Commit 6b3efc2a authored by Matthew Wilcox's avatar Matthew Wilcox Committed by Linus Torvalds

[PATCH] arch/parisc/mm

Update arch/parisc/mm
parent 1e0b058c
......@@ -2,6 +2,6 @@
# Makefile for the linux parisc-specific parts of the memory manager.
#
objs-y := init.o fault.o kmap.o extable.o
obj-y := init.o fault.o extable.o ioremap.o
include $(TOPDIR)/Rules.make
......@@ -46,17 +46,17 @@ search_one_table (const struct exception_table_entry *first,
const struct exception_table_entry *
search_exception_table (unsigned long addr)
{
#ifndef CONFIG_MODULE
#ifndef CONFIG_MODULES
/* There is only the kernel to search. */
return search_one_table(__start___ex_table,
__stop___ex_table - 1,
addr);
#else
struct exception_table_entry *ret;
/* The kernel is the last "module" -- no need to treat it special. */
struct module *mp;
for (mp = module_list; mp ; mp = mp->next) {
const struct exception_table_entry *ret;
if (!mp->ex_table_start)
continue;
ret = search_one_table(mp->ex_table_start, mp->ex_table_end - 1,
......
......@@ -17,6 +17,10 @@
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <asm/traps.h>
#define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
/* dumped to the console via printk) */
/* Defines for parisc_acctyp() */
......@@ -114,59 +118,31 @@ parisc_acctyp(unsigned long code, unsigned int inst)
#undef isGraphicsFlushRead
#undef BITSSET
/* This is similar to expand_stack(), except that it is for stacks
* that grow upwards.
*/
static inline int expand_stackup(struct vm_area_struct * vma, unsigned long address)
{
unsigned long grow;
address += 4 + PAGE_SIZE - 1;
address &= PAGE_MASK;
grow = (address - vma->vm_end) >> PAGE_SHIFT;
if (address - vma->vm_start > current->rlim[RLIMIT_STACK].rlim_cur ||
((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur)
return -ENOMEM;
vma->vm_end = address;
vma->vm_mm->total_vm += grow;
if (vma->vm_flags & VM_LOCKED)
vma->vm_mm->locked_vm += grow;
return 0;
}
/* This is similar to find_vma(), except that it understands that stacks
* grow up rather than down.
* XXX Optimise by making use of cache and avl tree as per find_vma().
#if 0
/* This is the treewalk to find a vma which is the highest that has
* a start < addr. We're using find_vma_prev instead right now, but
* we might want to use this at some point in the future. Probably
* not, but I want it committed to CVS so I don't lose it :-)
*/
struct vm_area_struct * pa_find_vma(struct mm_struct * mm, unsigned long addr)
{
struct vm_area_struct *vma = NULL;
if (mm) {
vma = mm->mmap;
if (!vma || addr < vma->vm_start)
return NULL;
while (vma->vm_next && addr >= vma->vm_next->vm_start)
vma = vma->vm_next;
while (tree != vm_avl_empty) {
if (tree->vm_start > addr) {
tree = tree->vm_avl_left;
} else {
prev = tree;
if (prev->vm_next == NULL)
break;
if (prev->vm_next->vm_start > addr)
break;
tree = tree->vm_avl_right;
}
return vma;
}
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*/
extern void parisc_terminate(char *, struct pt_regs *, int, unsigned long);
}
#endif
void do_page_fault(struct pt_regs *regs, unsigned long code,
unsigned long address)
{
struct vm_area_struct * vma;
struct vm_area_struct *vma, *prev_vma;
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
const struct exception_table_entry *fix;
......@@ -176,13 +152,9 @@ void do_page_fault(struct pt_regs *regs, unsigned long code,
goto no_context;
down_read(&mm->mmap_sem);
vma = pa_find_vma(mm, address);
if (!vma)
goto bad_area;
if (address < vma->vm_end)
goto good_area;
if (!(vma->vm_flags & VM_GROWSUP) || expand_stackup(vma, address))
goto bad_area;
vma = find_vma_prev(mm, address, &prev_vma);
if (!vma || address < vma->vm_start)
goto check_expansion;
/*
* Ok, we have a good vm_area for this memory access. We still need to
* check the access permissions.
......@@ -221,6 +193,11 @@ void do_page_fault(struct pt_regs *regs, unsigned long code,
up_read(&mm->mmap_sem);
return;
check_expansion:
vma = prev_vma;
if (vma && (expand_stack(vma, address) == 0))
goto good_area;
/*
* Something tried to access memory that isn't in our memory map..
*/
......@@ -230,9 +207,16 @@ void do_page_fault(struct pt_regs *regs, unsigned long code,
if (user_mode(regs)) {
struct siginfo si;
printk("\ndo_page_fault() pid=%d command='%s'\n",
tsk->pid, tsk->comm);
#ifdef PRINT_USER_FAULTS
printk(KERN_DEBUG "\n");
printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
tsk->pid, tsk->comm, code, address);
if (vma) {
printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
vma->vm_start, vma->vm_end);
}
show_regs(regs);
#endif
/* FIXME: actually we need to get the signo and code correct */
si.si_signo = SIGSEGV;
si.si_errno = 0;
......@@ -272,11 +256,11 @@ void do_page_fault(struct pt_regs *regs, unsigned long code,
}
}
parisc_terminate("Bad Address (null pointer deref?)",regs,code,address);
parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
out_of_memory:
up_read(&mm->mmap_sem);
printk("VM: killing process %s\n", current->comm);
printk(KERN_CRIT "VM: killing process %s\n", current->comm);
if (user_mode(regs))
do_exit(SIGKILL);
goto no_context;
......
......@@ -15,14 +15,406 @@
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
#include <linux/blk.h> /* for initrd_start and initrd_end */
#include <linux/swap.h>
#include <linux/unistd.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/pdc_chassis.h>
extern unsigned long max_pfn, mem_max;
mmu_gather_t mmu_gathers[NR_CPUS];
void free_initmem(void) {
extern char _text; /* start of kernel code, defined by linker */
extern int data_start;
extern char _end; /* end of BSS, defined by linker */
extern char __init_begin, __init_end;
#ifdef CONFIG_DISCONTIGMEM
struct node_map_data node_data[MAX_PHYSMEM_RANGES];
bootmem_data_t bmem_data[MAX_PHYSMEM_RANGES];
unsigned char *chunkmap;
unsigned int maxchunkmap;
#endif
static struct resource data_resource = {
name: "Kernel data",
flags: IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource code_resource = {
name: "Kernel code",
flags: IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource pdcdata_resource = {
name: "PDC data (Page Zero)",
start: 0,
end: 0x9ff,
flags: IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
static unsigned long max_pfn;
/* The following array is initialized from the firmware specific
* information retrieved in kernel/inventory.c.
*/
physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
int npmem_ranges;
#ifdef __LP64__
#define MAX_MEM (~0UL)
#else /* !__LP64__ */
#define MAX_MEM (3584U*1024U*1024U)
#endif /* !__LP64__ */
static unsigned long mem_limit = MAX_MEM;
static void __init mem_limit_func(void)
{
char *cp, *end;
unsigned long limit;
extern char saved_command_line[];
/* We need this before __setup() functions are called */
limit = MAX_MEM;
for (cp = saved_command_line; *cp; ) {
if (memcmp(cp, "mem=", 4) == 0) {
cp += 4;
limit = memparse(cp, &end);
if (end != cp)
break;
cp = end;
} else {
while (*cp != ' ' && *cp)
++cp;
while (*cp == ' ')
++cp;
}
}
if (limit < mem_limit)
mem_limit = limit;
}
#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
static void __init setup_bootmem(void)
{
unsigned long bootmap_size;
unsigned long mem_max;
unsigned long bootmap_pages;
unsigned long bootmap_start_pfn;
unsigned long bootmap_pfn;
#ifndef CONFIG_DISCONTIGMEM
physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
int npmem_holes;
#endif
int i, sysram_resource_count;
disable_sr_hashing(); /* Turn off space register hashing */
#ifdef CONFIG_DISCONTIGMEM
/*
* The below is still true as of 2.4.2. If this is ever fixed,
* we can remove this warning!
*/
printk(KERN_WARNING "\n\n");
printk(KERN_WARNING "CONFIG_DISCONTIGMEM is enabled, which is probably a mistake. This\n");
printk(KERN_WARNING "option can lead to heavy swapping, even when there are gigabytes\n");
printk(KERN_WARNING "of free memory.\n\n");
#endif
#ifdef __LP64__
#ifndef CONFIG_DISCONTIGMEM
/*
* Sort the ranges. Since the number of ranges is typically
* small, and performance is not an issue here, just do
* a simple insertion sort.
*/
for (i = 1; i < npmem_ranges; i++) {
int j;
for (j = i; j > 0; j--) {
unsigned long tmp;
if (pmem_ranges[j-1].start_pfn <
pmem_ranges[j].start_pfn) {
break;
}
tmp = pmem_ranges[j-1].start_pfn;
pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
pmem_ranges[j].start_pfn = tmp;
tmp = pmem_ranges[j-1].pages;
pmem_ranges[j-1].pages = pmem_ranges[j].pages;
pmem_ranges[j].pages = tmp;
}
}
/*
* Throw out ranges that are too far apart (controlled by
* MAX_GAP). If CONFIG_DISCONTIGMEM wasn't implemented so
* poorly, we would recommend enabling that option, but,
* until it is fixed, this is the best way to go.
*/
for (i = 1; i < npmem_ranges; i++) {
if (pmem_ranges[i].start_pfn -
(pmem_ranges[i-1].start_pfn +
pmem_ranges[i-1].pages) > MAX_GAP) {
npmem_ranges = i;
break;
}
}
#endif
if (npmem_ranges > 1) {
/* Print the memory ranges */
printk(KERN_INFO "Memory Ranges:\n");
for (i = 0; i < npmem_ranges; i++) {
unsigned long start;
unsigned long size;
size = (pmem_ranges[i].pages << PAGE_SHIFT);
start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld Mb\n",
i,start, start + (size - 1), size >> 20);
}
}
#endif /* __LP64__ */
#if 1
/* KLUGE! this really belongs in kernel/resource.c! */
iomem_resource.end = ~0UL;
#endif
sysram_resource_count = npmem_ranges;
for (i = 0; i < sysram_resource_count; i++) {
struct resource *res = &sysram_resources[i];
res->name = "System RAM";
res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
}
/*
* For 32 bit kernels we limit the amount of memory we can
* support, in order to preserve enough kernel address space
* for other purposes. For 64 bit kernels we don't normally
* limit the memory, but this mechanism can be used to
* artificially limit the amount of memory (and it is written
* to work with multiple memory ranges).
*/
mem_limit_func(); /* check for "mem=" argument */
mem_max = 0;
for (i = 0; i < npmem_ranges; i++) {
unsigned long rsize;
rsize = pmem_ranges[i].pages << PAGE_SHIFT;
if ((mem_max + rsize) > mem_limit) {
printk(KERN_WARNING "Memory truncated to %ld Mb\n", mem_limit >> 20);
if (mem_max == mem_limit)
npmem_ranges = i;
else {
pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
- (mem_max >> PAGE_SHIFT);
npmem_ranges = i + 1;
mem_max = mem_limit;
}
break;
}
mem_max += rsize;
}
printk(KERN_INFO "Total Memory: %ld Mb\n",mem_max >> 20);
#ifndef CONFIG_DISCONTIGMEM
/* Merge the ranges, keeping track of the holes */
{
unsigned long end_pfn;
unsigned long hole_pages;
npmem_holes = 0;
end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
for (i = 1; i < npmem_ranges; i++) {
hole_pages = pmem_ranges[i].start_pfn - end_pfn;
if (hole_pages) {
pmem_holes[npmem_holes].start_pfn = end_pfn;
pmem_holes[npmem_holes++].pages = hole_pages;
end_pfn += hole_pages;
}
end_pfn += pmem_ranges[i].pages;
}
pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
npmem_ranges = 1;
}
#endif
bootmap_pages = 0;
for (i = 0; i < npmem_ranges; i++)
bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
#ifdef CONFIG_DISCONTIGMEM
for (i = 0; i < npmem_ranges; i++)
node_data[i].pg_data.bdata = &bmem_data[i];
#endif
/*
* Initialize and free the full range of memory in each range.
* Note that the only writing these routines do are to the bootmap,
* and we've made sure to locate the bootmap properly so that they
* won't be writing over anything important.
*/
bootmap_pfn = bootmap_start_pfn;
max_pfn = 0;
for (i = 0; i < npmem_ranges; i++) {
unsigned long start_pfn;
unsigned long npages;
start_pfn = pmem_ranges[i].start_pfn;
npages = pmem_ranges[i].pages;
bootmap_size = init_bootmem_node(NODE_DATA(i),
bootmap_pfn,
start_pfn,
(start_pfn + npages) );
free_bootmem_node(NODE_DATA(i),
(start_pfn << PAGE_SHIFT),
(npages << PAGE_SHIFT) );
bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if ((start_pfn + npages) > max_pfn)
max_pfn = start_pfn + npages;
}
if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
BUG();
}
/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
#define PDC_CONSOLE_IO_IODC_SIZE 32768
reserve_bootmem_node(NODE_DATA(0), 0UL,
(unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
(unsigned long)(&_end - &_text));
reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
#ifndef CONFIG_DISCONTIGMEM
/* reserve the holes */
for (i = 0; i < npmem_holes; i++) {
reserve_bootmem_node(NODE_DATA(0),
(pmem_holes[i].start_pfn << PAGE_SHIFT),
(pmem_holes[i].pages << PAGE_SHIFT));
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
if (__pa(initrd_start) < mem_max) {
unsigned long initrd_reserve;
if (__pa(initrd_end) > mem_max) {
initrd_reserve = mem_max - __pa(initrd_start);
} else {
initrd_reserve = initrd_end - initrd_start;
}
initrd_below_start_ok = 1;
printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
}
}
#endif
data_resource.start = virt_to_phys(&data_start);
data_resource.end = virt_to_phys(&_end)-1;
code_resource.start = virt_to_phys(&_text);
code_resource.end = virt_to_phys(&data_start)-1;
/* We don't know which region the kernel will be in, so try
* all of them.
*/
for (i = 0; i < sysram_resource_count; i++) {
struct resource *res = &sysram_resources[i];
request_resource(res, &code_resource);
request_resource(res, &data_resource);
}
request_resource(&sysram_resources[0], &pdcdata_resource);
}
void free_initmem(void)
{
/* FIXME: */
#if 0
printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
(&__init_end - &__init_begin) >> 10);
return;
#else
unsigned long addr;
printk(KERN_INFO "Freeing unused kernel memory: ");
#if 1
/* Attempt to catch anyone trying to execute code here
* by filling the page with BRK insns.
*
* If we disable interrupts for all CPUs, then IPI stops working.
* Kinda breaks the global cache flushing.
*/
local_irq_disable();
memset(&__init_begin, 0x00,
(unsigned long)&__init_end - (unsigned long)&__init_begin);
flush_data_cache();
asm volatile("sync" : : );
flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
asm volatile("sync" : : );
local_irq_enable();
#endif
addr = (unsigned long)(&__init_begin);
for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
set_page_count(virt_to_page(addr), 1);
free_page(addr);
num_physpages++;
totalram_pages++;
}
/* set up a new led state on systems shipped LED State panel */
pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
#endif
}
/*
......@@ -36,67 +428,43 @@ void free_initmem(void) {
* a hole of 4kB between each vmalloced area for the same reason.
*/
#define MAP_START 0x4000 /* Leave room for gateway page expansion */
#define VM_MAP_OFFSET (32*1024)
#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
& ~(VM_MAP_OFFSET-1)))
void *vmalloc_start;
#ifdef CONFIG_PA11
unsigned long pcxl_dma_start;
#endif
void __init mem_init(void)
{
max_mapnr = num_physpages = max_low_pfn;
high_memory = __va(max_low_pfn * PAGE_SIZE);
int i;
totalram_pages += free_all_bootmem();
printk("Memory: %luk available\n", totalram_pages << (PAGE_SHIFT-10));
high_memory = __va((max_pfn << PAGE_SHIFT));
max_mapnr = (virt_to_page(high_memory - 1) - mem_map) + 1;
num_physpages = 0;
mem_map = zone_table[0]->zone_mem_map;
for (i = 0; i < npmem_ranges; i++)
num_physpages += free_all_bootmem_node(NODE_DATA(i));
totalram_pages = num_physpages;
printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
#ifdef CONFIG_PA11
if (hppa_dma_ops == &pcxl_dma_ops) {
pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(high_memory);
pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
}
else {
} else {
pcxl_dma_start = 0;
vmalloc_start = SET_MAP_OFFSET(high_memory);
}
}
void __bad_pgd(pgd_t *pgd)
{
printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd));
pgd_val(*pgd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
}
void __bad_pmd(pmd_t *pmd)
{
printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
pmd_val(*pmd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
}
pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset)
{
pte_t *pte;
pte = (pte_t *) __get_free_page(GFP_KERNEL);
if (pmd_none(*pmd)) {
if (pte) {
clear_page(pte);
pmd_val(*pmd) = _PAGE_TABLE + __pa((unsigned long)pte);
return pte + offset;
}
pmd_val(*pmd) = _PAGE_TABLE + __pa(BAD_PAGETABLE);
return NULL;
}
free_page((unsigned long)pte);
if (pmd_bad(*pmd)) {
__bad_pmd(pmd);
return NULL;
vmalloc_start = SET_MAP_OFFSET(MAP_START);
}
#else
vmalloc_start = SET_MAP_OFFSET(MAP_START);
#endif
return (pte_t *) pmd_page(*pmd) + offset;
}
int do_check_pgt_cache(int low, int high)
......@@ -104,40 +472,16 @@ int do_check_pgt_cache(int low, int high)
return 0;
}
/*
* BAD_PAGE is the page that is used for page faults when linux
* is out-of-memory. Older versions of linux just did a
* do_exit(), but using this instead means there is less risk
* for a process dying in kernel mode, possibly leaving an inode
* unused etc..
*
* BAD_PAGETABLE is the accompanying page-table: it is initialized
* to point to BAD_PAGE entries.
*
* ZERO_PAGE is a special page that is used for zero-initialized
* data and COW.
*/
pte_t * __bad_pagetable(void)
{
return (pte_t *) NULL;
}
unsigned long *empty_zero_page;
unsigned long *empty_bad_page;
pte_t __bad_page(void)
{
return *(pte_t *)NULL;
}
void show_mem(void)
{
int i,free = 0,total = 0,reserved = 0;
int shared = 0, cached = 0;
printk("Mem-info:\n");
printk(KERN_INFO "Mem-info:\n");
show_free_areas();
printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
printk(KERN_INFO "Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
i = max_mapnr;
while (i-- > 0) {
total++;
......@@ -150,53 +494,49 @@ void show_mem(void)
else
shared += atomic_read(&mem_map[i].count) - 1;
}
printk("%d pages of RAM\n",total);
printk("%d reserved pages\n",reserved);
printk("%d pages shared\n",shared);
printk("%d pages swap cached\n",cached);
printk(KERN_INFO "%d pages of RAM\n", total);
printk(KERN_INFO "%d reserved pages\n", reserved);
printk(KERN_INFO "%d pages shared\n", shared);
printk(KERN_INFO "%d pages swap cached\n", cached);
}
void set_pte_phys (unsigned long vaddr, unsigned long phys)
{
}
/*
* pagetable_init() sets up the page tables
*
* Note that gateway_init() places the Linux gateway page at page 0.
* Since gateway pages cannot be dereferenced this has the desirable
* side effect of trapping those pesky NULL-reference errors in the
* kernel.
*/
static void __init pagetable_init(void)
static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
{
pgd_t *pg_dir;
pmd_t *pmd;
pte_t *pg_table;
unsigned long end_paddr;
unsigned long start_pmd;
unsigned long start_pte;
unsigned long tmp1;
unsigned long tmp2;
unsigned long address;
unsigned long ro_start;
unsigned long ro_end;
unsigned long fv_addr;
extern const int stext;
extern int data_start;
unsigned long gw_addr;
extern const unsigned long fault_vector_20;
extern void * const linux_gateway_page;
ro_start = __pa((unsigned long)&stext);
ro_start = __pa((unsigned long)&_text);
ro_end = __pa((unsigned long)&data_start);
fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
printk("pagetable_init\n");
end_paddr = start_paddr + size;
/* Map whole memory from PAGE_OFFSET */
pg_dir = (pgd_t *)swapper_pg_dir + USER_PGD_PTRS;
pg_dir = pgd_offset_k(start_vaddr);
address = 0;
while (address < mem_max) {
/* XXX: BTLB should be done here */
#if PTRS_PER_PMD == 1
start_pmd = 0;
#else
start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
#endif
start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
address = start_paddr;
while (address < end_paddr) {
#if PTRS_PER_PMD == 1
pmd = (pmd_t *)__pa(pg_dir);
#else
......@@ -207,7 +547,7 @@ static void __init pagetable_init(void)
*/
if (!pmd) {
pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
pmd = (pmd_t *) __pa(pmd);
}
......@@ -217,8 +557,8 @@ static void __init pagetable_init(void)
/* now change pmd to kernel virtual addresses */
pmd = (pmd_t *) __va(pmd);
for (tmp1 = 0 ; tmp1 < PTRS_PER_PMD ; tmp1++,pmd++) {
pmd = (pmd_t *)__va(pmd) + start_pmd;
for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
/*
* pg_table is physical at this point
......@@ -227,7 +567,7 @@ static void __init pagetable_init(void)
pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
if (!pg_table) {
pg_table = (pte_t *)
alloc_bootmem_low_pages(PAGE_SIZE);
alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
pg_table = (pte_t *) __pa(pg_table);
}
......@@ -236,64 +576,90 @@ static void __init pagetable_init(void)
/* now change pg_table to kernel virtual addresses */
pg_table = (pte_t *) __va(pg_table);
for (tmp2=0; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
pg_table = (pte_t *) __va(pg_table) + start_pte;
for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
pte_t pte;
#if !defined(CONFIG_KWDB) && !defined(CONFIG_STI_CONSOLE)
#if !defined(CONFIG_STI_CONSOLE)
#warning STI console should explicitly allocate executable pages but does not
/* KWDB needs to write kernel text when setting break points.
**
** The right thing to do seems like KWDB modify only the pte which
** has a break point on it...otherwise we might mask worse bugs.
*/
/*
* Map the fault vector writable so we can
* write the HPMC checksum.
*/
if (address >= ro_start && address < ro_end
&& address != fv_addr)
&& address != fv_addr
&& address != gw_addr)
pte = __mk_pte(address, PAGE_KERNEL_RO);
else
#endif
pte = __mk_pte(address, PAGE_KERNEL);
pte = __mk_pte(address, pgprot);
if (address >= mem_max)
if (address >= end_paddr)
pte_val(pte) = 0;
set_pte(pg_table, pte);
address += PAGE_SIZE;
}
start_pte = 0;
if (address >= mem_max)
if (address >= end_paddr)
break;
}
start_pmd = 0;
}
}
/*
* pagetable_init() sets up the page tables
*
* Note that gateway_init() places the Linux gateway page at page 0.
* Since gateway pages cannot be dereferenced this has the desirable
* side effect of trapping those pesky NULL-reference errors in the
* kernel.
*/
static void __init pagetable_init(void)
{
int range;
printk("pagetable_init\n");
/* Map each physical memory range to its kernel vaddr */
for (range = 0; range < npmem_ranges; range++) {
unsigned long start_paddr;
unsigned long end_paddr;
unsigned long size;
start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
size = pmem_ranges[range].pages << PAGE_SHIFT;
map_pages((unsigned long)__va(start_paddr), start_paddr,
size, PAGE_KERNEL);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_end && initrd_end > mem_limit) {
printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
map_pages(initrd_start, __pa(initrd_start),
initrd_end - initrd_start, PAGE_KERNEL);
}
#endif
empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
memset(empty_zero_page, 0, PAGE_SIZE);
}
unsigned long gateway_pgd_offset;
unsigned long gateway_pgd_entry;
static void __init gateway_init(void)
{
unsigned long hpux_gateway_page_addr;
unsigned long linux_gateway_page_addr;
pgd_t *pg_dir;
pmd_t *pmd_base;
pmd_t *pmd;
pte_t *pg_table_base;
pte_t *pg_table;
/* FIXME: These are 'const' in order to trick the compiler
into not treating them as DP-relative data. */
extern void * const hpux_gateway_page;
/* FIXME: This is 'const' in order to trick the compiler
into not treating it as DP-relative data. */
extern void * const linux_gateway_page;
pte_t pte;
hpux_gateway_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
gateway_pgd_offset = hpux_gateway_page_addr >> PGDIR_SHIFT;
/*
* Setup Linux Gateway page.
*
......@@ -301,151 +667,345 @@ static void __init gateway_init(void)
* page 0), so it doesn't need to be aliased into user space.
*/
pg_dir = (pgd_t *)swapper_pg_dir;
#if PTRS_PER_PMD == 1
pmd_base = (pmd_t *)pg_dir;
pmd = pmd_base +
((linux_gateway_page_addr) >> PGDIR_SHIFT);
#else
pmd_base = (pmd_t *) alloc_bootmem_pages(PAGE_SIZE);
pgd_val(*(pg_dir + (linux_gateway_page_addr >> PGDIR_SHIFT))) =
_PAGE_TABLE | __pa(pmd_base);
map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
PAGE_SIZE, PAGE_GATEWAY);
}
pmd = pmd_base +
((linux_gateway_page_addr & (PMD_MASK) & (PGDIR_SIZE - 1)) >>
PMD_SHIFT);
#endif
void
map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
{
pgd_t *pg_dir;
pmd_t *pmd;
pte_t *pg_table;
unsigned long start_pmd;
unsigned long start_pte;
unsigned long address;
unsigned long hpux_gw_page_addr;
/* FIXME: This is 'const' in order to trick the compiler
into not treating it as DP-relative data. */
extern void * const hpux_gateway_page;
pg_table_base = (pte_t *) alloc_bootmem_pages(PAGE_SIZE);
hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
pmd_val(*pmd) = _PAGE_TABLE | __pa(pg_table_base);
/*
* Setup HP-UX Gateway page.
*
* The HP-UX gateway page resides in the user address space,
* so it needs to be aliased into each process.
*/
pte = __mk_pte(__pa(&linux_gateway_page), PAGE_GATEWAY);
pg_dir = pgd_offset(mm,hpux_gw_page_addr);
pg_table = pg_table_base +
((linux_gateway_page_addr & (PAGE_MASK) & (PMD_SIZE - 1)) >>
PAGE_SHIFT);
#if PTRS_PER_PMD == 1
start_pmd = 0;
#else
start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
#endif
start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
set_pte(pg_table,pte);
address = __pa(&hpux_gateway_page);
#if PTRS_PER_PMD == 1
pmd = (pmd_t *)__pa(pg_dir);
#else
pmd = (pmd_t *) (PAGE_MASK & pgd_val(*pg_dir));
/*
* Setup HP-UX gateway page.
* This page will be aliased into each user address space.
* pmd is physical at this point
*/
pg_table_base = (pte_t *) alloc_bootmem_pages(PAGE_SIZE);
pte = __mk_pte(__pa(&hpux_gateway_page), PAGE_GATEWAY);
pg_table = pg_table_base +
((hpux_gateway_page_addr & (PAGE_MASK) & (PMD_SIZE - 1)) >>
PAGE_SHIFT);
set_pte(pg_table,pte);
if (!pmd) {
pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
pmd = (pmd_t *) __pa(pmd);
}
#if PTRS_PER_PMD == 1
pmd_base = (pmd_t *)pg_table_base;
#else
pmd_base = (pmd_t *) alloc_bootmem_pages(PAGE_SIZE);
pmd = pmd_base +
((hpux_gateway_page_addr & (PMD_MASK) & (PGDIR_SIZE - 1)) >>
PMD_SHIFT);
pmd_val(*pmd) = _PAGE_TABLE | __pa(pg_table_base);
pgd_val(*pg_dir) = _PAGE_TABLE | (unsigned long) pmd;
#endif
/* now change pmd to kernel virtual addresses */
gateway_pgd_entry = _PAGE_TABLE | __pa(pmd_base);
pmd = (pmd_t *)__va(pmd) + start_pmd;
/*
* We will be aliasing the HP-UX gateway page into all HP-UX
* user spaces at the same address (not counting the space register
* value) that will be equivalently mapped as long as space register
* hashing is disabled. It will be a problem if anyone touches
* the gateway pages at its "kernel" address, since that is
* NOT equivalently mapped. We'll flush the caches at this
* point, just in case some code has touched those addresses
* previous to this, but all bets are off if they get touched
* after this point.
* pg_table is physical at this point
*/
flush_all_caches();
pg_table = (pte_t *) (PAGE_MASK & pmd_val(*pmd));
if (!pg_table)
pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
return;
pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) pg_table;
/* now change pg_table to kernel virtual addresses */
pg_table = (pte_t *) __va(pg_table) + start_pte;
set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
}
extern void flush_tlb_all_local(void);
void __init paging_init(void)
{
int i;
setup_bootmem();
pagetable_init();
gateway_init();
flush_cache_all_local(); /* start with known state */
flush_tlb_all_local();
{
unsigned long zones_size[MAX_NR_ZONES] = { max_pfn/2, max_pfn/2, };
for (i = 0; i < npmem_ranges; i++) {
unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0, };
free_area_init(zones_size);
zones_size[ZONE_DMA] = pmem_ranges[i].pages;
free_area_init_node(i,NODE_DATA(i),NULL,zones_size,
(pmem_ranges[i].start_pfn << PAGE_SHIFT),0);
}
#ifdef CONFIG_DISCONTIGMEM
/*
* Initialize support for virt_to_page() macro.
*
* Note that MAX_ADDRESS is the largest virtual address that
* we can map. However, since we map all physical memory into
* the kernel address space, it also has an effect on the maximum
* physical address we can map (MAX_ADDRESS - PAGE_OFFSET).
*/
maxchunkmap = MAX_ADDRESS >> CHUNKSHIFT;
chunkmap = (unsigned char *)alloc_bootmem(maxchunkmap);
for (i = 0; i < maxchunkmap; i++)
chunkmap[i] = BADCHUNK;
for (i = 0; i < npmem_ranges; i++) {
ADJ_NODE_MEM_MAP(i) = NODE_MEM_MAP(i) - pmem_ranges[i].start_pfn;
{
unsigned long chunk_paddr;
unsigned long end_paddr;
int chunknum;
chunk_paddr = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
end_paddr = chunk_paddr + (pmem_ranges[i].pages << PAGE_SHIFT);
chunk_paddr &= CHUNKMASK;
chunknum = (int)CHUNKNUM(chunk_paddr);
while (chunk_paddr < end_paddr) {
if (chunknum >= maxchunkmap)
goto badchunkmap1;
if (chunkmap[chunknum] != BADCHUNK)
goto badchunkmap2;
chunkmap[chunknum] = (unsigned char)i;
chunk_paddr += CHUNKSZ;
chunknum++;
}
}
}
return;
badchunkmap1:
panic("paging_init: Physical address exceeds maximum address space!\n");
badchunkmap2:
panic("paging_init: Collision in chunk map array. CHUNKSZ needs to be smaller\n");
#endif
}
#define NR_SPACE_IDS 8192
#ifdef CONFIG_PA20
static unsigned long space_id[NR_SPACE_IDS / (8 * sizeof(long))];
static unsigned long space_id_index;
static unsigned long free_space_ids = NR_SPACE_IDS;
/*
* Currently, all PA20 chips have 18 bit protection id's, which is the
* limiting factor (space ids are 32 bits).
*/
#define NR_SPACE_IDS 262144
#else
/*
* XXX: We should probably unfold the set_bit / test_bit / clear_bit
* locking out of these two functions and have a single spinlock on the
* space_id data structures.
*
* Don't bother. This is all going to be significantly changed in the
* very near future.
* Currently we have a one-to-one relationship between space id's and
* protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
* support 15 bit protection id's, so that is the limiting factor.
* PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
* probably not worth the effort for a special case here.
*/
#define SPACEID_SHIFT (PAGE_SHIFT + (PT_NLEVELS)*(PAGE_SHIFT - PT_NLEVELS) - 32)
#define NR_SPACE_IDS 32768
#endif /* !CONFIG_PA20 */
#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
#define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
static unsigned long dirty_space_id[SID_ARRAY_SIZE];
static unsigned long space_id_index;
static unsigned long free_space_ids = NR_SPACE_IDS - 1;
static unsigned long dirty_space_ids = 0;
static spinlock_t sid_lock = SPIN_LOCK_UNLOCKED;
unsigned long alloc_sid(void)
{
unsigned long index;
spin_lock(&sid_lock);
if (free_space_ids == 0) {
if (dirty_space_ids != 0) {
spin_unlock(&sid_lock);
flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
spin_lock(&sid_lock);
}
if (free_space_ids == 0)
BUG();
}
free_space_ids--;
do {
index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
} while(test_and_set_bit(index, space_id));
space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
space_id_index = index;
spin_unlock(&sid_lock);
return index << SPACEID_SHIFT;
}
void free_sid(unsigned long spaceid)
{
unsigned long index = spaceid >> SPACEID_SHIFT;
if (index < 0)
BUG();
unsigned long *dirty_space_offset;
clear_bit(index, space_id);
dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
index &= (BITS_PER_LONG - 1);
if (space_id_index > index) {
space_id_index = index;
spin_lock(&sid_lock);
if (*dirty_space_offset & (1L << index))
BUG(); /* attempt to free space id twice */
*dirty_space_offset |= (1L << index);
dirty_space_ids++;
spin_unlock(&sid_lock);
}
#ifdef CONFIG_SMP
static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
{
int i;
/* NOTE: sid_lock must be held upon entry */
*ndirtyptr = dirty_space_ids;
if (dirty_space_ids != 0) {
for (i = 0; i < SID_ARRAY_SIZE; i++) {
dirty_array[i] = dirty_space_id[i];
dirty_space_id[i] = 0;
}
dirty_space_ids = 0;
}
return;
}
static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
{
int i;
/* NOTE: sid_lock must be held upon entry */
if (ndirty != 0) {
for (i = 0; i < SID_ARRAY_SIZE; i++) {
space_id[i] ^= dirty_array[i];
}
free_space_ids += ndirty;
space_id_index = 0;
}
}
#else /* CONFIG_SMP */
static void recycle_sids(void)
{
int i;
/* NOTE: sid_lock must be held upon entry */
if (dirty_space_ids != 0) {
for (i = 0; i < SID_ARRAY_SIZE; i++) {
space_id[i] ^= dirty_space_id[i];
dirty_space_id[i] = 0;
}
free_space_ids += dirty_space_ids;
dirty_space_ids = 0;
space_id_index = 0;
}
free_space_ids++;
}
#endif
/*
* flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
* purged, we can safely reuse the space ids that were released but
* not flushed from the tlb.
*/
#ifdef CONFIG_SMP
static unsigned long recycle_ndirty;
static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
static unsigned int recycle_inuse = 0;
void flush_tlb_all(void)
{
int do_recycle;
do_recycle = 0;
spin_lock(&sid_lock);
if (dirty_space_ids > RECYCLE_THRESHOLD) {
if (recycle_inuse) {
BUG(); /* FIXME: Use a semaphore/wait queue here */
}
get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
recycle_inuse++;
do_recycle++;
}
spin_unlock(&sid_lock);
smp_call_function((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
flush_tlb_all_local();
if (do_recycle) {
spin_lock(&sid_lock);
recycle_sids(recycle_ndirty,recycle_dirty_array);
recycle_inuse = 0;
spin_unlock(&sid_lock);
}
}
#else
void flush_tlb_all(void)
{
spin_lock(&sid_lock);
flush_tlb_all_local();
recycle_sids();
spin_unlock(&sid_lock);
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
#if 0
if (start < end)
printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(mem_map + MAP_NR(start));
set_page_count(mem_map+MAP_NR(start), 1);
ClearPageReserved(virt_to_page(start));
set_page_count(virt_to_page(start), 1);
free_page(start);
num_physpages++;
totalram_pages++;
}
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
#endif
}
#endif
/*
* arch/parisc/mm/ioremap.c
*
* Re-map IO memory to kernel address space so that we can access it.
* This is needed for high PCI addresses that aren't mapped in the
* 640k-1MB IO memory area on PC's
*
* (C) Copyright 1995 1996 Linus Torvalds
* (C) Copyright 2001 Helge Deller <deller@gmx.de>
*/
#include <linux/vmalloc.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/pgalloc.h>
static inline void remap_area_pte(pte_t * pte, unsigned long address, unsigned long size,
unsigned long phys_addr, unsigned long flags)
{
unsigned long end;
address &= ~PMD_MASK;
end = address + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
if (address >= end)
BUG();
do {
if (!pte_none(*pte)) {
printk(KERN_ERR "remap_area_pte: page already exists\n");
BUG();
}
set_pte(pte, mk_pte_phys(phys_addr, __pgprot(_PAGE_PRESENT | _PAGE_RW |
_PAGE_DIRTY | _PAGE_ACCESSED | flags)));
address += PAGE_SIZE;
phys_addr += PAGE_SIZE;
pte++;
} while (address && (address < end));
}
static inline int remap_area_pmd(pmd_t * pmd, unsigned long address, unsigned long size,
unsigned long phys_addr, unsigned long flags)
{
unsigned long end;
address &= ~PGDIR_MASK;
end = address + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
phys_addr -= address;
if (address >= end)
BUG();
do {
pte_t * pte = pte_alloc_kernel(NULL, pmd, address);
if (!pte)
return -ENOMEM;
remap_area_pte(pte, address, end - address, address + phys_addr, flags);
address = (address + PMD_SIZE) & PMD_MASK;
pmd++;
} while (address && (address < end));
return 0;
}
#if (USE_HPPA_IOREMAP)
static int remap_area_pages(unsigned long address, unsigned long phys_addr,
unsigned long size, unsigned long flags)
{
int error;
pgd_t * dir;
unsigned long end = address + size;
phys_addr -= address;
dir = pgd_offset(&init_mm, address);
flush_cache_all();
if (address >= end)
BUG();
spin_lock(&init_mm.page_table_lock);
do {
pmd_t *pmd;
pmd = pmd_alloc(dir, address);
error = -ENOMEM;
if (!pmd)
break;
if (remap_area_pmd(pmd, address, end - address,
phys_addr + address, flags))
break;
error = 0;
address = (address + PGDIR_SIZE) & PGDIR_MASK;
dir++;
} while (address && (address < end));
spin_unlock(&init_mm.page_table_lock);
flush_tlb_all();
return error;
}
#endif /* USE_HPPA_IOREMAP */
/*
* Generic mapping function (not visible outside):
*/
/*
* Remap an arbitrary physical address space into the kernel virtual
* address space. Needed when the kernel wants to access high addresses
* directly.
*
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
* have to convert them into an offset in a page-aligned mapping, but the
* caller shouldn't need to know that small detail.
*/
void * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)
{
#if !(USE_HPPA_IOREMAP)
unsigned long end = phys_addr + size - 1;
/* Support EISA addresses */
if ((phys_addr >= 0x00080000 && end < 0x000fffff)
|| (phys_addr >= 0x00500000 && end < 0x03bfffff)) {
phys_addr |= 0xfc000000;
}
return (void *)phys_addr;
#else
void * addr;
struct vm_struct * area;
unsigned long offset, last_addr;
/* Don't allow wraparound or zero size */
last_addr = phys_addr + size - 1;
if (!size || last_addr < phys_addr)
return NULL;
/*
* Don't allow anybody to remap normal RAM that we're using..
*/
if (phys_addr < virt_to_phys(high_memory)) {
char *t_addr, *t_end;
struct page *page;
t_addr = __va(phys_addr);
t_end = t_addr + (size - 1);
for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++)
if(!PageReserved(page))
return NULL;
}
/*
* Mappings have to be page-aligned
*/
offset = phys_addr & ~PAGE_MASK;
phys_addr &= PAGE_MASK;
size = PAGE_ALIGN(last_addr) - phys_addr;
/*
* Ok, go for it..
*/
area = get_vm_area(size, VM_IOREMAP);
if (!area)
return NULL;
addr = area->addr;
if (remap_area_pages(VMALLOC_VMADDR(addr), phys_addr, size, flags)) {
vfree(addr);
return NULL;
}
return (void *) (offset + (char *)addr);
#endif
}
void iounmap(void *addr)
{
#if !(USE_HPPA_IOREMAP)
return;
#else
if (addr > high_memory)
return vfree((void *) (PAGE_MASK & (unsigned long) addr));
#endif
}
/* $Id: pa11.c,v 1.1 1999/03/17 01:05:41 pjlahaie Exp $
*
* pa11.c: PA 1.1 specific mmu/cache code.
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/sgialib.h>
#include <asm/mmu_context.h>
extern unsigned long mips_tlb_entries;
/* page functions */
void pa11_clear_page(unsigned long page)
{
}
static void pa11_copy_page(unsigned long to, unsigned long from)
{
}
/* Cache operations. */
static inline void pa11_flush_cache_all(void) { }
static void pa11_flush_cache_mm(struct mm_struct *mm) { }
static void pa11_flush_cache_range(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
}
static void pa11_flush_cache_page(struct vm_area_struct *vma,
unsigned long page)
{
}
static void pa11_flush_page_to_ram(unsigned long page)
{
}
static void pa11_flush_cache_sigtramp(unsigned long page)
{
}
/* TLB operations. */
static inline void pa11_flush_tlb_all(void)
{
unsigned long flags;
int entry;
save_and_cli(flags);
/* Here we will need to flush all the TLBs */
restore_flags(flags);
}
static void pa11_flush_tlb_mm(struct mm_struct *mm)
{
/* This is what the MIPS does.. Is it the right thing for PA-RISC? */
if(mm == current->mm)
pa11_flush_tlb_all();
}
static void pa11_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
if (vma == NULL || vma->vm_mm == current->mm)
pa11_flush_tlb_all();
}
static void pa11_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
if(vma->vm_mm == current->mm)
pa11_flush_tlb_all();
}
static void pa11_load_pgd(unsigned long pg_dir)
{
unsigned long flags;
/* We need to do the right thing here */
}
/*
* Initialize new page directory with pointers to invalid ptes
*/
static void pa11_pgd_init(unsigned long page)
{
unsigned long dummy1, dummy2;
}
static void pa11_update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
pa11_flush_tlb_page(vma, address);
}
static void pa11_show_regs(struct pt_regs * regs)
{
/*
* Saved main processor registers
*/
printk("$0 : %08x %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
0, (unsigned long) regs->regs[1], (unsigned long) regs->regs[2],
(unsigned long) regs->regs[3], (unsigned long) regs->regs[4],
(unsigned long) regs->regs[5], (unsigned long) regs->regs[6],
(unsigned long) regs->regs[7]);
printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
(unsigned long) regs->regs[8], (unsigned long) regs->regs[9],
(unsigned long) regs->regs[10], (unsigned long) regs->regs[11],
(unsigned long) regs->regs[12], (unsigned long) regs->regs[13],
(unsigned long) regs->regs[14], (unsigned long) regs->regs[15]);
printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
(unsigned long) regs->regs[16], (unsigned long) regs->regs[17],
(unsigned long) regs->regs[18], (unsigned long) regs->regs[19],
(unsigned long) regs->regs[20], (unsigned long) regs->regs[21],
(unsigned long) regs->regs[22], (unsigned long) regs->regs[23]);
printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx\n",
(unsigned long) regs->regs[24], (unsigned long) regs->regs[25],
(unsigned long) regs->regs[28], (unsigned long) regs->regs[29],
(unsigned long) regs->regs[30], (unsigned long) regs->regs[31]);
/*
* Saved cp0 registers
*/
printk("epc : %08lx %s\nStatus: %08x\nCause : %08x\n",
(unsigned long) regs->cp0_epc, print_tainted(),
(unsigned int) regs->cp0_status,
(unsigned int) regs->cp0_cause);
}
static int pa11_user_mode(struct pt_regs *regs)
{
/* Return user mode stuff?? */
}
__initfunc(void ld_mmu_pa11(void))
{
/* Taken directly from the MIPS arch.. Lots of bad things here */
clear_page = pa11_clear_page;
copy_page = pa11_copy_page;
flush_cache_all = pa11_flush_cache_all;
flush_cache_mm = pa11_flush_cache_mm;
flush_cache_range = pa11_flush_cache_range;
flush_cache_page = pa11_flush_cache_page;
flush_cache_sigtramp = pa11_flush_cache_sigtramp;
flush_page_to_ram = pa11_flush_page_to_ram;
flush_tlb_all = pa11_flush_tlb_all;
flush_tlb_mm = pa11_flush_tlb_mm;
flush_tlb_range = pa11_flush_tlb_range;
flush_tlb_page = pa11_flush_tlb_page;
pa11_asid_setup();
load_pgd = pa11_load_pgd;
pgd_init = pa11_pgd_init;
update_mmu_cache = pa11_update_mmu_cache;
show_regs = pa11_show_regs;
add_wired_entry = pa11_add_wired_entry;
user_mode = pa11_user_mode;
flush_tlb_all();
}
/* $Id: pa20.c,v 1.1 1999/03/17 01:05:41 pjlahaie Exp $
*
* pa20.c: PA 2.0 specific mmu/cache code.
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/sgialib.h>
#include <asm/mmu_context.h>
extern unsigned long mips_tlb_entries;
/* page functions */
void pa20_clear_page(unsigned long page)
{
}
static void pa20_copy_page(unsigned long to, unsigned long from)
{
}
/* Cache operations. */
static inline void pa20_flush_cache_all(void) { }
static void pa20_flush_cache_mm(struct mm_struct *mm) { }
static void pa20_flush_cache_range(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
}
static void pa20_flush_cache_page(struct vm_area_struct *vma,
unsigned long page)
{
}
static void pa20_flush_page_to_ram(unsigned long page)
{
}
static void pa20_flush_cache_sigtramp(unsigned long page)
{
}
/* TLB operations. */
static inline void pa20_flush_tlb_all(void)
{
unsigned long flags;
int entry;
save_and_cli(flags);
/* Here we will need to flush all the TLBs */
restore_flags(flags);
}
static void pa20_flush_tlb_mm(struct mm_struct *mm)
{
/* This is what the MIPS does.. Is it the right thing for PA-RISC? */
if(mm == current->mm)
pa20_flush_tlb_all();
}
static void pa20_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
if (vma == NULL || vma->vm_mm == current->mm)
pa20_flush_tlb_all();
}
static void pa20_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
if(vma->vm_mm == current->mm)
pa20_flush_tlb_all();
}
static void pa20_load_pgd(unsigned long pg_dir)
{
unsigned long flags;
/* We need to do the right thing here */
}
/*
* Initialize new page directory with pointers to invalid ptes
*/
static void pa20_pgd_init(unsigned long page)
{
unsigned long dummy1, dummy2;
}
static void pa20_update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
pa20_flush_tlb_page(vma, address);
}
static void pa20_show_regs(struct pt_regs * regs)
{
/*
* Saved main processor registers
*/
printk("$0 : %08x %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
0, (unsigned long) regs->regs[1], (unsigned long) regs->regs[2],
(unsigned long) regs->regs[3], (unsigned long) regs->regs[4],
(unsigned long) regs->regs[5], (unsigned long) regs->regs[6],
(unsigned long) regs->regs[7]);
printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
(unsigned long) regs->regs[8], (unsigned long) regs->regs[9],
(unsigned long) regs->regs[10], (unsigned long) regs->regs[11],
(unsigned long) regs->regs[12], (unsigned long) regs->regs[13],
(unsigned long) regs->regs[14], (unsigned long) regs->regs[15]);
printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
(unsigned long) regs->regs[16], (unsigned long) regs->regs[17],
(unsigned long) regs->regs[18], (unsigned long) regs->regs[19],
(unsigned long) regs->regs[20], (unsigned long) regs->regs[21],
(unsigned long) regs->regs[22], (unsigned long) regs->regs[23]);
printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx\n",
(unsigned long) regs->regs[24], (unsigned long) regs->regs[25],
(unsigned long) regs->regs[28], (unsigned long) regs->regs[29],
(unsigned long) regs->regs[30], (unsigned long) regs->regs[31]);
/*
* Saved cp0 registers
*/
printk("epc : %08lx %s\nStatus: %08x\nCause : %08x\n",
(unsigned long) regs->cp0_epc, print_tainted(),
(unsigned int) regs->cp0_status,
(unsigned int) regs->cp0_cause);
}
static int pa20_user_mode(struct pt_regs *regs)
{
/* Return user mode stuff?? */
}
__initfunc(void ld_mmu_pa20(void))
{
/* Taken directly from the MIPS arch.. Lots of bad things here */
clear_page = pa20_clear_page;
copy_page = pa20_copy_page;
flush_cache_all = pa20_flush_cache_all;
flush_cache_mm = pa20_flush_cache_mm;
flush_cache_range = pa20_flush_cache_range;
flush_cache_page = pa20_flush_cache_page;
flush_cache_sigtramp = pa20_flush_cache_sigtramp;
flush_page_to_ram = pa20_flush_page_to_ram;
flush_tlb_all = pa20_flush_tlb_all;
flush_tlb_mm = pa20_flush_tlb_mm;
flush_tlb_range = pa20_flush_tlb_range;
flush_tlb_page = pa20_flush_tlb_page;
pa20_asid_setup();
load_pgd = pa20_load_pgd;
pgd_init = pa20_pgd_init;
update_mmu_cache = pa20_update_mmu_cache;
show_regs = pa20_show_regs;
add_wired_entry = pa20_add_wired_entry;
user_mode = pa20_user_mode;
flush_tlb_all();
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment