Commit 445e258f authored by archit taneja's avatar archit taneja Committed by Mauro Carvalho Chehab

[media] OMAP_VOUT: Create separate file for VRFB related API's

Introduce omap_vout_vrfb.c and omap_vout_vrfb.h, for all VRFB related API's,
making OMAP_VOUT driver independent from VRFB. This is required for OMAP4 DSS,
since OMAP4 doesn't have VRFB block.

Added new enum vout_rotation_type and "rotation_type" member to omapvideo_info,
this is initialized based on the arch type in omap_vout_probe. The rotation_type
var is now used to choose between vrfb and non-vrfb calls.
Signed-off-by: default avatarArchit Taneja <archit@ti.com>
Signed-off-by: default avatarVaibhav Hiremath <hvaibhav@ti.com>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@redhat.com>
parent b366888a
config VIDEO_OMAP2_VOUT_VRFB
bool
config VIDEO_OMAP2_VOUT config VIDEO_OMAP2_VOUT
tristate "OMAP2/OMAP3 V4L2-Display driver" tristate "OMAP2/OMAP3 V4L2-Display driver"
depends on ARCH_OMAP2 || ARCH_OMAP3 depends on ARCH_OMAP2 || ARCH_OMAP3
select VIDEOBUF_GEN select VIDEOBUF_GEN
select VIDEOBUF_DMA_CONTIG select VIDEOBUF_DMA_CONTIG
select OMAP2_DSS select OMAP2_DSS
select OMAP2_VRAM select OMAP2_VRFB if ARCH_OMAP2 || ARCH_OMAP3
select OMAP2_VRFB select VIDEO_OMAP2_VOUT_VRFB if VIDEO_OMAP2_VOUT && OMAP2_VRFB
default n default n
---help--- ---help---
V4L2 Display driver support for OMAP2/3 based boards. V4L2 Display driver support for OMAP2/3 based boards.
...@@ -4,4 +4,5 @@ ...@@ -4,4 +4,5 @@
# OMAP2/3 Display driver # OMAP2/3 Display driver
omap-vout-y := omap_vout.o omap_voutlib.o omap-vout-y := omap_vout.o omap_voutlib.o
omap-vout-$(CONFIG_VIDEO_OMAP2_VOUT_VRFB) += omap_vout_vrfb.o
obj-$(CONFIG_VIDEO_OMAP2_VOUT) += omap-vout.o obj-$(CONFIG_VIDEO_OMAP2_VOUT) += omap-vout.o
...@@ -48,6 +48,7 @@ ...@@ -48,6 +48,7 @@
#include "omap_voutlib.h" #include "omap_voutlib.h"
#include "omap_voutdef.h" #include "omap_voutdef.h"
#include "omap_vout_vrfb.h"
MODULE_AUTHOR("Texas Instruments"); MODULE_AUTHOR("Texas Instruments");
MODULE_DESCRIPTION("OMAP Video for Linux Video out driver"); MODULE_DESCRIPTION("OMAP Video for Linux Video out driver");
...@@ -142,41 +143,6 @@ static const struct v4l2_fmtdesc omap_formats[] = { ...@@ -142,41 +143,6 @@ static const struct v4l2_fmtdesc omap_formats[] = {
#define NUM_OUTPUT_FORMATS (ARRAY_SIZE(omap_formats)) #define NUM_OUTPUT_FORMATS (ARRAY_SIZE(omap_formats))
/*
* Function for allocating video buffers
*/
static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
unsigned int *count, int startindex)
{
int i, j;
for (i = 0; i < *count; i++) {
if (!vout->smsshado_virt_addr[i]) {
vout->smsshado_virt_addr[i] =
omap_vout_alloc_buffer(vout->smsshado_size,
&vout->smsshado_phy_addr[i]);
}
if (!vout->smsshado_virt_addr[i] && startindex != -1) {
if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
break;
}
if (!vout->smsshado_virt_addr[i]) {
for (j = 0; j < i; j++) {
omap_vout_free_buffer(
vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
*count = 0;
return -ENOMEM;
}
memset((void *) vout->smsshado_virt_addr[i], 0,
vout->smsshado_size);
}
return 0;
}
/* /*
* Try format * Try format
*/ */
...@@ -269,37 +235,10 @@ static u32 omap_vout_uservirt_to_phys(u32 virtp) ...@@ -269,37 +235,10 @@ static u32 omap_vout_uservirt_to_phys(u32 virtp)
return physp; return physp;
} }
/*
* Wakes up the application once the DMA transfer to VRFB space is completed.
*/
static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
{
struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
t->tx_status = 1;
wake_up_interruptible(&t->wait);
}
/*
* Release the VRFB context once the module exits
*/
static void omap_vout_release_vrfb(struct omap_vout_device *vout)
{
int i;
for (i = 0; i < VRFB_NUM_BUFS; i++)
omap_vrfb_release_ctx(&vout->vrfb_context[i]);
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
omap_free_dma(vout->vrfb_dma_tx.dma_ch);
}
}
/* /*
* Free the V4L2 buffers * Free the V4L2 buffers
*/ */
static void omap_vout_free_buffers(struct omap_vout_device *vout) void omap_vout_free_buffers(struct omap_vout_device *vout)
{ {
int i, numbuffers; int i, numbuffers;
...@@ -315,52 +254,6 @@ static void omap_vout_free_buffers(struct omap_vout_device *vout) ...@@ -315,52 +254,6 @@ static void omap_vout_free_buffers(struct omap_vout_device *vout)
} }
} }
/*
* Free VRFB buffers
*/
static void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
{
int j;
for (j = 0; j < VRFB_NUM_BUFS; j++) {
omap_vout_free_buffer(vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
}
/*
* Allocate the buffers for the VRFB space. Data is copied from V4L2
* buffers to the VRFB buffers using the DMA engine.
*/
static int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
unsigned int *count, unsigned int startindex)
{
int i;
bool yuv_mode;
/* Allocate the VRFB buffers only if the buffers are not
* allocated during init time.
*/
if ((is_rotation_enabled(vout)) && !vout->vrfb_static_allocation)
if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
return -ENOMEM;
if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
vout->dss_mode == OMAP_DSS_COLOR_UYVY)
yuv_mode = true;
else
yuv_mode = false;
for (i = 0; i < *count; i++)
omap_vrfb_setup(&vout->vrfb_context[i],
vout->smsshado_phy_addr[i], vout->pix.width,
vout->pix.height, vout->bpp, yuv_mode);
return 0;
}
/* /*
* Convert V4L2 rotation to DSS rotation * Convert V4L2 rotation to DSS rotation
* V4L2 understand 0, 90, 180, 270. * V4L2 understand 0, 90, 180, 270.
...@@ -390,124 +283,38 @@ static int v4l2_rot_to_dss_rot(int v4l2_rotation, ...@@ -390,124 +283,38 @@ static int v4l2_rot_to_dss_rot(int v4l2_rotation,
return ret; return ret;
} }
/*
* Calculate the buffer offsets from which the streaming should
* start. This offset calculation is mainly required because of
* the VRFB 32 pixels alignment with rotation.
*/
static int omap_vout_calculate_offset(struct omap_vout_device *vout) static int omap_vout_calculate_offset(struct omap_vout_device *vout)
{ {
struct omap_overlay *ovl;
enum dss_rotation rotation;
struct omapvideo_info *ovid; struct omapvideo_info *ovid;
bool mirroring = vout->mirror;
struct omap_dss_device *cur_display;
struct v4l2_rect *crop = &vout->crop; struct v4l2_rect *crop = &vout->crop;
struct v4l2_pix_format *pix = &vout->pix; struct v4l2_pix_format *pix = &vout->pix;
int *cropped_offset = &vout->cropped_offset; int *cropped_offset = &vout->cropped_offset;
int vr_ps = 1, ps = 2, temp_ps = 2; int ps = 2, line_length = 0;
int offset = 0, ctop = 0, cleft = 0, line_length = 0;
ovid = &vout->vid_info; ovid = &vout->vid_info;
ovl = ovid->overlays[0];
/* get the display device attached to the overlay */
if (!ovl->manager || !ovl->manager->device)
return -1;
cur_display = ovl->manager->device; if (ovid->rotation_type == VOUT_ROT_VRFB) {
rotation = calc_rotation(vout); omap_vout_calculate_vrfb_offset(vout);
} else {
vout->line_length = line_length = pix->width;
if (V4L2_PIX_FMT_YUYV == pix->pixelformat || if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
V4L2_PIX_FMT_UYVY == pix->pixelformat) { V4L2_PIX_FMT_UYVY == pix->pixelformat)
if (is_rotation_enabled(vout)) { ps = 2;
/* else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat)
* ps - Actual pixel size for YUYV/UYVY for
* VRFB/Mirroring is 4 bytes
* vr_ps - Virtually pixel size for YUYV/UYVY is
* 2 bytes
*/
ps = 4;
vr_ps = 2;
} else {
ps = 2; /* otherwise the pixel size is 2 byte */
}
} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
ps = 4; ps = 4;
} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) { else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat)
ps = 3; ps = 3;
}
vout->ps = ps;
vout->vr_ps = vr_ps;
if (is_rotation_enabled(vout)) { vout->ps = ps;
line_length = MAX_PIXELS_PER_LINE;
ctop = (pix->height - crop->height) - crop->top;
cleft = (pix->width - crop->width) - crop->left;
} else {
line_length = pix->width;
}
vout->line_length = line_length;
switch (rotation) {
case dss_rotation_90_degree:
offset = vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (mirroring == 0) {
*cropped_offset = offset + line_length *
temp_ps * cleft + crop->top * temp_ps;
} else {
*cropped_offset = offset + line_length * temp_ps *
cleft + crop->top * temp_ps + (line_length *
((crop->width / (vr_ps)) - 1) * ps);
}
break;
case dss_rotation_180_degree:
offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp) +
(vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp));
if (mirroring == 0) {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps;
} else {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps + (line_length *
(crop->height - 1) * ps);
}
break;
case dss_rotation_270_degree:
offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (mirroring == 0) {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps;
} else {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps +
(line_length * ((crop->width / vr_ps) - 1) *
ps);
}
break;
case dss_rotation_0_degree:
if (mirroring == 0) {
*cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps;
} else {
*cropped_offset = (line_length * ps) * *cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps + crop->top + crop->left * ps;
(line_length * (crop->height - 1) * ps);
}
break;
default:
*cropped_offset = (line_length * ps * crop->top) /
vr_ps + (crop->left * ps) / vr_ps +
((crop->width / vr_ps) - 1) * ps;
break;
} }
v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "%s Offset:%x\n", v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "%s Offset:%x\n",
__func__, *cropped_offset); __func__, vout->cropped_offset);
return 0; return 0;
} }
...@@ -845,6 +652,7 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count, ...@@ -845,6 +652,7 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
int startindex = 0, i, j; int startindex = 0, i, j;
u32 phy_addr = 0, virt_addr = 0; u32 phy_addr = 0, virt_addr = 0;
struct omap_vout_device *vout = q->priv_data; struct omap_vout_device *vout = q->priv_data;
struct omapvideo_info *ovid = &vout->vid_info;
if (!vout) if (!vout)
return -EINVAL; return -EINVAL;
...@@ -857,13 +665,10 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count, ...@@ -857,13 +665,10 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
if (V4L2_MEMORY_MMAP == vout->memory && *count < startindex) if (V4L2_MEMORY_MMAP == vout->memory && *count < startindex)
*count = startindex; *count = startindex;
if ((is_rotation_enabled(vout)) && *count > VRFB_NUM_BUFS) if (ovid->rotation_type == VOUT_ROT_VRFB) {
*count = VRFB_NUM_BUFS;
/* If rotation is enabled, allocate memory for VRFB space also */
if (is_rotation_enabled(vout))
if (omap_vout_vrfb_buffer_setup(vout, count, startindex)) if (omap_vout_vrfb_buffer_setup(vout, count, startindex))
return -ENOMEM; return -ENOMEM;
}
if (V4L2_MEMORY_MMAP != vout->memory) if (V4L2_MEMORY_MMAP != vout->memory)
return 0; return 0;
...@@ -887,6 +692,9 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count, ...@@ -887,6 +692,9 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
virt_addr = omap_vout_alloc_buffer(vout->buffer_size, virt_addr = omap_vout_alloc_buffer(vout->buffer_size,
&phy_addr); &phy_addr);
if (!virt_addr) { if (!virt_addr) {
if (ovid->rotation_type == VOUT_ROT_NONE) {
break;
} else {
if (!is_rotation_enabled(vout)) if (!is_rotation_enabled(vout))
break; break;
/* Free the VRFB buffers if no space for V4L2 buffers */ /* Free the VRFB buffers if no space for V4L2 buffers */
...@@ -898,6 +706,7 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count, ...@@ -898,6 +706,7 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
vout->smsshado_phy_addr[j] = 0; vout->smsshado_phy_addr[j] = 0;
} }
} }
}
vout->buf_virt_addr[i] = virt_addr; vout->buf_virt_addr[i] = virt_addr;
vout->buf_phy_addr[i] = phy_addr; vout->buf_phy_addr[i] = phy_addr;
} }
...@@ -908,9 +717,9 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count, ...@@ -908,9 +717,9 @@ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
/* /*
* Free the V4L2 buffers additionally allocated than default * Free the V4L2 buffers additionally allocated than default
* number of buffers and free all the VRFB buffers * number of buffers
*/ */
static void omap_vout_free_allbuffers(struct omap_vout_device *vout) static void omap_vout_free_extra_buffers(struct omap_vout_device *vout)
{ {
int num_buffers = 0, i; int num_buffers = 0, i;
...@@ -925,20 +734,6 @@ static void omap_vout_free_allbuffers(struct omap_vout_device *vout) ...@@ -925,20 +734,6 @@ static void omap_vout_free_allbuffers(struct omap_vout_device *vout)
vout->buf_virt_addr[i] = 0; vout->buf_virt_addr[i] = 0;
vout->buf_phy_addr[i] = 0; vout->buf_phy_addr[i] = 0;
} }
/* Free the VRFB buffers only if they are allocated
* during reqbufs. Don't free if init time allocated
*/
if (!vout->vrfb_static_allocation) {
for (i = 0; i < VRFB_NUM_BUFS; i++) {
if (vout->smsshado_virt_addr[i]) {
omap_vout_free_buffer(
vout->smsshado_virt_addr[i],
vout->smsshado_size);
vout->smsshado_virt_addr[i] = 0;
vout->smsshado_phy_addr[i] = 0;
}
}
}
vout->buffer_allocated = num_buffers; vout->buffer_allocated = num_buffers;
} }
...@@ -953,13 +748,8 @@ static int omap_vout_buffer_prepare(struct videobuf_queue *q, ...@@ -953,13 +748,8 @@ static int omap_vout_buffer_prepare(struct videobuf_queue *q,
struct videobuf_buffer *vb, struct videobuf_buffer *vb,
enum v4l2_field field) enum v4l2_field field)
{ {
dma_addr_t dmabuf;
struct vid_vrfb_dma *tx;
enum dss_rotation rotation;
struct omap_vout_device *vout = q->priv_data; struct omap_vout_device *vout = q->priv_data;
u32 dest_frame_index = 0, src_element_index = 0; struct omapvideo_info *ovid = &vout->vid_info;
u32 dest_element_index = 0, src_frame_index = 0;
u32 elem_count = 0, frame_count = 0, pixsize = 2;
if (VIDEOBUF_NEEDS_INIT == vb->state) { if (VIDEOBUF_NEEDS_INIT == vb->state) {
vb->width = vout->pix.width; vb->width = vout->pix.width;
...@@ -981,62 +771,9 @@ static int omap_vout_buffer_prepare(struct videobuf_queue *q, ...@@ -981,62 +771,9 @@ static int omap_vout_buffer_prepare(struct videobuf_queue *q,
vout->queued_buf_addr[vb->i] = (u8 *)vout->buf_phy_addr[vb->i]; vout->queued_buf_addr[vb->i] = (u8 *)vout->buf_phy_addr[vb->i];
} }
if (!is_rotation_enabled(vout)) if (ovid->rotation_type == VOUT_ROT_VRFB)
return 0; return omap_vout_prepare_vrfb(vout, vb);
else
dmabuf = vout->buf_phy_addr[vb->i];
/* If rotation is enabled, copy input buffer into VRFB
* memory space using DMA. We are copying input buffer
* into VRFB memory space of desired angle and DSS will
* read image VRFB memory for 0 degree angle
*/
pixsize = vout->bpp * vout->vrfb_bpp;
/*
* DMA transfer in double index mode
*/
/* Frame index */
dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
(vout->pix.width * vout->bpp)) + 1;
/* Source and destination parameters */
src_element_index = 0;
src_frame_index = 0;
dest_element_index = 1;
/* Number of elements per frame */
elem_count = vout->pix.width * vout->bpp;
frame_count = vout->pix.height;
tx = &vout->vrfb_dma_tx;
tx->tx_status = 0;
omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
(elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
tx->dev_id, 0x0);
/* src_port required only for OMAP1 */
omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
dmabuf, src_element_index, src_frame_index);
/*set dma source burst mode for VRFB */
omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
rotation = calc_rotation(vout);
/* dest_port required only for OMAP1 */
omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
vout->vrfb_context[vb->i].paddr[0], dest_element_index,
dest_frame_index);
/*set dma dest burst mode for VRFB */
omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
omap_start_dma(tx->dma_ch);
interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
if (tx->tx_status == 0) {
omap_stop_dma(tx->dma_ch);
return -EINVAL;
}
/* Store buffers physical address into an array. Addresses
* from this array will be used to configure DSS */
vout->queued_buf_addr[vb->i] = (u8 *)
vout->vrfb_context[vb->i].paddr[rotation];
return 0; return 0;
} }
...@@ -1189,7 +926,15 @@ static int omap_vout_release(struct file *file) ...@@ -1189,7 +926,15 @@ static int omap_vout_release(struct file *file)
"Unable to apply changes\n"); "Unable to apply changes\n");
/* Free all buffers */ /* Free all buffers */
omap_vout_free_allbuffers(vout); omap_vout_free_extra_buffers(vout);
/* Free the VRFB buffers only if they are allocated
* during reqbufs. Don't free if init time allocated
*/
if (ovid->rotation_type == VOUT_ROT_VRFB) {
if (!vout->vrfb_static_allocation)
omap_vout_free_vrfb_buffers(vout);
}
videobuf_mmap_free(q); videobuf_mmap_free(q);
/* Even if apply changes fails we should continue /* Even if apply changes fails we should continue
...@@ -1616,9 +1361,17 @@ static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a) ...@@ -1616,9 +1361,17 @@ static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a)
switch (a->id) { switch (a->id) {
case V4L2_CID_ROTATE: case V4L2_CID_ROTATE:
{ {
struct omapvideo_info *ovid;
int rotation = a->value; int rotation = a->value;
ovid = &vout->vid_info;
mutex_lock(&vout->lock); mutex_lock(&vout->lock);
if (rotation && ovid->rotation_type == VOUT_ROT_NONE) {
mutex_unlock(&vout->lock);
ret = -ERANGE;
break;
}
if (rotation && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) { if (rotation && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
mutex_unlock(&vout->lock); mutex_unlock(&vout->lock);
...@@ -1674,6 +1427,11 @@ static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a) ...@@ -1674,6 +1427,11 @@ static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a)
ovl = ovid->overlays[0]; ovl = ovid->overlays[0];
mutex_lock(&vout->lock); mutex_lock(&vout->lock);
if (mirror && ovid->rotation_type == VOUT_ROT_NONE) {
mutex_unlock(&vout->lock);
ret = -ERANGE;
break;
}
if (mirror && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) { if (mirror && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
mutex_unlock(&vout->lock); mutex_unlock(&vout->lock);
...@@ -2119,6 +1877,7 @@ static int __init omap_vout_setup_video_data(struct omap_vout_device *vout) ...@@ -2119,6 +1877,7 @@ static int __init omap_vout_setup_video_data(struct omap_vout_device *vout)
vout->mirror = 0; vout->mirror = 0;
vout->control[2].id = V4L2_CID_HFLIP; vout->control[2].id = V4L2_CID_HFLIP;
vout->control[2].value = 0; vout->control[2].value = 0;
if (vout->vid_info.rotation_type == VOUT_ROT_VRFB)
vout->vrfb_bpp = 2; vout->vrfb_bpp = 2;
control[1].id = V4L2_CID_BG_COLOR; control[1].id = V4L2_CID_BG_COLOR;
...@@ -2151,17 +1910,15 @@ static int __init omap_vout_setup_video_bufs(struct platform_device *pdev, ...@@ -2151,17 +1910,15 @@ static int __init omap_vout_setup_video_bufs(struct platform_device *pdev,
int vid_num) int vid_num)
{ {
u32 numbuffers; u32 numbuffers;
int ret = 0, i, j; int ret = 0, i;
int image_width, image_height; struct omapvideo_info *ovid;
struct video_device *vfd;
struct omap_vout_device *vout; struct omap_vout_device *vout;
int static_vrfb_allocation = 0, vrfb_num_bufs = VRFB_NUM_BUFS;
struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
struct omap2video_device *vid_dev = struct omap2video_device *vid_dev =
container_of(v4l2_dev, struct omap2video_device, v4l2_dev); container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
vout = vid_dev->vouts[vid_num]; vout = vid_dev->vouts[vid_num];
vfd = vout->vfd; ovid = &vout->vid_info;
numbuffers = (vid_num == 0) ? video1_numbuffers : video2_numbuffers; numbuffers = (vid_num == 0) ? video1_numbuffers : video2_numbuffers;
vout->buffer_size = (vid_num == 0) ? video1_bufsize : video2_bufsize; vout->buffer_size = (vid_num == 0) ? video1_bufsize : video2_bufsize;
...@@ -2178,66 +1935,16 @@ static int __init omap_vout_setup_video_bufs(struct platform_device *pdev, ...@@ -2178,66 +1935,16 @@ static int __init omap_vout_setup_video_bufs(struct platform_device *pdev,
} }
} }
for (i = 0; i < VRFB_NUM_BUFS; i++) {
if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
dev_info(&pdev->dev, ": VRFB allocation failed\n");
for (j = 0; j < i; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
ret = -ENOMEM;
goto free_buffers;
}
}
vout->cropped_offset = 0; vout->cropped_offset = 0;
/* Calculate VRFB memory size */ if (ovid->rotation_type == VOUT_ROT_VRFB) {
/* allocate for worst case size */ int static_vrfb_allocation = (vid_num == 0) ?
image_width = VID_MAX_WIDTH / TILE_SIZE;
if (VID_MAX_WIDTH % TILE_SIZE)
image_width++;
image_width = image_width * TILE_SIZE;
image_height = VID_MAX_HEIGHT / TILE_SIZE;
if (VID_MAX_HEIGHT % TILE_SIZE)
image_height++;
image_height = image_height * TILE_SIZE;
vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
/*
* Request and Initialize DMA, for DMA based VRFB transfer
*/
vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
vout->vrfb_dma_tx.dma_ch = -1;
vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
omap_vout_vrfb_dma_tx_callback,
(void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
if (ret < 0) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
" video%d\n", vfd->minor);
}
init_waitqueue_head(&vout->vrfb_dma_tx.wait);
/* Allocate VRFB buffers if selected through bootargs */
static_vrfb_allocation = (vid_num == 0) ?
vid1_static_vrfb_alloc : vid2_static_vrfb_alloc; vid1_static_vrfb_alloc : vid2_static_vrfb_alloc;
ret = omap_vout_setup_vrfb_bufs(pdev, vid_num,
/* statically allocated the VRFB buffer is done through static_vrfb_allocation);
commands line aruments */
if (static_vrfb_allocation) {
if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
ret = -ENOMEM;
goto release_vrfb_ctx;
} }
vout->vrfb_static_allocation = 1;
}
return 0;
release_vrfb_ctx: return ret;
for (j = 0; j < VRFB_NUM_BUFS; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
free_buffers: free_buffers:
for (i = 0; i < numbuffers; i++) { for (i = 0; i < numbuffers; i++) {
...@@ -2280,6 +1987,10 @@ static int __init omap_vout_create_video_devices(struct platform_device *pdev) ...@@ -2280,6 +1987,10 @@ static int __init omap_vout_create_video_devices(struct platform_device *pdev)
vout->vid_info.num_overlays = 1; vout->vid_info.num_overlays = 1;
vout->vid_info.id = k + 1; vout->vid_info.id = k + 1;
/* Set VRFB as rotation_type for omap2 and omap3 */
if (cpu_is_omap24xx() || cpu_is_omap34xx())
vout->vid_info.rotation_type = VOUT_ROT_VRFB;
/* Setup the default configuration for the video devices /* Setup the default configuration for the video devices
*/ */
if (omap_vout_setup_video_data(vout) != 0) { if (omap_vout_setup_video_data(vout) != 0) {
...@@ -2313,6 +2024,7 @@ static int __init omap_vout_create_video_devices(struct platform_device *pdev) ...@@ -2313,6 +2024,7 @@ static int __init omap_vout_create_video_devices(struct platform_device *pdev)
goto success; goto success;
error2: error2:
if (vout->vid_info.rotation_type == VOUT_ROT_VRFB)
omap_vout_release_vrfb(vout); omap_vout_release_vrfb(vout);
omap_vout_free_buffers(vout); omap_vout_free_buffers(vout);
error1: error1:
...@@ -2334,11 +2046,13 @@ static int __init omap_vout_create_video_devices(struct platform_device *pdev) ...@@ -2334,11 +2046,13 @@ static int __init omap_vout_create_video_devices(struct platform_device *pdev)
static void omap_vout_cleanup_device(struct omap_vout_device *vout) static void omap_vout_cleanup_device(struct omap_vout_device *vout)
{ {
struct video_device *vfd; struct video_device *vfd;
struct omapvideo_info *ovid;
if (!vout) if (!vout)
return; return;
vfd = vout->vfd; vfd = vout->vfd;
ovid = &vout->vid_info;
if (vfd) { if (vfd) {
if (!video_is_registered(vfd)) { if (!video_is_registered(vfd)) {
/* /*
...@@ -2354,14 +2068,15 @@ static void omap_vout_cleanup_device(struct omap_vout_device *vout) ...@@ -2354,14 +2068,15 @@ static void omap_vout_cleanup_device(struct omap_vout_device *vout)
video_unregister_device(vfd); video_unregister_device(vfd);
} }
} }
if (ovid->rotation_type == VOUT_ROT_VRFB) {
omap_vout_release_vrfb(vout); omap_vout_release_vrfb(vout);
omap_vout_free_buffers(vout);
/* Free the VRFB buffer if allocated /* Free the VRFB buffer if allocated
* init time * init time
*/ */
if (vout->vrfb_static_allocation) if (vout->vrfb_static_allocation)
omap_vout_free_vrfb_buffers(vout); omap_vout_free_vrfb_buffers(vout);
}
omap_vout_free_buffers(vout);
kfree(vout); kfree(vout);
} }
......
/*
* omap_vout_vrfb.c
*
* Copyright (C) 2010 Texas Instruments.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
*/
#include <linux/sched.h>
#include <linux/platform_device.h>
#include <linux/videodev2.h>
#include <media/videobuf-dma-contig.h>
#include <media/v4l2-device.h>
#include <plat/dma.h>
#include <plat/vrfb.h>
#include "omap_voutdef.h"
#include "omap_voutlib.h"
/*
* Function for allocating video buffers
*/
static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
unsigned int *count, int startindex)
{
int i, j;
for (i = 0; i < *count; i++) {
if (!vout->smsshado_virt_addr[i]) {
vout->smsshado_virt_addr[i] =
omap_vout_alloc_buffer(vout->smsshado_size,
&vout->smsshado_phy_addr[i]);
}
if (!vout->smsshado_virt_addr[i] && startindex != -1) {
if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
break;
}
if (!vout->smsshado_virt_addr[i]) {
for (j = 0; j < i; j++) {
omap_vout_free_buffer(
vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
*count = 0;
return -ENOMEM;
}
memset((void *) vout->smsshado_virt_addr[i], 0,
vout->smsshado_size);
}
return 0;
}
/*
* Wakes up the application once the DMA transfer to VRFB space is completed.
*/
static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
{
struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
t->tx_status = 1;
wake_up_interruptible(&t->wait);
}
/*
* Free VRFB buffers
*/
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
{
int j;
for (j = 0; j < VRFB_NUM_BUFS; j++) {
omap_vout_free_buffer(vout->smsshado_virt_addr[j],
vout->smsshado_size);
vout->smsshado_virt_addr[j] = 0;
vout->smsshado_phy_addr[j] = 0;
}
}
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
u32 static_vrfb_allocation)
{
int ret = 0, i, j;
struct omap_vout_device *vout;
struct video_device *vfd;
int image_width, image_height;
int vrfb_num_bufs = VRFB_NUM_BUFS;
struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
struct omap2video_device *vid_dev =
container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
vout = vid_dev->vouts[vid_num];
vfd = vout->vfd;
for (i = 0; i < VRFB_NUM_BUFS; i++) {
if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
dev_info(&pdev->dev, ": VRFB allocation failed\n");
for (j = 0; j < i; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
ret = -ENOMEM;
goto free_buffers;
}
}
/* Calculate VRFB memory size */
/* allocate for worst case size */
image_width = VID_MAX_WIDTH / TILE_SIZE;
if (VID_MAX_WIDTH % TILE_SIZE)
image_width++;
image_width = image_width * TILE_SIZE;
image_height = VID_MAX_HEIGHT / TILE_SIZE;
if (VID_MAX_HEIGHT % TILE_SIZE)
image_height++;
image_height = image_height * TILE_SIZE;
vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
/*
* Request and Initialize DMA, for DMA based VRFB transfer
*/
vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
vout->vrfb_dma_tx.dma_ch = -1;
vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
omap_vout_vrfb_dma_tx_callback,
(void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
if (ret < 0) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
" video%d\n", vfd->minor);
}
init_waitqueue_head(&vout->vrfb_dma_tx.wait);
/* statically allocated the VRFB buffer is done through
commands line aruments */
if (static_vrfb_allocation) {
if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
ret = -ENOMEM;
goto release_vrfb_ctx;
}
vout->vrfb_static_allocation = 1;
}
return 0;
release_vrfb_ctx:
for (j = 0; j < VRFB_NUM_BUFS; j++)
omap_vrfb_release_ctx(&vout->vrfb_context[j]);
free_buffers:
omap_vout_free_buffers(vout);
return ret;
}
/*
* Release the VRFB context once the module exits
*/
void omap_vout_release_vrfb(struct omap_vout_device *vout)
{
int i;
for (i = 0; i < VRFB_NUM_BUFS; i++)
omap_vrfb_release_ctx(&vout->vrfb_context[i]);
if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
omap_free_dma(vout->vrfb_dma_tx.dma_ch);
}
}
/*
* Allocate the buffers for the VRFB space. Data is copied from V4L2
* buffers to the VRFB buffers using the DMA engine.
*/
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
unsigned int *count, unsigned int startindex)
{
int i;
bool yuv_mode;
if (!is_rotation_enabled(vout))
return 0;
/* If rotation is enabled, allocate memory for VRFB space also */
*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
/* Allocate the VRFB buffers only if the buffers are not
* allocated during init time.
*/
if (!vout->vrfb_static_allocation)
if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
return -ENOMEM;
if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
vout->dss_mode == OMAP_DSS_COLOR_UYVY)
yuv_mode = true;
else
yuv_mode = false;
for (i = 0; i < *count; i++)
omap_vrfb_setup(&vout->vrfb_context[i],
vout->smsshado_phy_addr[i], vout->pix.width,
vout->pix.height, vout->bpp, yuv_mode);
return 0;
}
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
struct videobuf_buffer *vb)
{
dma_addr_t dmabuf;
struct vid_vrfb_dma *tx;
enum dss_rotation rotation;
u32 dest_frame_index = 0, src_element_index = 0;
u32 dest_element_index = 0, src_frame_index = 0;
u32 elem_count = 0, frame_count = 0, pixsize = 2;
if (!is_rotation_enabled(vout))
return 0;
dmabuf = vout->buf_phy_addr[vb->i];
/* If rotation is enabled, copy input buffer into VRFB
* memory space using DMA. We are copying input buffer
* into VRFB memory space of desired angle and DSS will
* read image VRFB memory for 0 degree angle
*/
pixsize = vout->bpp * vout->vrfb_bpp;
/*
* DMA transfer in double index mode
*/
/* Frame index */
dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
(vout->pix.width * vout->bpp)) + 1;
/* Source and destination parameters */
src_element_index = 0;
src_frame_index = 0;
dest_element_index = 1;
/* Number of elements per frame */
elem_count = vout->pix.width * vout->bpp;
frame_count = vout->pix.height;
tx = &vout->vrfb_dma_tx;
tx->tx_status = 0;
omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
(elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
tx->dev_id, 0x0);
/* src_port required only for OMAP1 */
omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
dmabuf, src_element_index, src_frame_index);
/*set dma source burst mode for VRFB */
omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
rotation = calc_rotation(vout);
/* dest_port required only for OMAP1 */
omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
vout->vrfb_context[vb->i].paddr[0], dest_element_index,
dest_frame_index);
/*set dma dest burst mode for VRFB */
omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
omap_start_dma(tx->dma_ch);
interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
if (tx->tx_status == 0) {
omap_stop_dma(tx->dma_ch);
return -EINVAL;
}
/* Store buffers physical address into an array. Addresses
* from this array will be used to configure DSS */
vout->queued_buf_addr[vb->i] = (u8 *)
vout->vrfb_context[vb->i].paddr[rotation];
return 0;
}
/*
* Calculate the buffer offsets from which the streaming should
* start. This offset calculation is mainly required because of
* the VRFB 32 pixels alignment with rotation.
*/
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
{
enum dss_rotation rotation;
bool mirroring = vout->mirror;
struct v4l2_rect *crop = &vout->crop;
struct v4l2_pix_format *pix = &vout->pix;
int *cropped_offset = &vout->cropped_offset;
int vr_ps = 1, ps = 2, temp_ps = 2;
int offset = 0, ctop = 0, cleft = 0, line_length = 0;
rotation = calc_rotation(vout);
if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
V4L2_PIX_FMT_UYVY == pix->pixelformat) {
if (is_rotation_enabled(vout)) {
/*
* ps - Actual pixel size for YUYV/UYVY for
* VRFB/Mirroring is 4 bytes
* vr_ps - Virtually pixel size for YUYV/UYVY is
* 2 bytes
*/
ps = 4;
vr_ps = 2;
} else {
ps = 2; /* otherwise the pixel size is 2 byte */
}
} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
ps = 4;
} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
ps = 3;
}
vout->ps = ps;
vout->vr_ps = vr_ps;
if (is_rotation_enabled(vout)) {
line_length = MAX_PIXELS_PER_LINE;
ctop = (pix->height - crop->height) - crop->top;
cleft = (pix->width - crop->width) - crop->left;
} else {
line_length = pix->width;
}
vout->line_length = line_length;
switch (rotation) {
case dss_rotation_90_degree:
offset = vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (mirroring == 0) {
*cropped_offset = offset + line_length *
temp_ps * cleft + crop->top * temp_ps;
} else {
*cropped_offset = offset + line_length * temp_ps *
cleft + crop->top * temp_ps + (line_length *
((crop->width / (vr_ps)) - 1) * ps);
}
break;
case dss_rotation_180_degree:
offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
vout->vrfb_context[0].bytespp) +
(vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp));
if (mirroring == 0) {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps;
} else {
*cropped_offset = offset + (line_length * ps * ctop) +
(cleft / vr_ps) * ps + (line_length *
(crop->height - 1) * ps);
}
break;
case dss_rotation_270_degree:
offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
vout->vrfb_context[0].bytespp;
temp_ps = ps / vr_ps;
if (mirroring == 0) {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps;
} else {
*cropped_offset = offset + line_length *
temp_ps * crop->left + ctop * ps +
(line_length * ((crop->width / vr_ps) - 1) *
ps);
}
break;
case dss_rotation_0_degree:
if (mirroring == 0) {
*cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps;
} else {
*cropped_offset = (line_length * ps) *
crop->top + (crop->left / vr_ps) * ps +
(line_length * (crop->height - 1) * ps);
}
break;
default:
*cropped_offset = (line_length * ps * crop->top) /
vr_ps + (crop->left * ps) / vr_ps +
((crop->width / vr_ps) - 1) * ps;
break;
}
}
/*
* omap_vout_vrfb.h
*
* Copyright (C) 2010 Texas Instruments.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
*/
#ifndef OMAP_VOUT_VRFB_H
#define OMAP_VOUT_VRFB_H
#ifdef CONFIG_VIDEO_OMAP2_VOUT_VRFB
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout);
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
u32 static_vrfb_allocation);
void omap_vout_release_vrfb(struct omap_vout_device *vout);
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
unsigned int *count, unsigned int startindex);
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
struct videobuf_buffer *vb);
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout);
#else
void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout) { }
int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
u32 static_vrfb_allocation)
{ return 0; }
void omap_vout_release_vrfb(struct omap_vout_device *vout) { }
int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
unsigned int *count, unsigned int startindex)
{ return 0; }
int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
struct videobuf_buffer *vb)
{ return 0; }
void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout) { }
#endif
#endif
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#define OMAP_VOUTDEF_H #define OMAP_VOUTDEF_H
#include <video/omapdss.h> #include <video/omapdss.h>
#include <plat/vrfb.h>
#define YUYV_BPP 2 #define YUYV_BPP 2
#define RGB565_BPP 2 #define RGB565_BPP 2
...@@ -62,6 +63,18 @@ enum dss_rotation { ...@@ -62,6 +63,18 @@ enum dss_rotation {
dss_rotation_180_degree = 2, dss_rotation_180_degree = 2,
dss_rotation_270_degree = 3, dss_rotation_270_degree = 3,
}; };
/* Enum for choosing rotation type for vout
* DSS2 doesn't understand no rotation as an
* option while V4L2 driver doesn't support
* rotation in the case where VRFB is not built in
* the kernel
*/
enum vout_rotaion_type {
VOUT_ROT_NONE = 0,
VOUT_ROT_VRFB = 1,
};
/* /*
* This structure is used to store the DMA transfer parameters * This structure is used to store the DMA transfer parameters
* for VRFB hidden buffer * for VRFB hidden buffer
...@@ -78,6 +91,7 @@ struct omapvideo_info { ...@@ -78,6 +91,7 @@ struct omapvideo_info {
int id; int id;
int num_overlays; int num_overlays;
struct omap_overlay *overlays[MAX_OVLS]; struct omap_overlay *overlays[MAX_OVLS];
enum vout_rotaion_type rotation_type;
}; };
struct omap2video_device { struct omap2video_device {
...@@ -206,4 +220,6 @@ static inline int calc_rotation(const struct omap_vout_device *vout) ...@@ -206,4 +220,6 @@ static inline int calc_rotation(const struct omap_vout_device *vout)
return dss_rotation_180_degree; return dss_rotation_180_degree;
} }
} }
void omap_vout_free_buffers(struct omap_vout_device *vout);
#endif /* ifndef OMAP_VOUTDEF_H */ #endif /* ifndef OMAP_VOUTDEF_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment