Commit 3eca809b authored by Ben Skeggs's avatar Ben Skeggs

drm/nouveau/clk: cosmetic changes

This is purely preparation for upcoming commits, there should be no
code changes here.
Signed-off-by: default avatarBen Skeggs <bskeggs@redhat.com>
parent 01d6b956
......@@ -71,7 +71,7 @@ struct nvkm_domain {
};
struct nvkm_clk {
struct nvkm_subdev base;
struct nvkm_subdev subdev;
struct nvkm_domain *domains;
struct nvkm_pstate bstate;
......@@ -117,16 +117,16 @@ nvkm_clk(void *obj)
nvkm_clk_create_((p), (e), (o), (i), (r), (s), (n), sizeof(**d), \
(void **)d)
#define nvkm_clk_destroy(p) ({ \
struct nvkm_clk *clk = (p); \
_nvkm_clk_dtor(nv_object(clk)); \
struct nvkm_clk *_clk = (p); \
_nvkm_clk_dtor(nv_object(_clk)); \
})
#define nvkm_clk_init(p) ({ \
struct nvkm_clk *clk = (p); \
_nvkm_clk_init(nv_object(clk)); \
struct nvkm_clk *_clk = (p); \
_nvkm_clk_init(nv_object(_clk)); \
})
#define nvkm_clk_fini(p,s) ({ \
struct nvkm_clk *clk = (p); \
_nvkm_clk_fini(nv_object(clk), (s)); \
struct nvkm_clk *_clk = (p); \
_nvkm_clk_fini(nv_object(_clk), (s)); \
})
int nvkm_clk_create_(struct nvkm_object *, struct nvkm_object *,
......
......@@ -121,7 +121,7 @@ nvkm_cstate_prog(struct nvkm_clk *clk, struct nvkm_pstate *pstate, int cstatei)
nv_error(clk, "failed to lower fan speed: %d\n", ret);
}
return 0;
return ret;
}
static void
......@@ -474,7 +474,7 @@ _nvkm_clk_fini(struct nvkm_object *object, bool suspend)
{
struct nvkm_clk *clk = (void *)object;
nvkm_notify_put(&clk->pwrsrc_ntfy);
return nvkm_subdev_fini(&clk->base, suspend);
return nvkm_subdev_fini(&clk->subdev, suspend);
}
int
......@@ -484,7 +484,7 @@ _nvkm_clk_init(struct nvkm_object *object)
struct nvkm_domain *clock = clk->domains;
int ret;
ret = nvkm_subdev_init(&clk->base);
ret = nvkm_subdev_init(&clk->subdev);
if (ret)
return ret;
......@@ -524,7 +524,7 @@ _nvkm_clk_dtor(struct nvkm_object *object)
nvkm_pstate_del(pstate);
}
nvkm_subdev_destroy(&clk->base);
nvkm_subdev_destroy(&clk->subdev);
}
int
......
......@@ -37,29 +37,27 @@ struct gf100_clk_info {
u32 coef;
};
struct gf100_clk_priv {
struct gf100_clk {
struct nvkm_clk base;
struct gf100_clk_info eng[16];
};
static u32 read_div(struct gf100_clk_priv *, int, u32, u32);
static u32 read_div(struct gf100_clk *, int, u32, u32);
static u32
read_vco(struct gf100_clk_priv *priv, u32 dsrc)
read_vco(struct gf100_clk *clk, u32 dsrc)
{
struct nvkm_clk *clk = &priv->base;
u32 ssrc = nv_rd32(priv, dsrc);
u32 ssrc = nv_rd32(clk, dsrc);
if (!(ssrc & 0x00000100))
return clk->read(clk, nv_clk_src_sppll0);
return clk->read(clk, nv_clk_src_sppll1);
return clk->base.read(&clk->base, nv_clk_src_sppll0);
return clk->base.read(&clk->base, nv_clk_src_sppll1);
}
static u32
read_pll(struct gf100_clk_priv *priv, u32 pll)
read_pll(struct gf100_clk *clk, u32 pll)
{
struct nvkm_clk *clk = &priv->base;
u32 ctrl = nv_rd32(priv, pll + 0x00);
u32 coef = nv_rd32(priv, pll + 0x04);
u32 ctrl = nv_rd32(clk, pll + 0x00);
u32 coef = nv_rd32(clk, pll + 0x04);
u32 P = (coef & 0x003f0000) >> 16;
u32 N = (coef & 0x0000ff00) >> 8;
u32 M = (coef & 0x000000ff) >> 0;
......@@ -71,20 +69,20 @@ read_pll(struct gf100_clk_priv *priv, u32 pll)
switch (pll) {
case 0x00e800:
case 0x00e820:
sclk = nv_device(priv)->crystal;
sclk = nv_device(clk)->crystal;
P = 1;
break;
case 0x132000:
sclk = clk->read(clk, nv_clk_src_mpllsrc);
sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrc);
break;
case 0x132020:
sclk = clk->read(clk, nv_clk_src_mpllsrcref);
sclk = clk->base.read(&clk->base, nv_clk_src_mpllsrcref);
break;
case 0x137000:
case 0x137020:
case 0x137040:
case 0x1370e0:
sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
break;
default:
return 0;
......@@ -94,46 +92,46 @@ read_pll(struct gf100_clk_priv *priv, u32 pll)
}
static u32
read_div(struct gf100_clk_priv *priv, int doff, u32 dsrc, u32 dctl)
read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
{
u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
u32 sctl = nv_rd32(priv, dctl + (doff * 4));
u32 ssrc = nv_rd32(clk, dsrc + (doff * 4));
u32 sctl = nv_rd32(clk, dctl + (doff * 4));
switch (ssrc & 0x00000003) {
case 0:
if ((ssrc & 0x00030000) != 0x00030000)
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
return 108000;
case 2:
return 100000;
case 3:
if (sctl & 0x80000000) {
u32 sclk = read_vco(priv, dsrc + (doff * 4));
u32 sclk = read_vco(clk, dsrc + (doff * 4));
u32 sdiv = (sctl & 0x0000003f) + 2;
return (sclk * 2) / sdiv;
}
return read_vco(priv, dsrc + (doff * 4));
return read_vco(clk, dsrc + (doff * 4));
default:
return 0;
}
}
static u32
read_clk(struct gf100_clk_priv *priv, int clk)
read_clk(struct gf100_clk *clk, int idx)
{
u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
u32 ssel = nv_rd32(priv, 0x137100);
u32 sctl = nv_rd32(clk, 0x137250 + (idx * 4));
u32 ssel = nv_rd32(clk, 0x137100);
u32 sclk, sdiv;
if (ssel & (1 << clk)) {
if (clk < 7)
sclk = read_pll(priv, 0x137000 + (clk * 0x20));
if (ssel & (1 << idx)) {
if (idx < 7)
sclk = read_pll(clk, 0x137000 + (idx * 0x20));
else
sclk = read_pll(priv, 0x1370e0);
sclk = read_pll(clk, 0x1370e0);
sdiv = ((sctl & 0x00003f00) >> 8) + 2;
} else {
sclk = read_div(priv, clk, 0x137160, 0x1371d0);
sclk = read_div(clk, idx, 0x137160, 0x1371d0);
sdiv = ((sctl & 0x0000003f) >> 0) + 2;
}
......@@ -144,10 +142,10 @@ read_clk(struct gf100_clk_priv *priv, int clk)
}
static int
gf100_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
gf100_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
struct nvkm_device *device = nv_device(clk);
struct gf100_clk_priv *priv = (void *)clk;
switch (src) {
case nv_clk_src_crystal:
......@@ -155,39 +153,39 @@ gf100_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
case nv_clk_src_href:
return 100000;
case nv_clk_src_sppll0:
return read_pll(priv, 0x00e800);
return read_pll(clk, 0x00e800);
case nv_clk_src_sppll1:
return read_pll(priv, 0x00e820);
return read_pll(clk, 0x00e820);
case nv_clk_src_mpllsrcref:
return read_div(priv, 0, 0x137320, 0x137330);
return read_div(clk, 0, 0x137320, 0x137330);
case nv_clk_src_mpllsrc:
return read_pll(priv, 0x132020);
return read_pll(clk, 0x132020);
case nv_clk_src_mpll:
return read_pll(priv, 0x132000);
return read_pll(clk, 0x132000);
case nv_clk_src_mdiv:
return read_div(priv, 0, 0x137300, 0x137310);
return read_div(clk, 0, 0x137300, 0x137310);
case nv_clk_src_mem:
if (nv_rd32(priv, 0x1373f0) & 0x00000002)
return clk->read(clk, nv_clk_src_mpll);
return clk->read(clk, nv_clk_src_mdiv);
if (nv_rd32(clk, 0x1373f0) & 0x00000002)
return clk->base.read(&clk->base, nv_clk_src_mpll);
return clk->base.read(&clk->base, nv_clk_src_mdiv);
case nv_clk_src_gpc:
return read_clk(priv, 0x00);
return read_clk(clk, 0x00);
case nv_clk_src_rop:
return read_clk(priv, 0x01);
return read_clk(clk, 0x01);
case nv_clk_src_hubk07:
return read_clk(priv, 0x02);
return read_clk(clk, 0x02);
case nv_clk_src_hubk06:
return read_clk(priv, 0x07);
return read_clk(clk, 0x07);
case nv_clk_src_hubk01:
return read_clk(priv, 0x08);
return read_clk(clk, 0x08);
case nv_clk_src_copy:
return read_clk(priv, 0x09);
return read_clk(clk, 0x09);
case nv_clk_src_daemon:
return read_clk(priv, 0x0c);
return read_clk(clk, 0x0c);
case nv_clk_src_vdec:
return read_clk(priv, 0x0e);
return read_clk(clk, 0x0e);
default:
nv_error(clk, "invalid clock source %d\n", src);
return -EINVAL;
......@@ -195,7 +193,7 @@ gf100_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
}
static u32
calc_div(struct gf100_clk_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
{
u32 div = min((ref * 2) / freq, (u32)65);
if (div < 2)
......@@ -206,7 +204,7 @@ calc_div(struct gf100_clk_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
}
static u32
calc_src(struct gf100_clk_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
{
u32 sclk;
......@@ -228,28 +226,28 @@ calc_src(struct gf100_clk_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
}
/* otherwise, calculate the closest divider */
sclk = read_vco(priv, 0x137160 + (clk * 4));
if (clk < 7)
sclk = calc_div(priv, clk, sclk, freq, ddiv);
sclk = read_vco(clk, 0x137160 + (idx * 4));
if (idx < 7)
sclk = calc_div(clk, idx, sclk, freq, ddiv);
return sclk;
}
static u32
calc_pll(struct gf100_clk_priv *priv, int clk, u32 freq, u32 *coef)
calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
{
struct nvkm_bios *bios = nvkm_bios(priv);
struct nvkm_bios *bios = nvkm_bios(clk);
struct nvbios_pll limits;
int N, M, P, ret;
ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
if (ret)
return 0;
limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
if (!limits.refclk)
return 0;
ret = gt215_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
ret = gt215_pll_calc(nv_subdev(clk), &limits, freq, &N, NULL, &M, &P);
if (ret <= 0)
return 0;
......@@ -258,10 +256,9 @@ calc_pll(struct gf100_clk_priv *priv, int clk, u32 freq, u32 *coef)
}
static int
calc_clk(struct gf100_clk_priv *priv,
struct nvkm_cstate *cstate, int clk, int dom)
calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
{
struct gf100_clk_info *info = &priv->eng[clk];
struct gf100_clk_info *info = &clk->eng[idx];
u32 freq = cstate->domain[dom];
u32 src0, div0, div1D, div1P = 0;
u32 clk0, clk1 = 0;
......@@ -271,16 +268,16 @@ calc_clk(struct gf100_clk_priv *priv,
return 0;
/* first possible path, using only dividers */
clk0 = calc_src(priv, clk, freq, &src0, &div0);
clk0 = calc_div(priv, clk, clk0, freq, &div1D);
clk0 = calc_src(clk, idx, freq, &src0, &div0);
clk0 = calc_div(clk, idx, clk0, freq, &div1D);
/* see if we can get any closer using PLLs */
if (clk0 != freq && (0x00004387 & (1 << clk))) {
if (clk <= 7)
clk1 = calc_pll(priv, clk, freq, &info->coef);
if (clk0 != freq && (0x00004387 & (1 << idx))) {
if (idx <= 7)
clk1 = calc_pll(clk, idx, freq, &info->coef);
else
clk1 = cstate->domain[nv_clk_src_hubk06];
clk1 = calc_div(priv, clk, clk1, freq, &div1P);
clk1 = calc_div(clk, idx, clk1, freq, &div1P);
}
/* select the method which gets closest to target freq */
......@@ -302,7 +299,7 @@ calc_clk(struct gf100_clk_priv *priv,
info->mdiv |= 0x80000000;
info->mdiv |= div1P << 8;
}
info->ssel = (1 << clk);
info->ssel = (1 << idx);
info->freq = clk1;
}
......@@ -310,81 +307,81 @@ calc_clk(struct gf100_clk_priv *priv,
}
static int
gf100_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
gf100_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct gf100_clk_priv *priv = (void *)clk;
struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
int ret;
if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
(ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
(ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
(ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
(ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
(ret = calc_clk(priv, cstate, 0x09, nv_clk_src_copy)) ||
(ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
(ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
(ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
(ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
(ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
(ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
(ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
(ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) ||
(ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
return ret;
return 0;
}
static void
gf100_clk_prog_0(struct gf100_clk_priv *priv, int clk)
gf100_clk_prog_0(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &priv->eng[clk];
if (clk < 7 && !info->ssel) {
nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
struct gf100_clk_info *info = &clk->eng[idx];
if (idx < 7 && !info->ssel) {
nv_mask(clk, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
nv_wr32(clk, 0x137160 + (idx * 0x04), info->dsrc);
}
}
static void
gf100_clk_prog_1(struct gf100_clk_priv *priv, int clk)
gf100_clk_prog_1(struct gf100_clk *clk, int idx)
{
nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
nv_mask(clk, 0x137100, (1 << idx), 0x00000000);
nv_wait(clk, 0x137100, (1 << idx), 0x00000000);
}
static void
gf100_clk_prog_2(struct gf100_clk_priv *priv, int clk)
gf100_clk_prog_2(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &priv->eng[clk];
const u32 addr = 0x137000 + (clk * 0x20);
if (clk <= 7) {
nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
struct gf100_clk_info *info = &clk->eng[idx];
const u32 addr = 0x137000 + (idx * 0x20);
if (idx <= 7) {
nv_mask(clk, addr + 0x00, 0x00000004, 0x00000000);
nv_mask(clk, addr + 0x00, 0x00000001, 0x00000000);
if (info->coef) {
nv_wr32(priv, addr + 0x04, info->coef);
nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
nv_wr32(clk, addr + 0x04, info->coef);
nv_mask(clk, addr + 0x00, 0x00000001, 0x00000001);
nv_wait(clk, addr + 0x00, 0x00020000, 0x00020000);
nv_mask(clk, addr + 0x00, 0x00020004, 0x00000004);
}
}
}
static void
gf100_clk_prog_3(struct gf100_clk_priv *priv, int clk)
gf100_clk_prog_3(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &priv->eng[clk];
struct gf100_clk_info *info = &clk->eng[idx];
if (info->ssel) {
nv_mask(priv, 0x137100, (1 << clk), info->ssel);
nv_wait(priv, 0x137100, (1 << clk), info->ssel);
nv_mask(clk, 0x137100, (1 << idx), info->ssel);
nv_wait(clk, 0x137100, (1 << idx), info->ssel);
}
}
static void
gf100_clk_prog_4(struct gf100_clk_priv *priv, int clk)
gf100_clk_prog_4(struct gf100_clk *clk, int idx)
{
struct gf100_clk_info *info = &priv->eng[clk];
nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
struct gf100_clk_info *info = &clk->eng[idx];
nv_mask(clk, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
}
static int
gf100_clk_prog(struct nvkm_clk *clk)
gf100_clk_prog(struct nvkm_clk *obj)
{
struct gf100_clk_priv *priv = (void *)clk;
struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
struct {
void (*exec)(struct gf100_clk_priv *, int);
void (*exec)(struct gf100_clk *, int);
} stage[] = {
{ gf100_clk_prog_0 }, /* div programming */
{ gf100_clk_prog_1 }, /* select div mode */
......@@ -395,10 +392,10 @@ gf100_clk_prog(struct nvkm_clk *clk)
int i, j;
for (i = 0; i < ARRAY_SIZE(stage); i++) {
for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
if (!priv->eng[j].freq)
for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
if (!clk->eng[j].freq)
continue;
stage[i].exec(priv, j);
stage[i].exec(clk, j);
}
}
......@@ -406,10 +403,10 @@ gf100_clk_prog(struct nvkm_clk *clk)
}
static void
gf100_clk_tidy(struct nvkm_clk *clk)
gf100_clk_tidy(struct nvkm_clk *obj)
{
struct gf100_clk_priv *priv = (void *)clk;
memset(priv->eng, 0x00, sizeof(priv->eng));
struct gf100_clk *clk = container_of(obj, typeof(*clk), base);
memset(clk->eng, 0x00, sizeof(clk->eng));
}
static struct nvkm_domain
......@@ -433,19 +430,19 @@ gf100_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct gf100_clk_priv *priv;
struct gf100_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, gf100_domain,
NULL, 0, false, &priv);
*pobject = nv_object(priv);
NULL, 0, false, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->base.read = gf100_clk_read;
priv->base.calc = gf100_clk_calc;
priv->base.prog = gf100_clk_prog;
priv->base.tidy = gf100_clk_tidy;
clk->base.read = gf100_clk_read;
clk->base.calc = gf100_clk_calc;
clk->base.prog = gf100_clk_prog;
clk->base.tidy = gf100_clk_tidy;
return 0;
}
......
......@@ -37,28 +37,28 @@ struct gk104_clk_info {
u32 coef;
};
struct gk104_clk_priv {
struct gk104_clk {
struct nvkm_clk base;
struct gk104_clk_info eng[16];
};
static u32 read_div(struct gk104_clk_priv *, int, u32, u32);
static u32 read_pll(struct gk104_clk_priv *, u32);
static u32 read_div(struct gk104_clk *, int, u32, u32);
static u32 read_pll(struct gk104_clk *, u32);
static u32
read_vco(struct gk104_clk_priv *priv, u32 dsrc)
read_vco(struct gk104_clk *clk, u32 dsrc)
{
u32 ssrc = nv_rd32(priv, dsrc);
u32 ssrc = nv_rd32(clk, dsrc);
if (!(ssrc & 0x00000100))
return read_pll(priv, 0x00e800);
return read_pll(priv, 0x00e820);
return read_pll(clk, 0x00e800);
return read_pll(clk, 0x00e820);
}
static u32
read_pll(struct gk104_clk_priv *priv, u32 pll)
read_pll(struct gk104_clk *clk, u32 pll)
{
u32 ctrl = nv_rd32(priv, pll + 0x00);
u32 coef = nv_rd32(priv, pll + 0x04);
u32 ctrl = nv_rd32(clk, pll + 0x00);
u32 coef = nv_rd32(clk, pll + 0x04);
u32 P = (coef & 0x003f0000) >> 16;
u32 N = (coef & 0x0000ff00) >> 8;
u32 M = (coef & 0x000000ff) >> 0;
......@@ -71,22 +71,22 @@ read_pll(struct gk104_clk_priv *priv, u32 pll)
switch (pll) {
case 0x00e800:
case 0x00e820:
sclk = nv_device(priv)->crystal;
sclk = nv_device(clk)->crystal;
P = 1;
break;
case 0x132000:
sclk = read_pll(priv, 0x132020);
sclk = read_pll(clk, 0x132020);
P = (coef & 0x10000000) ? 2 : 1;
break;
case 0x132020:
sclk = read_div(priv, 0, 0x137320, 0x137330);
fN = nv_rd32(priv, pll + 0x10) >> 16;
sclk = read_div(clk, 0, 0x137320, 0x137330);
fN = nv_rd32(clk, pll + 0x10) >> 16;
break;
case 0x137000:
case 0x137020:
case 0x137040:
case 0x1370e0:
sclk = read_div(priv, (pll & 0xff) / 0x20, 0x137120, 0x137140);
sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
break;
default:
return 0;
......@@ -100,70 +100,70 @@ read_pll(struct gk104_clk_priv *priv, u32 pll)
}
static u32
read_div(struct gk104_clk_priv *priv, int doff, u32 dsrc, u32 dctl)
read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl)
{
u32 ssrc = nv_rd32(priv, dsrc + (doff * 4));
u32 sctl = nv_rd32(priv, dctl + (doff * 4));
u32 ssrc = nv_rd32(clk, dsrc + (doff * 4));
u32 sctl = nv_rd32(clk, dctl + (doff * 4));
switch (ssrc & 0x00000003) {
case 0:
if ((ssrc & 0x00030000) != 0x00030000)
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
return 108000;
case 2:
return 100000;
case 3:
if (sctl & 0x80000000) {
u32 sclk = read_vco(priv, dsrc + (doff * 4));
u32 sclk = read_vco(clk, dsrc + (doff * 4));
u32 sdiv = (sctl & 0x0000003f) + 2;
return (sclk * 2) / sdiv;
}
return read_vco(priv, dsrc + (doff * 4));
return read_vco(clk, dsrc + (doff * 4));
default:
return 0;
}
}
static u32
read_mem(struct gk104_clk_priv *priv)
read_mem(struct gk104_clk *clk)
{
switch (nv_rd32(priv, 0x1373f4) & 0x0000000f) {
case 1: return read_pll(priv, 0x132020);
case 2: return read_pll(priv, 0x132000);
switch (nv_rd32(clk, 0x1373f4) & 0x0000000f) {
case 1: return read_pll(clk, 0x132020);
case 2: return read_pll(clk, 0x132000);
default:
return 0;
}
}
static u32
read_clk(struct gk104_clk_priv *priv, int clk)
read_clk(struct gk104_clk *clk, int idx)
{
u32 sctl = nv_rd32(priv, 0x137250 + (clk * 4));
u32 sctl = nv_rd32(clk, 0x137250 + (idx * 4));
u32 sclk, sdiv;
if (clk < 7) {
u32 ssel = nv_rd32(priv, 0x137100);
if (ssel & (1 << clk)) {
sclk = read_pll(priv, 0x137000 + (clk * 0x20));
if (idx < 7) {
u32 ssel = nv_rd32(clk, 0x137100);
if (ssel & (1 << idx)) {
sclk = read_pll(clk, 0x137000 + (idx * 0x20));
sdiv = 1;
} else {
sclk = read_div(priv, clk, 0x137160, 0x1371d0);
sclk = read_div(clk, idx, 0x137160, 0x1371d0);
sdiv = 0;
}
} else {
u32 ssrc = nv_rd32(priv, 0x137160 + (clk * 0x04));
u32 ssrc = nv_rd32(clk, 0x137160 + (idx * 0x04));
if ((ssrc & 0x00000003) == 0x00000003) {
sclk = read_div(priv, clk, 0x137160, 0x1371d0);
sclk = read_div(clk, idx, 0x137160, 0x1371d0);
if (ssrc & 0x00000100) {
if (ssrc & 0x40000000)
sclk = read_pll(priv, 0x1370e0);
sclk = read_pll(clk, 0x1370e0);
sdiv = 1;
} else {
sdiv = 0;
}
} else {
sclk = read_div(priv, clk, 0x137160, 0x1371d0);
sclk = read_div(clk, idx, 0x137160, 0x1371d0);
sdiv = 0;
}
}
......@@ -180,10 +180,10 @@ read_clk(struct gk104_clk_priv *priv, int clk)
}
static int
gk104_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
gk104_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct gk104_clk *clk = container_of(obj, typeof(*clk), base);
struct nvkm_device *device = nv_device(clk);
struct gk104_clk_priv *priv = (void *)clk;
switch (src) {
case nv_clk_src_crystal:
......@@ -191,21 +191,21 @@ gk104_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
case nv_clk_src_href:
return 100000;
case nv_clk_src_mem:
return read_mem(priv);
return read_mem(clk);
case nv_clk_src_gpc:
return read_clk(priv, 0x00);
return read_clk(clk, 0x00);
case nv_clk_src_rop:
return read_clk(priv, 0x01);
return read_clk(clk, 0x01);
case nv_clk_src_hubk07:
return read_clk(priv, 0x02);
return read_clk(clk, 0x02);
case nv_clk_src_hubk06:
return read_clk(priv, 0x07);
return read_clk(clk, 0x07);
case nv_clk_src_hubk01:
return read_clk(priv, 0x08);
return read_clk(clk, 0x08);
case nv_clk_src_daemon:
return read_clk(priv, 0x0c);
return read_clk(clk, 0x0c);
case nv_clk_src_vdec:
return read_clk(priv, 0x0e);
return read_clk(clk, 0x0e);
default:
nv_error(clk, "invalid clock source %d\n", src);
return -EINVAL;
......@@ -213,7 +213,7 @@ gk104_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
}
static u32
calc_div(struct gk104_clk_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
{
u32 div = min((ref * 2) / freq, (u32)65);
if (div < 2)
......@@ -224,7 +224,7 @@ calc_div(struct gk104_clk_priv *priv, int clk, u32 ref, u32 freq, u32 *ddiv)
}
static u32
calc_src(struct gk104_clk_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
{
u32 sclk;
......@@ -246,28 +246,28 @@ calc_src(struct gk104_clk_priv *priv, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
}
/* otherwise, calculate the closest divider */
sclk = read_vco(priv, 0x137160 + (clk * 4));
if (clk < 7)
sclk = calc_div(priv, clk, sclk, freq, ddiv);
sclk = read_vco(clk, 0x137160 + (idx * 4));
if (idx < 7)
sclk = calc_div(clk, idx, sclk, freq, ddiv);
return sclk;
}
static u32
calc_pll(struct gk104_clk_priv *priv, int clk, u32 freq, u32 *coef)
calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef)
{
struct nvkm_bios *bios = nvkm_bios(priv);
struct nvkm_bios *bios = nvkm_bios(clk);
struct nvbios_pll limits;
int N, M, P, ret;
ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
if (ret)
return 0;
limits.refclk = read_div(priv, clk, 0x137120, 0x137140);
limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
if (!limits.refclk)
return 0;
ret = gt215_pll_calc(nv_subdev(priv), &limits, freq, &N, NULL, &M, &P);
ret = gt215_pll_calc(nv_subdev(clk), &limits, freq, &N, NULL, &M, &P);
if (ret <= 0)
return 0;
......@@ -276,10 +276,10 @@ calc_pll(struct gk104_clk_priv *priv, int clk, u32 freq, u32 *coef)
}
static int
calc_clk(struct gk104_clk_priv *priv,
struct nvkm_cstate *cstate, int clk, int dom)
calc_clk(struct gk104_clk *clk,
struct nvkm_cstate *cstate, int idx, int dom)
{
struct gk104_clk_info *info = &priv->eng[clk];
struct gk104_clk_info *info = &clk->eng[idx];
u32 freq = cstate->domain[dom];
u32 src0, div0, div1D, div1P = 0;
u32 clk0, clk1 = 0;
......@@ -289,16 +289,16 @@ calc_clk(struct gk104_clk_priv *priv,
return 0;
/* first possible path, using only dividers */
clk0 = calc_src(priv, clk, freq, &src0, &div0);
clk0 = calc_div(priv, clk, clk0, freq, &div1D);
clk0 = calc_src(clk, idx, freq, &src0, &div0);
clk0 = calc_div(clk, idx, clk0, freq, &div1D);
/* see if we can get any closer using PLLs */
if (clk0 != freq && (0x0000ff87 & (1 << clk))) {
if (clk <= 7)
clk1 = calc_pll(priv, clk, freq, &info->coef);
if (clk0 != freq && (0x0000ff87 & (1 << idx))) {
if (idx <= 7)
clk1 = calc_pll(clk, idx, freq, &info->coef);
else
clk1 = cstate->domain[nv_clk_src_hubk06];
clk1 = calc_div(priv, clk, clk1, freq, &div1P);
clk1 = calc_div(clk, idx, clk1, freq, &div1P);
}
/* select the method which gets closest to target freq */
......@@ -319,7 +319,7 @@ calc_clk(struct gk104_clk_priv *priv,
info->mdiv |= 0x80000000;
info->mdiv |= div1P << 8;
}
info->ssel = (1 << clk);
info->ssel = (1 << idx);
info->dsrc = 0x40000100;
info->freq = clk1;
}
......@@ -328,98 +328,98 @@ calc_clk(struct gk104_clk_priv *priv,
}
static int
gk104_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
gk104_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct gk104_clk_priv *priv = (void *)clk;
struct gk104_clk *clk = container_of(obj, typeof(*clk), base);
int ret;
if ((ret = calc_clk(priv, cstate, 0x00, nv_clk_src_gpc)) ||
(ret = calc_clk(priv, cstate, 0x01, nv_clk_src_rop)) ||
(ret = calc_clk(priv, cstate, 0x02, nv_clk_src_hubk07)) ||
(ret = calc_clk(priv, cstate, 0x07, nv_clk_src_hubk06)) ||
(ret = calc_clk(priv, cstate, 0x08, nv_clk_src_hubk01)) ||
(ret = calc_clk(priv, cstate, 0x0c, nv_clk_src_daemon)) ||
(ret = calc_clk(priv, cstate, 0x0e, nv_clk_src_vdec)))
if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
(ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
(ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
(ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
(ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
(ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_daemon)) ||
(ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
return ret;
return 0;
}
static void
gk104_clk_prog_0(struct gk104_clk_priv *priv, int clk)
gk104_clk_prog_0(struct gk104_clk *clk, int idx)
{
struct gk104_clk_info *info = &priv->eng[clk];
struct gk104_clk_info *info = &clk->eng[idx];
if (!info->ssel) {
nv_mask(priv, 0x1371d0 + (clk * 0x04), 0x8000003f, info->ddiv);
nv_wr32(priv, 0x137160 + (clk * 0x04), info->dsrc);
nv_mask(clk, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv);
nv_wr32(clk, 0x137160 + (idx * 0x04), info->dsrc);
}
}
static void
gk104_clk_prog_1_0(struct gk104_clk_priv *priv, int clk)
gk104_clk_prog_1_0(struct gk104_clk *clk, int idx)
{
nv_mask(priv, 0x137100, (1 << clk), 0x00000000);
nv_wait(priv, 0x137100, (1 << clk), 0x00000000);
nv_mask(clk, 0x137100, (1 << idx), 0x00000000);
nv_wait(clk, 0x137100, (1 << idx), 0x00000000);
}
static void
gk104_clk_prog_1_1(struct gk104_clk_priv *priv, int clk)
gk104_clk_prog_1_1(struct gk104_clk *clk, int idx)
{
nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000000);
nv_mask(clk, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000);
}
static void
gk104_clk_prog_2(struct gk104_clk_priv *priv, int clk)
gk104_clk_prog_2(struct gk104_clk *clk, int idx)
{
struct gk104_clk_info *info = &priv->eng[clk];
const u32 addr = 0x137000 + (clk * 0x20);
nv_mask(priv, addr + 0x00, 0x00000004, 0x00000000);
nv_mask(priv, addr + 0x00, 0x00000001, 0x00000000);
struct gk104_clk_info *info = &clk->eng[idx];
const u32 addr = 0x137000 + (idx * 0x20);
nv_mask(clk, addr + 0x00, 0x00000004, 0x00000000);
nv_mask(clk, addr + 0x00, 0x00000001, 0x00000000);
if (info->coef) {
nv_wr32(priv, addr + 0x04, info->coef);
nv_mask(priv, addr + 0x00, 0x00000001, 0x00000001);
nv_wait(priv, addr + 0x00, 0x00020000, 0x00020000);
nv_mask(priv, addr + 0x00, 0x00020004, 0x00000004);
nv_wr32(clk, addr + 0x04, info->coef);
nv_mask(clk, addr + 0x00, 0x00000001, 0x00000001);
nv_wait(clk, addr + 0x00, 0x00020000, 0x00020000);
nv_mask(clk, addr + 0x00, 0x00020004, 0x00000004);
}
}
static void
gk104_clk_prog_3(struct gk104_clk_priv *priv, int clk)
gk104_clk_prog_3(struct gk104_clk *clk, int idx)
{
struct gk104_clk_info *info = &priv->eng[clk];
struct gk104_clk_info *info = &clk->eng[idx];
if (info->ssel)
nv_mask(priv, 0x137250 + (clk * 0x04), 0x00003f00, info->mdiv);
nv_mask(clk, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv);
else
nv_mask(priv, 0x137250 + (clk * 0x04), 0x0000003f, info->mdiv);
nv_mask(clk, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv);
}
static void
gk104_clk_prog_4_0(struct gk104_clk_priv *priv, int clk)
gk104_clk_prog_4_0(struct gk104_clk *clk, int idx)
{
struct gk104_clk_info *info = &priv->eng[clk];
struct gk104_clk_info *info = &clk->eng[idx];
if (info->ssel) {
nv_mask(priv, 0x137100, (1 << clk), info->ssel);
nv_wait(priv, 0x137100, (1 << clk), info->ssel);
nv_mask(clk, 0x137100, (1 << idx), info->ssel);
nv_wait(clk, 0x137100, (1 << idx), info->ssel);
}
}
static void
gk104_clk_prog_4_1(struct gk104_clk_priv *priv, int clk)
gk104_clk_prog_4_1(struct gk104_clk *clk, int idx)
{
struct gk104_clk_info *info = &priv->eng[clk];
struct gk104_clk_info *info = &clk->eng[idx];
if (info->ssel) {
nv_mask(priv, 0x137160 + (clk * 0x04), 0x40000000, 0x40000000);
nv_mask(priv, 0x137160 + (clk * 0x04), 0x00000100, 0x00000100);
nv_mask(clk, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000);
nv_mask(clk, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100);
}
}
static int
gk104_clk_prog(struct nvkm_clk *clk)
gk104_clk_prog(struct nvkm_clk *obj)
{
struct gk104_clk_priv *priv = (void *)clk;
struct gk104_clk *clk = container_of(obj, typeof(*clk), base);
struct {
u32 mask;
void (*exec)(struct gk104_clk_priv *, int);
void (*exec)(struct gk104_clk *, int);
} stage[] = {
{ 0x007f, gk104_clk_prog_0 }, /* div programming */
{ 0x007f, gk104_clk_prog_1_0 }, /* select div mode */
......@@ -432,12 +432,12 @@ gk104_clk_prog(struct nvkm_clk *clk)
int i, j;
for (i = 0; i < ARRAY_SIZE(stage); i++) {
for (j = 0; j < ARRAY_SIZE(priv->eng); j++) {
for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
if (!(stage[i].mask & (1 << j)))
continue;
if (!priv->eng[j].freq)
if (!clk->eng[j].freq)
continue;
stage[i].exec(priv, j);
stage[i].exec(clk, j);
}
}
......@@ -445,10 +445,10 @@ gk104_clk_prog(struct nvkm_clk *clk)
}
static void
gk104_clk_tidy(struct nvkm_clk *clk)
gk104_clk_tidy(struct nvkm_clk *obj)
{
struct gk104_clk_priv *priv = (void *)clk;
memset(priv->eng, 0x00, sizeof(priv->eng));
struct gk104_clk *clk = container_of(obj, typeof(*clk), base);
memset(clk->eng, 0x00, sizeof(clk->eng));
}
static struct nvkm_domain
......@@ -471,19 +471,19 @@ gk104_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct gk104_clk_priv *priv;
struct gk104_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, gk104_domain,
NULL, 0, true, &priv);
*pobject = nv_object(priv);
NULL, 0, true, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->base.read = gk104_clk_read;
priv->base.calc = gk104_clk_calc;
priv->base.prog = gk104_clk_prog;
priv->base.tidy = gk104_clk_tidy;
clk->base.read = gk104_clk_read;
clk->base.calc = gk104_clk_calc;
clk->base.prog = gk104_clk_prog;
clk->base.tidy = gk104_clk_tidy;
return 0;
}
......
......@@ -115,40 +115,40 @@ static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
.min_pl = 1, .max_pl = 32,
};
struct gk20a_clk_priv {
struct gk20a_clk {
struct nvkm_clk base;
const struct gk20a_clk_pllg_params *params;
u32 m, n, pl;
u32 parent_rate;
};
#define to_gk20a_clk(base) container_of(base, struct gk20a_clk_priv, base)
#define to_gk20a_clk(base) container_of(base, struct gk20a_clk, base)
static void
gk20a_pllg_read_mnp(struct gk20a_clk_priv *priv)
gk20a_pllg_read_mnp(struct gk20a_clk *clk)
{
u32 val;
val = nv_rd32(priv, GPCPLL_COEFF);
priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
val = nv_rd32(clk, GPCPLL_COEFF);
clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
}
static u32
gk20a_pllg_calc_rate(struct gk20a_clk_priv *priv)
gk20a_pllg_calc_rate(struct gk20a_clk *clk)
{
u32 rate;
u32 divider;
rate = priv->parent_rate * priv->n;
divider = priv->m * pl_to_div[priv->pl];
rate = clk->parent_rate * clk->n;
divider = clk->m * pl_to_div[clk->pl];
do_div(rate, divider);
return rate / 2;
}
static int
gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate)
gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
{
u32 target_clk_f, ref_clk_f, target_freq;
u32 min_vco_f, max_vco_f;
......@@ -161,13 +161,13 @@ gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate)
u32 pl;
target_clk_f = rate * 2 / MHZ;
ref_clk_f = priv->parent_rate / MHZ;
ref_clk_f = clk->parent_rate / MHZ;
max_vco_f = priv->params->max_vco;
min_vco_f = priv->params->min_vco;
best_m = priv->params->max_m;
best_n = priv->params->min_n;
best_pl = priv->params->min_pl;
max_vco_f = clk->params->max_vco;
min_vco_f = clk->params->min_vco;
best_m = clk->params->max_m;
best_n = clk->params->min_n;
best_pl = clk->params->min_pl;
target_vco_f = target_clk_f + target_clk_f / 50;
if (max_vco_f < target_vco_f)
......@@ -175,13 +175,13 @@ gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate)
/* min_pl <= high_pl <= max_pl */
high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
high_pl = min(high_pl, priv->params->max_pl);
high_pl = max(high_pl, priv->params->min_pl);
high_pl = min(high_pl, clk->params->max_pl);
high_pl = max(high_pl, clk->params->min_pl);
/* min_pl <= low_pl <= max_pl */
low_pl = min_vco_f / target_vco_f;
low_pl = min(low_pl, priv->params->max_pl);
low_pl = max(low_pl, priv->params->min_pl);
low_pl = min(low_pl, clk->params->max_pl);
low_pl = max(low_pl, clk->params->min_pl);
/* Find Indices of high_pl and low_pl */
for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
......@@ -197,30 +197,30 @@ gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate)
}
}
nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
nv_debug(clk, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
/* Select lowest possible VCO */
for (pl = low_pl; pl <= high_pl; pl++) {
target_vco_f = target_clk_f * pl_to_div[pl];
for (m = priv->params->min_m; m <= priv->params->max_m; m++) {
for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
u_f = ref_clk_f / m;
if (u_f < priv->params->min_u)
if (u_f < clk->params->min_u)
break;
if (u_f > priv->params->max_u)
if (u_f > clk->params->max_u)
continue;
n = (target_vco_f * m) / ref_clk_f;
n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
if (n > priv->params->max_n)
if (n > clk->params->max_n)
break;
for (; n <= n2; n++) {
if (n < priv->params->min_n)
if (n < clk->params->min_n)
continue;
if (n > priv->params->max_n)
if (n > clk->params->max_n)
break;
vco_f = ref_clk_f * n / m;
......@@ -248,71 +248,71 @@ gk20a_pllg_calc_mnp(struct gk20a_clk_priv *priv, unsigned long rate)
WARN_ON(best_delta == ~0);
if (best_delta != 0)
nv_debug(priv, "no best match for target @ %dMHz on gpc_pll",
nv_debug(clk, "no best match for target @ %dMHz on gpc_pll",
target_clk_f);
priv->m = best_m;
priv->n = best_n;
priv->pl = best_pl;
clk->m = best_m;
clk->n = best_n;
clk->pl = best_pl;
target_freq = gk20a_pllg_calc_rate(priv) / MHZ;
target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]);
nv_debug(clk, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
return 0;
}
static int
gk20a_pllg_slide(struct gk20a_clk_priv *priv, u32 n)
gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
{
u32 val;
int ramp_timeout;
/* get old coefficients */
val = nv_rd32(priv, GPCPLL_COEFF);
val = nv_rd32(clk, GPCPLL_COEFF);
/* do nothing if NDIV is the same */
if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
return 0;
/* setup */
nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
nv_mask(clk, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
nv_mask(clk, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
/* pll slowdown mode */
nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
nv_mask(clk, GPCPLL_NDIV_SLOWDOWN,
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
/* new ndiv ready for ramp */
val = nv_rd32(priv, GPCPLL_COEFF);
val = nv_rd32(clk, GPCPLL_COEFF);
val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
udelay(1);
nv_wr32(priv, GPCPLL_COEFF, val);
nv_wr32(clk, GPCPLL_COEFF, val);
/* dynamic ramp to new ndiv */
val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
val = nv_rd32(clk, GPCPLL_NDIV_SLOWDOWN);
val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
udelay(1);
nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val);
nv_wr32(clk, GPCPLL_NDIV_SLOWDOWN, val);
for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
udelay(1);
val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
val = nv_rd32(clk, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
break;
}
/* exit slowdown mode */
nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
nv_mask(clk, GPCPLL_NDIV_SLOWDOWN,
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
nv_rd32(clk, GPCPLL_NDIV_SLOWDOWN);
if (ramp_timeout <= 0) {
nv_error(priv, "gpcpll dynamic ramp timeout\n");
nv_error(clk, "gpcpll dynamic ramp timeout\n");
return -ETIMEDOUT;
}
......@@ -320,138 +320,138 @@ gk20a_pllg_slide(struct gk20a_clk_priv *priv, u32 n)
}
static void
_gk20a_pllg_enable(struct gk20a_clk_priv *priv)
_gk20a_pllg_enable(struct gk20a_clk *clk)
{
nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
nv_rd32(priv, GPCPLL_CFG);
nv_mask(clk, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
nv_rd32(clk, GPCPLL_CFG);
}
static void
_gk20a_pllg_disable(struct gk20a_clk_priv *priv)
_gk20a_pllg_disable(struct gk20a_clk *clk)
{
nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
nv_rd32(priv, GPCPLL_CFG);
nv_mask(clk, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
nv_rd32(clk, GPCPLL_CFG);
}
static int
_gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv, bool allow_slide)
_gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
{
u32 val, cfg;
u32 m_old, pl_old, n_lo;
/* get old coefficients */
val = nv_rd32(priv, GPCPLL_COEFF);
val = nv_rd32(clk, GPCPLL_COEFF);
m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
/* do NDIV slide if there is no change in M and PL */
cfg = nv_rd32(priv, GPCPLL_CFG);
if (allow_slide && priv->m == m_old && priv->pl == pl_old &&
cfg = nv_rd32(clk, GPCPLL_CFG);
if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
(cfg & GPCPLL_CFG_ENABLE)) {
return gk20a_pllg_slide(priv, priv->n);
return gk20a_pllg_slide(clk, clk->n);
}
/* slide down to NDIV_LO */
n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco,
priv->parent_rate / MHZ);
n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
clk->parent_rate / MHZ);
if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
int ret = gk20a_pllg_slide(priv, n_lo);
int ret = gk20a_pllg_slide(clk, n_lo);
if (ret)
return ret;
}
/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
nv_mask(clk, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
/* put PLL in bypass before programming it */
val = nv_rd32(priv, SEL_VCO);
val = nv_rd32(clk, SEL_VCO);
val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
udelay(2);
nv_wr32(priv, SEL_VCO, val);
nv_wr32(clk, SEL_VCO, val);
/* get out from IDDQ */
val = nv_rd32(priv, GPCPLL_CFG);
val = nv_rd32(clk, GPCPLL_CFG);
if (val & GPCPLL_CFG_IDDQ) {
val &= ~GPCPLL_CFG_IDDQ;
nv_wr32(priv, GPCPLL_CFG, val);
nv_rd32(priv, GPCPLL_CFG);
nv_wr32(clk, GPCPLL_CFG, val);
nv_rd32(clk, GPCPLL_CFG);
udelay(2);
}
_gk20a_pllg_disable(priv);
_gk20a_pllg_disable(clk);
nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n,
priv->pl);
nv_debug(clk, "%s: m=%d n=%d pl=%d\n", __func__, clk->m, clk->n,
clk->pl);
n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco,
priv->parent_rate / MHZ);
val = priv->m << GPCPLL_COEFF_M_SHIFT;
val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT;
val |= priv->pl << GPCPLL_COEFF_P_SHIFT;
nv_wr32(priv, GPCPLL_COEFF, val);
n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
clk->parent_rate / MHZ);
val = clk->m << GPCPLL_COEFF_M_SHIFT;
val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
nv_wr32(clk, GPCPLL_COEFF, val);
_gk20a_pllg_enable(priv);
_gk20a_pllg_enable(clk);
val = nv_rd32(priv, GPCPLL_CFG);
val = nv_rd32(clk, GPCPLL_CFG);
if (val & GPCPLL_CFG_LOCK_DET_OFF) {
val &= ~GPCPLL_CFG_LOCK_DET_OFF;
nv_wr32(priv, GPCPLL_CFG, val);
nv_wr32(clk, GPCPLL_CFG, val);
}
if (!nvkm_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
if (!nvkm_timer_wait_eq(clk, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
GPCPLL_CFG_LOCK)) {
nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__);
nv_error(clk, "%s: timeout waiting for pllg lock\n", __func__);
return -ETIMEDOUT;
}
/* switch to VCO mode */
nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
nv_mask(clk, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
/* restore out divider 1:1 */
val = nv_rd32(priv, GPC2CLK_OUT);
val = nv_rd32(clk, GPC2CLK_OUT);
val &= ~GPC2CLK_OUT_VCODIV_MASK;
udelay(2);
nv_wr32(priv, GPC2CLK_OUT, val);
nv_wr32(clk, GPC2CLK_OUT, val);
/* slide up to new NDIV */
return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0;
return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
}
static int
gk20a_pllg_program_mnp(struct gk20a_clk_priv *priv)
gk20a_pllg_program_mnp(struct gk20a_clk *clk)
{
int err;
err = _gk20a_pllg_program_mnp(priv, true);
err = _gk20a_pllg_program_mnp(clk, true);
if (err)
err = _gk20a_pllg_program_mnp(priv, false);
err = _gk20a_pllg_program_mnp(clk, false);
return err;
}
static void
gk20a_pllg_disable(struct gk20a_clk_priv *priv)
gk20a_pllg_disable(struct gk20a_clk *clk)
{
u32 val;
/* slide to VCO min */
val = nv_rd32(priv, GPCPLL_CFG);
val = nv_rd32(clk, GPCPLL_CFG);
if (val & GPCPLL_CFG_ENABLE) {
u32 coeff, m, n_lo;
coeff = nv_rd32(priv, GPCPLL_COEFF);
coeff = nv_rd32(clk, GPCPLL_COEFF);
m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
n_lo = DIV_ROUND_UP(m * priv->params->min_vco,
priv->parent_rate / MHZ);
gk20a_pllg_slide(priv, n_lo);
n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
clk->parent_rate / MHZ);
gk20a_pllg_slide(clk, n_lo);
}
/* put PLL in bypass before disabling it */
nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
nv_mask(clk, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
_gk20a_pllg_disable(priv);
_gk20a_pllg_disable(clk);
}
#define GK20A_CLK_GPC_MDIV 1000
......@@ -558,16 +558,16 @@ gk20a_pstates[] = {
};
static int
gk20a_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
gk20a_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct gk20a_clk_priv *priv = (void *)clk;
struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
switch (src) {
case nv_clk_src_crystal:
return nv_device(clk)->crystal;
case nv_clk_src_gpc:
gk20a_pllg_read_mnp(priv);
return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV;
gk20a_pllg_read_mnp(clk);
return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
default:
nv_error(clk, "invalid clock source %d\n", src);
return -EINVAL;
......@@ -575,36 +575,36 @@ gk20a_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
}
static int
gk20a_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
gk20a_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct gk20a_clk_priv *priv = (void *)clk;
struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] *
return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
GK20A_CLK_GPC_MDIV);
}
static int
gk20a_clk_prog(struct nvkm_clk *clk)
gk20a_clk_prog(struct nvkm_clk *obj)
{
struct gk20a_clk_priv *priv = (void *)clk;
struct gk20a_clk *clk = container_of(obj, typeof(*clk), base);
return gk20a_pllg_program_mnp(priv);
return gk20a_pllg_program_mnp(clk);
}
static void
gk20a_clk_tidy(struct nvkm_clk *clk)
gk20a_clk_tidy(struct nvkm_clk *obj)
{
}
static int
gk20a_clk_fini(struct nvkm_object *object, bool suspend)
{
struct gk20a_clk_priv *priv = (void *)object;
struct gk20a_clk *clk = (void *)object;
int ret;
ret = nvkm_clk_fini(&priv->base, false);
ret = nvkm_clk_fini(&clk->base, false);
gk20a_pllg_disable(priv);
gk20a_pllg_disable(clk);
return ret;
}
......@@ -612,18 +612,18 @@ gk20a_clk_fini(struct nvkm_object *object, bool suspend)
static int
gk20a_clk_init(struct nvkm_object *object)
{
struct gk20a_clk_priv *priv = (void *)object;
struct gk20a_clk *clk = (void *)object;
int ret;
nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
nv_mask(clk, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
ret = nvkm_clk_init(&priv->base);
ret = nvkm_clk_init(&clk->base);
if (ret)
return ret;
ret = gk20a_clk_prog(&priv->base);
ret = gk20a_clk_prog(&clk->base);
if (ret) {
nv_error(priv, "cannot initialize clock\n");
nv_error(clk, "cannot initialize clock\n");
return ret;
}
......@@ -635,7 +635,7 @@ gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct gk20a_clk_priv *priv;
struct gk20a_clk *clk;
struct nouveau_platform_device *plat;
int ret;
int i;
......@@ -648,21 +648,21 @@ gk20a_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
ret = nvkm_clk_create(parent, engine, oclass, gk20a_domains,
gk20a_pstates, ARRAY_SIZE(gk20a_pstates),
true, &priv);
*pobject = nv_object(priv);
true, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->params = &gk20a_pllg_params;
clk->params = &gk20a_pllg_params;
plat = nv_device_to_platform(nv_device(parent));
priv->parent_rate = clk_get_rate(plat->gpu->clk);
nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ);
clk->parent_rate = clk_get_rate(plat->gpu->clk);
nv_info(clk, "parent clock rate: %d Mhz\n", clk->parent_rate / MHZ);
priv->base.read = gk20a_clk_read;
priv->base.calc = gk20a_clk_calc;
priv->base.prog = gk20a_clk_prog;
priv->base.tidy = gk20a_clk_tidy;
clk->base.read = gk20a_clk_read;
clk->base.calc = gk20a_clk_calc;
clk->base.prog = gk20a_clk_prog;
clk->base.tidy = gk20a_clk_tidy;
return 0;
}
......
......@@ -30,47 +30,47 @@
#include <subdev/bios/pll.h>
#include <subdev/timer.h>
struct gt215_clk_priv {
struct gt215_clk {
struct nvkm_clk base;
struct gt215_clk_info eng[nv_clk_src_max];
};
static u32 read_clk(struct gt215_clk_priv *, int, bool);
static u32 read_pll(struct gt215_clk_priv *, int, u32);
static u32 read_clk(struct gt215_clk *, int, bool);
static u32 read_pll(struct gt215_clk *, int, u32);
static u32
read_vco(struct gt215_clk_priv *priv, int clk)
read_vco(struct gt215_clk *clk, int idx)
{
u32 sctl = nv_rd32(priv, 0x4120 + (clk * 4));
u32 sctl = nv_rd32(clk, 0x4120 + (idx * 4));
switch (sctl & 0x00000030) {
case 0x00000000:
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
case 0x00000020:
return read_pll(priv, 0x41, 0x00e820);
return read_pll(clk, 0x41, 0x00e820);
case 0x00000030:
return read_pll(priv, 0x42, 0x00e8a0);
return read_pll(clk, 0x42, 0x00e8a0);
default:
return 0;
}
}
static u32
read_clk(struct gt215_clk_priv *priv, int clk, bool ignore_en)
read_clk(struct gt215_clk *clk, int idx, bool ignore_en)
{
u32 sctl, sdiv, sclk;
/* refclk for the 0xe8xx plls is a fixed frequency */
if (clk >= 0x40) {
if (nv_device(priv)->chipset == 0xaf) {
if (idx >= 0x40) {
if (nv_device(clk)->chipset == 0xaf) {
/* no joke.. seriously.. sigh.. */
return nv_rd32(priv, 0x00471c) * 1000;
return nv_rd32(clk, 0x00471c) * 1000;
}
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
}
sctl = nv_rd32(priv, 0x4120 + (clk * 4));
sctl = nv_rd32(clk, 0x4120 + (idx * 4));
if (!ignore_en && !(sctl & 0x00000100))
return 0;
......@@ -82,7 +82,7 @@ read_clk(struct gt215_clk_priv *priv, int clk, bool ignore_en)
switch (sctl & 0x00003000) {
case 0x00000000:
if (!(sctl & 0x00000200))
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
return 0;
case 0x00002000:
if (sctl & 0x00000040)
......@@ -93,7 +93,7 @@ read_clk(struct gt215_clk_priv *priv, int clk, bool ignore_en)
if (!(sctl & 0x00000001))
return 0;
sclk = read_vco(priv, clk);
sclk = read_vco(clk, idx);
sdiv = ((sctl & 0x003f0000) >> 16) + 2;
return (sclk * 2) / sdiv;
default:
......@@ -102,14 +102,14 @@ read_clk(struct gt215_clk_priv *priv, int clk, bool ignore_en)
}
static u32
read_pll(struct gt215_clk_priv *priv, int clk, u32 pll)
read_pll(struct gt215_clk *clk, int idx, u32 pll)
{
u32 ctrl = nv_rd32(priv, pll + 0);
u32 ctrl = nv_rd32(clk, pll + 0);
u32 sclk = 0, P = 1, N = 1, M = 1;
if (!(ctrl & 0x00000008)) {
if (ctrl & 0x00000001) {
u32 coef = nv_rd32(priv, pll + 4);
u32 coef = nv_rd32(clk, pll + 4);
M = (coef & 0x000000ff) >> 0;
N = (coef & 0x0000ff00) >> 8;
P = (coef & 0x003f0000) >> 16;
......@@ -120,10 +120,10 @@ read_pll(struct gt215_clk_priv *priv, int clk, u32 pll)
if ((pll & 0x00ff00) == 0x00e800)
P = 1;
sclk = read_clk(priv, 0x00 + clk, false);
sclk = read_clk(clk, 0x00 + idx, false);
}
} else {
sclk = read_clk(priv, 0x10 + clk, false);
sclk = read_clk(clk, 0x10 + idx, false);
}
if (M * P)
......@@ -133,32 +133,32 @@ read_pll(struct gt215_clk_priv *priv, int clk, u32 pll)
}
static int
gt215_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
gt215_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct gt215_clk_priv *priv = (void *)clk;
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
u32 hsrc;
switch (src) {
case nv_clk_src_crystal:
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
case nv_clk_src_core:
case nv_clk_src_core_intm:
return read_pll(priv, 0x00, 0x4200);
return read_pll(clk, 0x00, 0x4200);
case nv_clk_src_shader:
return read_pll(priv, 0x01, 0x4220);
return read_pll(clk, 0x01, 0x4220);
case nv_clk_src_mem:
return read_pll(priv, 0x02, 0x4000);
return read_pll(clk, 0x02, 0x4000);
case nv_clk_src_disp:
return read_clk(priv, 0x20, false);
return read_clk(clk, 0x20, false);
case nv_clk_src_vdec:
return read_clk(priv, 0x21, false);
return read_clk(clk, 0x21, false);
case nv_clk_src_daemon:
return read_clk(priv, 0x25, false);
return read_clk(clk, 0x25, false);
case nv_clk_src_host:
hsrc = (nv_rd32(priv, 0xc040) & 0x30000000) >> 28;
hsrc = (nv_rd32(clk, 0xc040) & 0x30000000) >> 28;
switch (hsrc) {
case 0:
return read_clk(priv, 0x1d, false);
return read_clk(clk, 0x1d, false);
case 2:
case 3:
return 277000;
......@@ -175,10 +175,10 @@ gt215_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
}
int
gt215_clk_info(struct nvkm_clk *clock, int clk, u32 khz,
gt215_clk_info(struct nvkm_clk *obj, int idx, u32 khz,
struct gt215_clk_info *info)
{
struct gt215_clk_priv *priv = (void *)clock;
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
u32 oclk, sclk, sdiv;
s32 diff;
......@@ -195,7 +195,7 @@ gt215_clk_info(struct nvkm_clk *clock, int clk, u32 khz,
info->clk = 0x00002140;
return khz;
default:
sclk = read_vco(priv, clk);
sclk = read_vco(clk, idx);
sdiv = min((sclk * 2) / khz, (u32)65);
oclk = (sclk * 2) / sdiv;
diff = ((khz + 3000) - oclk);
......@@ -223,11 +223,11 @@ gt215_clk_info(struct nvkm_clk *clock, int clk, u32 khz,
}
int
gt215_pll_info(struct nvkm_clk *clock, int clk, u32 pll, u32 khz,
gt215_pll_info(struct nvkm_clk *clock, int idx, u32 pll, u32 khz,
struct gt215_clk_info *info)
{
struct nvkm_bios *bios = nvkm_bios(clock);
struct gt215_clk_priv *priv = (void *)clock;
struct gt215_clk *clk = (void *)clock;
struct nvbios_pll limits;
int P, N, M, diff;
int ret;
......@@ -236,7 +236,7 @@ gt215_pll_info(struct nvkm_clk *clock, int clk, u32 pll, u32 khz,
/* If we can get a within [-2, 3) MHz of a divider, we'll disable the
* PLL and use the divider instead. */
ret = gt215_clk_info(clock, clk, khz, info);
ret = gt215_clk_info(clock, idx, khz, info);
diff = khz - ret;
if (!pll || (diff >= -2000 && diff < 3000)) {
goto out;
......@@ -247,11 +247,11 @@ gt215_pll_info(struct nvkm_clk *clock, int clk, u32 pll, u32 khz,
if (ret)
return ret;
ret = gt215_clk_info(clock, clk - 0x10, limits.refclk, info);
ret = gt215_clk_info(clock, idx - 0x10, limits.refclk, info);
if (ret != limits.refclk)
return -EINVAL;
ret = gt215_pll_calc(nv_subdev(priv), &limits, khz, &N, NULL, &M, &P);
ret = gt215_pll_calc(nv_subdev(clk), &limits, khz, &N, NULL, &M, &P);
if (ret >= 0) {
info->pll = (P << 16) | (N << 8) | M;
}
......@@ -262,22 +262,22 @@ gt215_pll_info(struct nvkm_clk *clock, int clk, u32 pll, u32 khz,
}
static int
calc_clk(struct gt215_clk_priv *priv, struct nvkm_cstate *cstate,
int clk, u32 pll, int idx)
calc_clk(struct gt215_clk *clk, struct nvkm_cstate *cstate,
int idx, u32 pll, int dom)
{
int ret = gt215_pll_info(&priv->base, clk, pll, cstate->domain[idx],
&priv->eng[idx]);
int ret = gt215_pll_info(&clk->base, idx, pll, cstate->domain[dom],
&clk->eng[dom]);
if (ret >= 0)
return 0;
return ret;
}
static int
calc_host(struct gt215_clk_priv *priv, struct nvkm_cstate *cstate)
calc_host(struct gt215_clk *clk, struct nvkm_cstate *cstate)
{
int ret = 0;
u32 kHz = cstate->domain[nv_clk_src_host];
struct gt215_clk_info *info = &priv->eng[nv_clk_src_host];
struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
if (kHz == 277000) {
info->clk = 0;
......@@ -287,7 +287,7 @@ calc_host(struct gt215_clk_priv *priv, struct nvkm_cstate *cstate)
info->host_out = NVA3_HOST_CLK;
ret = gt215_clk_info(&priv->base, 0x1d, kHz, info);
ret = gt215_clk_info(&clk->base, 0x1d, kHz, info);
if (ret >= 0)
return 0;
......@@ -330,76 +330,76 @@ gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags)
}
static void
disable_clk_src(struct gt215_clk_priv *priv, u32 src)
disable_clk_src(struct gt215_clk *clk, u32 src)
{
nv_mask(priv, src, 0x00000100, 0x00000000);
nv_mask(priv, src, 0x00000001, 0x00000000);
nv_mask(clk, src, 0x00000100, 0x00000000);
nv_mask(clk, src, 0x00000001, 0x00000000);
}
static void
prog_pll(struct gt215_clk_priv *priv, int clk, u32 pll, int idx)
prog_pll(struct gt215_clk *clk, int idx, u32 pll, int dom)
{
struct gt215_clk_info *info = &priv->eng[idx];
const u32 src0 = 0x004120 + (clk * 4);
const u32 src1 = 0x004160 + (clk * 4);
struct gt215_clk_info *info = &clk->eng[dom];
const u32 src0 = 0x004120 + (idx * 4);
const u32 src1 = 0x004160 + (idx * 4);
const u32 ctrl = pll + 0;
const u32 coef = pll + 4;
u32 bypass;
if (info->pll) {
/* Always start from a non-PLL clock */
bypass = nv_rd32(priv, ctrl) & 0x00000008;
bypass = nv_rd32(clk, ctrl) & 0x00000008;
if (!bypass) {
nv_mask(priv, src1, 0x00000101, 0x00000101);
nv_mask(priv, ctrl, 0x00000008, 0x00000008);
nv_mask(clk, src1, 0x00000101, 0x00000101);
nv_mask(clk, ctrl, 0x00000008, 0x00000008);
udelay(20);
}
nv_mask(priv, src0, 0x003f3141, 0x00000101 | info->clk);
nv_wr32(priv, coef, info->pll);
nv_mask(priv, ctrl, 0x00000015, 0x00000015);
nv_mask(priv, ctrl, 0x00000010, 0x00000000);
if (!nv_wait(priv, ctrl, 0x00020000, 0x00020000)) {
nv_mask(priv, ctrl, 0x00000010, 0x00000010);
nv_mask(priv, src0, 0x00000101, 0x00000000);
nv_mask(clk, src0, 0x003f3141, 0x00000101 | info->clk);
nv_wr32(clk, coef, info->pll);
nv_mask(clk, ctrl, 0x00000015, 0x00000015);
nv_mask(clk, ctrl, 0x00000010, 0x00000000);
if (!nv_wait(clk, ctrl, 0x00020000, 0x00020000)) {
nv_mask(clk, ctrl, 0x00000010, 0x00000010);
nv_mask(clk, src0, 0x00000101, 0x00000000);
return;
}
nv_mask(priv, ctrl, 0x00000010, 0x00000010);
nv_mask(priv, ctrl, 0x00000008, 0x00000000);
disable_clk_src(priv, src1);
nv_mask(clk, ctrl, 0x00000010, 0x00000010);
nv_mask(clk, ctrl, 0x00000008, 0x00000000);
disable_clk_src(clk, src1);
} else {
nv_mask(priv, src1, 0x003f3141, 0x00000101 | info->clk);
nv_mask(priv, ctrl, 0x00000018, 0x00000018);
nv_mask(clk, src1, 0x003f3141, 0x00000101 | info->clk);
nv_mask(clk, ctrl, 0x00000018, 0x00000018);
udelay(20);
nv_mask(priv, ctrl, 0x00000001, 0x00000000);
disable_clk_src(priv, src0);
nv_mask(clk, ctrl, 0x00000001, 0x00000000);
disable_clk_src(clk, src0);
}
}
static void
prog_clk(struct gt215_clk_priv *priv, int clk, int idx)
prog_clk(struct gt215_clk *clk, int idx, int dom)
{
struct gt215_clk_info *info = &priv->eng[idx];
nv_mask(priv, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | info->clk);
struct gt215_clk_info *info = &clk->eng[dom];
nv_mask(clk, 0x004120 + (idx * 4), 0x003f3141, 0x00000101 | info->clk);
}
static void
prog_host(struct gt215_clk_priv *priv)
prog_host(struct gt215_clk *clk)
{
struct gt215_clk_info *info = &priv->eng[nv_clk_src_host];
u32 hsrc = (nv_rd32(priv, 0xc040));
struct gt215_clk_info *info = &clk->eng[nv_clk_src_host];
u32 hsrc = (nv_rd32(clk, 0xc040));
switch (info->host_out) {
case NVA3_HOST_277:
if ((hsrc & 0x30000000) == 0) {
nv_wr32(priv, 0xc040, hsrc | 0x20000000);
disable_clk_src(priv, 0x4194);
nv_wr32(clk, 0xc040, hsrc | 0x20000000);
disable_clk_src(clk, 0x4194);
}
break;
case NVA3_HOST_CLK:
prog_clk(priv, 0x1d, nv_clk_src_host);
prog_clk(clk, 0x1d, nv_clk_src_host);
if ((hsrc & 0x30000000) >= 0x20000000) {
nv_wr32(priv, 0xc040, hsrc & ~0x30000000);
nv_wr32(clk, 0xc040, hsrc & ~0x30000000);
}
break;
default:
......@@ -407,44 +407,44 @@ prog_host(struct gt215_clk_priv *priv)
}
/* This seems to be a clock gating factor on idle, always set to 64 */
nv_wr32(priv, 0xc044, 0x3e);
nv_wr32(clk, 0xc044, 0x3e);
}
static void
prog_core(struct gt215_clk_priv *priv, int idx)
prog_core(struct gt215_clk *clk, int dom)
{
struct gt215_clk_info *info = &priv->eng[idx];
u32 fb_delay = nv_rd32(priv, 0x10002c);
struct gt215_clk_info *info = &clk->eng[dom];
u32 fb_delay = nv_rd32(clk, 0x10002c);
if (fb_delay < info->fb_delay)
nv_wr32(priv, 0x10002c, info->fb_delay);
nv_wr32(clk, 0x10002c, info->fb_delay);
prog_pll(priv, 0x00, 0x004200, idx);
prog_pll(clk, 0x00, 0x004200, dom);
if (fb_delay > info->fb_delay)
nv_wr32(priv, 0x10002c, info->fb_delay);
nv_wr32(clk, 0x10002c, info->fb_delay);
}
static int
gt215_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
gt215_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct gt215_clk_priv *priv = (void *)clk;
struct gt215_clk_info *core = &priv->eng[nv_clk_src_core];
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
int ret;
if ((ret = calc_clk(priv, cstate, 0x10, 0x4200, nv_clk_src_core)) ||
(ret = calc_clk(priv, cstate, 0x11, 0x4220, nv_clk_src_shader)) ||
(ret = calc_clk(priv, cstate, 0x20, 0x0000, nv_clk_src_disp)) ||
(ret = calc_clk(priv, cstate, 0x21, 0x0000, nv_clk_src_vdec)) ||
(ret = calc_host(priv, cstate)))
if ((ret = calc_clk(clk, cstate, 0x10, 0x4200, nv_clk_src_core)) ||
(ret = calc_clk(clk, cstate, 0x11, 0x4220, nv_clk_src_shader)) ||
(ret = calc_clk(clk, cstate, 0x20, 0x0000, nv_clk_src_disp)) ||
(ret = calc_clk(clk, cstate, 0x21, 0x0000, nv_clk_src_vdec)) ||
(ret = calc_host(clk, cstate)))
return ret;
/* XXX: Should be reading the highest bit in the VBIOS clock to decide
* whether to use a PLL or not... but using a PLL defeats the purpose */
if (core->pll) {
ret = gt215_clk_info(clk, 0x10,
ret = gt215_clk_info(&clk->base, 0x10,
cstate->domain[nv_clk_src_core_intm],
&priv->eng[nv_clk_src_core_intm]);
&clk->eng[nv_clk_src_core_intm]);
if (ret < 0)
return ret;
}
......@@ -453,37 +453,37 @@ gt215_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
}
static int
gt215_clk_prog(struct nvkm_clk *clk)
gt215_clk_prog(struct nvkm_clk *obj)
{
struct gt215_clk_priv *priv = (void *)clk;
struct gt215_clk_info *core = &priv->eng[nv_clk_src_core];
struct gt215_clk *clk = container_of(obj, typeof(*clk), base);
struct gt215_clk_info *core = &clk->eng[nv_clk_src_core];
int ret = 0;
unsigned long flags;
unsigned long *f = &flags;
ret = gt215_clk_pre(clk, f);
ret = gt215_clk_pre(&clk->base, f);
if (ret)
goto out;
if (core->pll)
prog_core(priv, nv_clk_src_core_intm);
prog_core(clk, nv_clk_src_core_intm);
prog_core(priv, nv_clk_src_core);
prog_pll(priv, 0x01, 0x004220, nv_clk_src_shader);
prog_clk(priv, 0x20, nv_clk_src_disp);
prog_clk(priv, 0x21, nv_clk_src_vdec);
prog_host(priv);
prog_core(clk, nv_clk_src_core);
prog_pll(clk, 0x01, 0x004220, nv_clk_src_shader);
prog_clk(clk, 0x20, nv_clk_src_disp);
prog_clk(clk, 0x21, nv_clk_src_vdec);
prog_host(clk);
out:
if (ret == -EBUSY)
f = NULL;
gt215_clk_post(clk, f);
gt215_clk_post(&clk->base, f);
return ret;
}
static void
gt215_clk_tidy(struct nvkm_clk *clk)
gt215_clk_tidy(struct nvkm_clk *obj)
{
}
......@@ -505,19 +505,19 @@ gt215_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct gt215_clk_priv *priv;
struct gt215_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, gt215_domain,
NULL, 0, true, &priv);
*pobject = nv_object(priv);
NULL, 0, true, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->base.read = gt215_clk_read;
priv->base.calc = gt215_clk_calc;
priv->base.prog = gt215_clk_prog;
priv->base.tidy = gt215_clk_tidy;
clk->base.read = gt215_clk_read;
clk->base.calc = gt215_clk_calc;
clk->base.prog = gt215_clk_prog;
clk->base.tidy = gt215_clk_tidy;
return 0;
}
......
......@@ -13,6 +13,6 @@ struct gt215_clk_info {
};
int gt215_pll_info(struct nvkm_clk *, int, u32, u32, struct gt215_clk_info *);
int gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags);
void gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags);
int gt215_clk_pre(struct nvkm_clk *, unsigned long *flags);
void gt215_clk_post(struct nvkm_clk *, unsigned long *flags);
#endif
......@@ -28,7 +28,7 @@
#include <subdev/bios/pll.h>
#include <subdev/timer.h>
struct mcp77_clk_priv {
struct mcp77_clk {
struct nvkm_clk base;
enum nv_clk_src csrc, ssrc, vsrc;
u32 cctrl, sctrl;
......@@ -38,17 +38,17 @@ struct mcp77_clk_priv {
};
static u32
read_div(struct nvkm_clk *clk)
read_div(struct mcp77_clk *clk)
{
return nv_rd32(clk, 0x004600);
}
static u32
read_pll(struct nvkm_clk *clk, u32 base)
read_pll(struct mcp77_clk *clk, u32 base)
{
u32 ctrl = nv_rd32(clk, base + 0);
u32 coef = nv_rd32(clk, base + 4);
u32 ref = clk->read(clk, nv_clk_src_href);
u32 ref = clk->base.read(&clk->base, nv_clk_src_href);
u32 post_div = 0;
u32 clock = 0;
int N1, M1;
......@@ -75,50 +75,50 @@ read_pll(struct nvkm_clk *clk, u32 base)
}
static int
mcp77_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
mcp77_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct mcp77_clk_priv *priv = (void *)clk;
struct mcp77_clk *clk = container_of(obj, typeof(*clk), base);
u32 mast = nv_rd32(clk, 0x00c054);
u32 P = 0;
switch (src) {
case nv_clk_src_crystal:
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
case nv_clk_src_href:
return 100000; /* PCIE reference clock */
case nv_clk_src_hclkm4:
return clk->read(clk, nv_clk_src_href) * 4;
return clk->base.read(&clk->base, nv_clk_src_href) * 4;
case nv_clk_src_hclkm2d3:
return clk->read(clk, nv_clk_src_href) * 2 / 3;
return clk->base.read(&clk->base, nv_clk_src_href) * 2 / 3;
case nv_clk_src_host:
switch (mast & 0x000c0000) {
case 0x00000000: return clk->read(clk, nv_clk_src_hclkm2d3);
case 0x00000000: return clk->base.read(&clk->base, nv_clk_src_hclkm2d3);
case 0x00040000: break;
case 0x00080000: return clk->read(clk, nv_clk_src_hclkm4);
case 0x000c0000: return clk->read(clk, nv_clk_src_cclk);
case 0x00080000: return clk->base.read(&clk->base, nv_clk_src_hclkm4);
case 0x000c0000: return clk->base.read(&clk->base, nv_clk_src_cclk);
}
break;
case nv_clk_src_core:
P = (nv_rd32(clk, 0x004028) & 0x00070000) >> 16;
switch (mast & 0x00000003) {
case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P;
case 0x00000000: return clk->base.read(&clk->base, nv_clk_src_crystal) >> P;
case 0x00000001: return 0;
case 0x00000002: return clk->read(clk, nv_clk_src_hclkm4) >> P;
case 0x00000002: return clk->base.read(&clk->base, nv_clk_src_hclkm4) >> P;
case 0x00000003: return read_pll(clk, 0x004028) >> P;
}
break;
case nv_clk_src_cclk:
if ((mast & 0x03000000) != 0x03000000)
return clk->read(clk, nv_clk_src_core);
return clk->base.read(&clk->base, nv_clk_src_core);
if ((mast & 0x00000200) == 0x00000000)
return clk->read(clk, nv_clk_src_core);
return clk->base.read(&clk->base, nv_clk_src_core);
switch (mast & 0x00000c00) {
case 0x00000000: return clk->read(clk, nv_clk_src_href);
case 0x00000400: return clk->read(clk, nv_clk_src_hclkm4);
case 0x00000800: return clk->read(clk, nv_clk_src_hclkm2d3);
case 0x00000000: return clk->base.read(&clk->base, nv_clk_src_href);
case 0x00000400: return clk->base.read(&clk->base, nv_clk_src_hclkm4);
case 0x00000800: return clk->base.read(&clk->base, nv_clk_src_hclkm2d3);
default: return 0;
}
case nv_clk_src_shader:
......@@ -126,8 +126,8 @@ mcp77_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
switch (mast & 0x00000030) {
case 0x00000000:
if (mast & 0x00000040)
return clk->read(clk, nv_clk_src_href) >> P;
return clk->read(clk, nv_clk_src_crystal) >> P;
return clk->base.read(&clk->base, nv_clk_src_href) >> P;
return clk->base.read(&clk->base, nv_clk_src_crystal) >> P;
case 0x00000010: break;
case 0x00000020: return read_pll(clk, 0x004028) >> P;
case 0x00000030: return read_pll(clk, 0x004020) >> P;
......@@ -141,7 +141,7 @@ mcp77_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
switch (mast & 0x00400000) {
case 0x00400000:
return clk->read(clk, nv_clk_src_core) >> P;
return clk->base.read(&clk->base, nv_clk_src_core) >> P;
break;
default:
return 500000 >> P;
......@@ -152,17 +152,16 @@ mcp77_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
break;
}
nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
nv_debug(clk, "unknown clock source %d 0x%08x\n", src, mast);
return 0;
}
static u32
calc_pll(struct mcp77_clk_priv *priv, u32 reg,
calc_pll(struct mcp77_clk *clk, u32 reg,
u32 clock, int *N, int *M, int *P)
{
struct nvkm_bios *bios = nvkm_bios(priv);
struct nvkm_bios *bios = nvkm_bios(clk);
struct nvbios_pll pll;
struct nvkm_clk *clk = &priv->base;
int ret;
ret = nvbios_pll_parse(bios, reg, &pll);
......@@ -170,11 +169,11 @@ calc_pll(struct mcp77_clk_priv *priv, u32 reg,
return 0;
pll.vco2.max_freq = 0;
pll.refclk = clk->read(clk, nv_clk_src_href);
pll.refclk = clk->base.read(&clk->base, nv_clk_src_href);
if (!pll.refclk)
return 0;
return nv04_pll_calc(nv_subdev(priv), &pll, clock, N, M, NULL, NULL, P);
return nv04_pll_calc(nv_subdev(clk), &pll, clock, N, M, NULL, NULL, P);
}
static inline u32
......@@ -196,9 +195,9 @@ calc_P(u32 src, u32 target, int *div)
}
static int
mcp77_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
mcp77_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct mcp77_clk_priv *priv = (void *)clk;
struct mcp77_clk *clk = container_of(obj, typeof(*clk), base);
const int shader = cstate->domain[nv_clk_src_shader];
const int core = cstate->domain[nv_clk_src_core];
const int vdec = cstate->domain[nv_clk_src_vdec];
......@@ -207,15 +206,15 @@ mcp77_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
int divs = 0;
/* cclk: find suitable source, disable PLL if we can */
if (core < clk->read(clk, nv_clk_src_hclkm4))
out = calc_P(clk->read(clk, nv_clk_src_hclkm4), core, &divs);
if (core < clk->base.read(&clk->base, nv_clk_src_hclkm4))
out = calc_P(clk->base.read(&clk->base, nv_clk_src_hclkm4), core, &divs);
/* Calculate clock * 2, so shader clock can use it too */
clock = calc_pll(priv, 0x4028, (core << 1), &N, &M, &P1);
clock = calc_pll(clk, 0x4028, (core << 1), &N, &M, &P1);
if (abs(core - out) <= abs(core - (clock >> 1))) {
priv->csrc = nv_clk_src_hclkm4;
priv->cctrl = divs << 16;
clk->csrc = nv_clk_src_hclkm4;
clk->cctrl = divs << 16;
} else {
/* NVCTRL is actually used _after_ NVPOST, and after what we
* call NVPLL. To make matters worse, NVPOST is an integer
......@@ -225,31 +224,31 @@ mcp77_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
P1 = 2;
}
priv->csrc = nv_clk_src_core;
priv->ccoef = (N << 8) | M;
clk->csrc = nv_clk_src_core;
clk->ccoef = (N << 8) | M;
priv->cctrl = (P2 + 1) << 16;
priv->cpost = (1 << P1) << 16;
clk->cctrl = (P2 + 1) << 16;
clk->cpost = (1 << P1) << 16;
}
/* sclk: nvpll + divisor, href or spll */
out = 0;
if (shader == clk->read(clk, nv_clk_src_href)) {
priv->ssrc = nv_clk_src_href;
if (shader == clk->base.read(&clk->base, nv_clk_src_href)) {
clk->ssrc = nv_clk_src_href;
} else {
clock = calc_pll(priv, 0x4020, shader, &N, &M, &P1);
if (priv->csrc == nv_clk_src_core)
clock = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
if (clk->csrc == nv_clk_src_core)
out = calc_P((core << 1), shader, &divs);
if (abs(shader - out) <=
abs(shader - clock) &&
(divs + P2) <= 7) {
priv->ssrc = nv_clk_src_core;
priv->sctrl = (divs + P2) << 16;
clk->ssrc = nv_clk_src_core;
clk->sctrl = (divs + P2) << 16;
} else {
priv->ssrc = nv_clk_src_shader;
priv->scoef = (N << 8) | M;
priv->sctrl = P1 << 16;
clk->ssrc = nv_clk_src_shader;
clk->scoef = (N << 8) | M;
clk->sctrl = P1 << 16;
}
}
......@@ -257,49 +256,49 @@ mcp77_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
out = calc_P(core, vdec, &divs);
clock = calc_P(500000, vdec, &P1);
if(abs(vdec - out) <= abs(vdec - clock)) {
priv->vsrc = nv_clk_src_cclk;
priv->vdiv = divs << 16;
clk->vsrc = nv_clk_src_cclk;
clk->vdiv = divs << 16;
} else {
priv->vsrc = nv_clk_src_vdec;
priv->vdiv = P1 << 16;
clk->vsrc = nv_clk_src_vdec;
clk->vdiv = P1 << 16;
}
/* Print strategy! */
nv_debug(priv, "nvpll: %08x %08x %08x\n",
priv->ccoef, priv->cpost, priv->cctrl);
nv_debug(priv, " spll: %08x %08x %08x\n",
priv->scoef, priv->spost, priv->sctrl);
nv_debug(priv, " vdiv: %08x\n", priv->vdiv);
if (priv->csrc == nv_clk_src_hclkm4)
nv_debug(priv, "core: hrefm4\n");
nv_debug(clk, "nvpll: %08x %08x %08x\n",
clk->ccoef, clk->cpost, clk->cctrl);
nv_debug(clk, " spll: %08x %08x %08x\n",
clk->scoef, clk->spost, clk->sctrl);
nv_debug(clk, " vdiv: %08x\n", clk->vdiv);
if (clk->csrc == nv_clk_src_hclkm4)
nv_debug(clk, "core: hrefm4\n");
else
nv_debug(priv, "core: nvpll\n");
nv_debug(clk, "core: nvpll\n");
if (priv->ssrc == nv_clk_src_hclkm4)
nv_debug(priv, "shader: hrefm4\n");
else if (priv->ssrc == nv_clk_src_core)
nv_debug(priv, "shader: nvpll\n");
if (clk->ssrc == nv_clk_src_hclkm4)
nv_debug(clk, "shader: hrefm4\n");
else if (clk->ssrc == nv_clk_src_core)
nv_debug(clk, "shader: nvpll\n");
else
nv_debug(priv, "shader: spll\n");
nv_debug(clk, "shader: spll\n");
if (priv->vsrc == nv_clk_src_hclkm4)
nv_debug(priv, "vdec: 500MHz\n");
if (clk->vsrc == nv_clk_src_hclkm4)
nv_debug(clk, "vdec: 500MHz\n");
else
nv_debug(priv, "vdec: core\n");
nv_debug(clk, "vdec: core\n");
return 0;
}
static int
mcp77_clk_prog(struct nvkm_clk *clk)
mcp77_clk_prog(struct nvkm_clk *obj)
{
struct mcp77_clk_priv *priv = (void *)clk;
struct mcp77_clk *clk = container_of(obj, typeof(*clk), base);
u32 pllmask = 0, mast;
unsigned long flags;
unsigned long *f = &flags;
int ret = 0;
ret = gt215_clk_pre(clk, f);
ret = gt215_clk_pre(&clk->base, f);
if (ret)
goto out;
......@@ -308,66 +307,66 @@ mcp77_clk_prog(struct nvkm_clk *clk)
mast &= ~0x00400e73;
mast |= 0x03000000;
switch (priv->csrc) {
switch (clk->csrc) {
case nv_clk_src_hclkm4:
nv_mask(clk, 0x4028, 0x00070000, priv->cctrl);
nv_mask(clk, 0x4028, 0x00070000, clk->cctrl);
mast |= 0x00000002;
break;
case nv_clk_src_core:
nv_wr32(clk, 0x402c, priv->ccoef);
nv_wr32(clk, 0x4028, 0x80000000 | priv->cctrl);
nv_wr32(clk, 0x4040, priv->cpost);
nv_wr32(clk, 0x402c, clk->ccoef);
nv_wr32(clk, 0x4028, 0x80000000 | clk->cctrl);
nv_wr32(clk, 0x4040, clk->cpost);
pllmask |= (0x3 << 8);
mast |= 0x00000003;
break;
default:
nv_warn(priv,"Reclocking failed: unknown core clock\n");
nv_warn(clk,"Reclocking failed: unknown core clock\n");
goto resume;
}
switch (priv->ssrc) {
switch (clk->ssrc) {
case nv_clk_src_href:
nv_mask(clk, 0x4020, 0x00070000, 0x00000000);
/* mast |= 0x00000000; */
break;
case nv_clk_src_core:
nv_mask(clk, 0x4020, 0x00070000, priv->sctrl);
nv_mask(clk, 0x4020, 0x00070000, clk->sctrl);
mast |= 0x00000020;
break;
case nv_clk_src_shader:
nv_wr32(clk, 0x4024, priv->scoef);
nv_wr32(clk, 0x4020, 0x80000000 | priv->sctrl);
nv_wr32(clk, 0x4070, priv->spost);
nv_wr32(clk, 0x4024, clk->scoef);
nv_wr32(clk, 0x4020, 0x80000000 | clk->sctrl);
nv_wr32(clk, 0x4070, clk->spost);
pllmask |= (0x3 << 12);
mast |= 0x00000030;
break;
default:
nv_warn(priv,"Reclocking failed: unknown sclk clock\n");
nv_warn(clk,"Reclocking failed: unknown sclk clock\n");
goto resume;
}
if (!nv_wait(clk, 0x004080, pllmask, pllmask)) {
nv_warn(priv,"Reclocking failed: unstable PLLs\n");
nv_warn(clk,"Reclocking failed: unstable PLLs\n");
goto resume;
}
switch (priv->vsrc) {
switch (clk->vsrc) {
case nv_clk_src_cclk:
mast |= 0x00400000;
default:
nv_wr32(clk, 0x4600, priv->vdiv);
nv_wr32(clk, 0x4600, clk->vdiv);
}
nv_wr32(clk, 0xc054, mast);
resume:
/* Disable some PLLs and dividers when unused */
if (priv->csrc != nv_clk_src_core) {
if (clk->csrc != nv_clk_src_core) {
nv_wr32(clk, 0x4040, 0x00000000);
nv_mask(clk, 0x4028, 0x80000000, 0x00000000);
}
if (priv->ssrc != nv_clk_src_shader) {
if (clk->ssrc != nv_clk_src_shader) {
nv_wr32(clk, 0x4070, 0x00000000);
nv_mask(clk, 0x4020, 0x80000000, 0x00000000);
}
......@@ -376,12 +375,12 @@ mcp77_clk_prog(struct nvkm_clk *clk)
if (ret == -EBUSY)
f = NULL;
gt215_clk_post(clk, f);
gt215_clk_post(&clk->base, f);
return ret;
}
static void
mcp77_clk_tidy(struct nvkm_clk *clk)
mcp77_clk_tidy(struct nvkm_clk *obj)
{
}
......@@ -400,19 +399,19 @@ mcp77_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct mcp77_clk_priv *priv;
struct mcp77_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, mcp77_domains,
NULL, 0, true, &priv);
*pobject = nv_object(priv);
NULL, 0, true, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->base.read = mcp77_clk_read;
priv->base.calc = mcp77_clk_calc;
priv->base.prog = mcp77_clk_prog;
priv->base.tidy = mcp77_clk_tidy;
clk->base.read = mcp77_clk_read;
clk->base.calc = mcp77_clk_calc;
clk->base.prog = mcp77_clk_prog;
clk->base.tidy = mcp77_clk_tidy;
return 0;
}
......
......@@ -28,10 +28,6 @@
#include <subdev/bios/pll.h>
#include <subdev/devinit/nv04.h>
struct nv04_clk_priv {
struct nvkm_clk base;
};
int
nv04_clk_pll_calc(struct nvkm_clk *clock, struct nvbios_pll *info,
int clk, struct nvkm_pll_vals *pv)
......@@ -77,17 +73,17 @@ nv04_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct nv04_clk_priv *priv;
struct nvkm_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, nv04_domain,
NULL, 0, false, &priv);
*pobject = nv_object(priv);
NULL, 0, false, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->base.pll_calc = nv04_clk_pll_calc;
priv->base.pll_prog = nv04_clk_pll_prog;
clk->pll_calc = nv04_clk_pll_calc;
clk->pll_prog = nv04_clk_pll_prog;
return 0;
}
......
......@@ -27,7 +27,7 @@
#include <subdev/bios.h>
#include <subdev/bios/pll.h>
struct nv40_clk_priv {
struct nv40_clk {
struct nvkm_clk base;
u32 ctrl;
u32 npll_ctrl;
......@@ -46,53 +46,53 @@ nv40_domain[] = {
};
static u32
read_pll_1(struct nv40_clk_priv *priv, u32 reg)
read_pll_1(struct nv40_clk *clk, u32 reg)
{
u32 ctrl = nv_rd32(priv, reg + 0x00);
u32 ctrl = nv_rd32(clk, reg + 0x00);
int P = (ctrl & 0x00070000) >> 16;
int N = (ctrl & 0x0000ff00) >> 8;
int M = (ctrl & 0x000000ff) >> 0;
u32 ref = 27000, clk = 0;
u32 ref = 27000, khz = 0;
if (ctrl & 0x80000000)
clk = ref * N / M;
khz = ref * N / M;
return clk >> P;
return khz >> P;
}
static u32
read_pll_2(struct nv40_clk_priv *priv, u32 reg)
read_pll_2(struct nv40_clk *clk, u32 reg)
{
u32 ctrl = nv_rd32(priv, reg + 0x00);
u32 coef = nv_rd32(priv, reg + 0x04);
u32 ctrl = nv_rd32(clk, reg + 0x00);
u32 coef = nv_rd32(clk, reg + 0x04);
int N2 = (coef & 0xff000000) >> 24;
int M2 = (coef & 0x00ff0000) >> 16;
int N1 = (coef & 0x0000ff00) >> 8;
int M1 = (coef & 0x000000ff) >> 0;
int P = (ctrl & 0x00070000) >> 16;
u32 ref = 27000, clk = 0;
u32 ref = 27000, khz = 0;
if ((ctrl & 0x80000000) && M1) {
clk = ref * N1 / M1;
khz = ref * N1 / M1;
if ((ctrl & 0x40000100) == 0x40000000) {
if (M2)
clk = clk * N2 / M2;
khz = khz * N2 / M2;
else
clk = 0;
khz = 0;
}
}
return clk >> P;
return khz >> P;
}
static u32
read_clk(struct nv40_clk_priv *priv, u32 src)
read_clk(struct nv40_clk *clk, u32 src)
{
switch (src) {
case 3:
return read_pll_2(priv, 0x004000);
return read_pll_2(clk, 0x004000);
case 2:
return read_pll_1(priv, 0x004008);
return read_pll_1(clk, 0x004008);
default:
break;
}
......@@ -101,35 +101,35 @@ read_clk(struct nv40_clk_priv *priv, u32 src)
}
static int
nv40_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
nv40_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct nv40_clk_priv *priv = (void *)clk;
u32 mast = nv_rd32(priv, 0x00c040);
struct nv40_clk *clk = container_of(obj, typeof(*clk), base);
u32 mast = nv_rd32(clk, 0x00c040);
switch (src) {
case nv_clk_src_crystal:
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
case nv_clk_src_href:
return 100000; /*XXX: PCIE/AGP differ*/
case nv_clk_src_core:
return read_clk(priv, (mast & 0x00000003) >> 0);
return read_clk(clk, (mast & 0x00000003) >> 0);
case nv_clk_src_shader:
return read_clk(priv, (mast & 0x00000030) >> 4);
return read_clk(clk, (mast & 0x00000030) >> 4);
case nv_clk_src_mem:
return read_pll_2(priv, 0x4020);
return read_pll_2(clk, 0x4020);
default:
break;
}
nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
nv_debug(clk, "unknown clock source %d 0x%08x\n", src, mast);
return -EINVAL;
}
static int
nv40_clk_calc_pll(struct nv40_clk_priv *priv, u32 reg, u32 clk,
nv40_clk_calc_pll(struct nv40_clk *clk, u32 reg, u32 khz,
int *N1, int *M1, int *N2, int *M2, int *log2P)
{
struct nvkm_bios *bios = nvkm_bios(priv);
struct nvkm_bios *bios = nvkm_bios(clk);
struct nvbios_pll pll;
int ret;
......@@ -137,10 +137,10 @@ nv40_clk_calc_pll(struct nv40_clk_priv *priv, u32 reg, u32 clk,
if (ret)
return ret;
if (clk < pll.vco1.max_freq)
if (khz < pll.vco1.max_freq)
pll.vco2.max_freq = 0;
ret = nv04_pll_calc(nv_subdev(priv), &pll, clk, N1, M1, N2, M2, log2P);
ret = nv04_pll_calc(nv_subdev(clk), &pll, khz, N1, M1, N2, M2, log2P);
if (ret == 0)
return -ERANGE;
......@@ -148,60 +148,60 @@ nv40_clk_calc_pll(struct nv40_clk_priv *priv, u32 reg, u32 clk,
}
static int
nv40_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
nv40_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct nv40_clk_priv *priv = (void *)clk;
struct nv40_clk *clk = container_of(obj, typeof(*clk), base);
int gclk = cstate->domain[nv_clk_src_core];
int sclk = cstate->domain[nv_clk_src_shader];
int N1, M1, N2, M2, log2P;
int ret;
/* core/geometric clock */
ret = nv40_clk_calc_pll(priv, 0x004000, gclk,
ret = nv40_clk_calc_pll(clk, 0x004000, gclk,
&N1, &M1, &N2, &M2, &log2P);
if (ret < 0)
return ret;
if (N2 == M2) {
priv->npll_ctrl = 0x80000100 | (log2P << 16);
priv->npll_coef = (N1 << 8) | M1;
clk->npll_ctrl = 0x80000100 | (log2P << 16);
clk->npll_coef = (N1 << 8) | M1;
} else {
priv->npll_ctrl = 0xc0000000 | (log2P << 16);
priv->npll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
clk->npll_ctrl = 0xc0000000 | (log2P << 16);
clk->npll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
}
/* use the second pll for shader/rop clock, if it differs from core */
if (sclk && sclk != gclk) {
ret = nv40_clk_calc_pll(priv, 0x004008, sclk,
ret = nv40_clk_calc_pll(clk, 0x004008, sclk,
&N1, &M1, NULL, NULL, &log2P);
if (ret < 0)
return ret;
priv->spll = 0xc0000000 | (log2P << 16) | (N1 << 8) | M1;
priv->ctrl = 0x00000223;
clk->spll = 0xc0000000 | (log2P << 16) | (N1 << 8) | M1;
clk->ctrl = 0x00000223;
} else {
priv->spll = 0x00000000;
priv->ctrl = 0x00000333;
clk->spll = 0x00000000;
clk->ctrl = 0x00000333;
}
return 0;
}
static int
nv40_clk_prog(struct nvkm_clk *clk)
nv40_clk_prog(struct nvkm_clk *obj)
{
struct nv40_clk_priv *priv = (void *)clk;
nv_mask(priv, 0x00c040, 0x00000333, 0x00000000);
nv_wr32(priv, 0x004004, priv->npll_coef);
nv_mask(priv, 0x004000, 0xc0070100, priv->npll_ctrl);
nv_mask(priv, 0x004008, 0xc007ffff, priv->spll);
struct nv40_clk *clk = container_of(obj, typeof(*clk), base);
nv_mask(clk, 0x00c040, 0x00000333, 0x00000000);
nv_wr32(clk, 0x004004, clk->npll_coef);
nv_mask(clk, 0x004000, 0xc0070100, clk->npll_ctrl);
nv_mask(clk, 0x004008, 0xc007ffff, clk->spll);
mdelay(5);
nv_mask(priv, 0x00c040, 0x00000333, priv->ctrl);
nv_mask(clk, 0x00c040, 0x00000333, clk->ctrl);
return 0;
}
static void
nv40_clk_tidy(struct nvkm_clk *clk)
nv40_clk_tidy(struct nvkm_clk *obj)
{
}
......@@ -210,21 +210,21 @@ nv40_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct nv40_clk_priv *priv;
struct nv40_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, nv40_domain,
NULL, 0, true, &priv);
*pobject = nv_object(priv);
NULL, 0, true, &clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->base.pll_calc = nv04_clk_pll_calc;
priv->base.pll_prog = nv04_clk_pll_prog;
priv->base.read = nv40_clk_read;
priv->base.calc = nv40_clk_calc;
priv->base.prog = nv40_clk_prog;
priv->base.tidy = nv40_clk_tidy;
clk->base.pll_calc = nv04_clk_pll_calc;
clk->base.pll_prog = nv04_clk_pll_prog;
clk->base.read = nv40_clk_read;
clk->base.calc = nv40_clk_calc;
clk->base.prog = nv40_clk_prog;
clk->base.tidy = nv40_clk_tidy;
return 0;
}
......
......@@ -29,33 +29,32 @@
#include <subdev/bios/pll.h>
static u32
read_div(struct nv50_clk_priv *priv)
read_div(struct nv50_clk *clk)
{
switch (nv_device(priv)->chipset) {
switch (nv_device(clk)->chipset) {
case 0x50: /* it exists, but only has bit 31, not the dividers.. */
case 0x84:
case 0x86:
case 0x98:
case 0xa0:
return nv_rd32(priv, 0x004700);
return nv_rd32(clk, 0x004700);
case 0x92:
case 0x94:
case 0x96:
return nv_rd32(priv, 0x004800);
return nv_rd32(clk, 0x004800);
default:
return 0x00000000;
}
}
static u32
read_pll_src(struct nv50_clk_priv *priv, u32 base)
read_pll_src(struct nv50_clk *clk, u32 base)
{
struct nvkm_clk *clk = &priv->base;
u32 coef, ref = clk->read(clk, nv_clk_src_crystal);
u32 rsel = nv_rd32(priv, 0x00e18c);
u32 coef, ref = clk->base.read(&clk->base, nv_clk_src_crystal);
u32 rsel = nv_rd32(clk, 0x00e18c);
int P, N, M, id;
switch (nv_device(priv)->chipset) {
switch (nv_device(clk)->chipset) {
case 0x50:
case 0xa0:
switch (base) {
......@@ -64,11 +63,11 @@ read_pll_src(struct nv50_clk_priv *priv, u32 base)
case 0x4008: id = !!(rsel & 0x00000008); break;
case 0x4030: id = 0; break;
default:
nv_error(priv, "ref: bad pll 0x%06x\n", base);
nv_error(clk, "ref: bad pll 0x%06x\n", base);
return 0;
}
coef = nv_rd32(priv, 0x00e81c + (id * 0x0c));
coef = nv_rd32(clk, 0x00e81c + (id * 0x0c));
ref *= (coef & 0x01000000) ? 2 : 4;
P = (coef & 0x00070000) >> 16;
N = ((coef & 0x0000ff00) >> 8) + 1;
......@@ -77,7 +76,7 @@ read_pll_src(struct nv50_clk_priv *priv, u32 base)
case 0x84:
case 0x86:
case 0x92:
coef = nv_rd32(priv, 0x00e81c);
coef = nv_rd32(clk, 0x00e81c);
P = (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
......@@ -85,26 +84,26 @@ read_pll_src(struct nv50_clk_priv *priv, u32 base)
case 0x94:
case 0x96:
case 0x98:
rsel = nv_rd32(priv, 0x00c050);
rsel = nv_rd32(clk, 0x00c050);
switch (base) {
case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
case 0x4030: rsel = 3; break;
default:
nv_error(priv, "ref: bad pll 0x%06x\n", base);
nv_error(clk, "ref: bad pll 0x%06x\n", base);
return 0;
}
switch (rsel) {
case 0: id = 1; break;
case 1: return clk->read(clk, nv_clk_src_crystal);
case 2: return clk->read(clk, nv_clk_src_href);
case 1: return clk->base.read(&clk->base, nv_clk_src_crystal);
case 2: return clk->base.read(&clk->base, nv_clk_src_href);
case 3: id = 0; break;
}
coef = nv_rd32(priv, 0x00e81c + (id * 0x28));
P = (nv_rd32(priv, 0x00e824 + (id * 0x28)) >> 16) & 7;
coef = nv_rd32(clk, 0x00e81c + (id * 0x28));
P = (nv_rd32(clk, 0x00e824 + (id * 0x28)) >> 16) & 7;
P += (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
......@@ -120,10 +119,9 @@ read_pll_src(struct nv50_clk_priv *priv, u32 base)
}
static u32
read_pll_ref(struct nv50_clk_priv *priv, u32 base)
read_pll_ref(struct nv50_clk *clk, u32 base)
{
struct nvkm_clk *clk = &priv->base;
u32 src, mast = nv_rd32(priv, 0x00c040);
u32 src, mast = nv_rd32(clk, 0x00c040);
switch (base) {
case 0x004028:
......@@ -139,33 +137,32 @@ read_pll_ref(struct nv50_clk_priv *priv, u32 base)
src = !!(mast & 0x02000000);
break;
case 0x00e810:
return clk->read(clk, nv_clk_src_crystal);
return clk->base.read(&clk->base, nv_clk_src_crystal);
default:
nv_error(priv, "bad pll 0x%06x\n", base);
nv_error(clk, "bad pll 0x%06x\n", base);
return 0;
}
if (src)
return clk->read(clk, nv_clk_src_href);
return clk->base.read(&clk->base, nv_clk_src_href);
return read_pll_src(priv, base);
return read_pll_src(clk, base);
}
static u32
read_pll(struct nv50_clk_priv *priv, u32 base)
read_pll(struct nv50_clk *clk, u32 base)
{
struct nvkm_clk *clk = &priv->base;
u32 mast = nv_rd32(priv, 0x00c040);
u32 ctrl = nv_rd32(priv, base + 0);
u32 coef = nv_rd32(priv, base + 4);
u32 ref = read_pll_ref(priv, base);
u32 mast = nv_rd32(clk, 0x00c040);
u32 ctrl = nv_rd32(clk, base + 0);
u32 coef = nv_rd32(clk, base + 4);
u32 ref = read_pll_ref(clk, base);
u32 freq = 0;
int N1, N2, M1, M2;
if (base == 0x004028 && (mast & 0x00100000)) {
/* wtf, appears to only disable post-divider on gt200 */
if (nv_device(priv)->chipset != 0xa0)
return clk->read(clk, nv_clk_src_dom6);
if (nv_device(clk)->chipset != 0xa0)
return clk->base.read(&clk->base, nv_clk_src_dom6);
}
N2 = (coef & 0xff000000) >> 24;
......@@ -186,70 +183,70 @@ read_pll(struct nv50_clk_priv *priv, u32 base)
}
static int
nv50_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
nv50_clk_read(struct nvkm_clk *obj, enum nv_clk_src src)
{
struct nv50_clk_priv *priv = (void *)clk;
u32 mast = nv_rd32(priv, 0x00c040);
struct nv50_clk *clk = container_of(obj, typeof(*clk), base);
u32 mast = nv_rd32(clk, 0x00c040);
u32 P = 0;
switch (src) {
case nv_clk_src_crystal:
return nv_device(priv)->crystal;
return nv_device(clk)->crystal;
case nv_clk_src_href:
return 100000; /* PCIE reference clock */
case nv_clk_src_hclk:
return div_u64((u64)clk->read(clk, nv_clk_src_href) * 27778, 10000);
return div_u64((u64)clk->base.read(&clk->base, nv_clk_src_href) * 27778, 10000);
case nv_clk_src_hclkm3:
return clk->read(clk, nv_clk_src_hclk) * 3;
return clk->base.read(&clk->base, nv_clk_src_hclk) * 3;
case nv_clk_src_hclkm3d2:
return clk->read(clk, nv_clk_src_hclk) * 3 / 2;
return clk->base.read(&clk->base, nv_clk_src_hclk) * 3 / 2;
case nv_clk_src_host:
switch (mast & 0x30000000) {
case 0x00000000: return clk->read(clk, nv_clk_src_href);
case 0x00000000: return clk->base.read(&clk->base, nv_clk_src_href);
case 0x10000000: break;
case 0x20000000: /* !0x50 */
case 0x30000000: return clk->read(clk, nv_clk_src_hclk);
case 0x30000000: return clk->base.read(&clk->base, nv_clk_src_hclk);
}
break;
case nv_clk_src_core:
if (!(mast & 0x00100000))
P = (nv_rd32(priv, 0x004028) & 0x00070000) >> 16;
P = (nv_rd32(clk, 0x004028) & 0x00070000) >> 16;
switch (mast & 0x00000003) {
case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P;
case 0x00000001: return clk->read(clk, nv_clk_src_dom6);
case 0x00000002: return read_pll(priv, 0x004020) >> P;
case 0x00000003: return read_pll(priv, 0x004028) >> P;
case 0x00000000: return clk->base.read(&clk->base, nv_clk_src_crystal) >> P;
case 0x00000001: return clk->base.read(&clk->base, nv_clk_src_dom6);
case 0x00000002: return read_pll(clk, 0x004020) >> P;
case 0x00000003: return read_pll(clk, 0x004028) >> P;
}
break;
case nv_clk_src_shader:
P = (nv_rd32(priv, 0x004020) & 0x00070000) >> 16;
P = (nv_rd32(clk, 0x004020) & 0x00070000) >> 16;
switch (mast & 0x00000030) {
case 0x00000000:
if (mast & 0x00000080)
return clk->read(clk, nv_clk_src_host) >> P;
return clk->read(clk, nv_clk_src_crystal) >> P;
return clk->base.read(&clk->base, nv_clk_src_host) >> P;
return clk->base.read(&clk->base, nv_clk_src_crystal) >> P;
case 0x00000010: break;
case 0x00000020: return read_pll(priv, 0x004028) >> P;
case 0x00000030: return read_pll(priv, 0x004020) >> P;
case 0x00000020: return read_pll(clk, 0x004028) >> P;
case 0x00000030: return read_pll(clk, 0x004020) >> P;
}
break;
case nv_clk_src_mem:
P = (nv_rd32(priv, 0x004008) & 0x00070000) >> 16;
if (nv_rd32(priv, 0x004008) & 0x00000200) {
P = (nv_rd32(clk, 0x004008) & 0x00070000) >> 16;
if (nv_rd32(clk, 0x004008) & 0x00000200) {
switch (mast & 0x0000c000) {
case 0x00000000:
return clk->read(clk, nv_clk_src_crystal) >> P;
return clk->base.read(&clk->base, nv_clk_src_crystal) >> P;
case 0x00008000:
case 0x0000c000:
return clk->read(clk, nv_clk_src_href) >> P;
return clk->base.read(&clk->base, nv_clk_src_href) >> P;
}
} else {
return read_pll(priv, 0x004008) >> P;
return read_pll(clk, 0x004008) >> P;
}
break;
case nv_clk_src_vdec:
P = (read_div(priv) & 0x00000700) >> 8;
switch (nv_device(priv)->chipset) {
P = (read_div(clk) & 0x00000700) >> 8;
switch (nv_device(clk)->chipset) {
case 0x84:
case 0x86:
case 0x92:
......@@ -258,51 +255,51 @@ nv50_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
case 0xa0:
switch (mast & 0x00000c00) {
case 0x00000000:
if (nv_device(priv)->chipset == 0xa0) /* wtf?? */
return clk->read(clk, nv_clk_src_core) >> P;
return clk->read(clk, nv_clk_src_crystal) >> P;
if (nv_device(clk)->chipset == 0xa0) /* wtf?? */
return clk->base.read(&clk->base, nv_clk_src_core) >> P;
return clk->base.read(&clk->base, nv_clk_src_crystal) >> P;
case 0x00000400:
return 0;
case 0x00000800:
if (mast & 0x01000000)
return read_pll(priv, 0x004028) >> P;
return read_pll(priv, 0x004030) >> P;
return read_pll(clk, 0x004028) >> P;
return read_pll(clk, 0x004030) >> P;
case 0x00000c00:
return clk->read(clk, nv_clk_src_core) >> P;
return clk->base.read(&clk->base, nv_clk_src_core) >> P;
}
break;
case 0x98:
switch (mast & 0x00000c00) {
case 0x00000000:
return clk->read(clk, nv_clk_src_core) >> P;
return clk->base.read(&clk->base, nv_clk_src_core) >> P;
case 0x00000400:
return 0;
case 0x00000800:
return clk->read(clk, nv_clk_src_hclkm3d2) >> P;
return clk->base.read(&clk->base, nv_clk_src_hclkm3d2) >> P;
case 0x00000c00:
return clk->read(clk, nv_clk_src_mem) >> P;
return clk->base.read(&clk->base, nv_clk_src_mem) >> P;
}
break;
}
break;
case nv_clk_src_dom6:
switch (nv_device(priv)->chipset) {
switch (nv_device(clk)->chipset) {
case 0x50:
case 0xa0:
return read_pll(priv, 0x00e810) >> 2;
return read_pll(clk, 0x00e810) >> 2;
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
P = (read_div(priv) & 0x00000007) >> 0;
P = (read_div(clk) & 0x00000007) >> 0;
switch (mast & 0x0c000000) {
case 0x00000000: return clk->read(clk, nv_clk_src_href);
case 0x00000000: return clk->base.read(&clk->base, nv_clk_src_href);
case 0x04000000: break;
case 0x08000000: return clk->read(clk, nv_clk_src_hclk);
case 0x08000000: return clk->base.read(&clk->base, nv_clk_src_hclk);
case 0x0c000000:
return clk->read(clk, nv_clk_src_hclkm3) >> P;
return clk->base.read(&clk->base, nv_clk_src_hclkm3) >> P;
}
break;
default:
......@@ -312,14 +309,14 @@ nv50_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
break;
}
nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
nv_debug(clk, "unknown clock source %d 0x%08x\n", src, mast);
return -EINVAL;
}
static u32
calc_pll(struct nv50_clk_priv *priv, u32 reg, u32 clk, int *N, int *M, int *P)
calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
{
struct nvkm_bios *bios = nvkm_bios(priv);
struct nvkm_bios *bios = nvkm_bios(clk);
struct nvbios_pll pll;
int ret;
......@@ -328,11 +325,11 @@ calc_pll(struct nv50_clk_priv *priv, u32 reg, u32 clk, int *N, int *M, int *P)
return 0;
pll.vco2.max_freq = 0;
pll.refclk = read_pll_ref(priv, reg);
pll.refclk = read_pll_ref(clk, reg);
if (!pll.refclk)
return 0;
return nv04_pll_calc(nv_subdev(priv), &pll, clk, N, M, NULL, NULL, P);
return nv04_pll_calc(nv_subdev(clk), &pll, idx, N, M, NULL, NULL, P);
}
static inline u32
......@@ -360,10 +357,10 @@ clk_same(u32 a, u32 b)
}
static int
nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
nv50_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate)
{
struct nv50_clk_priv *priv = (void *)clk;
struct nv50_clk_hwsq *hwsq = &priv->hwsq;
struct nv50_clk *clk = container_of(obj, typeof(*clk), base);
struct nv50_clk_hwsq *hwsq = &clk->hwsq;
const int shader = cstate->domain[nv_clk_src_shader];
const int core = cstate->domain[nv_clk_src_core];
const int vdec = cstate->domain[nv_clk_src_vdec];
......@@ -392,15 +389,15 @@ nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
freq = calc_div(core, vdec, &P1);
/* see how close we can get using xpll/hclk as a source */
if (nv_device(priv)->chipset != 0x98)
out = read_pll(priv, 0x004030);
if (nv_device(clk)->chipset != 0x98)
out = read_pll(clk, 0x004030);
else
out = clk->read(clk, nv_clk_src_hclkm3d2);
out = clk->base.read(&clk->base, nv_clk_src_hclkm3d2);
out = calc_div(out, vdec, &P2);
/* select whichever gets us closest */
if (abs(vdec - freq) <= abs(vdec - out)) {
if (nv_device(priv)->chipset != 0x98)
if (nv_device(clk)->chipset != 0x98)
mastv |= 0x00000c00;
divsv |= P1 << 8;
} else {
......@@ -416,14 +413,14 @@ nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
* of the host clock frequency
*/
if (dom6) {
if (clk_same(dom6, clk->read(clk, nv_clk_src_href))) {
if (clk_same(dom6, clk->base.read(&clk->base, nv_clk_src_href))) {
mastv |= 0x00000000;
} else
if (clk_same(dom6, clk->read(clk, nv_clk_src_hclk))) {
if (clk_same(dom6, clk->base.read(&clk->base, nv_clk_src_hclk))) {
mastv |= 0x08000000;
} else {
freq = clk->read(clk, nv_clk_src_hclk) * 3;
freq = calc_div(freq, dom6, &P1);
freq = clk->base.read(&clk->base, nv_clk_src_hclk) * 3;
calc_div(freq, dom6, &P1);
mastv |= 0x0c000000;
divsv |= P1;
......@@ -443,13 +440,13 @@ nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
* sclk to hclk) before reprogramming
*/
if (nv_device(priv)->chipset < 0x92)
if (nv_device(clk)->chipset < 0x92)
clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
else
clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
/* core: for the moment at least, always use nvpll */
freq = calc_pll(priv, 0x4028, core, &N, &M, &P1);
freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
if (freq == 0)
return -ERANGE;
......@@ -467,7 +464,7 @@ nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
clk_mask(hwsq, mast, 0x00100033, 0x00000023);
} else {
freq = calc_pll(priv, 0x4020, shader, &N, &M, &P1);
freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
if (freq == 0)
return -ERANGE;
......@@ -485,17 +482,17 @@ nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
}
static int
nv50_clk_prog(struct nvkm_clk *clk)
nv50_clk_prog(struct nvkm_clk *obj)
{
struct nv50_clk_priv *priv = (void *)clk;
return clk_exec(&priv->hwsq, true);
struct nv50_clk *clk = container_of(obj, typeof(*clk), base);
return clk_exec(&clk->hwsq, true);
}
static void
nv50_clk_tidy(struct nvkm_clk *clk)
nv50_clk_tidy(struct nvkm_clk *obj)
{
struct nv50_clk_priv *priv = (void *)clk;
clk_exec(&priv->hwsq, false);
struct nv50_clk *clk = container_of(obj, typeof(*clk), base);
clk_exec(&clk->hwsq, false);
}
int
......@@ -504,37 +501,37 @@ nv50_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_object **pobject)
{
struct nv50_clk_oclass *pclass = (void *)oclass;
struct nv50_clk_priv *priv;
struct nv50_clk *clk;
int ret;
ret = nvkm_clk_create(parent, engine, oclass, pclass->domains,
NULL, 0, nv_device(parent)->chipset == 0xa0,
&priv);
*pobject = nv_object(priv);
&clk);
*pobject = nv_object(clk);
if (ret)
return ret;
priv->hwsq.r_fifo = hwsq_reg(0x002504);
priv->hwsq.r_spll[0] = hwsq_reg(0x004020);
priv->hwsq.r_spll[1] = hwsq_reg(0x004024);
priv->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
priv->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
switch (nv_device(priv)->chipset) {
clk->hwsq.r_fifo = hwsq_reg(0x002504);
clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
switch (nv_device(clk)->chipset) {
case 0x92:
case 0x94:
case 0x96:
priv->hwsq.r_divs = hwsq_reg(0x004800);
clk->hwsq.r_divs = hwsq_reg(0x004800);
break;
default:
priv->hwsq.r_divs = hwsq_reg(0x004700);
clk->hwsq.r_divs = hwsq_reg(0x004700);
break;
}
priv->hwsq.r_mast = hwsq_reg(0x00c040);
clk->hwsq.r_mast = hwsq_reg(0x00c040);
priv->base.read = nv50_clk_read;
priv->base.calc = nv50_clk_calc;
priv->base.prog = nv50_clk_prog;
priv->base.tidy = nv50_clk_tidy;
clk->base.read = nv50_clk_read;
clk->base.calc = nv50_clk_calc;
clk->base.prog = nv50_clk_prog;
clk->base.tidy = nv50_clk_tidy;
return 0;
}
......
......@@ -12,7 +12,7 @@ struct nv50_clk_hwsq {
struct hwsq_reg r_mast;
};
struct nv50_clk_priv {
struct nv50_clk {
struct nvkm_clk base;
struct nv50_clk_hwsq hwsq;
};
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment