Commit 48476df9 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd

Pull MTD update from David Woodhouse:
 "Fairly unexciting MTD merge for 3.9:

   - misc clean-ups in the MTD command-line partitioning parser
     (cmdlinepart)
   - add flash locking support for STmicro chips serial flash chips, as
     well as for CFI command set 2 chips.
   - new driver for the ELM error correction HW module found in various
     TI chips, enable the OMAP NAND driver to use the ELM HW error
     correction
   - added number of new serial flash IDs
   - various fixes and improvements in the gpmi NAND driver
   - bcm47xx NAND driver improvements
   - make the mtdpart module actually removable"

* tag 'for-linus-20130301' of git://git.infradead.org/linux-mtd: (45 commits)
  mtd: map: BUG() in non handled cases
  mtd: bcm47xxnflash: use pr_fmt for module prefix in messages
  mtd: davinci_nand: Use managed resources
  mtd: mtd_torturetest can cause stack overflows
  mtd: physmap_of: Convert device allocation to managed devm_kzalloc()
  mtd: at91: atmel_nand: for PMECC, add code to check the ONFI parameter ECC requirement.
  mtd: atmel_nand: make pmecc-cap, pmecc-sector-size in dts is optional.
  mtd: atmel_nand: avoid to report an error when lookup table offset is 0.
  mtd: bcm47xxsflash: adjust names of bus-specific functions
  mtd: bcm47xxpart: improve probing of nvram partition
  mtd: bcm47xxpart: add support for other erase sizes
  mtd: bcm47xxnflash: register this as normal driver
  mtd: bcm47xxnflash: fix message
  mtd: bcm47xxsflash: register this as normal driver
  mtd: bcm47xxsflash: write number of written bytes
  mtd: gpmi: add sanity check for the ECC
  mtd: gpmi: set the Golois Field bit for mx6q's BCH
  mtd: devices: elm: Removes <xx> literals in elm DT node
  mtd: gpmi: fix a dereferencing freed memory error
  mtd: fix the wrong timeo for panic_nand_wait()
  ...
parents 37cae6ad 24dea0c9
Error location module
Required properties:
- compatible: Must be "ti,am33xx-elm"
- reg: physical base address and size of the registers map.
- interrupts: Interrupt number for the elm.
Optional properties:
- ti,hwmods: Name of the hwmod associated to the elm
Example:
elm: elm@0 {
compatible = "ti,am3352-elm";
reg = <0x48080000 0x2000>;
interrupts = <4>;
};
......@@ -26,6 +26,9 @@ file systems on embedded devices.
- linux,mtd-name: allow to specify the mtd name for retro capability with
physmap-flash drivers as boot loader pass the mtd partition via the old
device name physmap-flash.
- use-advanced-sector-protection: boolean to enable support for the
advanced sector protection (Spansion: PPB - Persistent Protection
Bits) locking.
For JEDEC compatible devices, the following additional properties
are defined:
......
......@@ -74,8 +74,8 @@ config MTD_REDBOOT_PARTS_READONLY
endif # MTD_REDBOOT_PARTS
config MTD_CMDLINE_PARTS
bool "Command line partition table parsing"
depends on MTD = "y"
tristate "Command line partition table parsing"
depends on MTD
---help---
Allow generic configuration of the MTD partition tables via the kernel
command line. Multiple flash resources are supported for hardware where
......
......@@ -142,7 +142,13 @@ static int __init ar7_parser_init(void)
return register_mtd_parser(&ar7_parser);
}
static void __exit ar7_parser_exit(void)
{
deregister_mtd_parser(&ar7_parser);
}
module_init(ar7_parser_init);
module_exit(ar7_parser_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR( "Felix Fietkau <nbd@openwrt.org>, "
......
......@@ -19,12 +19,6 @@
/* 10 parts were found on sflash on Netgear WNDR4500 */
#define BCM47XXPART_MAX_PARTS 12
/*
* Amount of bytes we read when analyzing each block of flash memory.
* Set it big enough to allow detecting partition and reading important data.
*/
#define BCM47XXPART_BYTES_TO_READ 0x404
/* Magics */
#define BOARD_DATA_MAGIC 0x5246504D /* MPFR */
#define POT_MAGIC1 0x54544f50 /* POTT */
......@@ -59,13 +53,21 @@ static int bcm47xxpart_parse(struct mtd_info *master,
uint32_t *buf;
size_t bytes_read;
uint32_t offset;
uint32_t blocksize = 0x10000;
uint32_t blocksize = master->erasesize;
struct trx_header *trx;
int trx_part = -1;
int last_trx_part = -1;
int max_bytes_to_read = 0x8004;
if (blocksize <= 0x10000)
blocksize = 0x10000;
if (blocksize == 0x20000)
max_bytes_to_read = 0x18004;
/* Alloc */
parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS,
GFP_KERNEL);
buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL);
buf = kzalloc(max_bytes_to_read, GFP_KERNEL);
/* Parse block by block looking for magics */
for (offset = 0; offset <= master->size - blocksize;
......@@ -80,7 +82,7 @@ static int bcm47xxpart_parse(struct mtd_info *master,
}
/* Read beginning of the block */
if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ,
if (mtd_read(master, offset, max_bytes_to_read,
&bytes_read, (uint8_t *)buf) < 0) {
pr_err("mtd_read error while parsing (offset: 0x%X)!\n",
offset);
......@@ -95,9 +97,16 @@ static int bcm47xxpart_parse(struct mtd_info *master,
}
/* Standard NVRAM */
if (buf[0x000 / 4] == NVRAM_HEADER) {
if (buf[0x000 / 4] == NVRAM_HEADER ||
buf[0x1000 / 4] == NVRAM_HEADER ||
buf[0x8000 / 4] == NVRAM_HEADER ||
(blocksize == 0x20000 && (
buf[0x10000 / 4] == NVRAM_HEADER ||
buf[0x11000 / 4] == NVRAM_HEADER ||
buf[0x18000 / 4] == NVRAM_HEADER))) {
bcm47xxpart_add_part(&parts[curr_part++], "nvram",
offset, 0);
offset = rounddown(offset, blocksize);
continue;
}
......@@ -131,6 +140,10 @@ static int bcm47xxpart_parse(struct mtd_info *master,
if (buf[0x000 / 4] == TRX_MAGIC) {
trx = (struct trx_header *)buf;
trx_part = curr_part;
bcm47xxpart_add_part(&parts[curr_part++], "firmware",
offset, 0);
i = 0;
/* We have LZMA loader if offset[2] points to sth */
if (trx->offset[2]) {
......@@ -154,6 +167,8 @@ static int bcm47xxpart_parse(struct mtd_info *master,
offset + trx->offset[i], 0);
i++;
last_trx_part = curr_part - 1;
/*
* We have whole TRX scanned, skip to the next part. Use
* roundown (not roundup), as the loop will increase
......@@ -169,11 +184,15 @@ static int bcm47xxpart_parse(struct mtd_info *master,
* Assume that partitions end at the beginning of the one they are
* followed by.
*/
for (i = 0; i < curr_part - 1; i++)
parts[i].size = parts[i + 1].offset - parts[i].offset;
if (curr_part > 0)
parts[curr_part - 1].size =
master->size - parts[curr_part - 1].offset;
for (i = 0; i < curr_part; i++) {
u64 next_part_offset = (i < curr_part - 1) ?
parts[i + 1].offset : master->size;
parts[i].size = next_part_offset - parts[i].offset;
if (i == last_trx_part && trx_part >= 0)
parts[trx_part].size = next_part_offset -
parts[trx_part].offset;
}
*pparts = parts;
return curr_part;
......
......@@ -33,6 +33,8 @@
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
......@@ -74,6 +76,10 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
static struct mtd_chip_driver cfi_amdstd_chipdrv = {
.probe = NULL, /* Not usable directly */
.destroy = cfi_amdstd_destroy,
......@@ -496,6 +502,7 @@ static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
{
struct cfi_private *cfi = map->fldrv_priv;
struct device_node __maybe_unused *np = map->device_node;
struct mtd_info *mtd;
int i;
......@@ -570,6 +577,17 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
cfi_tell_features(extp);
#endif
#ifdef CONFIG_OF
if (np && of_property_read_bool(
np, "use-advanced-sector-protection")
&& extp->BlkProtUnprot == 8) {
printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
mtd->_lock = cfi_ppb_lock;
mtd->_unlock = cfi_ppb_unlock;
mtd->_is_locked = cfi_ppb_is_locked;
}
#endif
bootloc = extp->TopBottom;
if ((bootloc < 2) || (bootloc > 5)) {
printk(KERN_WARNING "%s: CFI contains unrecognised boot "
......@@ -2172,6 +2190,205 @@ static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
}
/*
* Advanced Sector Protection - PPB (Persistent Protection Bit) locking
*/
struct ppb_lock {
struct flchip *chip;
loff_t offset;
int locked;
};
#define MAX_SECTORS 512
#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
static int __maybe_unused do_ppb_xxlock(struct map_info *map,
struct flchip *chip,
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo;
int ret;
mutex_lock(&chip->mutex);
ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
}
pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
/* PPB entry command */
cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
chip->state = FL_LOCKING;
map_write(map, CMD(0xA0), chip->start + adr);
map_write(map, CMD(0x00), chip->start + adr);
} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
/*
* Unlocking of one specific sector is not supported, so we
* have to unlock all sectors of this device instead
*/
chip->state = FL_UNLOCKING;
map_write(map, CMD(0x80), chip->start);
map_write(map, CMD(0x30), chip->start);
} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
chip->state = FL_JEDEC_QUERY;
/* Return locked status: 0->locked, 1->unlocked */
ret = !cfi_read_query(map, adr);
} else
BUG();
/*
* Wait for some time as unlocking of all sectors takes quite long
*/
timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
ret = -EIO;
break;
}
UDELAY(map, chip, adr, 1);
}
/* Exit BC commands */
map_write(map, CMD(0x90), chip->start);
map_write(map, CMD(0x00), chip->start);
chip->state = FL_READY;
put_chip(map, chip, adr + chip->start);
mutex_unlock(&chip->mutex);
return ret;
}
static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_LOCK);
}
static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
struct mtd_erase_region_info *regions = mtd->eraseregions;
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct ppb_lock *sect;
unsigned long adr;
loff_t offset;
uint64_t length;
int chipnum;
int i;
int sectors;
int ret;
/*
* PPB unlocking always unlocks all sectors of the flash chip.
* We need to re-lock all previously locked sectors. So lets
* first check the locking status of all sectors and save
* it for future use.
*/
sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
if (!sect)
return -ENOMEM;
/*
* This code to walk all sectors is a slightly modified version
* of the cfi_varsize_frob() code.
*/
i = 0;
chipnum = 0;
adr = 0;
sectors = 0;
offset = 0;
length = mtd->size;
while (length) {
int size = regions[i].erasesize;
/*
* Only test sectors that shall not be unlocked. The other
* sectors shall be unlocked, so lets keep their locking
* status at "unlocked" (locked=0) for the final re-locking.
*/
if ((adr < ofs) || (adr >= (ofs + len))) {
sect[sectors].chip = &cfi->chips[chipnum];
sect[sectors].offset = offset;
sect[sectors].locked = do_ppb_xxlock(
map, &cfi->chips[chipnum], adr, 0,
DO_XXLOCK_ONEBLOCK_GETLOCK);
}
adr += size;
offset += size;
length -= size;
if (offset == regions[i].offset + size * regions[i].numblocks)
i++;
if (adr >> cfi->chipshift) {
adr = 0;
chipnum++;
if (chipnum >= cfi->numchips)
break;
}
sectors++;
if (sectors >= MAX_SECTORS) {
printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
MAX_SECTORS);
kfree(sect);
return -EINVAL;
}
}
/* Now unlock the whole chip */
ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_UNLOCK);
if (ret) {
kfree(sect);
return ret;
}
/*
* PPB unlocking always unlocks all sectors of the flash chip.
* We need to re-lock all previously locked sectors.
*/
for (i = 0; i < sectors; i++) {
if (sect[i].locked)
do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
DO_XXLOCK_ONEBLOCK_LOCK);
}
kfree(sect);
return ret;
}
static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
uint64_t len)
{
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
}
static void cfi_amdstd_sync (struct mtd_info *mtd)
{
......
......@@ -22,11 +22,22 @@
*
* mtdparts=<mtddef>[;<mtddef]
* <mtddef> := <mtd-id>:<partdef>[,<partdef>]
* where <mtd-id> is the name from the "cat /proc/mtd" command
* <partdef> := <size>[@offset][<name>][ro][lk]
* <partdef> := <size>[@<offset>][<name>][ro][lk]
* <mtd-id> := unique name used in mapping driver/device (mtd->name)
* <size> := standard linux memsize OR "-" to denote all remaining space
* size is automatically truncated at end of device
* if specified or trucated size is 0 the part is skipped
* <offset> := standard linux memsize
* if omitted the part will immediately follow the previous part
* or 0 if the first part
* <name> := '(' NAME ')'
* NAME will appear in /proc/mtd
*
* <size> and <offset> can be specified such that the parts are out of order
* in physical memory and may even overlap.
*
* The parts are assigned MTD numbers in the order they are specified in the
* command line regardless of their order in physical memory.
*
* Examples:
*
......@@ -70,6 +81,7 @@ struct cmdline_mtd_partition {
static struct cmdline_mtd_partition *partitions;
/* the command line passed to mtdpart_setup() */
static char *mtdparts;
static char *cmdline;
static int cmdline_parsed;
......@@ -330,6 +342,14 @@ static int parse_cmdline_partitions(struct mtd_info *master,
if (part->parts[i].size == SIZE_REMAINING)
part->parts[i].size = master->size - offset;
if (offset + part->parts[i].size > master->size) {
printk(KERN_WARNING ERRP
"%s: partitioning exceeds flash size, truncating\n",
part->mtd_id);
part->parts[i].size = master->size - offset;
}
offset += part->parts[i].size;
if (part->parts[i].size == 0) {
printk(KERN_WARNING ERRP
"%s: skipping zero sized partition\n",
......@@ -337,16 +357,8 @@ static int parse_cmdline_partitions(struct mtd_info *master,
part->num_parts--;
memmove(&part->parts[i], &part->parts[i + 1],
sizeof(*part->parts) * (part->num_parts - i));
continue;
}
if (offset + part->parts[i].size > master->size) {
printk(KERN_WARNING ERRP
"%s: partitioning exceeds flash size, truncating\n",
part->mtd_id);
part->parts[i].size = master->size - offset;
i--;
}
offset += part->parts[i].size;
}
*pparts = kmemdup(part->parts, sizeof(*part->parts) * part->num_parts,
......@@ -365,7 +377,7 @@ static int parse_cmdline_partitions(struct mtd_info *master,
*
* This function needs to be visible for bootloaders.
*/
static int mtdpart_setup(char *s)
static int __init mtdpart_setup(char *s)
{
cmdline = s;
return 1;
......@@ -381,10 +393,21 @@ static struct mtd_part_parser cmdline_parser = {
static int __init cmdline_parser_init(void)
{
if (mtdparts)
mtdpart_setup(mtdparts);
return register_mtd_parser(&cmdline_parser);
}
static void __exit cmdline_parser_exit(void)
{
deregister_mtd_parser(&cmdline_parser);
}
module_init(cmdline_parser_init);
module_exit(cmdline_parser_exit);
MODULE_PARM_DESC(mtdparts, "Partitioning specification");
module_param(mtdparts, charp, 0);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>");
......
......@@ -17,8 +17,10 @@ obj-$(CONFIG_MTD_LART) += lart.o
obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o
obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o
obj-$(CONFIG_MTD_M25P80) += m25p80.o
obj-$(CONFIG_MTD_NAND_OMAP_BCH) += elm.o
obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o
obj-$(CONFIG_MTD_SST25L) += sst25l.o
obj-$(CONFIG_MTD_BCM47XXSFLASH) += bcm47xxsflash.o
CFLAGS_docg3.o += -I$(src)
......@@ -5,6 +5,8 @@
#include <linux/platform_device.h>
#include <linux/bcma/bcma.h>
#include "bcm47xxsflash.h"
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Serial flash driver for BCMA bus");
......@@ -13,26 +15,28 @@ static const char *probes[] = { "bcm47xxpart", NULL };
static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct bcma_sflash *sflash = mtd->priv;
struct bcm47xxsflash *b47s = mtd->priv;
/* Check address range */
if ((from + len) > mtd->size)
return -EINVAL;
memcpy_fromio(buf, (void __iomem *)KSEG0ADDR(sflash->window + from),
memcpy_fromio(buf, (void __iomem *)KSEG0ADDR(b47s->window + from),
len);
*retlen = len;
return len;
}
static void bcm47xxsflash_fill_mtd(struct bcma_sflash *sflash,
struct mtd_info *mtd)
static void bcm47xxsflash_fill_mtd(struct bcm47xxsflash *b47s)
{
mtd->priv = sflash;
struct mtd_info *mtd = &b47s->mtd;
mtd->priv = b47s;
mtd->name = "bcm47xxsflash";
mtd->owner = THIS_MODULE;
mtd->type = MTD_ROM;
mtd->size = sflash->size;
mtd->size = b47s->size;
mtd->_read = bcm47xxsflash_read;
/* TODO: implement writing support and verify/change following code */
......@@ -40,19 +44,30 @@ static void bcm47xxsflash_fill_mtd(struct bcma_sflash *sflash,
mtd->writebufsize = mtd->writesize = 1;
}
static int bcm47xxsflash_probe(struct platform_device *pdev)
/**************************************************
* BCMA
**************************************************/
static int bcm47xxsflash_bcma_probe(struct platform_device *pdev)
{
struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev);
struct bcm47xxsflash *b47s;
int err;
sflash->mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!sflash->mtd) {
b47s = kzalloc(sizeof(*b47s), GFP_KERNEL);
if (!b47s) {
err = -ENOMEM;
goto out;
}
bcm47xxsflash_fill_mtd(sflash, sflash->mtd);
sflash->priv = b47s;
err = mtd_device_parse_register(sflash->mtd, probes, NULL, NULL, 0);
b47s->window = sflash->window;
b47s->blocksize = sflash->blocksize;
b47s->numblocks = sflash->numblocks;
b47s->size = sflash->size;
bcm47xxsflash_fill_mtd(b47s);
err = mtd_device_parse_register(&b47s->mtd, probes, NULL, NULL, 0);
if (err) {
pr_err("Failed to register MTD device: %d\n", err);
goto err_dev_reg;
......@@ -61,34 +76,40 @@ static int bcm47xxsflash_probe(struct platform_device *pdev)
return 0;
err_dev_reg:
kfree(sflash->mtd);
kfree(&b47s->mtd);
out:
return err;
}
static int bcm47xxsflash_remove(struct platform_device *pdev)
static int bcm47xxsflash_bcma_remove(struct platform_device *pdev)
{
struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev);
struct bcm47xxsflash *b47s = sflash->priv;
mtd_device_unregister(sflash->mtd);
kfree(sflash->mtd);
mtd_device_unregister(&b47s->mtd);
kfree(b47s);
return 0;
}
static struct platform_driver bcma_sflash_driver = {
.remove = bcm47xxsflash_remove,
.probe = bcm47xxsflash_bcma_probe,
.remove = bcm47xxsflash_bcma_remove,
.driver = {
.name = "bcma_sflash",
.owner = THIS_MODULE,
},
};
/**************************************************
* Init
**************************************************/
static int __init bcm47xxsflash_init(void)
{
int err;
err = platform_driver_probe(&bcma_sflash_driver, bcm47xxsflash_probe);
err = platform_driver_register(&bcma_sflash_driver);
if (err)
pr_err("Failed to register BCMA serial flash driver: %d\n",
err);
......
#ifndef __BCM47XXSFLASH_H
#define __BCM47XXSFLASH_H
#include <linux/mtd/mtd.h>
struct bcm47xxsflash {
u32 window;
u32 blocksize;
u16 numblocks;
u32 size;
struct mtd_info mtd;
};
#endif /* BCM47XXSFLASH */
This diff is collapsed.
......@@ -565,6 +565,96 @@ static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
return ret;
}
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct m25p *flash = mtd_to_m25p(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int res = 0;
mutex_lock(&flash->lock);
/* Wait until finished previous command */
if (wait_till_ready(flash)) {
res = 1;
goto err;
}
status_old = read_sr(flash);
if (offset < flash->mtd.size-(flash->mtd.size/2))
status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/4))
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
else if (offset < flash->mtd.size-(flash->mtd.size/8))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/16))
status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
else if (offset < flash->mtd.size-(flash->mtd.size/32))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/64))
status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
else
status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
/* Only modify protection if it will not unlock other areas */
if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
write_enable(flash);
if (write_sr(flash, status_new) < 0) {
res = 1;
goto err;
}
}
err: mutex_unlock(&flash->lock);
return res;
}
static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct m25p *flash = mtd_to_m25p(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int res = 0;
mutex_lock(&flash->lock);
/* Wait until finished previous command */
if (wait_till_ready(flash)) {
res = 1;
goto err;
}
status_old = read_sr(flash);
if (offset+len > flash->mtd.size-(flash->mtd.size/64))
status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
/* Only modify protection if it will not lock other areas */
if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
write_enable(flash);
if (write_sr(flash, status_new) < 0) {
res = 1;
goto err;
}
}
err: mutex_unlock(&flash->lock);
return res;
}
/****************************************************************************/
/*
......@@ -642,6 +732,10 @@ static const struct spi_device_id m25p_ids[] = {
/* Everspin */
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) },
/* GigaDevice */
{ "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
......@@ -899,6 +993,12 @@ static int m25p_probe(struct spi_device *spi)
flash->mtd._erase = m25p80_erase;
flash->mtd._read = m25p80_read;
/* flash protection support for STmicro chips */
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
flash->mtd._lock = m25p80_lock;
flash->mtd._unlock = m25p80_unlock;
}
/* sst flash chips use AAI word program */
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
flash->mtd._write = sst_write;
......
......@@ -429,7 +429,7 @@ config MTD_GPIO_ADDR
config MTD_UCLINUX
bool "Generic uClinux RAM/ROM filesystem support"
depends on MTD_RAM=y && (!MMU || COLDFIRE)
depends on (MTD_RAM=y || MTD_ROM=y) && (!MMU || COLDFIRE)
help
Map driver to support image based filesystems for uClinux.
......
......@@ -68,9 +68,6 @@ static int of_flash_remove(struct platform_device *dev)
kfree(info->list[i].res);
}
}
kfree(info);
return 0;
}
......@@ -199,7 +196,8 @@ static int of_flash_probe(struct platform_device *dev)
map_indirect = of_property_read_bool(dp, "no-unaligned-direct-access");
err = -ENOMEM;
info = kzalloc(sizeof(struct of_flash) +
info = devm_kzalloc(&dev->dev,
sizeof(struct of_flash) +
sizeof(struct of_flash_list) * count, GFP_KERNEL);
if (!info)
goto err_flash_remove;
......@@ -241,6 +239,7 @@ static int of_flash_probe(struct platform_device *dev)
info->list[i].map.phys = res.start;
info->list[i].map.size = res_size;
info->list[i].map.bankwidth = be32_to_cpup(width);
info->list[i].map.device_node = dp;
err = -ENOMEM;
info->list[i].map.virt = ioremap(info->list[i].map.phys,
......
......@@ -23,12 +23,26 @@
/****************************************************************************/
#ifdef CONFIG_MTD_ROM
#define MAP_NAME "rom"
#else
#define MAP_NAME "ram"
#endif
/*
* Blackfin uses uclinux_ram_map during startup, so it must not be static.
* Provide a dummy declaration to make sparse happy.
*/
extern struct map_info uclinux_ram_map;
struct map_info uclinux_ram_map = {
.name = "RAM",
.phys = (unsigned long)__bss_stop,
.name = MAP_NAME,
.size = 0,
};
static unsigned long physaddr = -1;
module_param(physaddr, ulong, S_IRUGO);
static struct mtd_info *uclinux_ram_mtdinfo;
/****************************************************************************/
......@@ -60,11 +74,17 @@ static int __init uclinux_mtd_init(void)
struct map_info *mapp;
mapp = &uclinux_ram_map;
if (physaddr == -1)
mapp->phys = (resource_size_t)__bss_stop;
else
mapp->phys = physaddr;
if (!mapp->size)
mapp->size = PAGE_ALIGN(ntohl(*((unsigned long *)(mapp->phys + 8))));
mapp->bankwidth = 4;
printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n",
printk("uclinux[mtd]: probe address=0x%x size=0x%x\n",
(int) mapp->phys, (int) mapp->size);
/*
......@@ -82,7 +102,7 @@ static int __init uclinux_mtd_init(void)
simple_map_init(mapp);
mtd = do_map_probe("map_ram", mapp);
mtd = do_map_probe("map_" MAP_NAME, mapp);
if (!mtd) {
printk("uclinux[mtd]: failed to find a mapping?\n");
return(-ENXIO);
......@@ -118,6 +138,6 @@ module_exit(uclinux_mtd_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com>");
MODULE_DESCRIPTION("Generic RAM based MTD for uClinux");
MODULE_DESCRIPTION("Generic MTD for uClinux");
/****************************************************************************/
......@@ -101,6 +101,8 @@ struct atmel_nand_host {
u8 pmecc_corr_cap;
u16 pmecc_sector_size;
u32 pmecc_lookup_table_offset;
u32 pmecc_lookup_table_offset_512;
u32 pmecc_lookup_table_offset_1024;
int pmecc_bytes_per_sector;
int pmecc_sector_number;
......@@ -908,6 +910,84 @@ static void atmel_pmecc_core_init(struct mtd_info *mtd)
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
}
/*
* Get ECC requirement in ONFI parameters, returns -1 if ONFI
* parameters is not supported.
* return 0 if success to get the ECC requirement.
*/
static int get_onfi_ecc_param(struct nand_chip *chip,
int *ecc_bits, int *sector_size)
{
*ecc_bits = *sector_size = 0;
if (chip->onfi_params.ecc_bits == 0xff)
/* TODO: the sector_size and ecc_bits need to be find in
* extended ecc parameter, currently we don't support it.
*/
return -1;
*ecc_bits = chip->onfi_params.ecc_bits;
/* The default sector size (ecc codeword size) is 512 */
*sector_size = 512;
return 0;
}
/*
* Get ecc requirement from ONFI parameters ecc requirement.
* If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
* will set them according to ONFI ecc requirement. Otherwise, use the
* value in DTS file.
* return 0 if success. otherwise return error code.
*/
static int pmecc_choose_ecc(struct atmel_nand_host *host,
int *cap, int *sector_size)
{
/* Get ECC requirement from ONFI parameters */
*cap = *sector_size = 0;
if (host->nand_chip.onfi_version) {
if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
*cap, *sector_size);
else
dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
} else {
dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
}
if (*cap == 0 && *sector_size == 0) {
*cap = 2;
*sector_size = 512;
}
/* If dts file doesn't specify then use the one in ONFI parameters */
if (host->pmecc_corr_cap == 0) {
/* use the most fitable ecc bits (the near bigger one ) */
if (*cap <= 2)
host->pmecc_corr_cap = 2;
else if (*cap <= 4)
host->pmecc_corr_cap = 4;
else if (*cap < 8)
host->pmecc_corr_cap = 8;
else if (*cap < 12)
host->pmecc_corr_cap = 12;
else if (*cap < 24)
host->pmecc_corr_cap = 24;
else
return -EINVAL;
}
if (host->pmecc_sector_size == 0) {
/* use the most fitable sector size (the near smaller one ) */
if (*sector_size >= 1024)
host->pmecc_sector_size = 1024;
else if (*sector_size >= 512)
host->pmecc_sector_size = 512;
else
return -EINVAL;
}
return 0;
}
static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
struct atmel_nand_host *host)
{
......@@ -916,8 +996,22 @@ static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
struct resource *regs, *regs_pmerr, *regs_rom;
int cap, sector_size, err_no;
err_no = pmecc_choose_ecc(host, &cap, &sector_size);
if (err_no) {
dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
return err_no;
}
if (cap != host->pmecc_corr_cap ||
sector_size != host->pmecc_sector_size)
dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
cap = host->pmecc_corr_cap;
sector_size = host->pmecc_sector_size;
host->pmecc_lookup_table_offset = (sector_size == 512) ?
host->pmecc_lookup_table_offset_512 :
host->pmecc_lookup_table_offset_1024;
dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
cap, sector_size);
......@@ -1215,7 +1309,7 @@ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
static int atmel_of_init_port(struct atmel_nand_host *host,
struct device_node *np)
{
u32 val, table_offset;
u32 val;
u32 offset[2];
int ecc_mode;
struct atmel_nand_data *board = &host->board;
......@@ -1259,11 +1353,11 @@ static int atmel_of_init_port(struct atmel_nand_host *host,
/* use PMECC, get correction capability, sector size and lookup
* table offset.
* If correction bits and sector size are not specified, then find
* them from NAND ONFI parameters.
*/
if (of_property_read_u32(np, "atmel,pmecc-cap", &val) != 0) {
dev_err(host->dev, "Cannot decide PMECC Capability\n");
return -EINVAL;
} else if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
(val != 24)) {
dev_err(host->dev,
"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
......@@ -1271,30 +1365,29 @@ static int atmel_of_init_port(struct atmel_nand_host *host,
return -EINVAL;
}
host->pmecc_corr_cap = (u8)val;
}
if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) != 0) {
dev_err(host->dev, "Cannot decide PMECC Sector Size\n");
return -EINVAL;
} else if ((val != 512) && (val != 1024)) {
if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
if ((val != 512) && (val != 1024)) {
dev_err(host->dev,
"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
val);
return -EINVAL;
}
host->pmecc_sector_size = (u16)val;
}
if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
offset, 2) != 0) {
dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
return -EINVAL;
}
table_offset = host->pmecc_sector_size == 512 ? offset[0] : offset[1];
if (!table_offset) {
if (!offset[0] && !offset[1]) {
dev_err(host->dev, "Invalid PMECC lookup table offset\n");
return -EINVAL;
}
host->pmecc_lookup_table_offset = table_offset;
host->pmecc_lookup_table_offset_512 = offset[0];
host->pmecc_lookup_table_offset_1024 = offset[1];
return 0;
}
......
#ifndef __BCM47XXNFLASH_H
#define __BCM47XXNFLASH_H
#ifndef pr_fmt
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#endif
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
......
......@@ -9,14 +9,14 @@
*
*/
#include "bcm47xxnflash.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/bcma/bcma.h>
#include "bcm47xxnflash.h"
MODULE_DESCRIPTION("NAND flash driver for BCMA bus");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rafał Miłecki");
......@@ -77,6 +77,7 @@ static int bcm47xxnflash_remove(struct platform_device *pdev)
}
static struct platform_driver bcm47xxnflash_driver = {
.probe = bcm47xxnflash_probe,
.remove = bcm47xxnflash_remove,
.driver = {
.name = "bcma_nflash",
......@@ -88,13 +89,10 @@ static int __init bcm47xxnflash_init(void)
{
int err;
/*
* Platform device "bcma_nflash" exists on SoCs and is registered very
* early, it won't be added during runtime (use platform_driver_probe).
*/
err = platform_driver_probe(&bcm47xxnflash_driver, bcm47xxnflash_probe);
err = platform_driver_register(&bcm47xxnflash_driver);
if (err)
pr_err("Failed to register serial flash driver: %d\n", err);
pr_err("Failed to register bcm47xx nand flash driver: %d\n",
err);
return err;
}
......
......@@ -9,13 +9,13 @@
*
*/
#include "bcm47xxnflash.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/bcma/bcma.h>
#include "bcm47xxnflash.h"
/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has
* shown ~1000 retries as maxiumum. */
#define NFLASH_READY_RETRIES 10000
......
......@@ -606,7 +606,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
if (pdev->id < 0 || pdev->id > 3)
return -ENODEV;
info = kzalloc(sizeof(*info), GFP_KERNEL);
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
dev_err(&pdev->dev, "unable to allocate memory\n");
ret = -ENOMEM;
......@@ -623,11 +623,11 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
goto err_nomem;
}
vaddr = ioremap(res1->start, resource_size(res1));
base = ioremap(res2->start, resource_size(res2));
vaddr = devm_request_and_ioremap(&pdev->dev, res1);
base = devm_request_and_ioremap(&pdev->dev, res2);
if (!vaddr || !base) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -EINVAL;
ret = -EADDRNOTAVAIL;
goto err_ioremap;
}
......@@ -717,7 +717,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
}
info->chip.ecc.mode = ecc_mode;
info->clk = clk_get(&pdev->dev, "aemif");
info->clk = devm_clk_get(&pdev->dev, "aemif");
if (IS_ERR(info->clk)) {
ret = PTR_ERR(info->clk);
dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
......@@ -845,8 +845,6 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
clk_disable_unprepare(info->clk);
err_clk_enable:
clk_put(info->clk);
spin_lock_irq(&davinci_nand_lock);
if (ecc_mode == NAND_ECC_HW_SYNDROME)
ecc4_busy = false;
......@@ -855,13 +853,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
err_ecc:
err_clk:
err_ioremap:
if (base)
iounmap(base);
if (vaddr)
iounmap(vaddr);
err_nomem:
kfree(info);
return ret;
}
......@@ -874,15 +866,9 @@ static int __exit nand_davinci_remove(struct platform_device *pdev)
ecc4_busy = false;
spin_unlock_irq(&davinci_nand_lock);
iounmap(info->base);
iounmap(info->vaddr);
nand_release(&info->mtd);
clk_disable_unprepare(info->clk);
clk_put(info->clk);
kfree(info);
return 0;
}
......
This diff is collapsed.
......@@ -61,6 +61,16 @@
& BM_BCH_FLASH0LAYOUT0_ECC0) \
)
#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10
#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \
(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14)
#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \
((GPMI_IS_MX6Q(x) && ((v) == 14)) \
? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \
& MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \
: 0 \
)
#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0
#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \
(0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)
......@@ -93,6 +103,16 @@
& BM_BCH_FLASH0LAYOUT1_ECCN) \
)
#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10
#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \
(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14)
#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \
((GPMI_IS_MX6Q(x) && ((v) == 14)) \
? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \
& MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \
: 0 \
)
#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0
#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \
(0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE)
......@@ -103,4 +123,6 @@
? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \
: ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \
)
#define HW_BCH_VERSION 0x00000160
#endif
......@@ -208,6 +208,11 @@ void gpmi_dump_info(struct gpmi_nand_data *this)
}
/* start to print out the BCH info */
pr_err("Show BCH registers :\n");
for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
reg = readl(r->bch_regs + i * 0x10);
pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
}
pr_err("BCH Geometry :\n");
pr_err("GF length : %u\n", geo->gf_len);
pr_err("ECC Strength : %u\n", geo->ecc_strength);
......@@ -232,6 +237,7 @@ int bch_set_geometry(struct gpmi_nand_data *this)
unsigned int metadata_size;
unsigned int ecc_strength;
unsigned int page_size;
unsigned int gf_len;
int ret;
if (common_nfc_set_geometry(this))
......@@ -242,6 +248,7 @@ int bch_set_geometry(struct gpmi_nand_data *this)
metadata_size = bch_geo->metadata_size;
ecc_strength = bch_geo->ecc_strength >> 1;
page_size = bch_geo->page_size;
gf_len = bch_geo->gf_len;
ret = gpmi_enable_clk(this);
if (ret)
......@@ -263,11 +270,13 @@ int bch_set_geometry(struct gpmi_nand_data *this)
writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
r->bch_regs + HW_BCH_FLASH0LAYOUT0);
writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
r->bch_regs + HW_BCH_FLASH0LAYOUT1);
......
......@@ -94,6 +94,25 @@ static inline int get_ecc_strength(struct gpmi_nand_data *this)
return round_down(ecc_strength, 2);
}
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
/* Do the sanity check. */
if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
/* The mx23/mx28 only support the GF13. */
if (geo->gf_len == 14)
return false;
if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
return false;
} else if (GPMI_IS_MX6Q(this)) {
if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
return false;
}
return true;
}
int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
......@@ -112,17 +131,24 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this)
/* The default for the length of Galois Field. */
geo->gf_len = 13;
/* The default for chunk size. There is no oobsize greater then 512. */
/* The default for chunk size. */
geo->ecc_chunk_size = 512;
while (geo->ecc_chunk_size < mtd->oobsize)
while (geo->ecc_chunk_size < mtd->oobsize) {
geo->ecc_chunk_size *= 2; /* keep C >= O */
geo->gf_len = 14;
}
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
/* We use the same ECC strength for all chunks. */
geo->ecc_strength = get_ecc_strength(this);
if (!geo->ecc_strength) {
pr_err("wrong ECC strength.\n");
if (!gpmi_check_ecc(this)) {
dev_err(this->dev,
"We can not support this nand chip."
" Its required ecc strength(%d) is beyond our"
" capability(%d).\n", geo->ecc_strength,
(GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
: MXS_ECC_STRENGTH_MAX));
return -EINVAL;
}
......@@ -920,8 +946,7 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
dma_addr_t auxiliary_phys;
unsigned int i;
unsigned char *status;
unsigned int failed;
unsigned int corrected;
unsigned int max_bitflips = 0;
int ret;
pr_debug("page number is : %d\n", page);
......@@ -945,15 +970,13 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
payload_virt, payload_phys);
if (ret) {
pr_err("Error in ECC-based read: %d\n", ret);
goto exit_nfc;
return ret;
}
/* handle the block mark swapping */
block_mark_swapping(this, payload_virt, auxiliary_virt);
/* Loop over status bytes, accumulating ECC status. */
failed = 0;
corrected = 0;
status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
......@@ -961,19 +984,11 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
continue;
if (*status == STATUS_UNCORRECTABLE) {
failed++;
mtd->ecc_stats.failed++;
continue;
}
corrected += *status;
}
/*
* Propagate ECC status to the owning MTD only when failed or
* corrected times nearly reaches our ECC correction threshold.
*/
if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
mtd->ecc_stats.failed += failed;
mtd->ecc_stats.corrected += corrected;
mtd->ecc_stats.corrected += *status;
max_bitflips = max_t(unsigned int, max_bitflips, *status);
}
if (oob_required) {
......@@ -995,8 +1010,8 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
this->payload_virt, this->payload_phys,
nfc_geo->payload_size,
payload_virt, payload_phys);
exit_nfc:
return ret;
return max_bitflips;
}
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
......@@ -1668,8 +1683,8 @@ static int gpmi_nand_probe(struct platform_device *pdev)
release_resources(this);
exit_acquire_resources:
platform_set_drvdata(pdev, NULL);
kfree(this);
dev_err(this->dev, "driver registration failed: %d\n", ret);
kfree(this);
return ret;
}
......
......@@ -284,6 +284,10 @@ extern int gpmi_read_page(struct gpmi_nand_data *,
#define STATUS_ERASED 0xff
#define STATUS_UNCORRECTABLE 0xfe
/* BCH's bit correction capability. */
#define MXS_ECC_STRENGTH_MAX 20 /* mx23 and mx28 */
#define MX6_ECC_STRENGTH_MAX 40
/* Use the platform_id to distinguish different Archs. */
#define IS_MX23 0x0
#define IS_MX28 0x1
......
......@@ -530,12 +530,23 @@ static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
static void send_read_id_v3(struct mxc_nand_host *host)
{
struct nand_chip *this = &host->nand;
/* Read ID into main buffer */
writel(NFC_ID, NFC_V3_LAUNCH);
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
if (this->options & NAND_BUSWIDTH_16) {
/* compress the ID info */
host->data_buf[1] = host->data_buf[2];
host->data_buf[2] = host->data_buf[4];
host->data_buf[3] = host->data_buf[6];
host->data_buf[4] = host->data_buf[8];
host->data_buf[5] = host->data_buf[10];
}
}
/* Request the NANDFC to perform a read of the NAND device ID. */
......
......@@ -825,13 +825,8 @@ static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
unsigned long timeo = jiffies;
int status, state = chip->state;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
unsigned long timeo = (state == FL_ERASING ? 400 : 20);
led_trigger_event(nand_led_trigger, LED_FULL);
......@@ -849,6 +844,7 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
if (in_interrupt() || oops_in_progress)
panic_nand_wait(mtd, chip, timeo);
else {
timeo = jiffies + msecs_to_jiffies(timeo);
while (time_before(jiffies, timeo)) {
if (chip->dev_ready) {
if (chip->dev_ready(mtd))
......
......@@ -55,8 +55,7 @@ struct mtd_info;
#define MODULE_AUTHOR(x) /* x */
#define MODULE_DESCRIPTION(x) /* x */
#define printk printf
#define KERN_ERR ""
#define pr_err printf
#endif
/*
......@@ -507,7 +506,7 @@ int __nand_correct_data(unsigned char *buf,
if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
return 1; /* error in ECC data; no action needed */
printk(KERN_ERR "uncorrectable error : ");
pr_err("%s: uncorrectable ECC error", __func__);
return -1;
}
EXPORT_SYMBOL(__nand_correct_data);
......
......@@ -1468,12 +1468,12 @@ int do_read_error(struct nandsim *ns, int num)
void do_bit_flips(struct nandsim *ns, int num)
{
if (bitflips && random32() < (1 << 22)) {
if (bitflips && prandom_u32() < (1 << 22)) {
int flips = 1;
if (bitflips > 1)
flips = (random32() % (int) bitflips) + 1;
flips = (prandom_u32() % (int) bitflips) + 1;
while (flips--) {
int pos = random32() % (num * 8);
int pos = prandom_u32() % (num * 8);
ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
NS_WARN("read_page: flipping bit %d in page %d "
"reading from %d ecc: corrected=%u failed=%u\n",
......
This diff is collapsed.
......@@ -174,7 +174,14 @@ static int __init ofpart_parser_init(void)
return rc;
}
static void __exit ofpart_parser_exit(void)
{
deregister_mtd_parser(&ofpart_parser);
deregister_mtd_parser(&ofoldpart_parser);
}
module_init(ofpart_parser_init);
module_exit(ofpart_parser_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Parser for MTD partitioning information in device tree");
......
......@@ -44,7 +44,7 @@ struct nand_ecc_test {
static void single_bit_error_data(void *error_data, void *correct_data,
size_t size)
{
unsigned int offset = random32() % (size * BITS_PER_BYTE);
unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
memcpy(error_data, correct_data, size);
__change_bit_le(offset, error_data);
......@@ -55,9 +55,9 @@ static void double_bit_error_data(void *error_data, void *correct_data,
{
unsigned int offset[2];
offset[0] = random32() % (size * BITS_PER_BYTE);
offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
do {
offset[1] = random32() % (size * BITS_PER_BYTE);
offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
} while (offset[0] == offset[1]);
memcpy(error_data, correct_data, size);
......@@ -68,7 +68,7 @@ static void double_bit_error_data(void *error_data, void *correct_data,
static unsigned int random_ecc_bit(size_t size)
{
unsigned int offset = random32() % (3 * BITS_PER_BYTE);
unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
if (size == 256) {
/*
......@@ -76,7 +76,7 @@ static unsigned int random_ecc_bit(size_t size)
* and 17th bit) in ECC code for 256 byte data block
*/
while (offset == 16 || offset == 17)
offset = random32() % (3 * BITS_PER_BYTE);
offset = prandom_u32() % (3 * BITS_PER_BYTE);
}
return offset;
......
......@@ -55,7 +55,7 @@ static int rand_eb(void)
unsigned int eb;
again:
eb = random32();
eb = prandom_u32();
/* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */
eb %= (ebcnt - 1);
if (bbt[eb])
......@@ -67,7 +67,7 @@ static int rand_offs(void)
{
unsigned int offs;
offs = random32();
offs = prandom_u32();
offs %= bufsize;
return offs;
}
......@@ -76,7 +76,7 @@ static int rand_len(int offs)
{
unsigned int len;
len = random32();
len = prandom_u32();
len %= (bufsize - offs);
return len;
}
......@@ -191,7 +191,7 @@ static int do_write(void)
static int do_operation(void)
{
if (random32() & 1)
if (prandom_u32() & 1)
return do_read();
else
return do_write();
......
......@@ -208,7 +208,7 @@ static inline int write_pattern(int ebnum, void *buf)
static int __init tort_init(void)
{
int err = 0, i, infinite = !cycles_count;
int bad_ebs[ebcnt];
int *bad_ebs;
printk(KERN_INFO "\n");
printk(KERN_INFO "=================================================\n");
......@@ -250,28 +250,24 @@ static int __init tort_init(void)
err = -ENOMEM;
patt_5A5 = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!patt_5A5) {
pr_err("error: cannot allocate memory\n");
if (!patt_5A5)
goto out_mtd;
}
patt_A5A = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!patt_A5A) {
pr_err("error: cannot allocate memory\n");
if (!patt_A5A)
goto out_patt_5A5;
}
patt_FF = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!patt_FF) {
pr_err("error: cannot allocate memory\n");
if (!patt_FF)
goto out_patt_A5A;
}
check_buf = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!check_buf) {
pr_err("error: cannot allocate memory\n");
if (!check_buf)
goto out_patt_FF;
}
bad_ebs = kcalloc(ebcnt, sizeof(*bad_ebs), GFP_KERNEL);
if (!bad_ebs)
goto out_check_buf;
err = 0;
......@@ -290,7 +286,6 @@ static int __init tort_init(void)
/*
* Check if there is a bad eraseblock among those we are going to test.
*/
memset(&bad_ebs[0], 0, sizeof(int) * ebcnt);
if (mtd_can_have_bb(mtd)) {
for (i = eb; i < eb + ebcnt; i++) {
err = mtd_block_isbad(mtd, (loff_t)i * mtd->erasesize);
......@@ -394,6 +389,8 @@ static int __init tort_init(void)
pr_info("finished after %u erase cycles\n",
erase_cycles);
kfree(bad_ebs);
out_check_buf:
kfree(check_buf);
out_patt_FF:
kfree(patt_FF);
......
......@@ -86,7 +86,7 @@ static inline int ubi_dbg_is_bgt_disabled(const struct ubi_device *ubi)
static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi)
{
if (ubi->dbg.emulate_bitflips)
return !(random32() % 200);
return !(prandom_u32() % 200);
return 0;
}
......@@ -100,7 +100,7 @@ static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi)
static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi)
{
if (ubi->dbg.emulate_io_failures)
return !(random32() % 500);
return !(prandom_u32() % 500);
return 0;
}
......@@ -114,7 +114,7 @@ static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi)
static inline int ubi_dbg_is_erase_failure(const struct ubi_device *ubi)
{
if (ubi->dbg.emulate_io_failures)
return !(random32() % 400);
return !(prandom_u32() % 400);
return 0;
}
......
......@@ -528,6 +528,7 @@ struct bcma_sflash {
u32 size;
struct mtd_info *mtd;
void *priv;
};
#endif
......
......@@ -245,6 +245,7 @@ struct map_info {
unsigned long pfow_base;
unsigned long map_priv_1;
unsigned long map_priv_2;
struct device_node *device_node;
void *fldrv_priv;
struct mtd_chip_driver *fldrv;
};
......@@ -328,7 +329,7 @@ static inline int map_word_bitsset(struct map_info *map, map_word val1, map_word
static inline map_word map_word_load(struct map_info *map, const void *ptr)
{
map_word r = {{0} };
map_word r;
if (map_bankwidth_is_1(map))
r.x[0] = *(unsigned char *)ptr;
......@@ -342,6 +343,8 @@ static inline map_word map_word_load(struct map_info *map, const void *ptr)
#endif
else if (map_bankwidth_is_large(map))
memcpy(r.x, ptr, map->bankwidth);
else
BUG();
return r;
}
......@@ -391,7 +394,7 @@ static inline map_word map_word_ff(struct map_info *map)
static inline map_word inline_map_read(struct map_info *map, unsigned long ofs)
{
map_word uninitialized_var(r);
map_word r;
if (map_bankwidth_is_1(map))
r.x[0] = __raw_readb(map->virt + ofs);
......@@ -425,6 +428,8 @@ static inline void inline_map_write(struct map_info *map, const map_word datum,
#endif
else if (map_bankwidth_is_large(map))
memcpy_toio(map->virt+ofs, datum.x, map->bankwidth);
else
BUG();
mb();
}
......
/*
* BCH Error Location Module
*
* Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef __ELM_H
#define __ELM_H
enum bch_ecc {
BCH4_ECC = 0,
BCH8_ECC,
};
/* ELM support 8 error syndrome process */
#define ERROR_VECTOR_MAX 8
#define BCH8_ECC_OOB_BYTES 13
#define BCH4_ECC_OOB_BYTES 7
/* RBL requires 14 byte even though BCH8 uses only 13 byte */
#define BCH8_SIZE (BCH8_ECC_OOB_BYTES + 1)
/* Uses 1 extra byte to handle erased pages */
#define BCH4_SIZE (BCH4_ECC_OOB_BYTES + 1)
/**
* struct elm_errorvec - error vector for elm
* @error_reported: set true for vectors error is reported
* @error_uncorrectable: number of uncorrectable errors
* @error_count: number of correctable errors in the sector
* @error_loc: buffer for error location
*
*/
struct elm_errorvec {
bool error_reported;
bool error_uncorrectable;
int error_count;
int error_loc[ERROR_VECTOR_MAX];
};
void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc,
struct elm_errorvec *err_vec);
void elm_config(struct device *dev, enum bch_ecc bch_type);
#endif /* __ELM_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment