Commit 56ca9db8 authored by Paul Cercueil's avatar Paul Cercueil Committed by Jonathan Cameron

iio: dac: Add support for the AD5592R/AD5593R ADCs/DACs

This patch adds support for the AD5592R (spi) and AD5593R (i2c)
ADC/DAC/GPIO devices.
Signed-off-by: default avatarPaul Cercueil <paul.cercueil@analog.com>
Signed-off-by: default avatarMichael Hennerich <michael.hennerich@analog.com>
Reviewed-by: default avatarLinus Walleij <linus.walleij@linaro.org>
Acked-by: default avatarRob Herring <robh@kernel.org>
Signed-off-by: default avatarJonathan Cameron <jic23@kernel.org>
parent 5ea9274b
Analog Devices AD5592R/AD5593R DAC/ADC device driver
Required properties for the AD5592R:
- compatible: Must be "adi,ad5592r"
- reg: SPI chip select number for the device
- spi-max-frequency: Max SPI frequency to use (< 30000000)
- spi-cpol: The AD5592R requires inverse clock polarity (CPOL) mode
Required properties for the AD5593R:
- compatible: Must be "adi,ad5593r"
- reg: I2C address of the device
Required properties for all supported chips:
- #address-cells: Should be 1.
- #size-cells: Should be 0.
- channel nodes:
Each child node represents one channel and has the following
Required properties:
* reg: Pin on which this channel is connected to.
* adi,mode: Mode or function of this channel.
Macros specifying the valid values
can be found in <dt-bindings/iio/adi,ad5592r.h>.
The following values are currently supported:
* CH_MODE_UNUSED (the pin is unused)
* CH_MODE_ADC (the pin is ADC input)
* CH_MODE_DAC (the pin is DAC output)
* CH_MODE_DAC_AND_ADC (the pin is DAC output
but can be monitored by an ADC, since
there is no disadvantage this
this should be considered as the
preferred DAC mode)
* CH_MODE_GPIO (the pin is registered
with GPIOLIB)
Optional properties:
* adi,off-state: State of this channel when unused or the
device gets removed. Macros specifying the
valid values can be found in
<dt-bindings/iio/adi,ad5592r.h>.
* CH_OFFSTATE_PULLDOWN (the pin is pulled down)
* CH_OFFSTATE_OUT_LOW (the pin is output low)
* CH_OFFSTATE_OUT_HIGH (the pin is output high)
* CH_OFFSTATE_OUT_TRISTATE (the pin is
tristated output)
Optional properties:
- vref-supply: Phandle to the external reference voltage supply. This should
only be set if there is an external reference voltage connected to the VREF
pin. If the property is not set the internal 2.5V reference is used.
- reset-gpios : GPIO spec for the RESET pin. If specified, it will be
asserted during driver probe.
- gpio-controller: Marks the device node as a GPIO controller.
- #gpio-cells: Should be 2. The first cell is the GPIO number and the second
cell specifies GPIO flags, as defined in <dt-bindings/gpio/gpio.h>.
AD5592R Example:
#include <dt-bindings/iio/adi,ad5592r.h>
vref: regulator-vref {
compatible = "regulator-fixed";
regulator-name = "vref-ad559x";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator-always-on;
};
ad5592r@0 {
#size-cells = <0>;
#address-cells = <1>;
#gpio-cells = <2>;
compatible = "adi,ad5592r";
reg = <0>;
spi-max-frequency = <1000000>;
spi-cpol;
vref-supply = <&vref>; /* optional */
reset-gpios = <&gpio0 86 0>; /* optional */
gpio-controller;
channel@0 {
reg = <0>;
adi,mode = <CH_MODE_DAC>;
};
channel@1 {
reg = <1>;
adi,mode = <CH_MODE_ADC>;
};
channel@2 {
reg = <2>;
adi,mode = <CH_MODE_DAC_AND_ADC>;
};
channel@3 {
reg = <3>;
adi,mode = <CH_MODE_DAC_AND_ADC>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
channel@4 {
reg = <4>;
adi,mode = <CH_MODE_UNUSED>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
channel@5 {
reg = <5>;
adi,mode = <CH_MODE_GPIO>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
channel@6 {
reg = <6>;
adi,mode = <CH_MODE_GPIO>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
channel@7 {
reg = <7>;
adi,mode = <CH_MODE_GPIO>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
};
AD5593R Example:
#include <dt-bindings/iio/adi,ad5592r.h>
ad5593r@10 {
#size-cells = <0>;
#address-cells = <1>;
#gpio-cells = <2>;
compatible = "adi,ad5593r";
reg = <0x10>;
gpio-controller;
channel@0 {
reg = <0>;
adi,mode = <CH_MODE_DAC>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
channel@1 {
reg = <1>;
adi,mode = <CH_MODE_ADC>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
channel@2 {
reg = <2>;
adi,mode = <CH_MODE_DAC_AND_ADC>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
channel@6 {
reg = <6>;
adi,mode = <CH_MODE_GPIO>;
adi,off-state = <CH_OFFSTATE_PULLDOWN>;
};
};
......@@ -74,6 +74,33 @@ config AD5449
To compile this driver as a module, choose M here: the
module will be called ad5449.
config AD5592R_BASE
tristate
config AD5592R
tristate "Analog Devices AD5592R ADC/DAC driver"
depends on SPI_MASTER
select GPIOLIB
select AD5592R_BASE
help
Say yes here to build support for Analog Devices AD5592R
Digital to Analog / Analog to Digital Converter.
To compile this driver as a module, choose M here: the
module will be called ad5592r.
config AD5593R
tristate "Analog Devices AD5593R ADC/DAC driver"
depends on I2C
select GPIOLIB
select AD5592R_BASE
help
Say yes here to build support for Analog Devices AD5593R
Digital to Analog / Analog to Digital Converter.
To compile this driver as a module, choose M here: the
module will be called ad5593r.
config AD5504
tristate "Analog Devices AD5504/AD5501 DAC SPI driver"
depends on SPI
......
......@@ -11,6 +11,9 @@ obj-$(CONFIG_AD5064) += ad5064.o
obj-$(CONFIG_AD5504) += ad5504.o
obj-$(CONFIG_AD5446) += ad5446.o
obj-$(CONFIG_AD5449) += ad5449.o
obj-$(CONFIG_AD5592R_BASE) += ad5592r-base.o
obj-$(CONFIG_AD5592R) += ad5592r.o
obj-$(CONFIG_AD5593R) += ad5593r.o
obj-$(CONFIG_AD5755) += ad5755.o
obj-$(CONFIG_AD5761) += ad5761.o
obj-$(CONFIG_AD5764) += ad5764.o
......
/*
* AD5592R Digital <-> Analog converters driver
*
* Copyright 2014-2016 Analog Devices Inc.
* Author: Paul Cercueil <paul.cercueil@analog.com>
*
* Licensed under the GPL-2.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/gpio.h>
#include <linux/property.h>
#include <dt-bindings/iio/adi,ad5592r.h>
#include "ad5592r-base.h"
static int ad5592r_gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
int ret = 0;
u8 val;
mutex_lock(&st->gpio_lock);
if (st->gpio_out & BIT(offset))
val = st->gpio_val;
else
ret = st->ops->gpio_read(st, &val);
mutex_unlock(&st->gpio_lock);
if (ret < 0)
return ret;
return !!(val & BIT(offset));
}
static void ad5592r_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
mutex_lock(&st->gpio_lock);
if (value)
st->gpio_val |= BIT(offset);
else
st->gpio_val &= ~BIT(offset);
st->ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val);
mutex_unlock(&st->gpio_lock);
}
static int ad5592r_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
int ret;
mutex_lock(&st->gpio_lock);
st->gpio_out &= ~BIT(offset);
st->gpio_in |= BIT(offset);
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out);
if (ret < 0)
goto err_unlock;
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in);
err_unlock:
mutex_unlock(&st->gpio_lock);
return ret;
}
static int ad5592r_gpio_direction_output(struct gpio_chip *chip,
unsigned offset, int value)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
int ret;
mutex_lock(&st->gpio_lock);
if (value)
st->gpio_val |= BIT(offset);
else
st->gpio_val &= ~BIT(offset);
st->gpio_in &= ~BIT(offset);
st->gpio_out |= BIT(offset);
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val);
if (ret < 0)
goto err_unlock;
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out);
if (ret < 0)
goto err_unlock;
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in);
err_unlock:
mutex_unlock(&st->gpio_lock);
return ret;
}
static int ad5592r_gpio_request(struct gpio_chip *chip, unsigned offset)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
if (!(st->gpio_map & BIT(offset))) {
dev_err(st->dev, "GPIO %d is reserved by alternate function\n",
offset);
return -ENODEV;
}
return 0;
}
static int ad5592r_gpio_init(struct ad5592r_state *st)
{
if (!st->gpio_map)
return 0;
st->gpiochip.label = dev_name(st->dev);
st->gpiochip.base = -1;
st->gpiochip.ngpio = 8;
st->gpiochip.parent = st->dev;
st->gpiochip.can_sleep = true;
st->gpiochip.direction_input = ad5592r_gpio_direction_input;
st->gpiochip.direction_output = ad5592r_gpio_direction_output;
st->gpiochip.get = ad5592r_gpio_get;
st->gpiochip.set = ad5592r_gpio_set;
st->gpiochip.request = ad5592r_gpio_request;
st->gpiochip.owner = THIS_MODULE;
mutex_init(&st->gpio_lock);
return gpiochip_add_data(&st->gpiochip, st);
}
static void ad5592r_gpio_cleanup(struct ad5592r_state *st)
{
if (st->gpio_map)
gpiochip_remove(&st->gpiochip);
}
static int ad5592r_reset(struct ad5592r_state *st)
{
struct gpio_desc *gpio;
struct iio_dev *iio_dev = iio_priv_to_dev(st);
gpio = devm_gpiod_get_optional(st->dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (gpio) {
udelay(1);
gpiod_set_value(gpio, 1);
} else {
mutex_lock(&iio_dev->mlock);
/* Writing this magic value resets the device */
st->ops->reg_write(st, AD5592R_REG_RESET, 0xdac);
mutex_unlock(&iio_dev->mlock);
}
udelay(250);
return 0;
}
static int ad5592r_get_vref(struct ad5592r_state *st)
{
int ret;
if (st->reg) {
ret = regulator_get_voltage(st->reg);
if (ret < 0)
return ret;
return ret / 1000;
} else {
return 2500;
}
}
static int ad5592r_set_channel_modes(struct ad5592r_state *st)
{
const struct ad5592r_rw_ops *ops = st->ops;
int ret;
unsigned i;
struct iio_dev *iio_dev = iio_priv_to_dev(st);
u8 pulldown = 0, tristate = 0, dac = 0, adc = 0;
u16 read_back;
for (i = 0; i < st->num_channels; i++) {
switch (st->channel_modes[i]) {
case CH_MODE_DAC:
dac |= BIT(i);
break;
case CH_MODE_ADC:
adc |= BIT(i);
break;
case CH_MODE_DAC_AND_ADC:
dac |= BIT(i);
adc |= BIT(i);
break;
case CH_MODE_GPIO:
st->gpio_map |= BIT(i);
st->gpio_in |= BIT(i); /* Default to input */
break;
case CH_MODE_UNUSED:
/* fall-through */
default:
switch (st->channel_offstate[i]) {
case CH_OFFSTATE_OUT_TRISTATE:
tristate |= BIT(i);
break;
case CH_OFFSTATE_OUT_LOW:
st->gpio_out |= BIT(i);
break;
case CH_OFFSTATE_OUT_HIGH:
st->gpio_out |= BIT(i);
st->gpio_val |= BIT(i);
break;
case CH_OFFSTATE_PULLDOWN:
/* fall-through */
default:
pulldown |= BIT(i);
break;
}
}
}
mutex_lock(&iio_dev->mlock);
/* Pull down unused pins to GND */
ret = ops->reg_write(st, AD5592R_REG_PULLDOWN, pulldown);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_TRISTATE, tristate);
if (ret)
goto err_unlock;
/* Configure pins that we use */
ret = ops->reg_write(st, AD5592R_REG_DAC_EN, dac);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_ADC_EN, adc);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in);
if (ret)
goto err_unlock;
/* Verify that we can read back at least one register */
ret = ops->reg_read(st, AD5592R_REG_ADC_EN, &read_back);
if (!ret && (read_back & 0xff) != adc)
ret = -EIO;
err_unlock:
mutex_unlock(&iio_dev->mlock);
return ret;
}
static int ad5592r_reset_channel_modes(struct ad5592r_state *st)
{
int i;
for (i = 0; i < ARRAY_SIZE(st->channel_modes); i++)
st->channel_modes[i] = CH_MODE_UNUSED;
return ad5592r_set_channel_modes(st);
}
static int ad5592r_write_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan, int val, int val2, long mask)
{
struct ad5592r_state *st = iio_priv(iio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (val >= (1 << chan->scan_type.realbits) || val < 0)
return -EINVAL;
if (!chan->output)
return -EINVAL;
mutex_lock(&iio_dev->mlock);
ret = st->ops->write_dac(st, chan->channel, val);
if (!ret)
st->cached_dac[chan->channel] = val;
mutex_unlock(&iio_dev->mlock);
return ret;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_VOLTAGE) {
bool gain;
if (val == st->scale_avail[0][0] &&
val2 == st->scale_avail[0][1])
gain = false;
else if (val == st->scale_avail[1][0] &&
val2 == st->scale_avail[1][1])
gain = true;
else
return -EINVAL;
mutex_lock(&iio_dev->mlock);
ret = st->ops->reg_read(st, AD5592R_REG_CTRL,
&st->cached_gp_ctrl);
if (ret < 0) {
mutex_unlock(&iio_dev->mlock);
return ret;
}
if (chan->output) {
if (gain)
st->cached_gp_ctrl |=
AD5592R_REG_CTRL_DAC_RANGE;
else
st->cached_gp_ctrl &=
~AD5592R_REG_CTRL_DAC_RANGE;
} else {
if (gain)
st->cached_gp_ctrl |=
AD5592R_REG_CTRL_ADC_RANGE;
else
st->cached_gp_ctrl &=
~AD5592R_REG_CTRL_ADC_RANGE;
}
ret = st->ops->reg_write(st, AD5592R_REG_CTRL,
st->cached_gp_ctrl);
mutex_unlock(&iio_dev->mlock);
return ret;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int ad5592r_read_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long m)
{
struct ad5592r_state *st = iio_priv(iio_dev);
u16 read_val;
int ret;
switch (m) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&iio_dev->mlock);
if (!chan->output) {
ret = st->ops->read_adc(st, chan->channel, &read_val);
if (ret)
goto unlock;
if ((read_val >> 12 & 0x7) != (chan->channel & 0x7)) {
dev_err(st->dev, "Error while reading channel %u\n",
chan->channel);
ret = -EIO;
goto unlock;
}
read_val &= GENMASK(11, 0);
} else {
read_val = st->cached_dac[chan->channel];
}
dev_dbg(st->dev, "Channel %u read: 0x%04hX\n",
chan->channel, read_val);
*val = (int) read_val;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
*val = ad5592r_get_vref(st);
if (chan->type == IIO_TEMP) {
s64 tmp = *val * (3767897513LL / 25LL);
*val = div_s64_rem(tmp, 1000000000LL, val2);
ret = IIO_VAL_INT_PLUS_MICRO;
} else {
int mult;
mutex_lock(&iio_dev->mlock);
if (chan->output)
mult = !!(st->cached_gp_ctrl &
AD5592R_REG_CTRL_DAC_RANGE);
else
mult = !!(st->cached_gp_ctrl &
AD5592R_REG_CTRL_ADC_RANGE);
*val *= ++mult;
*val2 = chan->scan_type.realbits;
ret = IIO_VAL_FRACTIONAL_LOG2;
}
break;
case IIO_CHAN_INFO_OFFSET:
ret = ad5592r_get_vref(st);
mutex_lock(&iio_dev->mlock);
if (st->cached_gp_ctrl & AD5592R_REG_CTRL_ADC_RANGE)
*val = (-34365 * 25) / ret;
else
*val = (-75365 * 25) / ret;
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
}
unlock:
mutex_unlock(&iio_dev->mlock);
return ret;
}
static int ad5592r_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
default:
return IIO_VAL_INT_PLUS_MICRO;
}
return -EINVAL;
}
static const struct iio_info ad5592r_info = {
.read_raw = ad5592r_read_raw,
.write_raw = ad5592r_write_raw,
.write_raw_get_fmt = ad5592r_write_raw_get_fmt,
.driver_module = THIS_MODULE,
};
static ssize_t ad5592r_show_scale_available(struct iio_dev *iio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct ad5592r_state *st = iio_priv(iio_dev);
return sprintf(buf, "%d.%09u %d.%09u\n",
st->scale_avail[0][0], st->scale_avail[0][1],
st->scale_avail[1][0], st->scale_avail[1][1]);
}
static struct iio_chan_spec_ext_info ad5592r_ext_info[] = {
{
.name = "scale_available",
.read = ad5592r_show_scale_available,
.shared = true,
},
{},
};
static void ad5592r_setup_channel(struct iio_dev *iio_dev,
struct iio_chan_spec *chan, bool output, unsigned id)
{
chan->type = IIO_VOLTAGE;
chan->indexed = 1;
chan->output = output;
chan->channel = id;
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_type.sign = 'u';
chan->scan_type.realbits = 12;
chan->scan_type.storagebits = 16;
chan->ext_info = ad5592r_ext_info;
}
static int ad5592r_alloc_channels(struct ad5592r_state *st)
{
unsigned i, curr_channel = 0,
num_channels = st->num_channels;
struct iio_dev *iio_dev = iio_priv_to_dev(st);
struct iio_chan_spec *channels;
struct fwnode_handle *child;
u32 reg, tmp;
int ret;
device_for_each_child_node(st->dev, child) {
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret || reg > ARRAY_SIZE(st->channel_modes))
continue;
ret = fwnode_property_read_u32(child, "adi,mode", &tmp);
if (!ret)
st->channel_modes[reg] = tmp;
fwnode_property_read_u32(child, "adi,off-state", &tmp);
if (!ret)
st->channel_offstate[reg] = tmp;
}
channels = devm_kzalloc(st->dev,
(1 + 2 * num_channels) * sizeof(*channels), GFP_KERNEL);
if (!channels)
return -ENOMEM;
for (i = 0; i < num_channels; i++) {
switch (st->channel_modes[i]) {
case CH_MODE_DAC:
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
true, i);
curr_channel++;
break;
case CH_MODE_ADC:
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
false, i);
curr_channel++;
break;
case CH_MODE_DAC_AND_ADC:
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
true, i);
curr_channel++;
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
false, i);
curr_channel++;
break;
default:
continue;
}
}
channels[curr_channel].type = IIO_TEMP;
channels[curr_channel].channel = 8;
channels[curr_channel].info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET);
curr_channel++;
iio_dev->num_channels = curr_channel;
iio_dev->channels = channels;
return 0;
}
static void ad5592r_init_scales(struct ad5592r_state *st, int vref_mV)
{
s64 tmp = (s64)vref_mV * 1000000000LL >> 12;
st->scale_avail[0][0] =
div_s64_rem(tmp, 1000000000LL, &st->scale_avail[0][1]);
st->scale_avail[1][0] =
div_s64_rem(tmp * 2, 1000000000LL, &st->scale_avail[1][1]);
}
int ad5592r_probe(struct device *dev, const char *name,
const struct ad5592r_rw_ops *ops)
{
struct iio_dev *iio_dev;
struct ad5592r_state *st;
int ret;
iio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!iio_dev)
return -ENOMEM;
st = iio_priv(iio_dev);
st->dev = dev;
st->ops = ops;
st->num_channels = 8;
dev_set_drvdata(dev, iio_dev);
st->reg = devm_regulator_get_optional(dev, "vref");
if (IS_ERR(st->reg)) {
if ((PTR_ERR(st->reg) != -ENODEV) && dev->of_node)
return PTR_ERR(st->reg);
st->reg = NULL;
} else {
ret = regulator_enable(st->reg);
if (ret)
return ret;
}
iio_dev->dev.parent = dev;
iio_dev->name = name;
iio_dev->info = &ad5592r_info;
iio_dev->modes = INDIO_DIRECT_MODE;
ad5592r_init_scales(st, ad5592r_get_vref(st));
ret = ad5592r_reset(st);
if (ret)
goto error_disable_reg;
ret = ops->reg_write(st, AD5592R_REG_PD,
(st->reg == NULL) ? AD5592R_REG_PD_EN_REF : 0);
if (ret)
goto error_disable_reg;
ret = ad5592r_alloc_channels(st);
if (ret)
goto error_disable_reg;
ret = ad5592r_set_channel_modes(st);
if (ret)
goto error_reset_ch_modes;
ret = iio_device_register(iio_dev);
if (ret)
goto error_reset_ch_modes;
ret = ad5592r_gpio_init(st);
if (ret)
goto error_dev_unregister;
return 0;
error_dev_unregister:
iio_device_unregister(iio_dev);
error_reset_ch_modes:
ad5592r_reset_channel_modes(st);
error_disable_reg:
if (st->reg)
regulator_disable(st->reg);
return ret;
}
EXPORT_SYMBOL_GPL(ad5592r_probe);
int ad5592r_remove(struct device *dev)
{
struct iio_dev *iio_dev = dev_get_drvdata(dev);
struct ad5592r_state *st = iio_priv(iio_dev);
iio_device_unregister(iio_dev);
ad5592r_reset_channel_modes(st);
ad5592r_gpio_cleanup(st);
if (st->reg)
regulator_disable(st->reg);
return 0;
}
EXPORT_SYMBOL_GPL(ad5592r_remove);
MODULE_AUTHOR("Paul Cercueil <paul.cercueil@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5592R multi-channel converters");
MODULE_LICENSE("GPL v2");
/*
* AD5592R / AD5593R Digital <-> Analog converters driver
*
* Copyright 2015-2016 Analog Devices Inc.
* Author: Paul Cercueil <paul.cercueil@analog.com>
*
* Licensed under the GPL-2.
*/
#ifndef __DRIVERS_IIO_DAC_AD5592R_BASE_H__
#define __DRIVERS_IIO_DAC_AD5592R_BASE_H__
#include <linux/types.h>
#include <linux/cache.h>
#include <linux/mutex.h>
#include <linux/gpio/driver.h>
struct device;
struct ad5592r_state;
enum ad5592r_registers {
AD5592R_REG_NOOP = 0x0,
AD5592R_REG_DAC_READBACK = 0x1,
AD5592R_REG_ADC_SEQ = 0x2,
AD5592R_REG_CTRL = 0x3,
AD5592R_REG_ADC_EN = 0x4,
AD5592R_REG_DAC_EN = 0x5,
AD5592R_REG_PULLDOWN = 0x6,
AD5592R_REG_LDAC = 0x7,
AD5592R_REG_GPIO_OUT_EN = 0x8,
AD5592R_REG_GPIO_SET = 0x9,
AD5592R_REG_GPIO_IN_EN = 0xA,
AD5592R_REG_PD = 0xB,
AD5592R_REG_OPEN_DRAIN = 0xC,
AD5592R_REG_TRISTATE = 0xD,
AD5592R_REG_RESET = 0xF,
};
#define AD5592R_REG_PD_EN_REF BIT(9)
#define AD5592R_REG_CTRL_ADC_RANGE BIT(5)
#define AD5592R_REG_CTRL_DAC_RANGE BIT(4)
struct ad5592r_rw_ops {
int (*write_dac)(struct ad5592r_state *st, unsigned chan, u16 value);
int (*read_adc)(struct ad5592r_state *st, unsigned chan, u16 *value);
int (*reg_write)(struct ad5592r_state *st, u8 reg, u16 value);
int (*reg_read)(struct ad5592r_state *st, u8 reg, u16 *value);
int (*gpio_read)(struct ad5592r_state *st, u8 *value);
};
struct ad5592r_state {
struct device *dev;
struct regulator *reg;
struct gpio_chip gpiochip;
struct mutex gpio_lock; /* Protect cached gpio_out, gpio_val, etc. */
unsigned int num_channels;
const struct ad5592r_rw_ops *ops;
int scale_avail[2][2];
u16 cached_dac[8];
u16 cached_gp_ctrl;
u8 channel_modes[8];
u8 channel_offstate[8];
u8 gpio_map;
u8 gpio_out;
u8 gpio_in;
u8 gpio_val;
__be16 spi_msg ____cacheline_aligned;
__be16 spi_msg_nop;
};
int ad5592r_probe(struct device *dev, const char *name,
const struct ad5592r_rw_ops *ops);
int ad5592r_remove(struct device *dev);
#endif /* __DRIVERS_IIO_DAC_AD5592R_BASE_H__ */
/*
* AD5592R Digital <-> Analog converters driver
*
* Copyright 2015-2016 Analog Devices Inc.
* Author: Paul Cercueil <paul.cercueil@analog.com>
*
* Licensed under the GPL-2.
*/
#include "ad5592r-base.h"
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/spi/spi.h>
#define AD5592R_GPIO_READBACK_EN BIT(10)
#define AD5592R_LDAC_READBACK_EN BIT(6)
static int ad5592r_spi_wnop_r16(struct ad5592r_state *st, u16 *buf)
{
struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
struct spi_transfer t = {
.tx_buf = &st->spi_msg_nop,
.rx_buf = buf,
.len = 2
};
st->spi_msg_nop = 0; /* NOP */
return spi_sync_transfer(spi, &t, 1);
}
static int ad5592r_write_dac(struct ad5592r_state *st, unsigned chan, u16 value)
{
struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
st->spi_msg = cpu_to_be16(BIT(15) | (chan << 12) | value);
return spi_write(spi, &st->spi_msg, sizeof(st->spi_msg));
}
static int ad5592r_read_adc(struct ad5592r_state *st, unsigned chan, u16 *value)
{
struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
int ret;
st->spi_msg = cpu_to_be16((AD5592R_REG_ADC_SEQ << 11) | BIT(chan));
ret = spi_write(spi, &st->spi_msg, sizeof(st->spi_msg));
if (ret)
return ret;
/*
* Invalid data:
* See Figure 40. Single-Channel ADC Conversion Sequence
*/
ret = ad5592r_spi_wnop_r16(st, &st->spi_msg);
if (ret)
return ret;
ret = ad5592r_spi_wnop_r16(st, &st->spi_msg);
if (ret)
return ret;
*value = be16_to_cpu(st->spi_msg);
return 0;
}
static int ad5592r_reg_write(struct ad5592r_state *st, u8 reg, u16 value)
{
struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
st->spi_msg = cpu_to_be16((reg << 11) | value);
return spi_write(spi, &st->spi_msg, sizeof(st->spi_msg));
}
static int ad5592r_reg_read(struct ad5592r_state *st, u8 reg, u16 *value)
{
struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
int ret;
st->spi_msg = cpu_to_be16((AD5592R_REG_LDAC << 11) |
AD5592R_LDAC_READBACK_EN | (reg << 2));
ret = spi_write(spi, &st->spi_msg, sizeof(st->spi_msg));
if (ret)
return ret;
ret = ad5592r_spi_wnop_r16(st, &st->spi_msg);
if (ret)
return ret;
*value = be16_to_cpu(st->spi_msg);
return 0;
}
static int ad5593r_gpio_read(struct ad5592r_state *st, u8 *value)
{
int ret;
ret = ad5592r_reg_write(st, AD5592R_REG_GPIO_IN_EN,
AD5592R_GPIO_READBACK_EN | st->gpio_in);
if (ret)
return ret;
ret = ad5592r_spi_wnop_r16(st, &st->spi_msg);
if (ret)
return ret;
*value = (u8) be16_to_cpu(st->spi_msg);
return 0;
}
static const struct ad5592r_rw_ops ad5592r_rw_ops = {
.write_dac = ad5592r_write_dac,
.read_adc = ad5592r_read_adc,
.reg_write = ad5592r_reg_write,
.reg_read = ad5592r_reg_read,
.gpio_read = ad5593r_gpio_read,
};
static int ad5592r_spi_probe(struct spi_device *spi)
{
const struct spi_device_id *id = spi_get_device_id(spi);
return ad5592r_probe(&spi->dev, id->name, &ad5592r_rw_ops);
}
static int ad5592r_spi_remove(struct spi_device *spi)
{
return ad5592r_remove(&spi->dev);
}
static const struct spi_device_id ad5592r_spi_ids[] = {
{ .name = "ad5592r", },
{}
};
MODULE_DEVICE_TABLE(spi, ad5592r_spi_ids);
static const struct of_device_id ad5592r_of_match[] = {
{ .compatible = "adi,ad5592r", },
{},
};
MODULE_DEVICE_TABLE(of, ad5592r_of_match);
static struct spi_driver ad5592r_spi_driver = {
.driver = {
.name = "ad5592r",
.of_match_table = of_match_ptr(ad5592r_of_match),
},
.probe = ad5592r_spi_probe,
.remove = ad5592r_spi_remove,
.id_table = ad5592r_spi_ids,
};
module_spi_driver(ad5592r_spi_driver);
MODULE_AUTHOR("Paul Cercueil <paul.cercueil@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5592R multi-channel converters");
MODULE_LICENSE("GPL v2");
/*
* AD5593R Digital <-> Analog converters driver
*
* Copyright 2015-2016 Analog Devices Inc.
* Author: Paul Cercueil <paul.cercueil@analog.com>
*
* Licensed under the GPL-2.
*/
#include "ad5592r-base.h"
#include <linux/bitops.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#define AD5593R_MODE_CONF (0 << 4)
#define AD5593R_MODE_DAC_WRITE (1 << 4)
#define AD5593R_MODE_ADC_READBACK (4 << 4)
#define AD5593R_MODE_DAC_READBACK (5 << 4)
#define AD5593R_MODE_GPIO_READBACK (6 << 4)
#define AD5593R_MODE_REG_READBACK (7 << 4)
static int ad5593r_write_dac(struct ad5592r_state *st, unsigned chan, u16 value)
{
struct i2c_client *i2c = to_i2c_client(st->dev);
return i2c_smbus_write_word_swapped(i2c,
AD5593R_MODE_DAC_WRITE | chan, value);
}
static int ad5593r_read_adc(struct ad5592r_state *st, unsigned chan, u16 *value)
{
struct i2c_client *i2c = to_i2c_client(st->dev);
s32 val;
val = i2c_smbus_write_word_swapped(i2c,
AD5593R_MODE_CONF | AD5592R_REG_ADC_SEQ, BIT(chan));
if (val < 0)
return (int) val;
val = i2c_smbus_read_word_swapped(i2c, AD5593R_MODE_ADC_READBACK);
if (val < 0)
return (int) val;
*value = (u16) val;
return 0;
}
static int ad5593r_reg_write(struct ad5592r_state *st, u8 reg, u16 value)
{
struct i2c_client *i2c = to_i2c_client(st->dev);
return i2c_smbus_write_word_swapped(i2c,
AD5593R_MODE_CONF | reg, value);
}
static int ad5593r_reg_read(struct ad5592r_state *st, u8 reg, u16 *value)
{
struct i2c_client *i2c = to_i2c_client(st->dev);
s32 val;
val = i2c_smbus_read_word_swapped(i2c, AD5593R_MODE_REG_READBACK | reg);
if (val < 0)
return (int) val;
*value = (u16) val;
return 0;
}
static int ad5593r_gpio_read(struct ad5592r_state *st, u8 *value)
{
struct i2c_client *i2c = to_i2c_client(st->dev);
s32 val;
val = i2c_smbus_read_word_swapped(i2c, AD5593R_MODE_GPIO_READBACK);
if (val < 0)
return (int) val;
*value = (u8) val;
return 0;
}
static const struct ad5592r_rw_ops ad5593r_rw_ops = {
.write_dac = ad5593r_write_dac,
.read_adc = ad5593r_read_adc,
.reg_write = ad5593r_reg_write,
.reg_read = ad5593r_reg_read,
.gpio_read = ad5593r_gpio_read,
};
static int ad5593r_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
return ad5592r_probe(&i2c->dev, id->name, &ad5593r_rw_ops);
}
static int ad5593r_i2c_remove(struct i2c_client *i2c)
{
return ad5592r_remove(&i2c->dev);
}
static const struct i2c_device_id ad5593r_i2c_ids[] = {
{ .name = "ad5593r", },
{},
};
MODULE_DEVICE_TABLE(i2c, ad5593r_i2c_ids);
static const struct of_device_id ad5593r_of_match[] = {
{ .compatible = "adi,ad5593r", },
{},
};
MODULE_DEVICE_TABLE(of, ad5593r_of_match);
static struct i2c_driver ad5593r_driver = {
.driver = {
.name = "ad5593r",
.of_match_table = of_match_ptr(ad5593r_of_match),
},
.probe = ad5593r_i2c_probe,
.remove = ad5593r_i2c_remove,
.id_table = ad5593r_i2c_ids,
};
module_i2c_driver(ad5593r_driver);
MODULE_AUTHOR("Paul Cercueil <paul.cercueil@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5592R multi-channel converters");
MODULE_LICENSE("GPL v2");
#ifndef _DT_BINDINGS_ADI_AD5592R_H
#define _DT_BINDINGS_ADI_AD5592R_H
#define CH_MODE_UNUSED 0
#define CH_MODE_ADC 1
#define CH_MODE_DAC 2
#define CH_MODE_DAC_AND_ADC 3
#define CH_MODE_GPIO 8
#define CH_OFFSTATE_PULLDOWN 0
#define CH_OFFSTATE_OUT_LOW 1
#define CH_OFFSTATE_OUT_HIGH 2
#define CH_OFFSTATE_OUT_TRISTATE 3
#endif /* _DT_BINDINGS_ADI_AD5592R_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment