Commit 6fd06660 authored by Daniel Borkmann's avatar Daniel Borkmann

Merge branch 'bpf-arm-jit-improvements'

Russell King says:

====================
This series improves the ARM BPF JIT compiler by:

- enumerating the stack layout rather than using constants that happen
  to be multiples of four
- rejig the BPF "register" accesses to use negative numbers instead of
  positive, which could be confused with register numbers in the bpf2a32
  array.
- since we maintain the ARM FP register as a pointer to the top of our
  scratch space (or, with frame pointers enabled, a valid ARM frame
  pointer register), we can access our scratch space using FP, which is
  constant across all BPF programs, including tail-called programs.
- use immediate forms of ARM instructions where possible, rather than
  first loading the immediate into an ARM register.
- use load-with-shift instruction rather than seperate shift instruction
  followed by load
- avoid reloading index and array in the tail-call code
- use double-word load/store instructions where available

Version 2:

- Fix ARMv5 test pointed out by Olof
- Fix build error found by 0-day (adding an additional patch)
====================
Signed-off-by: default avatarDaniel Borkmann <daniel@iogearbox.net>
parents b103cbe0 8c9602d3
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/hwcap.h> #include <asm/hwcap.h>
#include <asm/opcodes.h> #include <asm/opcodes.h>
#include <asm/system_info.h>
#include "bpf_jit_32.h" #include "bpf_jit_32.h"
...@@ -47,32 +48,73 @@ ...@@ -47,32 +48,73 @@
* The callee saved registers depends on whether frame pointers are enabled. * The callee saved registers depends on whether frame pointers are enabled.
* With frame pointers (to be compliant with the ABI): * With frame pointers (to be compliant with the ABI):
* *
* high * high
* original ARM_SP => +------------------+ \ * original ARM_SP => +--------------+ \
* | pc | | * | pc | |
* current ARM_FP => +------------------+ } callee saved registers * current ARM_FP => +--------------+ } callee saved registers
* |r4-r8,r10,fp,ip,lr| | * |r4-r9,fp,ip,lr| |
* +------------------+ / * +--------------+ /
* low * low
* *
* Without frame pointers: * Without frame pointers:
* *
* high * high
* original ARM_SP => +------------------+ * original ARM_SP => +--------------+
* | r4-r8,r10,fp,lr | callee saved registers * | r4-r9,fp,lr | callee saved registers
* current ARM_FP => +------------------+ * current ARM_FP => +--------------+
* low * low
* *
* When popping registers off the stack at the end of a BPF function, we * When popping registers off the stack at the end of a BPF function, we
* reference them via the current ARM_FP register. * reference them via the current ARM_FP register.
*/ */
#define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \ #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R10 | \ 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
1 << ARM_FP) 1 << ARM_FP)
#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR) #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
#define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC) #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
#define STACK_OFFSET(k) (k) enum {
/* Stack layout - these are offsets from (top of stack - 4) */
BPF_R2_HI,
BPF_R2_LO,
BPF_R3_HI,
BPF_R3_LO,
BPF_R4_HI,
BPF_R4_LO,
BPF_R5_HI,
BPF_R5_LO,
BPF_R7_HI,
BPF_R7_LO,
BPF_R8_HI,
BPF_R8_LO,
BPF_R9_HI,
BPF_R9_LO,
BPF_FP_HI,
BPF_FP_LO,
BPF_TC_HI,
BPF_TC_LO,
BPF_AX_HI,
BPF_AX_LO,
/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
* BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
* BPF_REG_FP and Tail call counts.
*/
BPF_JIT_SCRATCH_REGS,
};
/*
* Negative "register" values indicate the register is stored on the stack
* and are the offset from the top of the eBPF JIT scratch space.
*/
#define STACK_OFFSET(k) (-4 - (k) * 4)
#define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
#ifdef CONFIG_FRAME_POINTER
#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
#else
#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
#endif
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */ #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */ #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
#define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */ #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
...@@ -94,35 +136,35 @@ ...@@ -94,35 +136,35 @@
* scratch memory space and we have to build eBPF 64 bit register from those. * scratch memory space and we have to build eBPF 64 bit register from those.
* *
*/ */
static const u8 bpf2a32[][2] = { static const s8 bpf2a32[][2] = {
/* return value from in-kernel function, and exit value from eBPF */ /* return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = {ARM_R1, ARM_R0}, [BPF_REG_0] = {ARM_R1, ARM_R0},
/* arguments from eBPF program to in-kernel function */ /* arguments from eBPF program to in-kernel function */
[BPF_REG_1] = {ARM_R3, ARM_R2}, [BPF_REG_1] = {ARM_R3, ARM_R2},
/* Stored on stack scratch space */ /* Stored on stack scratch space */
[BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)}, [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
[BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)}, [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
[BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)}, [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
[BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)}, [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
/* callee saved registers that in-kernel function will preserve */ /* callee saved registers that in-kernel function will preserve */
[BPF_REG_6] = {ARM_R5, ARM_R4}, [BPF_REG_6] = {ARM_R5, ARM_R4},
/* Stored on stack scratch space */ /* Stored on stack scratch space */
[BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)}, [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
[BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)}, [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
[BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)}, [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
/* Read only Frame Pointer to access Stack */ /* Read only Frame Pointer to access Stack */
[BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)}, [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
/* Temporary Register for internal BPF JIT, can be used /* Temporary Register for internal BPF JIT, can be used
* for constant blindings and others. * for constant blindings and others.
*/ */
[TMP_REG_1] = {ARM_R7, ARM_R6}, [TMP_REG_1] = {ARM_R7, ARM_R6},
[TMP_REG_2] = {ARM_R10, ARM_R8}, [TMP_REG_2] = {ARM_R9, ARM_R8},
/* Tail call count. Stored on stack scratch space. */ /* Tail call count. Stored on stack scratch space. */
[TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)}, [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
/* temporary register for blinding constants. /* temporary register for blinding constants.
* Stored on stack scratch space. * Stored on stack scratch space.
*/ */
[BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)}, [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
}; };
#define dst_lo dst[1] #define dst_lo dst[1]
...@@ -151,6 +193,7 @@ struct jit_ctx { ...@@ -151,6 +193,7 @@ struct jit_ctx {
unsigned int idx; unsigned int idx;
unsigned int prologue_bytes; unsigned int prologue_bytes;
unsigned int epilogue_offset; unsigned int epilogue_offset;
unsigned int cpu_architecture;
u32 flags; u32 flags;
u32 *offsets; u32 *offsets;
u32 *target; u32 *target;
...@@ -195,10 +238,56 @@ static inline void emit(u32 inst, struct jit_ctx *ctx) ...@@ -195,10 +238,56 @@ static inline void emit(u32 inst, struct jit_ctx *ctx)
_emit(ARM_COND_AL, inst, ctx); _emit(ARM_COND_AL, inst, ctx);
} }
/*
* This is rather horrid, but necessary to convert an integer constant
* to an immediate operand for the opcodes, and be able to detect at
* build time whether the constant can't be converted (iow, usable in
* BUILD_BUG_ON()).
*/
#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
#define const_imm8m(x) \
({ int r; \
u32 v = (x); \
if (!(v & ~0x000000ff)) \
r = imm12val(v, 0); \
else if (!(v & ~0xc000003f)) \
r = imm12val(v, 2); \
else if (!(v & ~0xf000000f)) \
r = imm12val(v, 4); \
else if (!(v & ~0xfc000003)) \
r = imm12val(v, 6); \
else if (!(v & ~0xff000000)) \
r = imm12val(v, 8); \
else if (!(v & ~0x3fc00000)) \
r = imm12val(v, 10); \
else if (!(v & ~0x0ff00000)) \
r = imm12val(v, 12); \
else if (!(v & ~0x03fc0000)) \
r = imm12val(v, 14); \
else if (!(v & ~0x00ff0000)) \
r = imm12val(v, 16); \
else if (!(v & ~0x003fc000)) \
r = imm12val(v, 18); \
else if (!(v & ~0x000ff000)) \
r = imm12val(v, 20); \
else if (!(v & ~0x0003fc00)) \
r = imm12val(v, 22); \
else if (!(v & ~0x0000ff00)) \
r = imm12val(v, 24); \
else if (!(v & ~0x00003fc0)) \
r = imm12val(v, 26); \
else if (!(v & ~0x00000ff0)) \
r = imm12val(v, 28); \
else if (!(v & ~0x000003fc)) \
r = imm12val(v, 30); \
else \
r = -1; \
r; })
/* /*
* Checks if immediate value can be converted to imm12(12 bits) value. * Checks if immediate value can be converted to imm12(12 bits) value.
*/ */
static int16_t imm8m(u32 x) static int imm8m(u32 x)
{ {
u32 rot; u32 rot;
...@@ -208,6 +297,38 @@ static int16_t imm8m(u32 x) ...@@ -208,6 +297,38 @@ static int16_t imm8m(u32 x)
return -1; return -1;
} }
#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
{
op |= rt << 12 | rn << 16;
if (imm12 >= 0)
op |= ARM_INST_LDST__U;
else
imm12 = -imm12;
return op | (imm12 & ARM_INST_LDST__IMM12);
}
static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
{
op |= rt << 12 | rn << 16;
if (imm8 >= 0)
op |= ARM_INST_LDST__U;
else
imm8 = -imm8;
return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
}
#define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
#define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
#define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
#define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
#define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
#define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
#define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
#define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
/* /*
* Initializes the JIT space with undefined instructions. * Initializes the JIT space with undefined instructions.
*/ */
...@@ -227,19 +348,10 @@ static void jit_fill_hole(void *area, unsigned int size) ...@@ -227,19 +348,10 @@ static void jit_fill_hole(void *area, unsigned int size)
#define STACK_ALIGNMENT 4 #define STACK_ALIGNMENT 4
#endif #endif
/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
* BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
* BPF_REG_FP and Tail call counts.
*/
#define SCRATCH_SIZE 80
/* total stack size used in JITed code */ /* total stack size used in JITed code */
#define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE) #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT) #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
/* Get the offset of eBPF REGISTERs stored on scratch space. */
#define STACK_VAR(off) (STACK_SIZE - off)
#if __LINUX_ARM_ARCH__ < 7 #if __LINUX_ARM_ARCH__ < 7
static u16 imm_offset(u32 k, struct jit_ctx *ctx) static u16 imm_offset(u32 k, struct jit_ctx *ctx)
...@@ -355,7 +467,7 @@ static inline int epilogue_offset(const struct jit_ctx *ctx) ...@@ -355,7 +467,7 @@ static inline int epilogue_offset(const struct jit_ctx *ctx)
static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op) static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
{ {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
#if __LINUX_ARM_ARCH__ == 7 #if __LINUX_ARM_ARCH__ == 7
if (elf_hwcap & HWCAP_IDIVA) { if (elf_hwcap & HWCAP_IDIVA) {
...@@ -402,44 +514,100 @@ static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op) ...@@ -402,44 +514,100 @@ static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx); emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
} }
/* Checks whether BPF register is on scratch stack space or not. */ /* Is the translated BPF register on stack? */
static inline bool is_on_stack(u8 bpf_reg) static bool is_stacked(s8 reg)
{ {
static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5, return reg < 0;
BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT, }
BPF_REG_2, BPF_REG_FP};
int i, reg_len = sizeof(stack_regs); /* If a BPF register is on the stack (stk is true), load it to the
* supplied temporary register and return the temporary register
for (i = 0 ; i < reg_len ; i++) { * for subsequent operations, otherwise just use the CPU register.
if (bpf_reg == stack_regs[i]) */
return true; static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
{
if (is_stacked(reg)) {
emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
reg = tmp;
} }
return false; return reg;
} }
static inline void emit_a32_mov_i(const u8 dst, const u32 val, static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
bool dstk, struct jit_ctx *ctx) struct jit_ctx *ctx)
{ {
const u8 *tmp = bpf2a32[TMP_REG_1]; if (is_stacked(reg[1])) {
if (__LINUX_ARM_ARCH__ >= 6 ||
ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
emit(ARM_LDRD_I(tmp[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
} else {
emit(ARM_LDR_I(tmp[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
emit(ARM_LDR_I(tmp[0], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
}
reg = tmp;
}
return reg;
}
if (dstk) { /* If a BPF register is on the stack (stk is true), save the register
* back to the stack. If the source register is not the same, then
* move it into the correct register.
*/
static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
{
if (is_stacked(reg))
emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
else if (reg != src)
emit(ARM_MOV_R(reg, src), ctx);
}
static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
struct jit_ctx *ctx)
{
if (is_stacked(reg[1])) {
if (__LINUX_ARM_ARCH__ >= 6 ||
ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
emit(ARM_STRD_I(src[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
} else {
emit(ARM_STR_I(src[1], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
emit(ARM_STR_I(src[0], ARM_FP,
EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
}
} else {
if (reg[1] != src[1])
emit(ARM_MOV_R(reg[1], src[1]), ctx);
if (reg[0] != src[0])
emit(ARM_MOV_R(reg[0], src[0]), ctx);
}
}
static inline void emit_a32_mov_i(const s8 dst, const u32 val,
struct jit_ctx *ctx)
{
const s8 *tmp = bpf2a32[TMP_REG_1];
if (is_stacked(dst)) {
emit_mov_i(tmp[1], val, ctx); emit_mov_i(tmp[1], val, ctx);
emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx); arm_bpf_put_reg32(dst, tmp[1], ctx);
} else { } else {
emit_mov_i(dst, val, ctx); emit_mov_i(dst, val, ctx);
} }
} }
/* Sign extended move */ /* Sign extended move */
static inline void emit_a32_mov_i64(const bool is64, const u8 dst[], static inline void emit_a32_mov_i64(const bool is64, const s8 dst[],
const u32 val, bool dstk, const u32 val, struct jit_ctx *ctx) {
struct jit_ctx *ctx) {
u32 hi = 0; u32 hi = 0;
if (is64 && (val & (1<<31))) if (is64 && (val & (1<<31)))
hi = (u32)~0; hi = (u32)~0;
emit_a32_mov_i(dst_lo, val, dstk, ctx); emit_a32_mov_i(dst_lo, val, ctx);
emit_a32_mov_i(dst_hi, hi, dstk, ctx); emit_a32_mov_i(dst_hi, hi, ctx);
} }
static inline void emit_a32_add_r(const u8 dst, const u8 src, static inline void emit_a32_add_r(const u8 dst, const u8 src,
...@@ -521,75 +689,75 @@ static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64, ...@@ -521,75 +689,75 @@ static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
/* ALU operation (32 bit) /* ALU operation (32 bit)
* dst = dst (op) src * dst = dst (op) src
*/ */
static inline void emit_a32_alu_r(const u8 dst, const u8 src, static inline void emit_a32_alu_r(const s8 dst, const s8 src,
bool dstk, bool sstk,
struct jit_ctx *ctx, const bool is64, struct jit_ctx *ctx, const bool is64,
const bool hi, const u8 op) { const bool hi, const u8 op) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
u8 rn = sstk ? tmp[1] : src; s8 rn, rd;
if (sstk)
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
rn = arm_bpf_get_reg32(src, tmp[1], ctx);
rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
/* ALU operation */ /* ALU operation */
if (dstk) { emit_alu_r(rd, rn, is64, hi, op, ctx);
emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx); arm_bpf_put_reg32(dst, rd, ctx);
emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
} else {
emit_alu_r(dst, rn, is64, hi, op, ctx);
}
} }
/* ALU operation (64 bit) */ /* ALU operation (64 bit) */
static inline void emit_a32_alu_r64(const bool is64, const u8 dst[], static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
const u8 src[], bool dstk, const s8 src[], struct jit_ctx *ctx,
bool sstk, struct jit_ctx *ctx,
const u8 op) { const u8 op) {
emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op); emit_a32_alu_r(dst_lo, src_lo, ctx, is64, false, op);
if (is64) if (is64)
emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op); emit_a32_alu_r(dst_hi, src_hi, ctx, is64, true, op);
else else
emit_a32_mov_i(dst_hi, 0, dstk, ctx); emit_a32_mov_i(dst_hi, 0, ctx);
} }
/* dst = imm (4 bytes)*/ /* dst = src (4 bytes)*/
static inline void emit_a32_mov_r(const u8 dst, const u8 src, static inline void emit_a32_mov_r(const s8 dst, const s8 src,
bool dstk, bool sstk,
struct jit_ctx *ctx) { struct jit_ctx *ctx) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
u8 rt = sstk ? tmp[0] : src; s8 rt;
if (sstk) rt = arm_bpf_get_reg32(src, tmp[0], ctx);
emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx); arm_bpf_put_reg32(dst, rt, ctx);
if (dstk)
emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
else
emit(ARM_MOV_R(dst, rt), ctx);
} }
/* dst = src */ /* dst = src */
static inline void emit_a32_mov_r64(const bool is64, const u8 dst[], static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
const u8 src[], bool dstk, const s8 src[],
bool sstk, struct jit_ctx *ctx) { struct jit_ctx *ctx) {
emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx); if (!is64) {
if (is64) { emit_a32_mov_r(dst_lo, src_lo, ctx);
/* Zero out high 4 bytes */
emit_a32_mov_i(dst_hi, 0, ctx);
} else if (__LINUX_ARM_ARCH__ < 6 &&
ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
/* complete 8 byte move */ /* complete 8 byte move */
emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx); emit_a32_mov_r(dst_lo, src_lo, ctx);
emit_a32_mov_r(dst_hi, src_hi, ctx);
} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
const u8 *tmp = bpf2a32[TMP_REG_1];
emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
} else if (is_stacked(src_lo)) {
emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
} else if (is_stacked(dst_lo)) {
emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
} else { } else {
/* Zero out high 4 bytes */ emit(ARM_MOV_R(dst[0], src[0]), ctx);
emit_a32_mov_i(dst_hi, 0, dstk, ctx); emit(ARM_MOV_R(dst[1], src[1]), ctx);
} }
} }
/* Shift operations */ /* Shift operations */
static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk, static inline void emit_a32_alu_i(const s8 dst, const u32 val,
struct jit_ctx *ctx, const u8 op) { struct jit_ctx *ctx, const u8 op) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
u8 rd = dstk ? tmp[0] : dst; s8 rd;
if (dstk) rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
/* Do shift operation */ /* Do shift operation */
switch (op) { switch (op) {
...@@ -604,278 +772,207 @@ static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk, ...@@ -604,278 +772,207 @@ static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
break; break;
} }
if (dstk) arm_bpf_put_reg32(dst, rd, ctx);
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
} }
/* dst = ~dst (64 bit) */ /* dst = ~dst (64 bit) */
static inline void emit_a32_neg64(const u8 dst[], bool dstk, static inline void emit_a32_neg64(const s8 dst[],
struct jit_ctx *ctx){ struct jit_ctx *ctx){
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
u8 rd = dstk ? tmp[1] : dst[1]; const s8 *rd;
u8 rm = dstk ? tmp[0] : dst[0];
/* Setup Operand */ /* Setup Operand */
if (dstk) { rd = arm_bpf_get_reg64(dst, tmp, ctx);
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Do Negate Operation */ /* Do Negate Operation */
emit(ARM_RSBS_I(rd, rd, 0), ctx); emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
emit(ARM_RSC_I(rm, rm, 0), ctx); emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
if (dstk) { arm_bpf_put_reg64(dst, rd, ctx);
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
} }
/* dst = dst << src */ /* dst = dst << src */
static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk, static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
bool sstk, struct jit_ctx *ctx) { struct jit_ctx *ctx) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
s8 rt;
/* Setup Operands */ /* Setup Operands */
u8 rt = sstk ? tmp2[1] : src_lo; rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
u8 rd = dstk ? tmp[1] : dst_lo; rd = arm_bpf_get_reg64(dst, tmp, ctx);
u8 rm = dstk ? tmp[0] : dst_hi;
if (sstk)
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
if (dstk) {
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Do LSH operation */ /* Do LSH operation */
emit(ARM_SUB_I(ARM_IP, rt, 32), ctx); emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
emit(ARM_RSB_I(tmp2[0], rt, 32), ctx); emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx); emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx); emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx); emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx); emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
if (dstk) { arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx); arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
} else {
emit(ARM_MOV_R(rd, ARM_LR), ctx);
emit(ARM_MOV_R(rm, ARM_IP), ctx);
}
} }
/* dst = dst >> src (signed)*/ /* dst = dst >> src (signed)*/
static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk, static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
bool sstk, struct jit_ctx *ctx) { struct jit_ctx *ctx) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
s8 rt;
/* Setup Operands */ /* Setup Operands */
u8 rt = sstk ? tmp2[1] : src_lo; rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
u8 rd = dstk ? tmp[1] : dst_lo; rd = arm_bpf_get_reg64(dst, tmp, ctx);
u8 rm = dstk ? tmp[0] : dst_hi;
if (sstk)
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
if (dstk) {
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Do the ARSH operation */ /* Do the ARSH operation */
emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx); emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx); emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
_emit(ARM_COND_MI, ARM_B(0), ctx); _emit(ARM_COND_MI, ARM_B(0), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx); emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx); emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
if (dstk) {
emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx); arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx); arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
} else {
emit(ARM_MOV_R(rd, ARM_LR), ctx);
emit(ARM_MOV_R(rm, ARM_IP), ctx);
}
} }
/* dst = dst >> src */ /* dst = dst >> src */
static inline void emit_a32_rsh_r64(const u8 dst[], const u8 src[], bool dstk, static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
bool sstk, struct jit_ctx *ctx) { struct jit_ctx *ctx) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd;
s8 rt;
/* Setup Operands */ /* Setup Operands */
u8 rt = sstk ? tmp2[1] : src_lo; rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
u8 rd = dstk ? tmp[1] : dst_lo; rd = arm_bpf_get_reg64(dst, tmp, ctx);
u8 rm = dstk ? tmp[0] : dst_hi;
if (sstk)
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
if (dstk) {
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Do RSH operation */ /* Do RSH operation */
emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx); emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx); emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx); emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx); emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
if (dstk) {
emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx); arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx); arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
} else {
emit(ARM_MOV_R(rd, ARM_LR), ctx);
emit(ARM_MOV_R(rm, ARM_IP), ctx);
}
} }
/* dst = dst << val */ /* dst = dst << val */
static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk, static inline void emit_a32_lsh_i64(const s8 dst[],
const u32 val, struct jit_ctx *ctx){ const u32 val, struct jit_ctx *ctx){
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
/* Setup operands */ const s8 *rd;
u8 rd = dstk ? tmp[1] : dst_lo;
u8 rm = dstk ? tmp[0] : dst_hi;
if (dstk) { /* Setup operands */
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx); rd = arm_bpf_get_reg64(dst, tmp, ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Do LSH operation */ /* Do LSH operation */
if (val < 32) { if (val < 32) {
emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx); emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx); emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx); emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
} else { } else {
if (val == 32) if (val == 32)
emit(ARM_MOV_R(rm, rd), ctx); emit(ARM_MOV_R(rd[0], rd[1]), ctx);
else else
emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx); emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
emit(ARM_EOR_R(rd, rd, rd), ctx); emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
} }
if (dstk) { arm_bpf_put_reg64(dst, rd, ctx);
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
} }
/* dst = dst >> val */ /* dst = dst >> val */
static inline void emit_a32_rsh_i64(const u8 dst[], bool dstk, static inline void emit_a32_rsh_i64(const s8 dst[],
const u32 val, struct jit_ctx *ctx) { const u32 val, struct jit_ctx *ctx) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
/* Setup operands */ const s8 *rd;
u8 rd = dstk ? tmp[1] : dst_lo;
u8 rm = dstk ? tmp[0] : dst_hi;
if (dstk) { /* Setup operands */
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx); rd = arm_bpf_get_reg64(dst, tmp, ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Do LSR operation */ /* Do LSR operation */
if (val < 32) { if (val < 32) {
emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx); emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx); emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx); emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
} else if (val == 32) { } else if (val == 32) {
emit(ARM_MOV_R(rd, rm), ctx); emit(ARM_MOV_R(rd[1], rd[0]), ctx);
emit(ARM_MOV_I(rm, 0), ctx); emit(ARM_MOV_I(rd[0], 0), ctx);
} else { } else {
emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx); emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
emit(ARM_MOV_I(rm, 0), ctx); emit(ARM_MOV_I(rd[0], 0), ctx);
} }
if (dstk) { arm_bpf_put_reg64(dst, rd, ctx);
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
} }
/* dst = dst >> val (signed) */ /* dst = dst >> val (signed) */
static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk, static inline void emit_a32_arsh_i64(const s8 dst[],
const u32 val, struct jit_ctx *ctx){ const u32 val, struct jit_ctx *ctx){
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
/* Setup operands */ const s8 *rd;
u8 rd = dstk ? tmp[1] : dst_lo;
u8 rm = dstk ? tmp[0] : dst_hi; /* Setup operands */
rd = arm_bpf_get_reg64(dst, tmp, ctx);
if (dstk) {
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Do ARSH operation */ /* Do ARSH operation */
if (val < 32) { if (val < 32) {
emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx); emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx); emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx); emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
} else if (val == 32) { } else if (val == 32) {
emit(ARM_MOV_R(rd, rm), ctx); emit(ARM_MOV_R(rd[1], rd[0]), ctx);
emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx); emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
} else { } else {
emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx); emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx); emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
} }
if (dstk) { arm_bpf_put_reg64(dst, rd, ctx);
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
} }
static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk, static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
bool sstk, struct jit_ctx *ctx) { struct jit_ctx *ctx) {
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rd, *rt;
/* Setup operands for multiplication */ /* Setup operands for multiplication */
u8 rd = dstk ? tmp[1] : dst_lo; rd = arm_bpf_get_reg64(dst, tmp, ctx);
u8 rm = dstk ? tmp[0] : dst_hi; rt = arm_bpf_get_reg64(src, tmp2, ctx);
u8 rt = sstk ? tmp2[1] : src_lo;
u8 rn = sstk ? tmp2[0] : src_hi;
if (dstk) {
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
if (sstk) {
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
}
/* Do Multiplication */ /* Do Multiplication */
emit(ARM_MUL(ARM_IP, rd, rn), ctx); emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
emit(ARM_MUL(ARM_LR, rm, rt), ctx); emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx); emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx); emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
emit(ARM_ADD_R(rm, ARM_LR, rm), ctx); emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
if (dstk) {
emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx); arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx); arm_bpf_put_reg32(dst_hi, rd[0], ctx);
} else {
emit(ARM_MOV_R(rd, ARM_IP), ctx);
}
} }
/* *(size *)(dst + off) = src */ /* *(size *)(dst + off) = src */
static inline void emit_str_r(const u8 dst, const u8 src, bool dstk, static inline void emit_str_r(const s8 dst, const s8 src,
const s32 off, struct jit_ctx *ctx, const u8 sz){ const s32 off, struct jit_ctx *ctx, const u8 sz){
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
u8 rd = dstk ? tmp[1] : dst; s8 rd;
if (dstk) rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
if (off) { if (off) {
emit_a32_mov_i(tmp[0], off, false, ctx); emit_a32_mov_i(tmp[0], off, ctx);
emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx); emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
rd = tmp[0]; rd = tmp[0];
} }
...@@ -896,11 +993,11 @@ static inline void emit_str_r(const u8 dst, const u8 src, bool dstk, ...@@ -896,11 +993,11 @@ static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
} }
/* dst = *(size*)(src + off) */ /* dst = *(size*)(src + off) */
static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk, static inline void emit_ldx_r(const s8 dst[], const s8 src,
s32 off, struct jit_ctx *ctx, const u8 sz){ s32 off, struct jit_ctx *ctx, const u8 sz){
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *rd = dstk ? tmp : dst; const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
u8 rm = src; s8 rm = src;
s32 off_max; s32 off_max;
if (sz == BPF_H) if (sz == BPF_H)
...@@ -909,7 +1006,7 @@ static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk, ...@@ -909,7 +1006,7 @@ static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
off_max = 0xfff; off_max = 0xfff;
if (off < 0 || off > off_max) { if (off < 0 || off > off_max) {
emit_a32_mov_i(tmp[0], off, false, ctx); emit_a32_mov_i(tmp[0], off, ctx);
emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx); emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
rm = tmp[0]; rm = tmp[0];
off = 0; off = 0;
...@@ -921,17 +1018,17 @@ static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk, ...@@ -921,17 +1018,17 @@ static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
case BPF_B: case BPF_B:
/* Load a Byte */ /* Load a Byte */
emit(ARM_LDRB_I(rd[1], rm, off), ctx); emit(ARM_LDRB_I(rd[1], rm, off), ctx);
emit_a32_mov_i(dst[0], 0, dstk, ctx); emit_a32_mov_i(rd[0], 0, ctx);
break; break;
case BPF_H: case BPF_H:
/* Load a HalfWord */ /* Load a HalfWord */
emit(ARM_LDRH_I(rd[1], rm, off), ctx); emit(ARM_LDRH_I(rd[1], rm, off), ctx);
emit_a32_mov_i(dst[0], 0, dstk, ctx); emit_a32_mov_i(rd[0], 0, ctx);
break; break;
case BPF_W: case BPF_W:
/* Load a Word */ /* Load a Word */
emit(ARM_LDR_I(rd[1], rm, off), ctx); emit(ARM_LDR_I(rd[1], rm, off), ctx);
emit_a32_mov_i(dst[0], 0, dstk, ctx); emit_a32_mov_i(rd[0], 0, ctx);
break; break;
case BPF_DW: case BPF_DW:
/* Load a Double Word */ /* Load a Double Word */
...@@ -939,10 +1036,7 @@ static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk, ...@@ -939,10 +1036,7 @@ static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
emit(ARM_LDR_I(rd[0], rm, off + 4), ctx); emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
break; break;
} }
if (dstk) arm_bpf_put_reg64(dst, rd, ctx);
emit(ARM_STR_I(rd[1], ARM_SP, STACK_VAR(dst[1])), ctx);
if (dstk && sz == BPF_DW)
emit(ARM_STR_I(rd[0], ARM_SP, STACK_VAR(dst[0])), ctx);
} }
/* Arithmatic Operation */ /* Arithmatic Operation */
...@@ -981,64 +1075,66 @@ static int emit_bpf_tail_call(struct jit_ctx *ctx) ...@@ -981,64 +1075,66 @@ static int emit_bpf_tail_call(struct jit_ctx *ctx)
{ {
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
const u8 *r2 = bpf2a32[BPF_REG_2]; const s8 *r2 = bpf2a32[BPF_REG_2];
const u8 *r3 = bpf2a32[BPF_REG_3]; const s8 *r3 = bpf2a32[BPF_REG_3];
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
const u8 *tcc = bpf2a32[TCALL_CNT]; const s8 *tcc = bpf2a32[TCALL_CNT];
const s8 *tc;
const int idx0 = ctx->idx; const int idx0 = ctx->idx;
#define cur_offset (ctx->idx - idx0) #define cur_offset (ctx->idx - idx0)
#define jmp_offset (out_offset - (cur_offset) - 2) #define jmp_offset (out_offset - (cur_offset) - 2)
u32 off, lo, hi; u32 lo, hi;
s8 r_array, r_index;
int off;
/* if (index >= array->map.max_entries) /* if (index >= array->map.max_entries)
* goto out; * goto out;
*/ */
BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
ARM_INST_LDST__IMM12);
off = offsetof(struct bpf_array, map.max_entries); off = offsetof(struct bpf_array, map.max_entries);
/* array->map.max_entries */ r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
emit_a32_mov_i(tmp[1], off, false, ctx);
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
/* index is 32-bit for arrays */ /* index is 32-bit for arrays */
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx); r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
/* array->map.max_entries */
emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
/* index >= array->map.max_entries */ /* index >= array->map.max_entries */
emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx); emit(ARM_CMP_R(r_index, tmp[1]), ctx);
_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
/* tmp2[0] = array, tmp2[1] = index */
/* if (tail_call_cnt > MAX_TAIL_CALL_CNT) /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out; * goto out;
* tail_call_cnt++; * tail_call_cnt++;
*/ */
lo = (u32)MAX_TAIL_CALL_CNT; lo = (u32)MAX_TAIL_CALL_CNT;
hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32); hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx); tc = arm_bpf_get_reg64(tcc, tmp, ctx);
emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx); emit(ARM_CMP_I(tc[0], hi), ctx);
emit(ARM_CMP_I(tmp[0], hi), ctx); _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
_emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx); emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx); emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx); arm_bpf_put_reg64(tcc, tmp, ctx);
emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
/* prog = array->ptrs[index] /* prog = array->ptrs[index]
* if (prog == NULL) * if (prog == NULL)
* goto out; * goto out;
*/ */
off = offsetof(struct bpf_array, ptrs); BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
emit_a32_mov_i(tmp[1], off, false, ctx); off = imm8m(offsetof(struct bpf_array, ptrs));
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx); emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx); emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
emit(ARM_CMP_I(tmp[1], 0), ctx); emit(ARM_CMP_I(tmp[1], 0), ctx);
_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
/* goto *(prog->bpf_func + prologue_size); */ /* goto *(prog->bpf_func + prologue_size); */
BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
ARM_INST_LDST__IMM12);
off = offsetof(struct bpf_prog, bpf_func); off = offsetof(struct bpf_prog, bpf_func);
emit_a32_mov_i(tmp2[1], off, false, ctx); emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx); emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
emit_bx_r(tmp[1], ctx); emit_bx_r(tmp[1], ctx);
...@@ -1059,7 +1155,7 @@ static int emit_bpf_tail_call(struct jit_ctx *ctx) ...@@ -1059,7 +1155,7 @@ static int emit_bpf_tail_call(struct jit_ctx *ctx)
static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx) static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
{ {
#if __LINUX_ARM_ARCH__ < 6 #if __LINUX_ARM_ARCH__ < 6
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx); emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
...@@ -1074,7 +1170,7 @@ static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx) ...@@ -1074,7 +1170,7 @@ static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx) static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
{ {
#if __LINUX_ARM_ARCH__ < 6 #if __LINUX_ARM_ARCH__ < 6
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx); emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
...@@ -1094,28 +1190,27 @@ static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx) ...@@ -1094,28 +1190,27 @@ static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
} }
// push the scratch stack register on top of the stack // push the scratch stack register on top of the stack
static inline void emit_push_r64(const u8 src[], const u8 shift, static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
struct jit_ctx *ctx)
{ {
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s8 *rt;
u16 reg_set = 0; u16 reg_set = 0;
emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx); rt = arm_bpf_get_reg64(src, tmp2, ctx);
emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
reg_set = (1 << tmp2[1]) | (1 << tmp2[0]); reg_set = (1 << rt[1]) | (1 << rt[0]);
emit(ARM_PUSH(reg_set), ctx); emit(ARM_PUSH(reg_set), ctx);
} }
static void build_prologue(struct jit_ctx *ctx) static void build_prologue(struct jit_ctx *ctx)
{ {
const u8 r0 = bpf2a32[BPF_REG_0][1]; const s8 r0 = bpf2a32[BPF_REG_0][1];
const u8 r2 = bpf2a32[BPF_REG_1][1]; const s8 r2 = bpf2a32[BPF_REG_1][1];
const u8 r3 = bpf2a32[BPF_REG_1][0]; const s8 r3 = bpf2a32[BPF_REG_1][0];
const u8 r4 = bpf2a32[BPF_REG_6][1]; const s8 r4 = bpf2a32[BPF_REG_6][1];
const u8 fplo = bpf2a32[BPF_REG_FP][1]; const s8 fplo = bpf2a32[BPF_REG_FP][1];
const u8 fphi = bpf2a32[BPF_REG_FP][0]; const s8 fphi = bpf2a32[BPF_REG_FP][0];
const u8 *tcc = bpf2a32[TCALL_CNT]; const s8 *tcc = bpf2a32[TCALL_CNT];
/* Save callee saved registers. */ /* Save callee saved registers. */
#ifdef CONFIG_FRAME_POINTER #ifdef CONFIG_FRAME_POINTER
...@@ -1136,8 +1231,8 @@ static void build_prologue(struct jit_ctx *ctx) ...@@ -1136,8 +1231,8 @@ static void build_prologue(struct jit_ctx *ctx)
emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx); emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
/* Set up BPF prog stack base register */ /* Set up BPF prog stack base register */
emit_a32_mov_r(fplo, ARM_IP, true, false, ctx); emit_a32_mov_r(fplo, ARM_IP, ctx);
emit_a32_mov_i(fphi, 0, true, ctx); emit_a32_mov_i(fphi, 0, ctx);
/* mov r4, 0 */ /* mov r4, 0 */
emit(ARM_MOV_I(r4, 0), ctx); emit(ARM_MOV_I(r4, 0), ctx);
...@@ -1146,8 +1241,8 @@ static void build_prologue(struct jit_ctx *ctx) ...@@ -1146,8 +1241,8 @@ static void build_prologue(struct jit_ctx *ctx)
emit(ARM_MOV_R(r3, r4), ctx); emit(ARM_MOV_R(r3, r4), ctx);
emit(ARM_MOV_R(r2, r0), ctx); emit(ARM_MOV_R(r2, r0), ctx);
/* Initialize Tail Count */ /* Initialize Tail Count */
emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx); emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx); emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
/* end of prologue */ /* end of prologue */
} }
...@@ -1178,17 +1273,16 @@ static void build_epilogue(struct jit_ctx *ctx) ...@@ -1178,17 +1273,16 @@ static void build_epilogue(struct jit_ctx *ctx)
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
{ {
const u8 code = insn->code; const u8 code = insn->code;
const u8 *dst = bpf2a32[insn->dst_reg]; const s8 *dst = bpf2a32[insn->dst_reg];
const u8 *src = bpf2a32[insn->src_reg]; const s8 *src = bpf2a32[insn->src_reg];
const u8 *tmp = bpf2a32[TMP_REG_1]; const s8 *tmp = bpf2a32[TMP_REG_1];
const u8 *tmp2 = bpf2a32[TMP_REG_2]; const s8 *tmp2 = bpf2a32[TMP_REG_2];
const s16 off = insn->off; const s16 off = insn->off;
const s32 imm = insn->imm; const s32 imm = insn->imm;
const int i = insn - ctx->prog->insnsi; const int i = insn - ctx->prog->insnsi;
const bool is64 = BPF_CLASS(code) == BPF_ALU64; const bool is64 = BPF_CLASS(code) == BPF_ALU64;
const bool dstk = is_on_stack(insn->dst_reg); const s8 *rd, *rs;
const bool sstk = is_on_stack(insn->src_reg); s8 rd_lo, rt, rm, rn;
u8 rd, rt, rm, rn;
s32 jmp_offset; s32 jmp_offset;
#define check_imm(bits, imm) do { \ #define check_imm(bits, imm) do { \
...@@ -1211,11 +1305,11 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1211,11 +1305,11 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case BPF_ALU64 | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_X:
switch (BPF_SRC(code)) { switch (BPF_SRC(code)) {
case BPF_X: case BPF_X:
emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx); emit_a32_mov_r64(is64, dst, src, ctx);
break; break;
case BPF_K: case BPF_K:
/* Sign-extend immediate value to destination reg */ /* Sign-extend immediate value to destination reg */
emit_a32_mov_i64(is64, dst, imm, dstk, ctx); emit_a32_mov_i64(is64, dst, imm, ctx);
break; break;
} }
break; break;
...@@ -1255,8 +1349,7 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1255,8 +1349,7 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case BPF_ALU64 | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X:
switch (BPF_SRC(code)) { switch (BPF_SRC(code)) {
case BPF_X: case BPF_X:
emit_a32_alu_r64(is64, dst, src, dstk, sstk, emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
ctx, BPF_OP(code));
break; break;
case BPF_K: case BPF_K:
/* Move immediate value to the temporary register /* Move immediate value to the temporary register
...@@ -1265,9 +1358,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1265,9 +1358,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
* value into temporary reg and then it would be * value into temporary reg and then it would be
* safe to do the operation on it. * safe to do the operation on it.
*/ */
emit_a32_mov_i64(is64, tmp2, imm, false, ctx); emit_a32_mov_i64(is64, tmp2, imm, ctx);
emit_a32_alu_r64(is64, dst, tmp2, dstk, false, emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
ctx, BPF_OP(code));
break; break;
} }
break; break;
...@@ -1277,26 +1369,22 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1277,26 +1369,22 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_MOD | BPF_X:
rt = src_lo; rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
rd = dstk ? tmp2[1] : dst_lo;
if (dstk)
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
switch (BPF_SRC(code)) { switch (BPF_SRC(code)) {
case BPF_X: case BPF_X:
rt = sstk ? tmp2[0] : rt; rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
if (sstk)
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
ctx);
break; break;
case BPF_K: case BPF_K:
rt = tmp2[0]; rt = tmp2[0];
emit_a32_mov_i(rt, imm, false, ctx); emit_a32_mov_i(rt, imm, ctx);
break;
default:
rt = src_lo;
break; break;
} }
emit_udivmod(rd, rd, rt, ctx, BPF_OP(code)); emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
if (dstk) arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx); emit_a32_mov_i(dst_hi, 0, ctx);
emit_a32_mov_i(dst_hi, 0, dstk, ctx);
break; break;
case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X:
...@@ -1310,54 +1398,54 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1310,54 +1398,54 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
if (unlikely(imm > 31)) if (unlikely(imm > 31))
return -EINVAL; return -EINVAL;
if (imm) if (imm)
emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code)); emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
emit_a32_mov_i(dst_hi, 0, dstk, ctx); emit_a32_mov_i(dst_hi, 0, ctx);
break; break;
/* dst = dst << imm */ /* dst = dst << imm */
case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K:
if (unlikely(imm > 63)) if (unlikely(imm > 63))
return -EINVAL; return -EINVAL;
emit_a32_lsh_i64(dst, dstk, imm, ctx); emit_a32_lsh_i64(dst, imm, ctx);
break; break;
/* dst = dst >> imm */ /* dst = dst >> imm */
case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K:
if (unlikely(imm > 63)) if (unlikely(imm > 63))
return -EINVAL; return -EINVAL;
emit_a32_rsh_i64(dst, dstk, imm, ctx); emit_a32_rsh_i64(dst, imm, ctx);
break; break;
/* dst = dst << src */ /* dst = dst << src */
case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X:
emit_a32_lsh_r64(dst, src, dstk, sstk, ctx); emit_a32_lsh_r64(dst, src, ctx);
break; break;
/* dst = dst >> src */ /* dst = dst >> src */
case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X:
emit_a32_rsh_r64(dst, src, dstk, sstk, ctx); emit_a32_rsh_r64(dst, src, ctx);
break; break;
/* dst = dst >> src (signed) */ /* dst = dst >> src (signed) */
case BPF_ALU64 | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X:
emit_a32_arsh_r64(dst, src, dstk, sstk, ctx); emit_a32_arsh_r64(dst, src, ctx);
break; break;
/* dst = dst >> imm (signed) */ /* dst = dst >> imm (signed) */
case BPF_ALU64 | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K:
if (unlikely(imm > 63)) if (unlikely(imm > 63))
return -EINVAL; return -EINVAL;
emit_a32_arsh_i64(dst, dstk, imm, ctx); emit_a32_arsh_i64(dst, imm, ctx);
break; break;
/* dst = ~dst */ /* dst = ~dst */
case BPF_ALU | BPF_NEG: case BPF_ALU | BPF_NEG:
emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code)); emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
emit_a32_mov_i(dst_hi, 0, dstk, ctx); emit_a32_mov_i(dst_hi, 0, ctx);
break; break;
/* dst = ~dst (64 bit) */ /* dst = ~dst (64 bit) */
case BPF_ALU64 | BPF_NEG: case BPF_ALU64 | BPF_NEG:
emit_a32_neg64(dst, dstk, ctx); emit_a32_neg64(dst, ctx);
break; break;
/* dst = dst * src/imm */ /* dst = dst * src/imm */
case BPF_ALU64 | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K:
switch (BPF_SRC(code)) { switch (BPF_SRC(code)) {
case BPF_X: case BPF_X:
emit_a32_mul_r64(dst, src, dstk, sstk, ctx); emit_a32_mul_r64(dst, src, ctx);
break; break;
case BPF_K: case BPF_K:
/* Move immediate value to the temporary register /* Move immediate value to the temporary register
...@@ -1366,8 +1454,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1366,8 +1454,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
* reg then it would be safe to do the operation * reg then it would be safe to do the operation
* on it. * on it.
*/ */
emit_a32_mov_i64(is64, tmp2, imm, false, ctx); emit_a32_mov_i64(is64, tmp2, imm, ctx);
emit_a32_mul_r64(dst, tmp2, dstk, false, ctx); emit_a32_mul_r64(dst, tmp2, ctx);
break; break;
} }
break; break;
...@@ -1375,25 +1463,20 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1375,25 +1463,20 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
/* dst = htobe(dst) */ /* dst = htobe(dst) */
case BPF_ALU | BPF_END | BPF_FROM_LE: case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE: case BPF_ALU | BPF_END | BPF_FROM_BE:
rd = dstk ? tmp[0] : dst_hi; rd = arm_bpf_get_reg64(dst, tmp, ctx);
rt = dstk ? tmp[1] : dst_lo;
if (dstk) {
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
if (BPF_SRC(code) == BPF_FROM_LE) if (BPF_SRC(code) == BPF_FROM_LE)
goto emit_bswap_uxt; goto emit_bswap_uxt;
switch (imm) { switch (imm) {
case 16: case 16:
emit_rev16(rt, rt, ctx); emit_rev16(rd[1], rd[1], ctx);
goto emit_bswap_uxt; goto emit_bswap_uxt;
case 32: case 32:
emit_rev32(rt, rt, ctx); emit_rev32(rd[1], rd[1], ctx);
goto emit_bswap_uxt; goto emit_bswap_uxt;
case 64: case 64:
emit_rev32(ARM_LR, rt, ctx); emit_rev32(ARM_LR, rd[1], ctx);
emit_rev32(rt, rd, ctx); emit_rev32(rd[1], rd[0], ctx);
emit(ARM_MOV_R(rd, ARM_LR), ctx); emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
break; break;
} }
goto exit; goto exit;
...@@ -1402,26 +1485,23 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1402,26 +1485,23 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case 16: case 16:
/* zero-extend 16 bits into 64 bits */ /* zero-extend 16 bits into 64 bits */
#if __LINUX_ARM_ARCH__ < 6 #if __LINUX_ARM_ARCH__ < 6
emit_a32_mov_i(tmp2[1], 0xffff, false, ctx); emit_a32_mov_i(tmp2[1], 0xffff, ctx);
emit(ARM_AND_R(rt, rt, tmp2[1]), ctx); emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
#else /* ARMv6+ */ #else /* ARMv6+ */
emit(ARM_UXTH(rt, rt), ctx); emit(ARM_UXTH(rd[1], rd[1]), ctx);
#endif #endif
emit(ARM_EOR_R(rd, rd, rd), ctx); emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
break; break;
case 32: case 32:
/* zero-extend 32 bits into 64 bits */ /* zero-extend 32 bits into 64 bits */
emit(ARM_EOR_R(rd, rd, rd), ctx); emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
break; break;
case 64: case 64:
/* nop */ /* nop */
break; break;
} }
exit: exit:
if (dstk) { arm_bpf_put_reg64(dst, rd, ctx);
emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
break; break;
/* dst = imm64 */ /* dst = imm64 */
case BPF_LD | BPF_IMM | BPF_DW: case BPF_LD | BPF_IMM | BPF_DW:
...@@ -1430,8 +1510,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1430,8 +1510,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
u32 hi, lo = imm; u32 hi, lo = imm;
hi = insn1.imm; hi = insn1.imm;
emit_a32_mov_i(dst_lo, lo, dstk, ctx); emit_a32_mov_i(dst_lo, lo, ctx);
emit_a32_mov_i(dst_hi, hi, dstk, ctx); emit_a32_mov_i(dst_hi, hi, ctx);
return 1; return 1;
} }
...@@ -1440,10 +1520,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1440,10 +1520,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_DW: case BPF_LDX | BPF_MEM | BPF_DW:
rn = sstk ? tmp2[1] : src_lo; rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
if (sstk) emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
emit_ldx_r(dst, rn, dstk, off, ctx, BPF_SIZE(code));
break; break;
/* ST: *(size *)(dst + off) = imm */ /* ST: *(size *)(dst + off) = imm */
case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_W:
...@@ -1453,16 +1531,15 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1453,16 +1531,15 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
switch (BPF_SIZE(code)) { switch (BPF_SIZE(code)) {
case BPF_DW: case BPF_DW:
/* Sign-extend immediate value into temp reg */ /* Sign-extend immediate value into temp reg */
emit_a32_mov_i64(true, tmp2, imm, false, ctx); emit_a32_mov_i64(true, tmp2, imm, ctx);
emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W); emit_str_r(dst_lo, tmp2[1], off, ctx, BPF_W);
emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W); emit_str_r(dst_lo, tmp2[0], off+4, ctx, BPF_W);
break; break;
case BPF_W: case BPF_W:
case BPF_H: case BPF_H:
case BPF_B: case BPF_B:
emit_a32_mov_i(tmp2[1], imm, false, ctx); emit_a32_mov_i(tmp2[1], imm, ctx);
emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, emit_str_r(dst_lo, tmp2[1], off, ctx, BPF_SIZE(code));
BPF_SIZE(code));
break; break;
} }
break; break;
...@@ -1479,19 +1556,14 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1479,19 +1556,14 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
{ {
u8 sz = BPF_SIZE(code); u8 sz = BPF_SIZE(code);
rn = sstk ? tmp2[1] : src_lo; rs = arm_bpf_get_reg64(src, tmp2, ctx);
rm = sstk ? tmp2[0] : src_hi;
if (sstk) {
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
}
/* Store the value */ /* Store the value */
if (BPF_SIZE(code) == BPF_DW) { if (BPF_SIZE(code) == BPF_DW) {
emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W); emit_str_r(dst_lo, rs[1], off, ctx, BPF_W);
emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W); emit_str_r(dst_lo, rs[0], off+4, ctx, BPF_W);
} else { } else {
emit_str_r(dst_lo, rn, dstk, off, ctx, sz); emit_str_r(dst_lo, rs[1], off, ctx, sz);
} }
break; break;
} }
...@@ -1518,12 +1590,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1518,12 +1590,8 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X:
/* Setup source registers */ /* Setup source registers */
rm = sstk ? tmp2[0] : src_hi; rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
rn = sstk ? tmp2[1] : src_lo; rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
if (sstk) {
emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
}
goto go_jmp; goto go_jmp;
/* PC += off if dst == imm */ /* PC += off if dst == imm */
/* PC += off if dst > imm */ /* PC += off if dst > imm */
...@@ -1552,18 +1620,13 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1552,18 +1620,13 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
rm = tmp2[0]; rm = tmp2[0];
rn = tmp2[1]; rn = tmp2[1];
/* Sign-extend immediate value */ /* Sign-extend immediate value */
emit_a32_mov_i64(true, tmp2, imm, false, ctx); emit_a32_mov_i64(true, tmp2, imm, ctx);
go_jmp: go_jmp:
/* Setup destination register */ /* Setup destination register */
rd = dstk ? tmp[0] : dst_hi; rd = arm_bpf_get_reg64(dst, tmp, ctx);
rt = dstk ? tmp[1] : dst_lo;
if (dstk) {
emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
}
/* Check for the condition */ /* Check for the condition */
emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code)); emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code));
/* Setup JUMP instruction */ /* Setup JUMP instruction */
jmp_offset = bpf2a32_offset(i+off, i, ctx); jmp_offset = bpf2a32_offset(i+off, i, ctx);
...@@ -1619,21 +1682,21 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1619,21 +1682,21 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
/* function call */ /* function call */
case BPF_JMP | BPF_CALL: case BPF_JMP | BPF_CALL:
{ {
const u8 *r0 = bpf2a32[BPF_REG_0]; const s8 *r0 = bpf2a32[BPF_REG_0];
const u8 *r1 = bpf2a32[BPF_REG_1]; const s8 *r1 = bpf2a32[BPF_REG_1];
const u8 *r2 = bpf2a32[BPF_REG_2]; const s8 *r2 = bpf2a32[BPF_REG_2];
const u8 *r3 = bpf2a32[BPF_REG_3]; const s8 *r3 = bpf2a32[BPF_REG_3];
const u8 *r4 = bpf2a32[BPF_REG_4]; const s8 *r4 = bpf2a32[BPF_REG_4];
const u8 *r5 = bpf2a32[BPF_REG_5]; const s8 *r5 = bpf2a32[BPF_REG_5];
const u32 func = (u32)__bpf_call_base + (u32)imm; const u32 func = (u32)__bpf_call_base + (u32)imm;
emit_a32_mov_r64(true, r0, r1, false, false, ctx); emit_a32_mov_r64(true, r0, r1, ctx);
emit_a32_mov_r64(true, r1, r2, false, true, ctx); emit_a32_mov_r64(true, r1, r2, ctx);
emit_push_r64(r5, 0, ctx); emit_push_r64(r5, ctx);
emit_push_r64(r4, 8, ctx); emit_push_r64(r4, ctx);
emit_push_r64(r3, 16, ctx); emit_push_r64(r3, ctx);
emit_a32_mov_i(tmp[1], func, false, ctx); emit_a32_mov_i(tmp[1], func, ctx);
emit_blx_r(tmp[1], ctx); emit_blx_r(tmp[1], ctx);
emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
...@@ -1745,6 +1808,7 @@ struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) ...@@ -1745,6 +1808,7 @@ struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
memset(&ctx, 0, sizeof(ctx)); memset(&ctx, 0, sizeof(ctx));
ctx.prog = prog; ctx.prog = prog;
ctx.cpu_architecture = cpu_architecture();
/* Not able to allocate memory for offsets[] , then /* Not able to allocate memory for offsets[] , then
* we must fall back to the interpreter * we must fall back to the interpreter
......
...@@ -77,11 +77,14 @@ ...@@ -77,11 +77,14 @@
#define ARM_INST_EOR_R 0x00200000 #define ARM_INST_EOR_R 0x00200000
#define ARM_INST_EOR_I 0x02200000 #define ARM_INST_EOR_I 0x02200000
#define ARM_INST_LDRB_I 0x05d00000 #define ARM_INST_LDST__U 0x00800000
#define ARM_INST_LDST__IMM12 0x00000fff
#define ARM_INST_LDRB_I 0x05500000
#define ARM_INST_LDRB_R 0x07d00000 #define ARM_INST_LDRB_R 0x07d00000
#define ARM_INST_LDRH_I 0x01d000b0 #define ARM_INST_LDRD_I 0x014000d0
#define ARM_INST_LDRH_I 0x015000b0
#define ARM_INST_LDRH_R 0x019000b0 #define ARM_INST_LDRH_R 0x019000b0
#define ARM_INST_LDR_I 0x05900000 #define ARM_INST_LDR_I 0x05100000
#define ARM_INST_LDR_R 0x07900000 #define ARM_INST_LDR_R 0x07900000
#define ARM_INST_LDM 0x08900000 #define ARM_INST_LDM 0x08900000
...@@ -124,9 +127,10 @@ ...@@ -124,9 +127,10 @@
#define ARM_INST_SBC_R 0x00c00000 #define ARM_INST_SBC_R 0x00c00000
#define ARM_INST_SBCS_R 0x00d00000 #define ARM_INST_SBCS_R 0x00d00000
#define ARM_INST_STR_I 0x05800000 #define ARM_INST_STR_I 0x05000000
#define ARM_INST_STRB_I 0x05c00000 #define ARM_INST_STRB_I 0x05400000
#define ARM_INST_STRH_I 0x01c000b0 #define ARM_INST_STRD_I 0x014000f0
#define ARM_INST_STRH_I 0x014000b0
#define ARM_INST_TST_R 0x01100000 #define ARM_INST_TST_R 0x01100000
#define ARM_INST_TST_I 0x03100000 #define ARM_INST_TST_I 0x03100000
...@@ -183,17 +187,18 @@ ...@@ -183,17 +187,18 @@
#define ARM_EOR_R(rd, rn, rm) _AL3_R(ARM_INST_EOR, rd, rn, rm) #define ARM_EOR_R(rd, rn, rm) _AL3_R(ARM_INST_EOR, rd, rn, rm)
#define ARM_EOR_I(rd, rn, imm) _AL3_I(ARM_INST_EOR, rd, rn, imm) #define ARM_EOR_I(rd, rn, imm) _AL3_I(ARM_INST_EOR, rd, rn, imm)
#define ARM_LDR_I(rt, rn, off) (ARM_INST_LDR_I | (rt) << 12 | (rn) << 16 \ #define ARM_LDR_R(rt, rn, rm) (ARM_INST_LDR_R | ARM_INST_LDST__U \
| ((off) & 0xfff)) | (rt) << 12 | (rn) << 16 \
#define ARM_LDR_R(rt, rn, rm) (ARM_INST_LDR_R | (rt) << 12 | (rn) << 16 \
| (rm)) | (rm))
#define ARM_LDRB_I(rt, rn, off) (ARM_INST_LDRB_I | (rt) << 12 | (rn) << 16 \ #define ARM_LDR_R_SI(rt, rn, rm, type, imm) \
| (off)) (ARM_INST_LDR_R | ARM_INST_LDST__U \
#define ARM_LDRB_R(rt, rn, rm) (ARM_INST_LDRB_R | (rt) << 12 | (rn) << 16 \ | (rt) << 12 | (rn) << 16 \
| (imm) << 7 | (type) << 5 | (rm))
#define ARM_LDRB_R(rt, rn, rm) (ARM_INST_LDRB_R | ARM_INST_LDST__U \
| (rt) << 12 | (rn) << 16 \
| (rm)) | (rm))
#define ARM_LDRH_I(rt, rn, off) (ARM_INST_LDRH_I | (rt) << 12 | (rn) << 16 \ #define ARM_LDRH_R(rt, rn, rm) (ARM_INST_LDRH_R | ARM_INST_LDST__U \
| (((off) & 0xf0) << 4) | ((off) & 0xf)) | (rt) << 12 | (rn) << 16 \
#define ARM_LDRH_R(rt, rn, rm) (ARM_INST_LDRH_R | (rt) << 12 | (rn) << 16 \
| (rm)) | (rm))
#define ARM_LDM(rn, regs) (ARM_INST_LDM | (rn) << 16 | (regs)) #define ARM_LDM(rn, regs) (ARM_INST_LDM | (rn) << 16 | (regs))
...@@ -254,13 +259,6 @@ ...@@ -254,13 +259,6 @@
#define ARM_SUBS_I(rd, rn, imm) _AL3_I(ARM_INST_SUBS, rd, rn, imm) #define ARM_SUBS_I(rd, rn, imm) _AL3_I(ARM_INST_SUBS, rd, rn, imm)
#define ARM_SBC_I(rd, rn, imm) _AL3_I(ARM_INST_SBC, rd, rn, imm) #define ARM_SBC_I(rd, rn, imm) _AL3_I(ARM_INST_SBC, rd, rn, imm)
#define ARM_STR_I(rt, rn, off) (ARM_INST_STR_I | (rt) << 12 | (rn) << 16 \
| ((off) & 0xfff))
#define ARM_STRH_I(rt, rn, off) (ARM_INST_STRH_I | (rt) << 12 | (rn) << 16 \
| (((off) & 0xf0) << 4) | ((off) & 0xf))
#define ARM_STRB_I(rt, rn, off) (ARM_INST_STRB_I | (rt) << 12 | (rn) << 16 \
| (((off) & 0xf0) << 4) | ((off) & 0xf))
#define ARM_TST_R(rn, rm) _AL3_R(ARM_INST_TST, 0, rn, rm) #define ARM_TST_R(rn, rm) _AL3_R(ARM_INST_TST, 0, rn, rm)
#define ARM_TST_I(rn, imm) _AL3_I(ARM_INST_TST, 0, rn, imm) #define ARM_TST_I(rn, imm) _AL3_I(ARM_INST_TST, 0, rn, imm)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment