Commit 7355a5a6 authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.infradead.org/mtd-2.6

* git://git.infradead.org/mtd-2.6:
  mtd/nand_ids: Fix buswidth
  mtd/m25p80: fix test for end of loop
  mtd/m25p80: retlen is never NULL
  MIPS: Fix gen_nand probe structures contents
  gen_nand: Test if nr_chips field is valid
  BFIN: Fix gen_nand probe structures contents
  nand/denali: move all hardware initialization work to denali_hw_init
  nand/denali: Add a page check in denali_read_page & denali_read_page_raw
  nand/denali: use cpu_relax() while waiting for hardware interrupt
  nand/denali: change read_status function method
  nand/denali: Fixed check patch warnings
  ARM: Fix gen_nand probe structures contents
  mtd/nand_base: fix kernel-doc warnings & typos
  nand/denali: use dev_xx debug function to replace nand_dbg_print and some printk
  nand/denali: Fixed handle ECC error bugs
  nand/denali: use iowrite32() to replace denali_write32()
  nand/denali: Fixed probe function bugs
parents 7a1b29a8 84c4f46d
...@@ -100,6 +100,7 @@ ixdp425_flash_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) ...@@ -100,6 +100,7 @@ ixdp425_flash_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
static struct platform_nand_data ixdp425_flash_nand_data = { static struct platform_nand_data ixdp425_flash_nand_data = {
.chip = { .chip = {
.nr_chips = 1,
.chip_delay = 30, .chip_delay = 30,
.options = NAND_NO_AUTOINCR, .options = NAND_NO_AUTOINCR,
#ifdef CONFIG_MTD_PARTITIONS #ifdef CONFIG_MTD_PARTITIONS
......
...@@ -165,6 +165,7 @@ static void qong_nand_select_chip(struct mtd_info *mtd, int chip) ...@@ -165,6 +165,7 @@ static void qong_nand_select_chip(struct mtd_info *mtd, int chip)
static struct platform_nand_data qong_nand_data = { static struct platform_nand_data qong_nand_data = {
.chip = { .chip = {
.nr_chips = 1,
.chip_delay = 20, .chip_delay = 20,
.options = 0, .options = 0,
}, },
......
...@@ -216,6 +216,7 @@ static struct mtd_partition ts78xx_ts_nand_parts[] = { ...@@ -216,6 +216,7 @@ static struct mtd_partition ts78xx_ts_nand_parts[] = {
static struct platform_nand_data ts78xx_ts_nand_data = { static struct platform_nand_data ts78xx_ts_nand_data = {
.chip = { .chip = {
.nr_chips = 1,
.part_probe_types = ts_nand_part_probes, .part_probe_types = ts_nand_part_probes,
.partitions = ts78xx_ts_nand_parts, .partitions = ts78xx_ts_nand_parts,
.nr_partitions = ARRAY_SIZE(ts78xx_ts_nand_parts), .nr_partitions = ARRAY_SIZE(ts78xx_ts_nand_parts),
......
...@@ -400,6 +400,7 @@ static int bfin_plat_nand_dev_ready(struct mtd_info *mtd) ...@@ -400,6 +400,7 @@ static int bfin_plat_nand_dev_ready(struct mtd_info *mtd)
static struct platform_nand_data bfin_plat_nand_data = { static struct platform_nand_data bfin_plat_nand_data = {
.chip = { .chip = {
.nr_chips = 1,
.chip_delay = 30, .chip_delay = 30,
#ifdef CONFIG_MTD_PARTITIONS #ifdef CONFIG_MTD_PARTITIONS
.part_probe_types = part_probes, .part_probe_types = part_probes,
......
...@@ -284,6 +284,7 @@ static int bfin_plat_nand_dev_ready(struct mtd_info *mtd) ...@@ -284,6 +284,7 @@ static int bfin_plat_nand_dev_ready(struct mtd_info *mtd)
static struct platform_nand_data bfin_plat_nand_data = { static struct platform_nand_data bfin_plat_nand_data = {
.chip = { .chip = {
.nr_chips = 1,
.chip_delay = 30, .chip_delay = 30,
#ifdef CONFIG_MTD_PARTITIONS #ifdef CONFIG_MTD_PARTITIONS
.part_probe_types = part_probes, .part_probe_types = part_probes,
......
...@@ -266,6 +266,7 @@ pnx833x_flash_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) ...@@ -266,6 +266,7 @@ pnx833x_flash_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
static struct platform_nand_data pnx833x_flash_nand_data = { static struct platform_nand_data pnx833x_flash_nand_data = {
.chip = { .chip = {
.nr_chips = 1,
.chip_delay = 25, .chip_delay = 25,
.part_probe_types = part_probes, .part_probe_types = part_probes,
}, },
......
...@@ -347,7 +347,6 @@ static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, ...@@ -347,7 +347,6 @@ static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
spi_message_add_tail(&t[1], &m); spi_message_add_tail(&t[1], &m);
/* Byte count starts at zero. */ /* Byte count starts at zero. */
if (retlen)
*retlen = 0; *retlen = 0;
mutex_lock(&flash->lock); mutex_lock(&flash->lock);
...@@ -394,7 +393,6 @@ static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, ...@@ -394,7 +393,6 @@ static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
dev_name(&flash->spi->dev), __func__, "to", dev_name(&flash->spi->dev), __func__, "to",
(u32)to, len); (u32)to, len);
if (retlen)
*retlen = 0; *retlen = 0;
/* sanity checks */ /* sanity checks */
...@@ -466,7 +464,6 @@ static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, ...@@ -466,7 +464,6 @@ static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
spi_sync(flash->spi, &m); spi_sync(flash->spi, &m);
if (retlen)
*retlen += m.actual_length - m25p_cmdsz(flash); *retlen += m.actual_length - m25p_cmdsz(flash);
} }
} }
...@@ -485,7 +482,6 @@ static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, ...@@ -485,7 +482,6 @@ static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t actual; size_t actual;
int cmd_sz, ret; int cmd_sz, ret;
if (retlen)
*retlen = 0; *retlen = 0;
/* sanity checks */ /* sanity checks */
...@@ -797,7 +793,7 @@ static int __devinit m25p_probe(struct spi_device *spi) ...@@ -797,7 +793,7 @@ static int __devinit m25p_probe(struct spi_device *spi)
break; break;
} }
if (plat_id) if (i < ARRAY_SIZE(m25p_ids) - 1)
id = plat_id; id = plat_id;
else else
dev_warn(&spi->dev, "unrecognized id %s\n", data->type); dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
......
...@@ -56,7 +56,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." ...@@ -56,7 +56,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
INTR_STATUS0__ERASE_COMP) INTR_STATUS0__ERASE_COMP)
/* indicates whether or not the internal value for the flash bank is /* indicates whether or not the internal value for the flash bank is
valid or not */ * valid or not */
#define CHIP_SELECT_INVALID -1 #define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1 #define SUPPORT_8BITECC 1
...@@ -71,7 +71,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." ...@@ -71,7 +71,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
/* These constants are defined by the driver to enable common driver /* These constants are defined by the driver to enable common driver
configuration options. */ * configuration options. */
#define SPARE_ACCESS 0x41 #define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42 #define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43 #define MAIN_SPARE_ACCESS 0x43
...@@ -97,7 +97,7 @@ static const struct pci_device_id denali_pci_ids[] = { ...@@ -97,7 +97,7 @@ static const struct pci_device_id denali_pci_ids[] = {
/* these are static lookup tables that give us easy access to /* these are static lookup tables that give us easy access to
registers in the NAND controller. * registers in the NAND controller.
*/ */
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
INTR_STATUS1, INTR_STATUS1,
...@@ -119,9 +119,6 @@ static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, ...@@ -119,9 +119,6 @@ static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
INTR_STATUS2__RST_COMP, INTR_STATUS2__RST_COMP,
INTR_STATUS3__RST_COMP}; INTR_STATUS3__RST_COMP};
/* specifies the debug level of the driver */
static int nand_debug_level;
/* forward declarations */ /* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali); static void clear_interrupts(struct denali_nand_info *denali);
static uint32_t wait_for_irq(struct denali_nand_info *denali, static uint32_t wait_for_irq(struct denali_nand_info *denali,
...@@ -130,22 +127,6 @@ static void denali_irq_enable(struct denali_nand_info *denali, ...@@ -130,22 +127,6 @@ static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask); uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali); static uint32_t read_interrupt_status(struct denali_nand_info *denali);
#define DEBUG_DENALI 0
/* This is a wrapper for writing to the denali registers.
* this allows us to create debug information so we can
* observe how the driver is programming the device.
* it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
iowrite32(value, addr);
#if DEBUG_DENALI
printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
(uint32_t)((uint32_t)addr & 0x1fff));
#endif
}
/* Certain operations for the denali NAND controller use /* Certain operations for the denali NAND controller use
* an indexed mode to read/write data. The operation is * an indexed mode to read/write data. The operation is
* performed by writing the address value of the command * performed by writing the address value of the command
...@@ -155,15 +136,15 @@ static void denali_write32(uint32_t value, void *addr) ...@@ -155,15 +136,15 @@ static void denali_write32(uint32_t value, void *addr)
static void index_addr(struct denali_nand_info *denali, static void index_addr(struct denali_nand_info *denali,
uint32_t address, uint32_t data) uint32_t address, uint32_t data)
{ {
denali_write32(address, denali->flash_mem); iowrite32(address, denali->flash_mem);
denali_write32(data, denali->flash_mem + 0x10); iowrite32(data, denali->flash_mem + 0x10);
} }
/* Perform an indexed read of the device */ /* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali, static void index_addr_read_data(struct denali_nand_info *denali,
uint32_t address, uint32_t *pdata) uint32_t address, uint32_t *pdata)
{ {
denali_write32(address, denali->flash_mem); iowrite32(address, denali->flash_mem);
*pdata = ioread32(denali->flash_mem + 0x10); *pdata = ioread32(denali->flash_mem + 0x10);
} }
...@@ -188,18 +169,11 @@ static void read_status(struct denali_nand_info *denali) ...@@ -188,18 +169,11 @@ static void read_status(struct denali_nand_info *denali)
/* initialize the data buffer to store status */ /* initialize the data buffer to store status */
reset_buf(denali); reset_buf(denali);
/* initiate a device status read */ cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
cmd = MODE_11 | BANK(denali->flash_bank); if (cmd)
index_addr(denali, cmd | COMMAND_CYCLE, 0x70); write_byte_to_buf(denali, NAND_STATUS_WP);
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); else
write_byte_to_buf(denali, 0);
/* update buffer with status value */
write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
#if DEBUG_DENALI
printk(KERN_INFO "device reporting status value of 0x%2x\n",
denali->buf.buf[0]);
#endif
} }
/* resets a specific device connected to the core */ /* resets a specific device connected to the core */
...@@ -213,12 +187,12 @@ static void reset_bank(struct denali_nand_info *denali) ...@@ -213,12 +187,12 @@ static void reset_bank(struct denali_nand_info *denali)
clear_interrupts(denali); clear_interrupts(denali);
bank = device_reset_banks[denali->flash_bank]; bank = device_reset_banks[denali->flash_bank];
denali_write32(bank, denali->flash_reg + DEVICE_RESET); iowrite32(bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask); irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & operation_timeout[denali->flash_bank]) if (irq_status & operation_timeout[denali->flash_bank])
printk(KERN_ERR "reset bank failed.\n"); dev_err(&denali->dev->dev, "reset bank failed.\n");
} }
/* Reset the flash controller */ /* Reset the flash controller */
...@@ -226,28 +200,28 @@ static uint16_t denali_nand_reset(struct denali_nand_info *denali) ...@@ -226,28 +200,28 @@ static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{ {
uint32_t i; uint32_t i;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__); __FILE__, __LINE__, __func__);
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
denali_write32(reset_complete[i] | operation_timeout[i], iowrite32(reset_complete[i] | operation_timeout[i],
denali->flash_reg + intr_status_addresses[i]); denali->flash_reg + intr_status_addresses[i]);
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
denali_write32(device_reset_banks[i], iowrite32(device_reset_banks[i],
denali->flash_reg + DEVICE_RESET); denali->flash_reg + DEVICE_RESET);
while (!(ioread32(denali->flash_reg + while (!(ioread32(denali->flash_reg +
intr_status_addresses[i]) & intr_status_addresses[i]) &
(reset_complete[i] | operation_timeout[i]))) (reset_complete[i] | operation_timeout[i])))
; cpu_relax();
if (ioread32(denali->flash_reg + intr_status_addresses[i]) & if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
operation_timeout[i]) operation_timeout[i])
nand_dbg_print(NAND_DBG_WARN, dev_dbg(&denali->dev->dev,
"NAND Reset operation timed out on bank %d\n", i); "NAND Reset operation timed out on bank %d\n", i);
} }
for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
denali_write32(reset_complete[i] | operation_timeout[i], iowrite32(reset_complete[i] | operation_timeout[i],
denali->flash_reg + intr_status_addresses[i]); denali->flash_reg + intr_status_addresses[i]);
return PASS; return PASS;
...@@ -280,7 +254,7 @@ static void nand_onfi_timing_set(struct denali_nand_info *denali, ...@@ -280,7 +254,7 @@ static void nand_onfi_timing_set(struct denali_nand_info *denali,
uint16_t acc_clks; uint16_t acc_clks;
uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__); __FILE__, __LINE__, __func__);
en_lo = CEIL_DIV(Trp[mode], CLK_X); en_lo = CEIL_DIV(Trp[mode], CLK_X);
...@@ -317,7 +291,7 @@ static void nand_onfi_timing_set(struct denali_nand_info *denali, ...@@ -317,7 +291,7 @@ static void nand_onfi_timing_set(struct denali_nand_info *denali,
acc_clks++; acc_clks++;
if ((data_invalid - acc_clks * CLK_X) < 2) if ((data_invalid - acc_clks * CLK_X) < 2)
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n", dev_warn(&denali->dev->dev, "%s, Line %d: Warning!\n",
__FILE__, __LINE__); __FILE__, __LINE__);
addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
...@@ -345,14 +319,14 @@ static void nand_onfi_timing_set(struct denali_nand_info *denali, ...@@ -345,14 +319,14 @@ static void nand_onfi_timing_set(struct denali_nand_info *denali,
(ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
acc_clks = 6; acc_clks = 6;
denali_write32(acc_clks, denali->flash_reg + ACC_CLKS); iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
denali_write32(re_2_we, denali->flash_reg + RE_2_WE); iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
denali_write32(re_2_re, denali->flash_reg + RE_2_RE); iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
denali_write32(we_2_re, denali->flash_reg + WE_2_RE); iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA); iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
} }
/* queries the NAND device to see what ONFI modes it supports. */ /* queries the NAND device to see what ONFI modes it supports. */
...@@ -387,13 +361,13 @@ static void get_samsung_nand_para(struct denali_nand_info *denali, ...@@ -387,13 +361,13 @@ static void get_samsung_nand_para(struct denali_nand_info *denali,
{ {
if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */ /* Set timing register values according to datasheet */
denali_write32(5, denali->flash_reg + ACC_CLKS); iowrite32(5, denali->flash_reg + ACC_CLKS);
denali_write32(20, denali->flash_reg + RE_2_WE); iowrite32(20, denali->flash_reg + RE_2_WE);
denali_write32(12, denali->flash_reg + WE_2_RE); iowrite32(12, denali->flash_reg + WE_2_RE);
denali_write32(14, denali->flash_reg + ADDR_2_DATA); iowrite32(14, denali->flash_reg + ADDR_2_DATA);
denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT); iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
denali_write32(2, denali->flash_reg + CS_SETUP_CNT); iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
} }
} }
...@@ -405,15 +379,15 @@ static void get_toshiba_nand_para(struct denali_nand_info *denali) ...@@ -405,15 +379,15 @@ static void get_toshiba_nand_para(struct denali_nand_info *denali)
/* spare area size for some kind of Toshiba NAND device */ /* spare area size for some kind of Toshiba NAND device */
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
denali_write32(tmp, iowrite32(tmp,
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC #if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION); iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC #elif SUPPORT_8BITECC
denali_write32(8, denali->flash_reg + ECC_CORRECTION); iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif #endif
} }
} }
...@@ -426,26 +400,26 @@ static void get_hynix_nand_para(struct denali_nand_info *denali, ...@@ -426,26 +400,26 @@ static void get_hynix_nand_para(struct denali_nand_info *denali,
switch (device_id) { switch (device_id) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
main_size = 4096 * main_size = 4096 *
ioread32(denali->flash_reg + DEVICES_CONNECTED); ioread32(denali->flash_reg + DEVICES_CONNECTED);
spare_size = 224 * spare_size = 224 *
ioread32(denali->flash_reg + DEVICES_CONNECTED); ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali_write32(main_size, iowrite32(main_size,
denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
denali_write32(spare_size, iowrite32(spare_size,
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
denali_write32(0, denali->flash_reg + DEVICE_WIDTH); iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC #if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION); iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC #elif SUPPORT_8BITECC
denali_write32(8, denali->flash_reg + ECC_CORRECTION); iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif #endif
break; break;
default: default:
nand_dbg_print(NAND_DBG_WARN, dev_warn(&denali->dev->dev,
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)." "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n", "Will use default parameter values instead.\n",
device_id); device_id);
...@@ -453,7 +427,7 @@ static void get_hynix_nand_para(struct denali_nand_info *denali, ...@@ -453,7 +427,7 @@ static void get_hynix_nand_para(struct denali_nand_info *denali,
} }
/* determines how many NAND chips are connected to the controller. Note for /* determines how many NAND chips are connected to the controller. Note for
Intel CE4100 devices we don't support more than one device. * Intel CE4100 devices we don't support more than one device.
*/ */
static void find_valid_banks(struct denali_nand_info *denali) static void find_valid_banks(struct denali_nand_info *denali)
{ {
...@@ -467,7 +441,7 @@ static void find_valid_banks(struct denali_nand_info *denali) ...@@ -467,7 +441,7 @@ static void find_valid_banks(struct denali_nand_info *denali)
index_addr_read_data(denali, index_addr_read_data(denali,
(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
nand_dbg_print(NAND_DBG_DEBUG, dev_dbg(&denali->dev->dev,
"Return 1st ID for bank[%d]: %x\n", i, id[i]); "Return 1st ID for bank[%d]: %x\n", i, id[i]);
if (i == 0) { if (i == 0) {
...@@ -487,12 +461,13 @@ static void find_valid_banks(struct denali_nand_info *denali) ...@@ -487,12 +461,13 @@ static void find_valid_banks(struct denali_nand_info *denali)
* Multichip support is not enabled. * Multichip support is not enabled.
*/ */
if (denali->total_used_banks != 1) { if (denali->total_used_banks != 1) {
printk(KERN_ERR "Sorry, Intel CE4100 only supports " dev_err(&denali->dev->dev,
"Sorry, Intel CE4100 only supports "
"a single NAND device.\n"); "a single NAND device.\n");
BUG(); BUG();
} }
} }
nand_dbg_print(NAND_DBG_DEBUG, dev_dbg(&denali->dev->dev,
"denali->total_used_banks: %d\n", denali->total_used_banks); "denali->total_used_banks: %d\n", denali->total_used_banks);
} }
...@@ -526,7 +501,8 @@ static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) ...@@ -526,7 +501,8 @@ static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
uint32_t id_bytes[5], addr; uint32_t id_bytes[5], addr;
uint8_t i, maf_id, device_id; uint8_t i, maf_id, device_id;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", dev_dbg(&denali->dev->dev,
"%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__); __FILE__, __LINE__, __func__);
/* Use read id method to get device ID and other /* Use read id method to get device ID and other
...@@ -554,12 +530,14 @@ static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) ...@@ -554,12 +530,14 @@ static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
get_hynix_nand_para(denali, device_id); get_hynix_nand_para(denali, device_id);
} }
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" dev_info(&denali->dev->dev,
"acc_clks: %d, re_2_we: %d, we_2_re: %d," "Dump timing register values:"
"addr_2_data: %d, rdwr_en_lo_cnt: %d, " "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
ioread32(denali->flash_reg + ACC_CLKS), ioread32(denali->flash_reg + ACC_CLKS),
ioread32(denali->flash_reg + RE_2_WE), ioread32(denali->flash_reg + RE_2_WE),
ioread32(denali->flash_reg + RE_2_RE),
ioread32(denali->flash_reg + WE_2_RE), ioread32(denali->flash_reg + WE_2_RE),
ioread32(denali->flash_reg + ADDR_2_DATA), ioread32(denali->flash_reg + ADDR_2_DATA),
ioread32(denali->flash_reg + RDWR_EN_LO_CNT), ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
...@@ -582,17 +560,17 @@ static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) ...@@ -582,17 +560,17 @@ static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
static void denali_set_intr_modes(struct denali_nand_info *denali, static void denali_set_intr_modes(struct denali_nand_info *denali,
uint16_t INT_ENABLE) uint16_t INT_ENABLE)
{ {
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", dev_dbg(&denali->dev->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__); __FILE__, __LINE__, __func__);
if (INT_ENABLE) if (INT_ENABLE)
denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE); iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
else else
denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE); iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
} }
/* validation function to verify that the controlling software is making /* validation function to verify that the controlling software is making
a valid request * a valid request
*/ */
static inline bool is_flash_bank_valid(int flash_bank) static inline bool is_flash_bank_valid(int flash_bank)
{ {
...@@ -609,10 +587,10 @@ static void denali_irq_init(struct denali_nand_info *denali) ...@@ -609,10 +587,10 @@ static void denali_irq_init(struct denali_nand_info *denali)
int_mask = DENALI_IRQ_ALL; int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */ /* Clear all status bits */
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0); iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS0);
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1); iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS1);
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2); iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS2);
denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3); iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS3);
denali_irq_enable(denali, int_mask); denali_irq_enable(denali, int_mask);
} }
...@@ -626,10 +604,10 @@ static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) ...@@ -626,10 +604,10 @@ static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
static void denali_irq_enable(struct denali_nand_info *denali, static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask) uint32_t int_mask)
{ {
denali_write32(int_mask, denali->flash_reg + INTR_EN0); iowrite32(int_mask, denali->flash_reg + INTR_EN0);
denali_write32(int_mask, denali->flash_reg + INTR_EN1); iowrite32(int_mask, denali->flash_reg + INTR_EN1);
denali_write32(int_mask, denali->flash_reg + INTR_EN2); iowrite32(int_mask, denali->flash_reg + INTR_EN2);
denali_write32(int_mask, denali->flash_reg + INTR_EN3); iowrite32(int_mask, denali->flash_reg + INTR_EN3);
} }
/* This function only returns when an interrupt that this driver cares about /* This function only returns when an interrupt that this driver cares about
...@@ -648,7 +626,7 @@ static inline void clear_interrupt(struct denali_nand_info *denali, ...@@ -648,7 +626,7 @@ static inline void clear_interrupt(struct denali_nand_info *denali,
intr_status_reg = intr_status_addresses[denali->flash_bank]; intr_status_reg = intr_status_addresses[denali->flash_bank];
denali_write32(irq_mask, denali->flash_reg + intr_status_reg); iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
} }
static void clear_interrupts(struct denali_nand_info *denali) static void clear_interrupts(struct denali_nand_info *denali)
...@@ -657,11 +635,7 @@ static void clear_interrupts(struct denali_nand_info *denali) ...@@ -657,11 +635,7 @@ static void clear_interrupts(struct denali_nand_info *denali)
spin_lock_irq(&denali->irq_lock); spin_lock_irq(&denali->irq_lock);
status = read_interrupt_status(denali); status = read_interrupt_status(denali);
clear_interrupt(denali, status);
#if DEBUG_DENALI
denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
denali->idx %= 32;
#endif
denali->irq_status = 0x0; denali->irq_status = 0x0;
spin_unlock_irq(&denali->irq_lock); spin_unlock_irq(&denali->irq_lock);
...@@ -676,17 +650,6 @@ static uint32_t read_interrupt_status(struct denali_nand_info *denali) ...@@ -676,17 +650,6 @@ static uint32_t read_interrupt_status(struct denali_nand_info *denali)
return ioread32(denali->flash_reg + intr_status_reg); return ioread32(denali->flash_reg + intr_status_reg);
} }
#if DEBUG_DENALI
static void print_irq_log(struct denali_nand_info *denali)
{
int i = 0;
printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
for (i = 0; i < 32; i++)
printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
}
#endif
/* This is the interrupt service routine. It handles all interrupts /* This is the interrupt service routine. It handles all interrupts
* sent to this device. Note that on CE4100, this is a shared * sent to this device. Note that on CE4100, this is a shared
* interrupt. * interrupt.
...@@ -707,13 +670,6 @@ static irqreturn_t denali_isr(int irq, void *dev_id) ...@@ -707,13 +670,6 @@ static irqreturn_t denali_isr(int irq, void *dev_id)
* the interrupt, since this is a shared interrupt */ * the interrupt, since this is a shared interrupt */
irq_status = denali_irq_detected(denali); irq_status = denali_irq_detected(denali);
if (irq_status != 0) { if (irq_status != 0) {
#if DEBUG_DENALI
denali->irq_debug_array[denali->idx++] =
0x10000000 | irq_status;
denali->idx %= 32;
printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
#endif
/* handle interrupt */ /* handle interrupt */
/* first acknowledge it */ /* first acknowledge it */
clear_interrupt(denali, irq_status); clear_interrupt(denali, irq_status);
...@@ -739,41 +695,20 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) ...@@ -739,41 +695,20 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
unsigned long timeout = msecs_to_jiffies(1000); unsigned long timeout = msecs_to_jiffies(1000);
do { do {
#if DEBUG_DENALI
printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
#endif
comp_res = comp_res =
wait_for_completion_timeout(&denali->complete, timeout); wait_for_completion_timeout(&denali->complete, timeout);
spin_lock_irq(&denali->irq_lock); spin_lock_irq(&denali->irq_lock);
intr_status = denali->irq_status; intr_status = denali->irq_status;
#if DEBUG_DENALI
denali->irq_debug_array[denali->idx++] =
0x20000000 | (irq_mask << 16) | intr_status;
denali->idx %= 32;
#endif
if (intr_status & irq_mask) { if (intr_status & irq_mask) {
denali->irq_status &= ~irq_mask; denali->irq_status &= ~irq_mask;
spin_unlock_irq(&denali->irq_lock); spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
if (retry)
printk(KERN_INFO "status on retry = 0x%x\n",
intr_status);
#endif
/* our interrupt was detected */ /* our interrupt was detected */
break; break;
} else { } else {
/* these are not the interrupts you are looking for - /* these are not the interrupts you are looking for -
* need to wait again */ * need to wait again */
spin_unlock_irq(&denali->irq_lock); spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
print_irq_log(denali);
printk(KERN_INFO "received irq nobody cared:"
" irq_status = 0x%x, irq_mask = 0x%x,"
" timeout = %ld\n", intr_status,
irq_mask, comp_res);
#endif
retry = true; retry = true;
} }
} while (comp_res != 0); } while (comp_res != 0);
...@@ -789,7 +724,7 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) ...@@ -789,7 +724,7 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
} }
/* This helper function setups the registers for ECC and whether or not /* This helper function setups the registers for ECC and whether or not
the spare area will be transfered. */ * the spare area will be transfered. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare) bool transfer_spare)
{ {
...@@ -800,13 +735,13 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, ...@@ -800,13 +735,13 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */ /* Enable spare area/ECC per user's request. */
denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
denali_write32(transfer_spare_flag, iowrite32(transfer_spare_flag,
denali->flash_reg + TRANSFER_SPARE_REG); denali->flash_reg + TRANSFER_SPARE_REG);
} }
/* sends a pipeline command operation to the controller. See the Denali NAND /* sends a pipeline command operation to the controller. See the Denali NAND
controller's user guide for more information (section 4.2.3.6). * controller's user guide for more information (section 4.2.3.6).
*/ */
static int denali_send_pipeline_cmd(struct denali_nand_info *denali, static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
bool ecc_en, bool ecc_en,
...@@ -827,16 +762,6 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, ...@@ -827,16 +762,6 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
setup_ecc_for_xfer(denali, ecc_en, transfer_spare); setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
denali->irq_debug_array[denali->idx++] =
0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
(access_type << 4);
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
/* clear interrupts */ /* clear interrupts */
clear_interrupts(denali); clear_interrupts(denali);
...@@ -844,14 +769,14 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, ...@@ -844,14 +769,14 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
cmd = MODE_01 | addr; cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem); iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
/* read spare area */ /* read spare area */
cmd = MODE_10 | addr; cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type); index_addr(denali, (uint32_t)cmd, access_type);
cmd = MODE_01 | addr; cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem); iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_READ) { } else if (op == DENALI_READ) {
/* setup page read request for access type */ /* setup page read request for access type */
cmd = MODE_10 | addr; cmd = MODE_10 | addr;
...@@ -863,7 +788,7 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, ...@@ -863,7 +788,7 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
*/ */
if (access_type == SPARE_ACCESS) { if (access_type == SPARE_ACCESS) {
cmd = MODE_01 | addr; cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem); iowrite32(cmd, denali->flash_mem);
} else { } else {
index_addr(denali, (uint32_t)cmd, index_addr(denali, (uint32_t)cmd,
0x2000 | op | page_count); 0x2000 | op | page_count);
...@@ -875,13 +800,14 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, ...@@ -875,13 +800,14 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
irq_status = wait_for_irq(denali, irq_mask); irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) { if (irq_status == 0) {
printk(KERN_ERR "cmd, page, addr on timeout " dev_err(&denali->dev->dev,
"(0x%x, 0x%x, 0x%x)\n", cmd, "cmd, page, addr on timeout "
denali->page, addr); "(0x%x, 0x%x, 0x%x)\n",
cmd, denali->page, addr);
status = FAIL; status = FAIL;
} else { } else {
cmd = MODE_01 | addr; cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem); iowrite32(cmd, denali->flash_mem);
} }
} }
} }
...@@ -902,7 +828,7 @@ static int write_data_to_flash_mem(struct denali_nand_info *denali, ...@@ -902,7 +828,7 @@ static int write_data_to_flash_mem(struct denali_nand_info *denali,
/* write the data to the flash memory */ /* write the data to the flash memory */
buf32 = (uint32_t *)buf; buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++) for (i = 0; i < len / 4; i++)
denali_write32(*buf32++, denali->flash_mem + 0x10); iowrite32(*buf32++, denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */ return i*4; /* intent is to return the number of bytes read */
} }
...@@ -945,24 +871,15 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) ...@@ -945,24 +871,15 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
DENALI_WRITE) == PASS) { DENALI_WRITE) == PASS) {
write_data_to_flash_mem(denali, buf, mtd->oobsize); write_data_to_flash_mem(denali, buf, mtd->oobsize);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
denali->irq_debug_array[denali->idx++] =
0x80000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
/* wait for operation to complete */ /* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask); irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) { if (irq_status == 0) {
printk(KERN_ERR "OOB write failed\n"); dev_err(&denali->dev->dev, "OOB write failed\n");
status = -EIO; status = -EIO;
} }
} else { } else {
printk(KERN_ERR "unable to send pipeline command\n"); dev_err(&denali->dev->dev, "unable to send pipeline command\n");
status = -EIO; status = -EIO;
} }
return status; return status;
...@@ -977,9 +894,6 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) ...@@ -977,9 +894,6 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
denali->page = page; denali->page = page;
#if DEBUG_DENALI
printk(KERN_INFO "read_oob %d\n", page);
#endif
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS) { DENALI_READ) == PASS) {
read_data_from_flash_mem(denali, buf, mtd->oobsize); read_data_from_flash_mem(denali, buf, mtd->oobsize);
...@@ -990,7 +904,7 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) ...@@ -990,7 +904,7 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
irq_status = wait_for_irq(denali, irq_mask); irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) if (irq_status == 0)
printk(KERN_ERR "page on OOB timeout %d\n", dev_err(&denali->dev->dev, "page on OOB timeout %d\n",
denali->page); denali->page);
/* We set the device back to MAIN_ACCESS here as I observed /* We set the device back to MAIN_ACCESS here as I observed
...@@ -1002,14 +916,6 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) ...@@ -1002,14 +916,6 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
addr = BANK(denali->flash_bank) | denali->page; addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr; cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
denali->irq_debug_array[denali->idx++] =
0x60000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
} }
} }
...@@ -1029,12 +935,12 @@ bool is_erased(uint8_t *buf, int len) ...@@ -1029,12 +935,12 @@ bool is_erased(uint8_t *buf, int len)
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO)) #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint8_t *oobbuf, uint32_t irq_status) uint32_t irq_status)
{ {
bool check_erased_page = false; bool check_erased_page = false;
...@@ -1043,6 +949,7 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, ...@@ -1043,6 +949,7 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint32_t err_address = 0, err_correction_info = 0; uint32_t err_address = 0, err_correction_info = 0;
uint32_t err_byte = 0, err_sector = 0, err_device = 0; uint32_t err_byte = 0, err_sector = 0, err_device = 0;
uint32_t err_correction_value = 0; uint32_t err_correction_value = 0;
denali_set_intr_modes(denali, false);
do { do {
err_address = ioread32(denali->flash_reg + err_address = ioread32(denali->flash_reg +
...@@ -1050,7 +957,6 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, ...@@ -1050,7 +957,6 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
err_sector = ECC_SECTOR(err_address); err_sector = ECC_SECTOR(err_address);
err_byte = ECC_BYTE(err_address); err_byte = ECC_BYTE(err_address);
err_correction_info = ioread32(denali->flash_reg + err_correction_info = ioread32(denali->flash_reg +
ERR_CORRECTION_INFO); ERR_CORRECTION_INFO);
err_correction_value = err_correction_value =
...@@ -1058,20 +964,23 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, ...@@ -1058,20 +964,23 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
err_device = ECC_ERR_DEVICE(err_correction_info); err_device = ECC_ERR_DEVICE(err_correction_info);
if (ECC_ERROR_CORRECTABLE(err_correction_info)) { if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
/* offset in our buffer is computed as: /* If err_byte is larger than ECC_SECTOR_SIZE,
sector number * sector size + offset in * means error happend in OOB, so we ignore
sector * it. It's no need for us to correct it
*/ * err_device is represented the NAND error
int offset = err_sector * ECC_SECTOR_SIZE + * bits are happened in if there are more
err_byte; * than one NAND connected.
if (offset < denali->mtd.writesize) { * */
if (err_byte < ECC_SECTOR_SIZE) {
int offset;
offset = (err_sector *
ECC_SECTOR_SIZE +
err_byte) *
denali->devnum +
err_device;
/* correct the ECC error */ /* correct the ECC error */
buf[offset] ^= err_correction_value; buf[offset] ^= err_correction_value;
denali->mtd.ecc_stats.corrected++; denali->mtd.ecc_stats.corrected++;
} else {
/* bummer, couldn't correct the error */
printk(KERN_ERR "ECC offset invalid\n");
denali->mtd.ecc_stats.failed++;
} }
} else { } else {
/* if the error is not correctable, need to /* if the error is not correctable, need to
...@@ -1080,14 +989,16 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, ...@@ -1080,14 +989,16 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
* */ * */
check_erased_page = true; check_erased_page = true;
} }
#if DEBUG_DENALI
printk(KERN_INFO "Detected ECC error in page %d:"
" err_addr = 0x%08x, info to fix is"
" 0x%08x\n", denali->page, err_address,
err_correction_info);
#endif
} while (!ECC_LAST_ERR(err_correction_info)); } while (!ECC_LAST_ERR(err_correction_info));
/* Once handle all ecc errors, controller will triger
* a ECC_TRANSACTION_DONE interrupt, so here just wait
* for a while for this interrupt
* */
while (!(read_interrupt_status(denali) &
INTR_STATUS0__ECC_TRANSACTION_DONE))
cpu_relax();
clear_interrupts(denali);
denali_set_intr_modes(denali, true);
} }
return check_erased_page; return check_erased_page;
} }
...@@ -1100,7 +1011,7 @@ static void denali_enable_dma(struct denali_nand_info *denali, bool en) ...@@ -1100,7 +1011,7 @@ static void denali_enable_dma(struct denali_nand_info *denali, bool en)
if (en) if (en)
reg_val = DMA_ENABLE__FLAG; reg_val = DMA_ENABLE__FLAG;
denali_write32(reg_val, denali->flash_reg + DMA_ENABLE); iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ioread32(denali->flash_reg + DMA_ENABLE); ioread32(denali->flash_reg + DMA_ENABLE);
} }
...@@ -1129,7 +1040,7 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op) ...@@ -1129,7 +1040,7 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op)
} }
/* writes a page. user specifies type, and this function handles the /* writes a page. user specifies type, and this function handles the
configuration details. */ * configuration details. */
static void write_page(struct mtd_info *mtd, struct nand_chip *chip, static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer) const uint8_t *buf, bool raw_xfer)
{ {
...@@ -1171,8 +1082,9 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, ...@@ -1171,8 +1082,9 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
irq_status = wait_for_irq(denali, irq_mask); irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) { if (irq_status == 0) {
printk(KERN_ERR "timeout on write_page" dev_err(&denali->dev->dev,
" (type = %d)\n", raw_xfer); "timeout on write_page (type = %d)\n",
raw_xfer);
denali->status = denali->status =
(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
NAND_STATUS_FAIL : PASS; NAND_STATUS_FAIL : PASS;
...@@ -1185,8 +1097,9 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, ...@@ -1185,8 +1097,9 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
/* NAND core entry points */ /* NAND core entry points */
/* this is the callback that the NAND core calls to write a page. Since /* this is the callback that the NAND core calls to write a page. Since
writing a page with ECC or without is similar, all the work is done * writing a page with ECC or without is similar, all the work is done
by write_page above. */ * by write_page above.
* */
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf) const uint8_t *buf)
{ {
...@@ -1196,8 +1109,8 @@ static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, ...@@ -1196,8 +1109,8 @@ static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
} }
/* This is the callback that the NAND core calls to write a page without ECC. /* This is the callback that the NAND core calls to write a page without ECC.
raw access is similiar to ECC page writes, so all the work is done in the * raw access is similiar to ECC page writes, so all the work is done in the
write_page() function above. * write_page() function above.
*/ */
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf) const uint8_t *buf)
...@@ -1236,6 +1149,13 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, ...@@ -1236,6 +1149,13 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
INTR_STATUS0__ECC_ERR; INTR_STATUS0__ECC_ERR;
bool check_erased_page = false; bool check_erased_page = false;
if (page != denali->page) {
dev_err(&denali->dev->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, true, false); setup_ecc_for_xfer(denali, true, false);
denali_enable_dma(denali, true); denali_enable_dma(denali, true);
...@@ -1251,7 +1171,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, ...@@ -1251,7 +1171,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
memcpy(buf, denali->buf.buf, mtd->writesize); memcpy(buf, denali->buf.buf, mtd->writesize);
check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); check_erased_page = handle_ecc(denali, buf, irq_status);
denali_enable_dma(denali, false); denali_enable_dma(denali, false);
if (check_erased_page) { if (check_erased_page) {
...@@ -1280,6 +1200,13 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, ...@@ -1280,6 +1200,13 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t irq_status = 0; uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
if (page != denali->page) {
dev_err(&denali->dev->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, false, true); setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true); denali_enable_dma(denali, true);
...@@ -1309,18 +1236,13 @@ static uint8_t denali_read_byte(struct mtd_info *mtd) ...@@ -1309,18 +1236,13 @@ static uint8_t denali_read_byte(struct mtd_info *mtd)
if (denali->buf.head < denali->buf.tail) if (denali->buf.head < denali->buf.tail)
result = denali->buf.buf[denali->buf.head++]; result = denali->buf.buf[denali->buf.head++];
#if DEBUG_DENALI
printk(KERN_INFO "read byte -> 0x%02x\n", result);
#endif
return result; return result;
} }
static void denali_select_chip(struct mtd_info *mtd, int chip) static void denali_select_chip(struct mtd_info *mtd, int chip)
{ {
struct denali_nand_info *denali = mtd_to_denali(mtd); struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
printk(KERN_INFO "denali select chip %d\n", chip);
#endif
spin_lock_irq(&denali->irq_lock); spin_lock_irq(&denali->irq_lock);
denali->flash_bank = chip; denali->flash_bank = chip;
spin_unlock_irq(&denali->irq_lock); spin_unlock_irq(&denali->irq_lock);
...@@ -1332,9 +1254,6 @@ static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) ...@@ -1332,9 +1254,6 @@ static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
int status = denali->status; int status = denali->status;
denali->status = 0; denali->status = 0;
#if DEBUG_DENALI
printk(KERN_INFO "waitfunc %d\n", status);
#endif
return status; return status;
} }
...@@ -1344,9 +1263,6 @@ static void denali_erase(struct mtd_info *mtd, int page) ...@@ -1344,9 +1263,6 @@ static void denali_erase(struct mtd_info *mtd, int page)
uint32_t cmd = 0x0, irq_status = 0; uint32_t cmd = 0x0, irq_status = 0;
#if DEBUG_DENALI
printk(KERN_INFO "erase page: %d\n", page);
#endif
/* clear interrupts */ /* clear interrupts */
clear_interrupts(denali); clear_interrupts(denali);
...@@ -1369,9 +1285,6 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, ...@@ -1369,9 +1285,6 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
uint32_t addr, id; uint32_t addr, id;
int i; int i;
#if DEBUG_DENALI
printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
#endif
switch (cmd) { switch (cmd) {
case NAND_CMD_PAGEPROG: case NAND_CMD_PAGEPROG:
break; break;
...@@ -1415,7 +1328,9 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, ...@@ -1415,7 +1328,9 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code) uint8_t *ecc_code)
{ {
printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(&denali->dev->dev,
"denali_ecc_calculate called unexpectedly\n");
BUG(); BUG();
return -EIO; return -EIO;
} }
...@@ -1423,14 +1338,18 @@ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, ...@@ -1423,14 +1338,18 @@ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc) uint8_t *read_ecc, uint8_t *calc_ecc)
{ {
printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(&denali->dev->dev,
"denali_ecc_correct called unexpectedly\n");
BUG(); BUG();
return -EIO; return -EIO;
} }
static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{ {
printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n"); struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(&denali->dev->dev,
"denali_ecc_hwctl called unexpectedly\n");
BUG(); BUG();
} }
/* end NAND core entry points */ /* end NAND core entry points */
...@@ -1445,18 +1364,18 @@ static void denali_hw_init(struct denali_nand_info *denali) ...@@ -1445,18 +1364,18 @@ static void denali_hw_init(struct denali_nand_info *denali)
* */ * */
denali->bbtskipbytes = ioread32(denali->flash_reg + denali->bbtskipbytes = ioread32(denali->flash_reg +
SPARE_AREA_SKIP_BYTES); SPARE_AREA_SKIP_BYTES);
denali_irq_init(denali);
denali_nand_reset(denali); denali_nand_reset(denali);
denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
denali_write32(CHIP_EN_DONT_CARE__FLAG, iowrite32(CHIP_EN_DONT_CARE__FLAG,
denali->flash_reg + CHIP_ENABLE_DONT_CARE); denali->flash_reg + CHIP_ENABLE_DONT_CARE);
denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Should set value for these registers when init */ /* Should set value for these registers when init */
denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
denali_write32(1, denali->flash_reg + ECC_ENABLE); iowrite32(1, denali->flash_reg + ECC_ENABLE);
denali_nand_timing_set(denali);
denali_irq_init(denali);
} }
/* Althogh controller spec said SLC ECC is forceb to be 4bit, /* Althogh controller spec said SLC ECC is forceb to be 4bit,
...@@ -1526,9 +1445,6 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1526,9 +1445,6 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
unsigned long csr_len, mem_len; unsigned long csr_len, mem_len;
struct denali_nand_info *denali; struct denali_nand_info *denali;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
denali = kzalloc(sizeof(*denali), GFP_KERNEL); denali = kzalloc(sizeof(*denali), GFP_KERNEL);
if (!denali) if (!denali)
return -ENOMEM; return -ENOMEM;
...@@ -1536,7 +1452,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1536,7 +1452,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
ret = pci_enable_device(dev); ret = pci_enable_device(dev);
if (ret) { if (ret) {
printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
goto failed_enable; goto failed_alloc_memery;
} }
if (id->driver_data == INTEL_CE4100) { if (id->driver_data == INTEL_CE4100) {
...@@ -1547,7 +1463,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1547,7 +1463,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
printk(KERN_ERR "Intel CE4100 only supports" printk(KERN_ERR "Intel CE4100 only supports"
" ONFI timing mode 1 or below\n"); " ONFI timing mode 1 or below\n");
ret = -EINVAL; ret = -EINVAL;
goto failed_enable; goto failed_enable_dev;
} }
denali->platform = INTEL_CE4100; denali->platform = INTEL_CE4100;
mem_base = pci_resource_start(dev, 0); mem_base = pci_resource_start(dev, 0);
...@@ -1557,17 +1473,12 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1557,17 +1473,12 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
} else { } else {
denali->platform = INTEL_MRST; denali->platform = INTEL_MRST;
csr_base = pci_resource_start(dev, 0); csr_base = pci_resource_start(dev, 0);
csr_len = pci_resource_start(dev, 0); csr_len = pci_resource_len(dev, 0);
mem_base = pci_resource_start(dev, 1); mem_base = pci_resource_start(dev, 1);
mem_len = pci_resource_len(dev, 1); mem_len = pci_resource_len(dev, 1);
if (!mem_len) { if (!mem_len) {
mem_base = csr_base + csr_len; mem_base = csr_base + csr_len;
mem_len = csr_len; mem_len = csr_len;
nand_dbg_print(NAND_DBG_WARN,
"Spectra: No second"
" BAR for PCI device;"
" assuming %08Lx\n",
(uint64_t)csr_base);
} }
} }
...@@ -1576,7 +1487,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1576,7 +1487,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
if (ret) { if (ret) {
printk(KERN_ERR "Spectra: no usable DMA configuration\n"); printk(KERN_ERR "Spectra: no usable DMA configuration\n");
goto failed_enable; goto failed_enable_dev;
} }
denali->buf.dma_buf = denali->buf.dma_buf =
pci_map_single(dev, denali->buf.buf, pci_map_single(dev, denali->buf.buf,
...@@ -1584,50 +1495,44 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1584,50 +1495,44 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
PCI_DMA_BIDIRECTIONAL); PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) { if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
goto failed_enable; goto failed_enable_dev;
} }
pci_set_master(dev); pci_set_master(dev);
denali->dev = dev; denali->dev = dev;
denali->mtd.dev.parent = &dev->dev;
ret = pci_request_regions(dev, DENALI_NAND_NAME); ret = pci_request_regions(dev, DENALI_NAND_NAME);
if (ret) { if (ret) {
printk(KERN_ERR "Spectra: Unable to request memory regions\n"); printk(KERN_ERR "Spectra: Unable to request memory regions\n");
goto failed_req_csr; goto failed_dma_map;
} }
denali->flash_reg = ioremap_nocache(csr_base, csr_len); denali->flash_reg = ioremap_nocache(csr_base, csr_len);
if (!denali->flash_reg) { if (!denali->flash_reg) {
printk(KERN_ERR "Spectra: Unable to remap memory region\n"); printk(KERN_ERR "Spectra: Unable to remap memory region\n");
ret = -ENOMEM; ret = -ENOMEM;
goto failed_remap_csr; goto failed_req_regions;
} }
nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
(uint64_t)csr_base, denali->flash_reg, csr_len);
denali->flash_mem = ioremap_nocache(mem_base, mem_len); denali->flash_mem = ioremap_nocache(mem_base, mem_len);
if (!denali->flash_mem) { if (!denali->flash_mem) {
printk(KERN_ERR "Spectra: ioremap_nocache failed!"); printk(KERN_ERR "Spectra: ioremap_nocache failed!");
iounmap(denali->flash_reg);
ret = -ENOMEM; ret = -ENOMEM;
goto failed_remap_csr; goto failed_remap_reg;
} }
nand_dbg_print(NAND_DBG_WARN,
"Spectra: Remapped flash base address: "
"0x%p, len: %ld\n",
denali->flash_mem, csr_len);
denali_hw_init(denali); denali_hw_init(denali);
denali_drv_init(denali); denali_drv_init(denali);
nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq); /* denali_isr register is done after all the hardware
* initilization is finished*/
if (request_irq(dev->irq, denali_isr, IRQF_SHARED, if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
DENALI_NAND_NAME, denali)) { DENALI_NAND_NAME, denali)) {
printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
ret = -ENODEV; ret = -ENODEV;
goto failed_request_irq; goto failed_remap_mem;
} }
/* now that our ISR is registered, we can enable interrupts */ /* now that our ISR is registered, we can enable interrupts */
...@@ -1635,21 +1540,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1635,21 +1540,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
pci_set_drvdata(dev, denali); pci_set_drvdata(dev, denali);
denali_nand_timing_set(denali); denali->mtd.name = "denali-nand";
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
"addr_2_data: %d, rdwr_en_lo_cnt: %d, "
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
ioread32(denali->flash_reg + ACC_CLKS),
ioread32(denali->flash_reg + RE_2_WE),
ioread32(denali->flash_reg + WE_2_RE),
ioread32(denali->flash_reg + ADDR_2_DATA),
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
ioread32(denali->flash_reg + CS_SETUP_CNT));
denali->mtd.name = "Denali NAND";
denali->mtd.owner = THIS_MODULE; denali->mtd.owner = THIS_MODULE;
denali->mtd.priv = &denali->nand; denali->mtd.priv = &denali->nand;
...@@ -1664,7 +1555,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1664,7 +1555,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
* with the nand subsystem */ * with the nand subsystem */
if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) { if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
ret = -ENXIO; ret = -ENXIO;
goto failed_nand; goto failed_req_irq;
} }
/* MTD supported page sizes vary by kernel. We validate our /* MTD supported page sizes vary by kernel. We validate our
...@@ -1674,7 +1565,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1674,7 +1565,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
ret = -ENODEV; ret = -ENODEV;
printk(KERN_ERR "Spectra: device size not supported by this " printk(KERN_ERR "Spectra: device size not supported by this "
"version of MTD."); "version of MTD.");
goto failed_nand; goto failed_req_irq;
} }
/* support for multi nand /* support for multi nand
...@@ -1719,17 +1610,17 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1719,17 +1610,17 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
/* if MLC OOB size is large enough, use 15bit ECC*/ /* if MLC OOB size is large enough, use 15bit ECC*/
denali->nand.ecc.layout = &nand_15bit_oob; denali->nand.ecc.layout = &nand_15bit_oob;
denali->nand.ecc.bytes = ECC_15BITS; denali->nand.ecc.bytes = ECC_15BITS;
denali_write32(15, denali->flash_reg + ECC_CORRECTION); iowrite32(15, denali->flash_reg + ECC_CORRECTION);
} else if (denali->mtd.oobsize < (denali->bbtskipbytes + } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
ECC_8BITS * (denali->mtd.writesize / ECC_8BITS * (denali->mtd.writesize /
ECC_SECTOR_SIZE))) { ECC_SECTOR_SIZE))) {
printk(KERN_ERR "Your NAND chip OOB is not large enough to" printk(KERN_ERR "Your NAND chip OOB is not large enough to"
" contain 8bit ECC correction codes"); " contain 8bit ECC correction codes");
goto failed_nand; goto failed_req_irq;
} else { } else {
denali->nand.ecc.layout = &nand_8bit_oob; denali->nand.ecc.layout = &nand_8bit_oob;
denali->nand.ecc.bytes = ECC_8BITS; denali->nand.ecc.bytes = ECC_8BITS;
denali_write32(8, denali->flash_reg + ECC_CORRECTION); iowrite32(8, denali->flash_reg + ECC_CORRECTION);
} }
denali->nand.ecc.bytes *= denali->devnum; denali->nand.ecc.bytes *= denali->devnum;
...@@ -1769,28 +1660,31 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ...@@ -1769,28 +1660,31 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
if (nand_scan_tail(&denali->mtd)) { if (nand_scan_tail(&denali->mtd)) {
ret = -ENXIO; ret = -ENXIO;
goto failed_nand; goto failed_req_irq;
} }
ret = add_mtd_device(&denali->mtd); ret = add_mtd_device(&denali->mtd);
if (ret) { if (ret) {
printk(KERN_ERR "Spectra: Failed to register" dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
" MTD device: %d\n", ret); ret);
goto failed_nand; goto failed_req_irq;
} }
return 0; return 0;
failed_nand: failed_req_irq:
denali_irq_cleanup(dev->irq, denali); denali_irq_cleanup(dev->irq, denali);
failed_request_irq: failed_remap_mem:
iounmap(denali->flash_reg);
iounmap(denali->flash_mem); iounmap(denali->flash_mem);
failed_remap_csr: failed_remap_reg:
iounmap(denali->flash_reg);
failed_req_regions:
pci_release_regions(dev); pci_release_regions(dev);
failed_req_csr: failed_dma_map:
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL); PCI_DMA_BIDIRECTIONAL);
failed_enable: failed_enable_dev:
pci_disable_device(dev);
failed_alloc_memery:
kfree(denali); kfree(denali);
return ret; return ret;
} }
...@@ -1800,9 +1694,6 @@ static void denali_pci_remove(struct pci_dev *dev) ...@@ -1800,9 +1694,6 @@ static void denali_pci_remove(struct pci_dev *dev)
{ {
struct denali_nand_info *denali = pci_get_drvdata(dev); struct denali_nand_info *denali = pci_get_drvdata(dev);
nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
nand_release(&denali->mtd); nand_release(&denali->mtd);
del_mtd_device(&denali->mtd); del_mtd_device(&denali->mtd);
......
...@@ -635,24 +635,6 @@ ...@@ -635,24 +635,6 @@
#define CLK_X 5 #define CLK_X 5
#define CLK_MULTI 4 #define CLK_MULTI 4
/* ffsport.h */
#define VERBOSE 1
#define NAND_DBG_WARN 1
#define NAND_DBG_DEBUG 2
#define NAND_DBG_TRACE 3
#ifdef VERBOSE
#define nand_dbg_print(level, args...) \
do { \
if (level <= nand_debug_level) \
printk(KERN_ALERT args); \
} while (0)
#else
#define nand_dbg_print(level, args...)
#endif
/* spectraswconfig.h */ /* spectraswconfig.h */
#define CMD_DMA 0 #define CMD_DMA 0
......
...@@ -112,7 +112,7 @@ struct nand_flash_dev nand_flash_ids[] = { ...@@ -112,7 +112,7 @@ struct nand_flash_dev nand_flash_ids[] = {
{"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16}, {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16},
/* 32 Gigabit */ /* 32 Gigabit */
{"NAND 4GiB 3,3V 8-bit", 0xD7, 0, 4096, 0, LP_OPTIONS16}, {"NAND 4GiB 3,3V 8-bit", 0xD7, 0, 4096, 0, LP_OPTIONS},
/* /*
* Renesas AND 1 Gigabit. Those chips do not support extended id and * Renesas AND 1 Gigabit. Those chips do not support extended id and
......
...@@ -37,6 +37,11 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) ...@@ -37,6 +37,11 @@ static int __devinit plat_nand_probe(struct platform_device *pdev)
struct resource *res; struct resource *res;
int err = 0; int err = 0;
if (pdata->chip.nr_chips < 1) {
dev_err(&pdev->dev, "invalid number of chips specified\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) if (!res)
return -ENXIO; return -ENXIO;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment