Commit 76e7b902 authored by Neil Brown's avatar Neil Brown Committed by Linus Torvalds

[PATCH] Micro Memory battery backed RAM card driver

New driver for Micro Memory NVRAM module

This driver handles up to 16 PCI based NVRAM cards
from MicroMemory.
Each card appears like a block device, and can be partitioned
using any standard partitioning tool.  Upto 15 partitions are
supported.

This driver needs its own major device number and so allocates
one using register_blkdev.
parent 096cbcc6
...@@ -90,6 +90,24 @@ CONFIG_BLK_DEV_LOOP ...@@ -90,6 +90,24 @@ CONFIG_BLK_DEV_LOOP
Most users will answer N here. Most users will answer N here.
Micro Memory MM5415 Battery Backed RAM support (EXPERIMENTAL)
CONFIG_BLK_DEV_UMEM
Saying Y here will include support for the MM5415 family of
battery backed (Non-volatile) RAM cards.
http://www.umem.com/
The cards appear as block devices that can be partitioned into
as many as 15 partitions.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read Documentation/modules.txt. The module will be
called umem.o.
The umem driver has not yet been allocated a MAJOR number, so
one is chosen dynamically. Use "devfs" or look in /proc/devices
for the device number
CONFIG_BLK_DEV_NBD CONFIG_BLK_DEV_NBD
Saying Y here will allow your computer to be a client for network Saying Y here will allow your computer to be a client for network
block devices, i.e. it will be able to use block devices exported by block devices, i.e. it will be able to use block devices exported by
......
...@@ -37,6 +37,7 @@ dep_tristate 'Compaq SMART2 support' CONFIG_BLK_CPQ_DA $CONFIG_PCI ...@@ -37,6 +37,7 @@ dep_tristate 'Compaq SMART2 support' CONFIG_BLK_CPQ_DA $CONFIG_PCI
dep_tristate 'Compaq Smart Array 5xxx support' CONFIG_BLK_CPQ_CISS_DA $CONFIG_PCI dep_tristate 'Compaq Smart Array 5xxx support' CONFIG_BLK_CPQ_CISS_DA $CONFIG_PCI
dep_mbool ' SCSI tape drive support for Smart Array 5xxx' CONFIG_CISS_SCSI_TAPE $CONFIG_BLK_CPQ_CISS_DA $CONFIG_SCSI dep_mbool ' SCSI tape drive support for Smart Array 5xxx' CONFIG_CISS_SCSI_TAPE $CONFIG_BLK_CPQ_CISS_DA $CONFIG_SCSI
dep_tristate 'Mylex DAC960/DAC1100 PCI RAID Controller support' CONFIG_BLK_DEV_DAC960 $CONFIG_PCI dep_tristate 'Mylex DAC960/DAC1100 PCI RAID Controller support' CONFIG_BLK_DEV_DAC960 $CONFIG_PCI
dep_tristate 'Micro Memory MM5415 Battery Backed RAM support' CONFIG_BLK_DEV_UMEM $CONFIG_PCI $CONFIG_EXPERIMENTAL
tristate 'Loopback device support' CONFIG_BLK_DEV_LOOP tristate 'Loopback device support' CONFIG_BLK_DEV_LOOP
dep_tristate 'Network block device support' CONFIG_BLK_DEV_NBD $CONFIG_NET dep_tristate 'Network block device support' CONFIG_BLK_DEV_NBD $CONFIG_NET
......
...@@ -30,6 +30,7 @@ obj-$(CONFIG_BLK_CPQ_DA) += cpqarray.o ...@@ -30,6 +30,7 @@ obj-$(CONFIG_BLK_CPQ_DA) += cpqarray.o
obj-$(CONFIG_BLK_CPQ_CISS_DA) += cciss.o obj-$(CONFIG_BLK_CPQ_CISS_DA) += cciss.o
obj-$(CONFIG_BLK_DEV_DAC960) += DAC960.o obj-$(CONFIG_BLK_DEV_DAC960) += DAC960.o
obj-$(CONFIG_BLK_DEV_UMEM) += umem.o
obj-$(CONFIG_BLK_DEV_NBD) += nbd.o obj-$(CONFIG_BLK_DEV_NBD) += nbd.o
subdir-$(CONFIG_PARIDE) += paride subdir-$(CONFIG_PARIDE) += paride
......
/*
* mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
*
* (C) 2001 San Mehat <nettwerk@valinux.com>
* (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
* (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
*
* This driver for the Micro Memory PCI Memory Module with Battery Backup
* is Copyright Micro Memory Inc 2001-2002. All rights reserved.
*
* This driver is released to the public under the terms of the
* GNU GENERAL PUBLIC LICENSE version 2
* See the file COPYING for details.
*
* This driver provides a standard block device interface for Micro Memory(tm)
* PCI based RAM boards.
* 10/05/01: Phap Nguyen - Rebuilt the driver
* 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
* 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
* - use stand disk partitioning (so fdisk works).
* 08nov2001:NeilBrown - change driver name from "mm" to "umem"
* - incorporate into main kernel
* 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
* - use spin_lock_bh instead of _irq
* - Never block on make_request. queue
* bh's instead.
* - unregister umem from devfs at mod unload
* - Change version to 2.3
* 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
* 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
* 15May2002:NeilBrown - convert to bio for 2.5
* 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
* - a sequence of writes that cover the card, and
* - set initialised bit then.
*/
#include <linux/config.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/hdreg.h> /* HDIO_GETGEO */
#include <linux/umem.h>
#include <asm/uaccess.h>
#define PRINTK(x...) do {} while (0)
#define dprintk(x...) do {} while (0)
/*#define dprintk(x...) printk(x) */
#define MM_MAXCARDS 4
#define MM_RAHEAD 2 /* two sectors */
#define MM_BLKSIZE 1024 /* 1k blocks */
#define MM_HARDSECT 512 /* 512-byte hardware sectors */
#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
#define DEVICE_NR(device) (MINOR(device)>>MM_SHIFT)
/*
* Version Information
*/
#define DRIVER_VERSION "v2.3"
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
static int debug;
/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)
#define DEBUG_LED_ON_TRANSFER 0x01
#define DEBUG_BATTERY_POLLING 0x02
MODULE_PARM(debug, "i");
MODULE_PARM_DESC(debug, "Debug bitmask");
static int pci_read_cmd = 0x0C; /* Read Multiple */
MODULE_PARM(pci_read_cmd, "i");
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
static int pci_write_cmd = 0x0F; /* Write and Invalidate */
MODULE_PARM(pci_write_cmd, "i");
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
static int pci_cmds;
static int major_nr;
#define MAJOR_NR (major_nr)
#include <linux/blk.h>
#include <linux/blkpg.h>
static devfs_handle_t devfs_handle; /* For the directory */
struct cardinfo {
int card_number;
struct pci_dev *dev;
int irq;
unsigned long csr_base;
unsigned char *csr_remap;
unsigned long csr_len;
#ifdef CONFIG_MM_MAP_MEMORY
unsigned long mem_base;
unsigned char *mem_remap;
unsigned long mem_len;
#endif
unsigned int win_size; /* PCI window size */
unsigned int mm_size; /* size in kbytes */
unsigned int init_size; /* initial segment, in sectors,
* that we know to
* have been written
*/
struct bio *bio, *currentbio, **biotail;
struct mm_page {
dma_addr_t page_dma;
struct mm_dma_desc *desc;
int cnt, headcnt;
struct bio *bio, **biotail;
} mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
int Active, Ready;
struct tasklet_struct tasklet;
unsigned int dma_status;
struct tq_struct plug_tq;
struct {
int good;
int warned;
unsigned long last_change;
} battery[2];
atomic_t usage;
spinlock_t lock;
int check_batteries;
};
static struct cardinfo cards[MM_MAXCARDS];
static struct block_device_operations mm_fops;
static struct timer_list battery_timer;
static int mm_sizes[MM_MAXCARDS << MM_SHIFT];
static struct hd_struct mm_partitions[MM_MAXCARDS << MM_SHIFT];
static int num_cards = 0;
struct gendisk mm_gendisk = {
major: 0, /* Major number assigned later */
major_name: "umem", /* Name of the major device */
minor_shift: MM_SHIFT, /* Shift to get device number */
fops: &mm_fops, /* Block dev operations */
/* everything else is dynamic */
};
static void check_batteries(struct cardinfo *card);
/*
-----------------------------------------------------------------------------------
-- get_userbit
-----------------------------------------------------------------------------------
*/
static int get_userbit(struct cardinfo *card, int bit)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
return led & bit;
}
/*
-----------------------------------------------------------------------------------
-- set_userbit
-----------------------------------------------------------------------------------
*/
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state)
led |= bit;
else
led &= ~bit;
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- set_led
-----------------------------------------------------------------------------------
*/
/*
* NOTE: For the power LED, use the LED_POWER_* macros since they differ
*/
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state == LED_FLIP)
led ^= (1<<shift);
else {
led &= ~(0x03 << shift);
led |= (state << shift);
}
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
}
#ifdef MM_DIAG
/*
-----------------------------------------------------------------------------------
-- dump_regs
-----------------------------------------------------------------------------------
*/
static void dump_regs(struct cardinfo *card)
{
unsigned char *p;
int i, i1;
p = card->csr_remap;
for (i = 0; i < 8; i++) {
printk(KERN_DEBUG "%p ", p);
for (i1 = 0; i1 < 16; i1++)
printk("%02x ", *p++);
printk("\n");
}
}
#endif
/*
-----------------------------------------------------------------------------------
-- dump_dmastat
-----------------------------------------------------------------------------------
*/
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
if (dmastat & DMASCR_ANY_ERR)
printk("ANY_ERR ");
if (dmastat & DMASCR_MBE_ERR)
printk("MBE_ERR ");
if (dmastat & DMASCR_PARITY_ERR_REP)
printk("PARITY_ERR_REP ");
if (dmastat & DMASCR_PARITY_ERR_DET)
printk("PARITY_ERR_DET ");
if (dmastat & DMASCR_SYSTEM_ERR_SIG)
printk("SYSTEM_ERR_SIG ");
if (dmastat & DMASCR_TARGET_ABT)
printk("TARGET_ABT ");
if (dmastat & DMASCR_MASTER_ABT)
printk("MASTER_ABT ");
if (dmastat & DMASCR_CHAIN_COMPLETE)
printk("CHAIN_COMPLETE ");
if (dmastat & DMASCR_DMA_COMPLETE)
printk("DMA_COMPLETE ");
printk("\n");
}
/*
* Theory of request handling
*
* Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
* We have two pages of mm_dma_desc, holding about 64 descriptors
* each. These are allocated at init time.
* One page is "Ready" and is either full, or can have request added.
* The other page might be "Active", which DMA is happening on it.
*
* Whenever IO on the active page completes, the Ready page is activated
* and the ex-Active page is clean out and made Ready.
* Otherwise the Ready page is only activated when it becomes full, or
* when mm_unplug_device is called via run_task_queue(&tq_disk).
*
* If a request arrives while both pages a full, it is queued, and b_rdev is
* overloaded to record whether it was a read or a write.
*
* The interrupt handler only polls the device to clear the interrupt.
* The processing of the result is done in a tasklet.
*/
static void mm_start_io(struct cardinfo *card)
{
/* we have the lock, we know there is
* no IO active, and we know that card->Active
* is set
*/
struct mm_dma_desc *desc;
struct mm_page *page;
int offset;
/* make the last descriptor end the chain */
page = &card->mm_pages[card->Active];
PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
desc = &page->desc[page->cnt-1];
desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
desc->sem_control_bits = desc->control_bits;
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_ON);
desc = &page->desc[page->headcnt];
writel(0, card->csr_remap + DMA_PCI_ADDR);
writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
writel(0, card->csr_remap + DMA_LOCAL_ADDR);
writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
offset = ((char*)desc) - ((char*)page->desc);
writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
card->csr_remap + DMA_DESCRIPTOR_ADDR);
/* if sizeof(dma_addr_t) == 32, this will generate a warning, sorry */
writel(cpu_to_le32((page->page_dma)>>32),
card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
/* Go, go, go */
writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
card->csr_remap + DMA_STATUS_CTRL);
}
static int add_bio(struct cardinfo *card);
static void activate(struct cardinfo *card)
{
/* if No page is Active, and Ready is
* not empty, then switch Ready page
* to active and start IO.
* Then add any bh's that are available to Ready
*/
do {
while (add_bio(card))
;
if (card->Active == -1 &&
card->mm_pages[card->Ready].cnt > 0) {
card->Active = card->Ready;
card->Ready = 1-card->Ready;
mm_start_io(card);
}
} while (card->Active == -1 && add_bio(card));
}
static inline void reset_page(struct mm_page *page)
{
page->cnt = 0;
page->headcnt = 0;
page->bio = NULL;
page->biotail = & page->bio;
}
static void mm_unplug_device(void *data)
{
struct cardinfo *card = data;
spin_lock_bh(&card->lock);
activate(card);
spin_unlock_bh(&card->lock);
}
/*
* If there is room on Ready page, take
* one bh off list and add it.
* return 1 if there was room, else 0.
*/
static int add_bio(struct cardinfo *card)
{
struct mm_page *p;
struct mm_dma_desc *desc;
dma_addr_t dma_handle;
int offset;
struct bio *bio;
int rw;
int len;
bio = card->currentbio;
if (!bio && card->bio) {
card->currentbio = card->bio;
card->bio = card->bio->bi_next;
if (card->bio == NULL)
card->biotail = &card->bio;
card->currentbio->bi_next = NULL;
return 1;
}
if (!bio)
return 0;
rw = bio_rw(bio);
if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
return 0;
len = bio_iovec(bio)->bv_len;
dma_handle = pci_map_page(card->dev,
bio_page(bio),
bio_offset(bio),
len,
(rw==READ) ?
PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
p = &card->mm_pages[card->Ready];
desc = &p->desc[p->cnt];
p->cnt++;
if ((p->biotail) != &bio->bi_next) {
*(p->biotail) = bio;
p->biotail = &(bio->bi_next);
bio->bi_next = NULL;
}
desc->data_dma_handle = dma_handle;
desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
desc->transfer_size = cpu_to_le32(len);
offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
desc->zero1 = desc->zero2 = 0;
offset = ( ((char*)(desc+1)) - ((char*)p->desc));
desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
DMASCR_PARITY_INT_EN|
DMASCR_CHAIN_EN |
DMASCR_SEM_EN |
pci_cmds);
if (rw == WRITE)
desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
desc->sem_control_bits = desc->control_bits;
bio->bi_sector += (len>>9);
bio->bi_size -= len;
bio->bi_idx++;
if (bio->bi_idx >= bio->bi_vcnt)
card->currentbio = NULL;
return 1;
}
static void process_page(unsigned long data)
{
/* check if any of the requests in the page are DMA_COMPLETE,
* and deal with them appropriately.
* If we find a descriptor without DMA_COMPLETE in the semaphore, then
* dma must have hit an error on that descriptor, so use dma_status instead
* and assume that all following descriptors must be re-tried.
*/
struct mm_page *page;
struct bio *return_bio=NULL;
struct cardinfo *card = (struct cardinfo *)data;
unsigned int dma_status = card->dma_status;
spin_lock_bh(&card->lock);
if (card->Active < 0)
goto out_unlock;
page = &card->mm_pages[card->Active];
while (page->headcnt < page->cnt) {
struct bio *bio = page->bio;
struct mm_dma_desc *desc = &page->desc[page->headcnt];
int control = le32_to_cpu(desc->sem_control_bits);
int last=0;
int idx;
if (!(control & DMASCR_DMA_COMPLETE)) {
control = dma_status;
last=1;
}
page->headcnt++;
idx = bio->bi_phys_segments;
bio->bi_phys_segments++;
if (bio->bi_phys_segments >= bio->bi_vcnt)
page->bio = bio->bi_next;
pci_unmap_page(card->dev, desc->data_dma_handle,
bio_iovec_idx(bio,idx)->bv_len,
(control& DMASCR_TRANSFER_READ) ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
if (control & DMASCR_HARD_ERROR) {
/* error */
clear_bit(BIO_UPTODATE, &bio->bi_flags);
printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
card->card_number,
le32_to_cpu(desc->local_addr)>>9,
le32_to_cpu(desc->transfer_size));
dump_dmastat(card, control);
} else if (test_bit(BIO_RW, &bio->bi_rw) &&
le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
card->init_size += le32_to_cpu(desc->transfer_size)>>9;
if (card->init_size>>1 >= card->mm_size) {
printk(KERN_INFO "MM%d: memory now initialised\n",
card->card_number);
set_userbit(card, MEMORY_INITIALIZED, 1);
}
}
if (bio != page->bio) {
bio->bi_next = return_bio;
return_bio = bio;
}
if (last) break;
}
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_OFF);
if (card->check_batteries) {
card->check_batteries = 0;
check_batteries(card);
}
if (page->headcnt >= page->cnt) {
reset_page(page);
card->Active = -1;
activate(card);
} else {
/* haven't finished with this one yet */
PRINTK("do some more\n");
mm_start_io(card);
}
out_unlock:
spin_unlock_bh(&card->lock);
while(return_bio) {
struct bio *bio = return_bio;
return_bio = bio->bi_next;
bio->bi_next = NULL;
bio->bi_end_io(bio);
}
}
/*
-----------------------------------------------------------------------------------
-- mm_make_request
-----------------------------------------------------------------------------------
*/
static int mm_make_request(request_queue_t *q, struct bio *bio)
{
struct cardinfo *card = &cards[DEVICE_NR(
bio->bi_bdev->bd_dev)];
PRINTK("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size);
/* set uptodate now, and clear it if there are any errors */
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
spin_lock_bh(&card->lock);
*card->biotail = bio;
bio->bi_next = NULL;
card->biotail = &bio->bi_next;
spin_unlock_bh(&card->lock);
queue_task(&card->plug_tq, &tq_disk);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_interrupt
-----------------------------------------------------------------------------------
*/
static void mm_interrupt(int irq, void *__card, struct pt_regs *regs)
{
struct cardinfo *card = (struct cardinfo *) __card;
unsigned int dma_status;
unsigned short cfg_status;
HW_TRACE(0x30);
dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
/* interrupt wasn't for me ... */
return;
}
/* clear COMPLETION interrupts */
writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
card->csr_remap+ DMA_STATUS_CTRL);
/* log errors and clear interrupt status */
if (dma_status & DMASCR_ANY_ERR) {
unsigned int data_log1, data_log2;
unsigned int addr_log1, addr_log2;
unsigned char stat, count, syndrome, check;
stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
count = readb(card->csr_remap + ERROR_COUNT);
syndrome = readb(card->csr_remap + ERROR_SYNDROME);
check = readb(card->csr_remap + ERROR_CHECK);
dump_dmastat(card, dma_status);
if (stat & 0x01)
printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
card->card_number, count);
if (stat & 0x02)
printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
card->card_number);
printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
card->card_number, addr_log2, addr_log1, data_log2, data_log1);
printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
card->card_number, check, syndrome);
writeb(0, card->csr_remap + ERROR_COUNT);
}
if (dma_status & DMASCR_PARITY_ERR_REP) {
printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_PARITY_ERR_DET) {
printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_TARGET_ABT) {
printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_MASTER_ABT) {
printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
/* and process the DMA descriptors */
card->dma_status = dma_status;
tasklet_schedule(&card->tasklet);
HW_TRACE(0x36);
}
/*
-----------------------------------------------------------------------------------
-- set_fault_to_battery_status
-----------------------------------------------------------------------------------
*/
/*
* If both batteries are good, no LED
* If either battery has been warned, solid LED
* If both batteries are bad, flash the LED quickly
* If either battery is bad, flash the LED semi quickly
*/
static void set_fault_to_battery_status(struct cardinfo *card)
{
if (card->battery[0].good && card->battery[1].good)
set_led(card, LED_FAULT, LED_OFF);
else if (card->battery[0].warned || card->battery[1].warned)
set_led(card, LED_FAULT, LED_ON);
else if (!card->battery[0].good && !card->battery[1].good)
set_led(card, LED_FAULT, LED_FLASH_7_0);
else
set_led(card, LED_FAULT, LED_FLASH_3_5);
}
static void init_battery_timer(void);
/*
-----------------------------------------------------------------------------------
-- check_battery
-----------------------------------------------------------------------------------
*/
static int check_battery(struct cardinfo *card, int battery, int status)
{
if (status != card->battery[battery].good) {
card->battery[battery].good = !card->battery[battery].good;
card->battery[battery].last_change = jiffies;
if (card->battery[battery].good) {
printk(KERN_ERR "MM%d: Battery %d now good\n",
card->card_number, battery + 1);
card->battery[battery].warned = 0;
} else
printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
card->card_number, battery + 1);
return 1;
} else if (!card->battery[battery].good &&
!card->battery[battery].warned &&
time_after_eq(jiffies, card->battery[battery].last_change +
(HZ * 60 * 60 * 5))) {
printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
card->card_number, battery + 1);
card->battery[battery].warned = 1;
return 1;
}
return 0;
}
/*
-----------------------------------------------------------------------------------
-- check_batteries
-----------------------------------------------------------------------------------
*/
static void check_batteries(struct cardinfo *card)
{
/* NOTE: this must *never* be called while the card
* is doing (bus-to-card) DMA, or you will need the
* reset switch
*/
unsigned char status;
int ret1, ret2;
status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
if (debug & DEBUG_BATTERY_POLLING)
printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
card->card_number,
(status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
(status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
if (ret1 || ret2)
set_fault_to_battery_status(card);
}
static void check_all_batteries(unsigned long ptr)
{
int i;
for (i = 0; i < num_cards; i++) {
struct cardinfo *card = &cards[i];
spin_lock_bh(&card->lock);
if (card->Active >= 0)
card->check_batteries = 1;
else
check_batteries(card);
spin_unlock_bh(&card->lock);
}
init_battery_timer();
}
/*
-----------------------------------------------------------------------------------
-- init_battery_timer
-----------------------------------------------------------------------------------
*/
static void init_battery_timer(void)
{
init_timer(&battery_timer);
battery_timer.function = check_all_batteries;
battery_timer.expires = jiffies + (HZ * 60);
add_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
-- del_battery_timer
-----------------------------------------------------------------------------------
*/
static void del_battery_timer(void)
{
del_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
-- mm_revalidate
-----------------------------------------------------------------------------------
*/
/*
* Note no locks taken out here. In a worst case scenario, we could drop
* a chunk of system memory. But that should never happen, since validation
* happens at open or mount time, when locks are held.
*/
static int mm_revalidate(kdev_t i_rdev)
{
int i;
int card_number = DEVICE_NR(kdev_val(i_rdev));
/* first partition, # of partitions */
int part1 = (card_number << MM_SHIFT) + 1;
int npart = (1 << MM_SHIFT) -1;
/* first clear old partition information */
for (i=0; i<npart ;i++) {
mm_gendisk.sizes[part1+i]=0;
mm_gendisk.part[part1+i].start_sect = 0;
mm_gendisk.part[part1+i].nr_sects = 0;
}
mm_gendisk.part[card_number << MM_SHIFT].nr_sects =
cards[card_number].mm_size << 1;
/* then fill new info */
printk(KERN_INFO "mm partition check: (%d)\n", card_number);
grok_partitions(mk_kdev(major_nr,part1-1),
mm_gendisk.sizes[card_number<<MM_SHIFT]);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_ioctl
-----------------------------------------------------------------------------------
*/
static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
{
int err, size, card_number;
struct hd_geometry geo;
unsigned int minor;
if (!i)
return -EINVAL;
minor = minor(i->i_rdev);
card_number = (minor >> MM_SHIFT);
switch(cmd) {
case BLKGETSIZE:
/* Return the device size, expressed in sectors */
err = ! access_ok (VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
size = mm_gendisk.part[minor].nr_sects;
if (copy_to_user((long *) arg, &size, sizeof (long)))
return -EFAULT;
return 0;
case BLKRRPART:
return (mm_revalidate(i->i_rdev));
case HDIO_GETGEO:
/*
* get geometry: we have to fake one... trim the size to a
* multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
* whatever cylinders.
*/
err = ! access_ok(VERIFY_WRITE, arg, sizeof(geo));
if (err) return -EFAULT;
size = cards[card_number].mm_size * (1024 / MM_HARDSECT);
geo.heads = 64;
geo.sectors = 32;
geo.start = mm_gendisk.part[minor].start_sect;
geo.cylinders = size / (geo.heads * geo.sectors);
if (copy_to_user((void *) arg, &geo, sizeof(geo)))
return -EFAULT;
return 0;
default:
return blk_ioctl(i->i_bdev, cmd, arg);
}
return -ENOTTY; /* unknown command */
}
/*
-----------------------------------------------------------------------------------
-- mm_check_change
-----------------------------------------------------------------------------------
Future support for removable devices
*/
static int mm_check_change(kdev_t i_rdev)
{
int card_number = DEVICE_NR(kdev_val(i_rdev));
/* struct cardinfo *dev = cards + card_number; */
if (card_number >= num_cards) /* paranoid */
return 0;
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_open
-----------------------------------------------------------------------------------
*/
static int mm_open(struct inode *i, struct file *filp)
{
int num;
struct cardinfo *card;
num = DEVICE_NR(kdev_val(i->i_rdev));
if (num >= num_cards)
return -ENXIO;
card = cards + num;
atomic_inc(&card->usage);
MOD_INC_USE_COUNT;
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_do_release
-----------------------------------------------------------------------------------
*/
static int mm_do_release(struct inode *i, struct file *filp)
{
int num;
struct cardinfo *card;
num = DEVICE_NR(kdev_val(i->i_rdev));
card = cards + num;
if (atomic_dec_and_test(&card->usage))
invalidate_device(i->i_rdev, 1);
MOD_DEC_USE_COUNT;
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_fops
-----------------------------------------------------------------------------------
*/
static struct block_device_operations mm_fops = {
owner: THIS_MODULE,
open: mm_open,
release: mm_do_release,
ioctl: mm_ioctl,
revalidate: mm_revalidate,
check_media_change: mm_check_change,
};
/*
-----------------------------------------------------------------------------------
-- mm_pci_probe
-----------------------------------------------------------------------------------
*/
static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int ret = -ENODEV;
struct cardinfo *card = &cards[num_cards];
unsigned char mem_present;
unsigned char batt_status;
unsigned int saved_bar, data;
if (pci_enable_device(dev) < 0)
return -ENODEV;
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
pci_set_master(dev);
card->dev = dev;
card->card_number = num_cards;
card->csr_base = pci_resource_start(dev, 0);
card->csr_len = pci_resource_len(dev, 0);
#ifdef CONFIG_MM_MAP_MEMORY
card->mem_base = pci_resource_start(dev, 1);
card->mem_len = pci_resource_len(dev, 1);
#endif
printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
card->card_number, dev->bus->number, dev->devfn);
if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
!pci_set_dma_mask(dev, 0xffffffffLL)) {
printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
return -ENOMEM;
}
if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_req_csr;
}
card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
if (!card->csr_remap) {
printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_remap_csr;
}
printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
card->csr_base, card->csr_remap, card->csr_len);
#ifdef CONFIG_MM_MAP_MEMORY
if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_req_mem;
}
if (!(card->mem_remap = (unsigned char *)ioremap(card->mem_base, cards->mem_len))) {
printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_remap_mem;
}
printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
card->mem_base, card->mem_remap, card->mem_len);
#else
printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
card->card_number);
#endif
if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != MM_MAGIC_VALUE) {
printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
ret = -ENOMEM;
goto failed_magic;
}
card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE*2,
&card->mm_pages[0].page_dma);
card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE*2,
&card->mm_pages[1].page_dma);
if (card->mm_pages[0].desc == NULL ||
card->mm_pages[1].desc == NULL) {
printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
goto failed_alloc;
}
reset_page(&card->mm_pages[0]);
reset_page(&card->mm_pages[1]);
card->Ready = 0; /* page 0 is ready */
card->Active = -1; /* no page is active */
card->bio = NULL;
card->biotail = &card->bio;
tasklet_init(&card->tasklet, process_page, (unsigned long)card);
card->plug_tq.sync = 0;
card->plug_tq.routine = &mm_unplug_device;
card->plug_tq.data = card;
card->check_batteries = 0;
mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
switch (mem_present) {
case MEM_128_MB:
card->mm_size = 1024 * 128;
break;
case MEM_256_MB:
card->mm_size = 1024 * 256;
break;
case MEM_512_MB:
card->mm_size = 1024 * 512;
break;
case MEM_1_GB:
card->mm_size = 1024 * 1024;
break;
case MEM_2_GB:
card->mm_size = 1024 * 2048;
break;
default:
card->mm_size = 0;
break;
}
/* Clear the LED's we control */
set_led(card, LED_REMOVE, LED_OFF);
set_led(card, LED_FAULT, LED_OFF);
batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
card->battery[0].last_change = card->battery[1].last_change = jiffies;
printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
card->card_number, card->mm_size,
(batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
card->battery[0].good ? "OK" : "FAILURE",
(batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
card->battery[1].good ? "OK" : "FAILURE");
set_fault_to_battery_status(card);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
data = 0xffffffff;
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
data &= 0xfffffff0;
data = ~data;
data += 1;
card->win_size = data;
if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
ret = -ENODEV;
goto failed_req_irq;
}
card->irq = dev->irq;
printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
card->win_size, card->irq);
spin_lock_init(&card->lock);
dev->driver_data = card;
if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
pci_write_cmd = 0x07; /* then Memory Write command */
if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
unsigned short cfg_command;
pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
pci_write_config_word(dev, PCI_COMMAND, cfg_command);
}
pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
num_cards++;
if (!get_userbit(card, MEMORY_INITIALIZED)) {
printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
card->init_size = 0;
} else {
printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
card->init_size = card->mm_size;
}
/* Enable ECC */
writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
return 0;
failed_req_irq:
failed_alloc:
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
failed_magic:
#ifdef CONFIG_MM_MAP_MEMORY
iounmap((void *) card->mem_remap);
failed_remap_mem:
release_mem_region(card->mem_base, card->mem_len);
failed_req_mem:
#endif
iounmap((void *) card->csr_base);
failed_remap_csr:
release_mem_region(card->csr_base, card->csr_len);
failed_req_csr:
return ret;
}
/*
-----------------------------------------------------------------------------------
-- mm_pci_remove
-----------------------------------------------------------------------------------
*/
static void mm_pci_remove(struct pci_dev *dev)
{
struct cardinfo *card = dev->driver_data;
tasklet_kill(&card->tasklet);
iounmap(card->csr_remap);
release_mem_region(card->csr_base, card->csr_len);
#ifdef CONFIG_MM_MAP_MEMORY
iounmap(card->mem_remap);
release_mem_region(card->mem_base, card->mem_len);
#endif
free_irq(card->irq, card);
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
}
static const struct pci_device_id __devinitdata mm_pci_ids[] = { {
vendor: PCI_VENDOR_ID_MICRO_MEMORY,
device: PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
static struct pci_driver mm_pci_driver = {
name: "umem",
id_table: mm_pci_ids,
probe: mm_pci_probe,
remove: mm_pci_remove,
};
/*
-----------------------------------------------------------------------------------
-- mm_init
-----------------------------------------------------------------------------------
*/
int __init mm_init(void)
{
int retval, i;
int err;
printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
memset (cards, 0, MM_MAXCARDS * sizeof(struct cardinfo));
memset (mm_sizes, 0, (MM_MAXCARDS << MM_SHIFT) * sizeof (int));
memset (mm_partitions, 0,
(MM_MAXCARDS << MM_SHIFT) * sizeof(struct hd_struct));
retval = pci_module_init(&mm_pci_driver);
if (retval)
return -ENOMEM;
err = major_nr = register_blkdev(0, "umem", &mm_fops);
if (err < 0) {
printk(KERN_ERR "MM: Could not register block device\n");
return -EIO;
}
devfs_handle = devfs_mk_dir(NULL, "umem", NULL);
/* Initialize partition size: partion 0 of each card is the entire card */
for (i = 0; i < num_cards; i++) {
mm_sizes[i << MM_SHIFT] = cards[i].mm_size;
}
mm_gendisk.sizes = mm_sizes;
for (i = 0; i < num_cards; i++) {
spin_lock_init(&cards[i].lock);
mm_partitions[i << MM_SHIFT].nr_sects =
cards[i].mm_size * (1024 / MM_HARDSECT);
}
mm_gendisk.part = mm_partitions;
mm_gendisk.nr_real = num_cards;
add_gendisk(&mm_gendisk);
blk_queue_make_request(BLK_DEFAULT_QUEUE(MAJOR_NR),
mm_make_request);
blk_size[MAJOR_NR] = mm_gendisk.sizes;
for (i = 0; i < num_cards; i++) {
register_disk(&mm_gendisk, mk_kdev(MAJOR_NR, i<<MM_SHIFT), MM_SHIFT,
&mm_fops, cards[i].mm_size << 1);
}
init_battery_timer();
printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_cleanup
-----------------------------------------------------------------------------------
*/
void __exit mm_cleanup(void)
{
int i;
del_battery_timer();
for (i=0; i < num_cards ; i++)
devfs_register_partitions(&mm_gendisk, i<<MM_SHIFT, 1);
if (devfs_handle)
devfs_unregister(devfs_handle);
devfs_handle = NULL;
pci_unregister_driver(&mm_pci_driver);
unregister_blkdev(MAJOR_NR, "umem");
for (i = 0; i < (num_cards << MM_SHIFT); i++)
invalidate_device (mk_kdev(MAJOR_NR,i), 1);
blk_size [MAJOR_NR] = NULL;
/*
* Get our gendisk structure off the list.
*/
del_gendisk(&mm_gendisk);
}
module_init(mm_init);
module_exit(mm_cleanup);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
/*
* This file contains defines for the
* Micro Memory MM5415
* family PCI Memory Module with Battery Backup.
*
* Copyright Micro Memory INC 2001. All rights reserved.
* Release under the terms of the GNU GENERAL PUBLIC LICENSE version 2.
* See the file COPYING.
*/
#ifndef _DRIVERS_BLOCK_MM_H
#define _DRIVERS_BLOCK_MM_H
#define IRQ_TIMEOUT (1 * HZ)
/* CSR register definition */
#define MEMCTRLSTATUS_MAGIC 0x00
#define MM_MAGIC_VALUE (unsigned char)0x59
#define MEMCTRLSTATUS_BATTERY 0x04
#define BATTERY_1_DISABLED 0x01
#define BATTERY_1_FAILURE 0x02
#define BATTERY_2_DISABLED 0x04
#define BATTERY_2_FAILURE 0x08
#define MEMCTRLSTATUS_MEMORY 0x07
#define MEM_128_MB 0xfe
#define MEM_256_MB 0xfc
#define MEM_512_MB 0xf8
#define MEM_1_GB 0xf0
#define MEM_2_GB 0xe0
#define MEMCTRLCMD_LEDCTRL 0x08
#define LED_REMOVE 2
#define LED_FAULT 4
#define LED_POWER 6
#define LED_FLIP 255
#define LED_OFF 0x00
#define LED_ON 0x01
#define LED_FLASH_3_5 0x02
#define LED_FLASH_7_0 0x03
#define LED_POWER_ON 0x00
#define LED_POWER_OFF 0x01
#define USER_BIT1 0x01
#define USER_BIT2 0x02
#define MEMORY_INITIALIZED USER_BIT1
#define MEMCTRLCMD_ERRCTRL 0x0C
#define EDC_NONE_DEFAULT 0x00
#define EDC_NONE 0x01
#define EDC_STORE_READ 0x02
#define EDC_STORE_CORRECT 0x03
#define MEMCTRLCMD_ERRCNT 0x0D
#define MEMCTRLCMD_ERRSTATUS 0x0E
#define ERROR_DATA_LOG 0x20
#define ERROR_ADDR_LOG 0x28
#define ERROR_COUNT 0x3D
#define ERROR_SYNDROME 0x3E
#define ERROR_CHECK 0x3F
#define DMA_PCI_ADDR 0x40
#define DMA_LOCAL_ADDR 0x48
#define DMA_TRANSFER_SIZE 0x50
#define DMA_DESCRIPTOR_ADDR 0x58
#define DMA_SEMAPHORE_ADDR 0x60
#define DMA_STATUS_CTRL 0x68
#define DMASCR_GO 0x00001
#define DMASCR_TRANSFER_READ 0x00002
#define DMASCR_CHAIN_EN 0x00004
#define DMASCR_SEM_EN 0x00010
#define DMASCR_DMA_COMP_EN 0x00020
#define DMASCR_CHAIN_COMP_EN 0x00040
#define DMASCR_ERR_INT_EN 0x00080
#define DMASCR_PARITY_INT_EN 0x00100
#define DMASCR_ANY_ERR 0x00800
#define DMASCR_MBE_ERR 0x01000
#define DMASCR_PARITY_ERR_REP 0x02000
#define DMASCR_PARITY_ERR_DET 0x04000
#define DMASCR_SYSTEM_ERR_SIG 0x08000
#define DMASCR_TARGET_ABT 0x10000
#define DMASCR_MASTER_ABT 0x20000
#define DMASCR_DMA_COMPLETE 0x40000
#define DMASCR_CHAIN_COMPLETE 0x80000
/*
3.SOME PCs HAVE HOST BRIDGES WHICH APPARENTLY DO NOT CORRECTLY HANDLE
READ-LINE (0xE) OR READ-MULTIPLE (0xC) PCI COMMAND CODES DURING DMA
TRANSFERS. IN OTHER SYSTEMS THESE COMMAND CODES WILL CAUSE THE HOST BRIDGE
TO ALLOW LONGER BURSTS DURING DMA READ OPERATIONS. THE UPPER FOUR BITS
(31..28) OF THE DMA CSR HAVE BEEN MADE PROGRAMMABLE, SO THAT EITHER A 0x6,
AN 0xE OR A 0xC CAN BE WRITTEN TO THEM TO SET THE COMMAND CODE USED DURING
DMA READ OPERATIONS.
*/
#define DMASCR_READ 0x60000000
#define DMASCR_READLINE 0xE0000000
#define DMASCR_READMULTI 0xC0000000
#define DMASCR_ERROR_MASK (DMASCR_MASTER_ABT | DMASCR_TARGET_ABT | DMASCR_SYSTEM_ERR_SIG | DMASCR_PARITY_ERR_DET | DMASCR_MBE_ERR | DMASCR_ANY_ERR)
#define DMASCR_HARD_ERROR (DMASCR_MASTER_ABT | DMASCR_TARGET_ABT | DMASCR_SYSTEM_ERR_SIG | DMASCR_PARITY_ERR_DET | DMASCR_MBE_ERR)
#define WINDOWMAP_WINNUM 0x7B
#define DMA_READ_FROM_HOST 0
#define DMA_WRITE_TO_HOST 1
struct mm_dma_desc {
u64 pci_addr;
u64 local_addr;
u32 transfer_size;
u32 zero1;
u64 next_desc_addr;
u64 sem_addr;
u32 control_bits;
u32 zero2;
dma_addr_t data_dma_handle;
/* Copy of the bits */
u64 sem_control_bits;
} __attribute__((aligned(8)));
#define PCI_VENDOR_ID_MICRO_MEMORY 0x1332
#define PCI_DEVICE_ID_MICRO_MEMORY_5415CN 0x5415
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment