ #define SEGV_MAPERR (__SI_FAULT|1) /* address not mapped to object */
#define SEGV_ACCERR (__SI_FAULT|2) /* invalid permissions for mapped object */ #define SEGV_ACCERR (__SI_FAULT|2) /* invalid permissions for mapped object */
#define NSIGSEGV 2 #define SEGV_BNDERR (__SI_FAULT|3) /* failed address bound checks */
#define NSIGSEGV 3
/* /*
* SIGBUS si_codes * SIGBUS si_codes
......
...@@ -179,4 +179,10 @@ struct prctl_mm_map { ...@@ -179,4 +179,10 @@ struct prctl_mm_map {
#define PR_SET_THP_DISABLE 41 #define PR_SET_THP_DISABLE 41
#define PR_GET_THP_DISABLE 42 #define PR_GET_THP_DISABLE 42
/*
* Tell the kernel to start/stop helping userspace manage bounds tables.
*/
#define PR_MPX_ENABLE_MANAGEMENT 43
#define PR_MPX_DISABLE_MANAGEMENT 44
#endif /* _LINUX_PRCTL_H */ #endif /* _LINUX_PRCTL_H */
...@@ -2755,6 +2755,10 @@ int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) ...@@ -2755,6 +2755,10 @@ int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
*/ */
if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
#endif
#ifdef SEGV_BNDERR
err |= __put_user(from->si_lower, &to->si_lower);
err |= __put_user(from->si_upper, &to->si_upper);
#endif #endif
break; break;
case __SI_CHLD: case __SI_CHLD:
......
...@@ -91,6 +91,12 @@ ...@@ -91,6 +91,12 @@
#ifndef SET_TSC_CTL #ifndef SET_TSC_CTL
# define SET_TSC_CTL(a) (-EINVAL) # define SET_TSC_CTL(a) (-EINVAL)
#endif #endif
#ifndef MPX_ENABLE_MANAGEMENT
# define MPX_ENABLE_MANAGEMENT(a) (-EINVAL)
#endif
#ifndef MPX_DISABLE_MANAGEMENT
# define MPX_DISABLE_MANAGEMENT(a) (-EINVAL)
#endif
/* /*
* this is where the system-wide overflow UID and GID are defined, for * this is where the system-wide overflow UID and GID are defined, for
...@@ -2203,6 +2209,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, ...@@ -2203,6 +2209,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
me->mm->def_flags &= ~VM_NOHUGEPAGE; me->mm->def_flags &= ~VM_NOHUGEPAGE;
up_write(&me->mm->mmap_sem); up_write(&me->mm->mmap_sem);
break; break;
case PR_MPX_ENABLE_MANAGEMENT:
error = MPX_ENABLE_MANAGEMENT(me);
break;
case PR_MPX_DISABLE_MANAGEMENT:
error = MPX_DISABLE_MANAGEMENT(me);
break;
default: default:
error = -EINVAL; error = -EINVAL;
break; break;
......
...@@ -2601,6 +2601,8 @@ int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) ...@@ -2601,6 +2601,8 @@ int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
detach_vmas_to_be_unmapped(mm, vma, prev, end); detach_vmas_to_be_unmapped(mm, vma, prev, end);
unmap_region(mm, vma, prev, start, end); unmap_region(mm, vma, prev, start, end);
arch_unmap(mm, vma, start, end);
/* Fix up all other VM information */ /* Fix up all other VM information */
remove_vma_list(mm, vma); remove_vma_list(mm, vma);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment