Commit 77d531bf authored by Takashi Iwai's avatar Takashi Iwai

Merge branch 'xonar-dg' of git://git.alsa-project.org/alsa-kprivate into for-next

This completes the hardware support for the Asus Xonar DG/DGX cards,
and makes them actually usable.

This is v4 of Roman's patch set with some small formatting changes.
parents cd262518 3f49a66f
snd-oxygen-lib-objs := oxygen_io.o oxygen_lib.o oxygen_mixer.o oxygen_pcm.o
snd-oxygen-objs := oxygen.o xonar_dg.o
snd-oxygen-objs := oxygen.o xonar_dg_mixer.o xonar_dg.o
snd-virtuoso-objs := virtuoso.o xonar_lib.o \
xonar_pcm179x.o xonar_cs43xx.o xonar_wm87x6.o xonar_hdmi.o
......
......@@ -102,6 +102,9 @@
#define CS4245_ADC_OVFL 0x02
#define CS4245_ADC_UNDRFL 0x01
#define CS4245_SPI_ADDRESS_S (0x9e << 16)
#define CS4245_SPI_WRITE_S (0 << 16)
#define CS4245_SPI_ADDRESS (0x9e << 16)
#define CS4245_SPI_WRITE (0 << 16)
#define CS4245_SPI_ADDRESS 0x9e
#define CS4245_SPI_WRITE 0
#define CS4245_SPI_READ 1
......@@ -198,7 +198,7 @@ void oxygen_write_ac97(struct oxygen *chip, unsigned int codec,
void oxygen_write_ac97_masked(struct oxygen *chip, unsigned int codec,
unsigned int index, u16 data, u16 mask);
void oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data);
int oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data);
void oxygen_write_i2c(struct oxygen *chip, u8 device, u8 map, u8 data);
void oxygen_reset_uart(struct oxygen *chip);
......
......@@ -194,23 +194,36 @@ void oxygen_write_ac97_masked(struct oxygen *chip, unsigned int codec,
}
EXPORT_SYMBOL(oxygen_write_ac97_masked);
void oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data)
static int oxygen_wait_spi(struct oxygen *chip)
{
unsigned int count;
/* should not need more than 30.72 us (24 * 1.28 us) */
count = 10;
while ((oxygen_read8(chip, OXYGEN_SPI_CONTROL) & OXYGEN_SPI_BUSY)
&& count > 0) {
/*
* Higher timeout to be sure: 200 us;
* actual transaction should not need more than 40 us.
*/
for (count = 50; count > 0; count--) {
udelay(4);
--count;
if ((oxygen_read8(chip, OXYGEN_SPI_CONTROL) &
OXYGEN_SPI_BUSY) == 0)
return 0;
}
snd_printk(KERN_ERR "oxygen: SPI wait timeout\n");
return -EIO;
}
int oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data)
{
/*
* We need to wait AFTER initiating the SPI transaction,
* otherwise read operations will not work.
*/
oxygen_write8(chip, OXYGEN_SPI_DATA1, data);
oxygen_write8(chip, OXYGEN_SPI_DATA2, data >> 8);
if (control & OXYGEN_SPI_DATA_LENGTH_3)
oxygen_write8(chip, OXYGEN_SPI_DATA3, data >> 16);
oxygen_write8(chip, OXYGEN_SPI_CONTROL, control);
return oxygen_wait_spi(chip);
}
EXPORT_SYMBOL(oxygen_write_spi);
......
......@@ -190,6 +190,7 @@ void oxygen_update_dac_routing(struct oxygen *chip)
if (chip->model.update_center_lfe_mix)
chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2);
}
EXPORT_SYMBOL(oxygen_update_dac_routing);
static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
......
......@@ -318,6 +318,7 @@
#define OXYGEN_PLAY_MUTE23 0x0002
#define OXYGEN_PLAY_MUTE45 0x0004
#define OXYGEN_PLAY_MUTE67 0x0008
#define OXYGEN_PLAY_MUTE_MASK 0x000f
#define OXYGEN_PLAY_MULTICH_MASK 0x0010
#define OXYGEN_PLAY_MULTICH_I2S_DAC 0x0000
#define OXYGEN_PLAY_MULTICH_AC97 0x0010
......
......@@ -2,7 +2,7 @@
* card driver for the Xonar DG/DGX
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
* Copyright (c) Roman Volkov <v1ron@mail.ru>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
......@@ -20,27 +20,35 @@
* Xonar DG/DGX
* ------------
*
* CS4245 and CS4361 both will mute all outputs if any clock ratio
* is invalid.
*
* CMI8788:
*
* SPI 0 -> CS4245
*
* Playback:
* I²S 1 -> CS4245
* I²S 2 -> CS4361 (center/LFE)
* I²S 3 -> CS4361 (surround)
* I²S 4 -> CS4361 (front)
* Capture:
* I²S ADC 1 <- CS4245
*
* GPIO 3 <- ?
* GPIO 4 <- headphone detect
* GPIO 5 -> route input jack to line-in (0) or mic-in (1)
* GPIO 6 -> route input jack to line-in (0) or mic-in (1)
* GPIO 7 -> enable rear headphone amp
* GPIO 5 -> enable ADC analog circuit for the left channel
* GPIO 6 -> enable ADC analog circuit for the right channel
* GPIO 7 -> switch green rear output jack between CS4245 and and the first
* channel of CS4361 (mechanical relay)
* GPIO 8 -> enable output to speakers
*
* CS4245:
*
* input 0 <- mic
* input 1 <- aux
* input 2 <- front mic
* input 4 <- line/mic
* input 4 <- line
* DAC out -> headphones
* aux out -> front panel headphones
*/
......@@ -56,553 +64,214 @@
#include "xonar_dg.h"
#include "cs4245.h"
#define GPIO_MAGIC 0x0008
#define GPIO_HP_DETECT 0x0010
#define GPIO_INPUT_ROUTE 0x0060
#define GPIO_HP_REAR 0x0080
#define GPIO_OUTPUT_ENABLE 0x0100
struct dg {
unsigned int output_sel;
s8 input_vol[4][2];
unsigned int input_sel;
u8 hp_vol_att;
u8 cs4245_regs[0x11];
};
static void cs4245_write(struct oxygen *chip, unsigned int reg, u8 value)
int cs4245_write_spi(struct oxygen *chip, u8 reg)
{
struct dg *data = chip->model_data;
unsigned int packet;
oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_3 |
OXYGEN_SPI_CLOCK_1280 |
(0 << OXYGEN_SPI_CODEC_SHIFT) |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
CS4245_SPI_ADDRESS |
CS4245_SPI_WRITE |
(reg << 8) | value);
data->cs4245_regs[reg] = value;
packet = reg << 8;
packet |= (CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 16;
packet |= data->cs4245_shadow[reg];
return oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_3 |
OXYGEN_SPI_CLOCK_1280 |
(0 << OXYGEN_SPI_CODEC_SHIFT) |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
packet);
}
static void cs4245_write_cached(struct oxygen *chip, unsigned int reg, u8 value)
int cs4245_read_spi(struct oxygen *chip, u8 addr)
{
struct dg *data = chip->model_data;
int ret;
ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_2 |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
((CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 8) | addr);
if (ret < 0)
return ret;
ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_2 |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
(CS4245_SPI_ADDRESS | CS4245_SPI_READ) << 8);
if (ret < 0)
return ret;
data->cs4245_shadow[addr] = oxygen_read8(chip, OXYGEN_SPI_DATA1);
if (value != data->cs4245_regs[reg])
cs4245_write(chip, reg, value);
return 0;
}
static void cs4245_registers_init(struct oxygen *chip)
int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op)
{
struct dg *data = chip->model_data;
cs4245_write(chip, CS4245_POWER_CTRL, CS4245_PDN);
cs4245_write(chip, CS4245_DAC_CTRL_1,
data->cs4245_regs[CS4245_DAC_CTRL_1]);
cs4245_write(chip, CS4245_ADC_CTRL,
data->cs4245_regs[CS4245_ADC_CTRL]);
cs4245_write(chip, CS4245_SIGNAL_SEL,
data->cs4245_regs[CS4245_SIGNAL_SEL]);
cs4245_write(chip, CS4245_PGA_B_CTRL,
data->cs4245_regs[CS4245_PGA_B_CTRL]);
cs4245_write(chip, CS4245_PGA_A_CTRL,
data->cs4245_regs[CS4245_PGA_A_CTRL]);
cs4245_write(chip, CS4245_ANALOG_IN,
data->cs4245_regs[CS4245_ANALOG_IN]);
cs4245_write(chip, CS4245_DAC_A_CTRL,
data->cs4245_regs[CS4245_DAC_A_CTRL]);
cs4245_write(chip, CS4245_DAC_B_CTRL,
data->cs4245_regs[CS4245_DAC_B_CTRL]);
cs4245_write(chip, CS4245_DAC_CTRL_2,
CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC);
cs4245_write(chip, CS4245_INT_MASK, 0);
cs4245_write(chip, CS4245_POWER_CTRL, 0);
unsigned char addr;
int ret;
for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++) {
ret = (op == CS4245_SAVE_TO_SHADOW ?
cs4245_read_spi(chip, addr) :
cs4245_write_spi(chip, addr));
if (ret < 0)
return ret;
}
return 0;
}
static void cs4245_init(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->cs4245_regs[CS4245_DAC_CTRL_1] =
/* save the initial state: codec version, registers */
cs4245_shadow_control(chip, CS4245_SAVE_TO_SHADOW);
/*
* Power up the CODEC internals, enable soft ramp & zero cross, work in
* async. mode, enable aux output from DAC. Invert DAC output as in the
* Windows driver.
*/
data->cs4245_shadow[CS4245_POWER_CTRL] = 0;
data->cs4245_shadow[CS4245_SIGNAL_SEL] =
CS4245_A_OUT_SEL_DAC | CS4245_ASYNCH;
data->cs4245_shadow[CS4245_DAC_CTRL_1] =
CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST;
data->cs4245_regs[CS4245_ADC_CTRL] =
data->cs4245_shadow[CS4245_DAC_CTRL_2] =
CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC;
data->cs4245_shadow[CS4245_ADC_CTRL] =
CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST;
data->cs4245_regs[CS4245_SIGNAL_SEL] =
CS4245_A_OUT_SEL_HIZ | CS4245_ASYNCH;
data->cs4245_regs[CS4245_PGA_B_CTRL] = 0;
data->cs4245_regs[CS4245_PGA_A_CTRL] = 0;
data->cs4245_regs[CS4245_ANALOG_IN] =
CS4245_PGA_SOFT | CS4245_PGA_ZERO | CS4245_SEL_INPUT_4;
data->cs4245_regs[CS4245_DAC_A_CTRL] = 0;
data->cs4245_regs[CS4245_DAC_B_CTRL] = 0;
cs4245_registers_init(chip);
data->cs4245_shadow[CS4245_ANALOG_IN] =
CS4245_PGA_SOFT | CS4245_PGA_ZERO;
data->cs4245_shadow[CS4245_PGA_B_CTRL] = 0;
data->cs4245_shadow[CS4245_PGA_A_CTRL] = 0;
data->cs4245_shadow[CS4245_DAC_A_CTRL] = 8;
data->cs4245_shadow[CS4245_DAC_B_CTRL] = 8;
cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
snd_component_add(chip->card, "CS4245");
}
static void dg_output_enable(struct oxygen *chip)
{
msleep(2500);
oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
static void dg_init(struct oxygen *chip)
void dg_init(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->output_sel = 0;
data->input_sel = 3;
data->hp_vol_att = 2 * 16;
data->output_sel = PLAYBACK_DST_HP_FP;
data->input_sel = CAPTURE_SRC_MIC;
cs4245_init(chip);
oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL,
GPIO_MAGIC | GPIO_HP_DETECT);
oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL,
GPIO_INPUT_ROUTE | GPIO_HP_REAR | GPIO_OUTPUT_ENABLE);
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA,
GPIO_INPUT_ROUTE | GPIO_HP_REAR);
dg_output_enable(chip);
oxygen_write16(chip, OXYGEN_GPIO_CONTROL,
GPIO_OUTPUT_ENABLE | GPIO_HP_REAR | GPIO_INPUT_ROUTE);
/* anti-pop delay, wait some time before enabling the output */
msleep(2500);
oxygen_write16(chip, OXYGEN_GPIO_DATA,
GPIO_OUTPUT_ENABLE | GPIO_INPUT_ROUTE);
}
static void dg_cleanup(struct oxygen *chip)
void dg_cleanup(struct oxygen *chip)
{
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
static void dg_suspend(struct oxygen *chip)
void dg_suspend(struct oxygen *chip)
{
dg_cleanup(chip);
}
static void dg_resume(struct oxygen *chip)
void dg_resume(struct oxygen *chip)
{
cs4245_registers_init(chip);
dg_output_enable(chip);
}
static void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
struct dg *data = chip->model_data;
u8 value;
value = data->cs4245_regs[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
if (params_rate(params) <= 50000)
value |= CS4245_DAC_FM_SINGLE;
else if (params_rate(params) <= 100000)
value |= CS4245_DAC_FM_DOUBLE;
else
value |= CS4245_DAC_FM_QUAD;
cs4245_write_cached(chip, CS4245_DAC_CTRL_1, value);
cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
msleep(2500);
oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
static void set_cs4245_adc_params(struct oxygen *chip,
void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
struct dg *data = chip->model_data;
u8 value;
value = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
if (params_rate(params) <= 50000)
value |= CS4245_ADC_FM_SINGLE;
else if (params_rate(params) <= 100000)
value |= CS4245_ADC_FM_DOUBLE;
else
value |= CS4245_ADC_FM_QUAD;
cs4245_write_cached(chip, CS4245_ADC_CTRL, value);
}
static inline unsigned int shift_bits(unsigned int value,
unsigned int shift_from,
unsigned int shift_to,
unsigned int mask)
{
if (shift_from < shift_to)
return (value << (shift_to - shift_from)) & mask;
else
return (value >> (shift_from - shift_to)) & mask;
}
static unsigned int adjust_dg_dac_routing(struct oxygen *chip,
unsigned int play_routing)
{
return (play_routing & OXYGEN_PLAY_DAC0_SOURCE_MASK) |
shift_bits(play_routing,
OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
OXYGEN_PLAY_DAC1_SOURCE_MASK) |
shift_bits(play_routing,
OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
OXYGEN_PLAY_DAC2_SOURCE_MASK) |
shift_bits(play_routing,
OXYGEN_PLAY_DAC0_SOURCE_SHIFT,
OXYGEN_PLAY_DAC3_SOURCE_SHIFT,
OXYGEN_PLAY_DAC3_SOURCE_MASK);
}
static int output_switch_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"Speakers", "Headphones", "FP Headphones"
};
return snd_ctl_enum_info(info, 1, 3, names);
}
static int output_switch_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->output_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int output_switch_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
u8 reg;
int changed;
if (value->value.enumerated.item[0] > 2)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != data->output_sel;
if (changed) {
data->output_sel = value->value.enumerated.item[0];
reg = data->cs4245_regs[CS4245_SIGNAL_SEL] &
~CS4245_A_OUT_SEL_MASK;
reg |= data->output_sel == 2 ?
CS4245_A_OUT_SEL_DAC : CS4245_A_OUT_SEL_HIZ;
cs4245_write_cached(chip, CS4245_SIGNAL_SEL, reg);
cs4245_write_cached(chip, CS4245_DAC_A_CTRL,
data->output_sel ? data->hp_vol_att : 0);
cs4245_write_cached(chip, CS4245_DAC_B_CTRL,
data->output_sel ? data->hp_vol_att : 0);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
data->output_sel == 1 ? GPIO_HP_REAR : 0,
GPIO_HP_REAR);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int hp_volume_offset_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"< 64 ohms", "64-150 ohms", "150-300 ohms"
};
return snd_ctl_enum_info(info, 1, 3, names);
}
static int hp_volume_offset_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
if (data->hp_vol_att > 2 * 7)
value->value.enumerated.item[0] = 0;
else if (data->hp_vol_att > 0)
value->value.enumerated.item[0] = 1;
else
value->value.enumerated.item[0] = 2;
mutex_unlock(&chip->mutex);
return 0;
}
static int hp_volume_offset_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
static const s8 atts[3] = { 2 * 16, 2 * 7, 0 };
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
s8 att;
int changed;
if (value->value.enumerated.item[0] > 2)
return -EINVAL;
att = atts[value->value.enumerated.item[0]];
mutex_lock(&chip->mutex);
changed = att != data->hp_vol_att;
if (changed) {
data->hp_vol_att = att;
if (data->output_sel) {
cs4245_write_cached(chip, CS4245_DAC_A_CTRL, att);
cs4245_write_cached(chip, CS4245_DAC_B_CTRL, att);
}
unsigned char dac_ctrl;
unsigned char mclk_freq;
dac_ctrl = data->cs4245_shadow[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK1_MASK;
if (params_rate(params) <= 50000) {
dac_ctrl |= CS4245_DAC_FM_SINGLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
} else if (params_rate(params) <= 100000) {
dac_ctrl |= CS4245_DAC_FM_DOUBLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
} else {
dac_ctrl |= CS4245_DAC_FM_QUAD;
mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK1_SHIFT;
}
mutex_unlock(&chip->mutex);
return changed;
}
static int input_vol_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 2 * -12;
info->value.integer.max = 2 * 12;
return 0;
}
static int input_vol_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
mutex_lock(&chip->mutex);
value->value.integer.value[0] = data->input_vol[idx][0];
value->value.integer.value[1] = data->input_vol[idx][1];
mutex_unlock(&chip->mutex);
return 0;
}
static int input_vol_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
int changed = 0;
if (value->value.integer.value[0] < 2 * -12 ||
value->value.integer.value[0] > 2 * 12 ||
value->value.integer.value[1] < 2 * -12 ||
value->value.integer.value[1] > 2 * 12)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
data->input_vol[idx][1] != value->value.integer.value[1];
if (changed) {
data->input_vol[idx][0] = value->value.integer.value[0];
data->input_vol[idx][1] = value->value.integer.value[1];
if (idx == data->input_sel) {
cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
data->input_vol[idx][0]);
cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
data->input_vol[idx][1]);
}
}
mutex_unlock(&chip->mutex);
return changed;
}
static DECLARE_TLV_DB_SCALE(cs4245_pga_db_scale, -1200, 50, 0);
static int input_sel_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[4] = {
"Mic", "Aux", "Front Mic", "Line"
};
return snd_ctl_enum_info(info, 1, 4, names);
}
static int input_sel_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->input_sel;
mutex_unlock(&chip->mutex);
return 0;
data->cs4245_shadow[CS4245_DAC_CTRL_1] = dac_ctrl;
data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
cs4245_write_spi(chip, CS4245_MCLK_FREQ);
}
static int input_sel_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
void set_cs4245_adc_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
static const u8 sel_values[4] = {
CS4245_SEL_MIC,
CS4245_SEL_INPUT_1,
CS4245_SEL_INPUT_2,
CS4245_SEL_INPUT_4
};
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int changed;
if (value->value.enumerated.item[0] > 3)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != data->input_sel;
if (changed) {
data->input_sel = value->value.enumerated.item[0];
cs4245_write(chip, CS4245_ANALOG_IN,
(data->cs4245_regs[CS4245_ANALOG_IN] &
~CS4245_SEL_MASK) |
sel_values[data->input_sel]);
cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
data->input_vol[data->input_sel][0]);
cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
data->input_vol[data->input_sel][1]);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
data->input_sel ? 0 : GPIO_INPUT_ROUTE,
GPIO_INPUT_ROUTE);
unsigned char adc_ctrl;
unsigned char mclk_freq;
adc_ctrl = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK2_MASK;
if (params_rate(params) <= 50000) {
adc_ctrl |= CS4245_ADC_FM_SINGLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
} else if (params_rate(params) <= 100000) {
adc_ctrl |= CS4245_ADC_FM_DOUBLE;
mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
} else {
adc_ctrl |= CS4245_ADC_FM_QUAD;
mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK2_SHIFT;
}
mutex_unlock(&chip->mutex);
return changed;
}
static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
static const char *const names[2] = { "Active", "Frozen" };
return snd_ctl_enum_info(info, 1, 2, names);
data->cs4245_shadow[CS4245_ADC_CTRL] = adc_ctrl;
data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
cs4245_write_spi(chip, CS4245_ADC_CTRL);
cs4245_write_spi(chip, CS4245_MCLK_FREQ);
}
static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
value->value.enumerated.item[0] =
!!(data->cs4245_regs[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
return 0;
}
static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
unsigned int adjust_dg_dac_routing(struct oxygen *chip,
unsigned int play_routing)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
u8 reg;
int changed;
mutex_lock(&chip->mutex);
reg = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE;
if (value->value.enumerated.item[0])
reg |= CS4245_HPF_FREEZE;
changed = reg != data->cs4245_regs[CS4245_ADC_CTRL];
if (changed)
cs4245_write(chip, CS4245_ADC_CTRL, reg);
mutex_unlock(&chip->mutex);
return changed;
}
#define INPUT_VOLUME(xname, index) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.info = input_vol_info, \
.get = input_vol_get, \
.put = input_vol_put, \
.tlv = { .p = cs4245_pga_db_scale }, \
.private_value = index, \
}
static const struct snd_kcontrol_new dg_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Output Playback Enum",
.info = output_switch_info,
.get = output_switch_get,
.put = output_switch_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphones Impedance Playback Enum",
.info = hp_volume_offset_info,
.get = hp_volume_offset_get,
.put = hp_volume_offset_put,
},
INPUT_VOLUME("Mic Capture Volume", 0),
INPUT_VOLUME("Aux Capture Volume", 1),
INPUT_VOLUME("Front Mic Capture Volume", 2),
INPUT_VOLUME("Line Capture Volume", 3),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = input_sel_info,
.get = input_sel_get,
.put = input_sel_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "ADC High-pass Filter Capture Enum",
.info = hpf_info,
.get = hpf_get,
.put = hpf_put,
},
};
static int dg_control_filter(struct snd_kcontrol_new *template)
{
if (!strncmp(template->name, "Master Playback ", 16))
return 1;
return 0;
}
static int dg_mixer_init(struct oxygen *chip)
{
unsigned int i;
int err;
for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&dg_controls[i], chip));
if (err < 0)
return err;
unsigned int routing = 0;
switch (data->output_sel) {
case PLAYBACK_DST_HP:
case PLAYBACK_DST_HP_FP:
oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
OXYGEN_PLAY_MUTE23 | OXYGEN_PLAY_MUTE45 |
OXYGEN_PLAY_MUTE67, OXYGEN_PLAY_MUTE_MASK);
break;
case PLAYBACK_DST_MULTICH:
routing = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(1 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
OXYGEN_PLAY_MUTE01, OXYGEN_PLAY_MUTE_MASK);
break;
}
return 0;
return routing;
}
static void dump_cs4245_registers(struct oxygen *chip,
void dump_cs4245_registers(struct oxygen *chip,
struct snd_info_buffer *buffer)
{
struct dg *data = chip->model_data;
unsigned int i;
unsigned int addr;
snd_iprintf(buffer, "\nCS4245:");
for (i = 1; i <= 0x10; ++i)
snd_iprintf(buffer, " %02x", data->cs4245_regs[i]);
cs4245_read_spi(chip, CS4245_INT_STATUS);
for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++)
snd_iprintf(buffer, " %02x", data->cs4245_shadow[addr]);
snd_iprintf(buffer, "\n");
}
struct oxygen_model model_xonar_dg = {
.longname = "C-Media Oxygen HD Audio",
.chip = "CMI8786",
.init = dg_init,
.control_filter = dg_control_filter,
.mixer_init = dg_mixer_init,
.cleanup = dg_cleanup,
.suspend = dg_suspend,
.resume = dg_resume,
.set_dac_params = set_cs4245_dac_params,
.set_adc_params = set_cs4245_adc_params,
.adjust_dac_routing = adjust_dg_dac_routing,
.dump_registers = dump_cs4245_registers,
.model_data_size = sizeof(struct dg),
.device_config = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_2 |
CAPTURE_1_FROM_SPDIF,
.dac_channels_pcm = 6,
.dac_channels_mixer = 0,
.function_flags = OXYGEN_FUNCTION_SPI,
.dac_mclks = OXYGEN_MCLKS(256, 128, 128),
.adc_mclks = OXYGEN_MCLKS(256, 128, 128),
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
};
......@@ -3,6 +3,54 @@
#include "oxygen.h"
#define GPIO_MAGIC 0x0008
#define GPIO_HP_DETECT 0x0010
#define GPIO_INPUT_ROUTE 0x0060
#define GPIO_HP_REAR 0x0080
#define GPIO_OUTPUT_ENABLE 0x0100
#define CAPTURE_SRC_MIC 0
#define CAPTURE_SRC_FP_MIC 1
#define CAPTURE_SRC_LINE 2
#define CAPTURE_SRC_AUX 3
#define PLAYBACK_DST_HP 0
#define PLAYBACK_DST_HP_FP 1
#define PLAYBACK_DST_MULTICH 2
enum cs4245_shadow_operation {
CS4245_SAVE_TO_SHADOW,
CS4245_LOAD_FROM_SHADOW
};
struct dg {
/* shadow copy of the CS4245 register space */
unsigned char cs4245_shadow[17];
/* output select: headphone/speakers */
unsigned char output_sel;
/* volumes for all capture sources */
char input_vol[4][2];
/* input select: mic/fp mic/line/aux */
unsigned char input_sel;
};
/* Xonar DG control routines */
int cs4245_write_spi(struct oxygen *chip, u8 reg);
int cs4245_read_spi(struct oxygen *chip, u8 reg);
int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op);
void dg_init(struct oxygen *chip);
void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params);
void set_cs4245_adc_params(struct oxygen *chip,
struct snd_pcm_hw_params *params);
unsigned int adjust_dg_dac_routing(struct oxygen *chip,
unsigned int play_routing);
void dump_cs4245_registers(struct oxygen *chip,
struct snd_info_buffer *buffer);
void dg_suspend(struct oxygen *chip);
void dg_resume(struct oxygen *chip);
void dg_cleanup(struct oxygen *chip);
extern struct oxygen_model model_xonar_dg;
#endif
/*
* Mixer controls for the Xonar DG/DGX
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Copyright (c) Roman Volkov <v1ron@mail.ru>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "xonar_dg.h"
#include "cs4245.h"
/* analog output select */
static int output_select_apply(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->cs4245_shadow[CS4245_SIGNAL_SEL] &= ~CS4245_A_OUT_SEL_MASK;
if (data->output_sel == PLAYBACK_DST_HP) {
/* mute FP (aux output) amplifier, switch rear jack to CS4245 */
oxygen_set_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
} else if (data->output_sel == PLAYBACK_DST_HP_FP) {
/*
* Unmute FP amplifier, switch rear jack to CS4361;
* I2S channels 2,3,4 should be inactive.
*/
oxygen_clear_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
data->cs4245_shadow[CS4245_SIGNAL_SEL] |= CS4245_A_OUT_SEL_DAC;
} else {
/*
* 2.0, 4.0, 5.1: switch to CS4361, mute FP amp.,
* and change playback routing.
*/
oxygen_clear_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
}
return cs4245_write_spi(chip, CS4245_SIGNAL_SEL);
}
static int output_select_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"Stereo Headphones",
"Stereo Headphones FP",
"Multichannel",
};
return snd_ctl_enum_info(info, 1, 3, names);
}
static int output_select_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->output_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int output_select_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int new = value->value.enumerated.item[0];
int changed = 0;
int ret;
mutex_lock(&chip->mutex);
if (data->output_sel != new) {
data->output_sel = new;
ret = output_select_apply(chip);
changed = ret >= 0 ? 1 : ret;
oxygen_update_dac_routing(chip);
}
mutex_unlock(&chip->mutex);
return changed;
}
/* CS4245 Headphone Channels A&B Volume Control */
static int hp_stereo_volume_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 0;
info->value.integer.max = 255;
return 0;
}
static int hp_stereo_volume_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int tmp;
mutex_lock(&chip->mutex);
tmp = (~data->cs4245_shadow[CS4245_DAC_A_CTRL]) & 255;
val->value.integer.value[0] = tmp;
tmp = (~data->cs4245_shadow[CS4245_DAC_B_CTRL]) & 255;
val->value.integer.value[1] = tmp;
mutex_unlock(&chip->mutex);
return 0;
}
static int hp_stereo_volume_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int ret;
int changed = 0;
long new1 = val->value.integer.value[0];
long new2 = val->value.integer.value[1];
if ((new1 > 255) || (new1 < 0) || (new2 > 255) || (new2 < 0))
return -EINVAL;
mutex_lock(&chip->mutex);
if ((data->cs4245_shadow[CS4245_DAC_A_CTRL] != ~new1) ||
(data->cs4245_shadow[CS4245_DAC_B_CTRL] != ~new2)) {
data->cs4245_shadow[CS4245_DAC_A_CTRL] = ~new1;
data->cs4245_shadow[CS4245_DAC_B_CTRL] = ~new2;
ret = cs4245_write_spi(chip, CS4245_DAC_A_CTRL);
if (ret >= 0)
ret = cs4245_write_spi(chip, CS4245_DAC_B_CTRL);
changed = ret >= 0 ? 1 : ret;
}
mutex_unlock(&chip->mutex);
return changed;
}
/* Headphone Mute */
static int hp_mute_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
val->value.integer.value[0] =
!(data->cs4245_shadow[CS4245_DAC_CTRL_1] & CS4245_MUTE_DAC);
mutex_unlock(&chip->mutex);
return 0;
}
static int hp_mute_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int ret;
int changed;
if (val->value.integer.value[0] > 1)
return -EINVAL;
mutex_lock(&chip->mutex);
data->cs4245_shadow[CS4245_DAC_CTRL_1] &= ~CS4245_MUTE_DAC;
data->cs4245_shadow[CS4245_DAC_CTRL_1] |=
(~val->value.integer.value[0] << 2) & CS4245_MUTE_DAC;
ret = cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
changed = ret >= 0 ? 1 : ret;
mutex_unlock(&chip->mutex);
return changed;
}
/* capture volume for all sources */
static int input_volume_apply(struct oxygen *chip, char left, char right)
{
struct dg *data = chip->model_data;
int ret;
data->cs4245_shadow[CS4245_PGA_A_CTRL] = left;
data->cs4245_shadow[CS4245_PGA_B_CTRL] = right;
ret = cs4245_write_spi(chip, CS4245_PGA_A_CTRL);
if (ret < 0)
return ret;
return cs4245_write_spi(chip, CS4245_PGA_B_CTRL);
}
static int input_vol_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 2 * -12;
info->value.integer.max = 2 * 12;
return 0;
}
static int input_vol_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
mutex_lock(&chip->mutex);
value->value.integer.value[0] = data->input_vol[idx][0];
value->value.integer.value[1] = data->input_vol[idx][1];
mutex_unlock(&chip->mutex);
return 0;
}
static int input_vol_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
int changed = 0;
int ret = 0;
if (value->value.integer.value[0] < 2 * -12 ||
value->value.integer.value[0] > 2 * 12 ||
value->value.integer.value[1] < 2 * -12 ||
value->value.integer.value[1] > 2 * 12)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
data->input_vol[idx][1] != value->value.integer.value[1];
if (changed) {
data->input_vol[idx][0] = value->value.integer.value[0];
data->input_vol[idx][1] = value->value.integer.value[1];
if (idx == data->input_sel) {
ret = input_volume_apply(chip,
data->input_vol[idx][0],
data->input_vol[idx][1]);
}
changed = ret >= 0 ? 1 : ret;
}
mutex_unlock(&chip->mutex);
return changed;
}
/* Capture Source */
static int input_source_apply(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->cs4245_shadow[CS4245_ANALOG_IN] &= ~CS4245_SEL_MASK;
if (data->input_sel == CAPTURE_SRC_FP_MIC)
data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_2;
else if (data->input_sel == CAPTURE_SRC_LINE)
data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_4;
else if (data->input_sel != CAPTURE_SRC_MIC)
data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_1;
return cs4245_write_spi(chip, CS4245_ANALOG_IN);
}
static int input_sel_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[4] = {
"Mic", "Front Mic", "Line", "Aux"
};
return snd_ctl_enum_info(info, 1, 4, names);
}
static int input_sel_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->input_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int input_sel_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int changed;
int ret;
if (value->value.enumerated.item[0] > 3)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != data->input_sel;
if (changed) {
data->input_sel = value->value.enumerated.item[0];
ret = input_source_apply(chip);
if (ret >= 0)
ret = input_volume_apply(chip,
data->input_vol[data->input_sel][0],
data->input_vol[data->input_sel][1]);
changed = ret >= 0 ? 1 : ret;
}
mutex_unlock(&chip->mutex);
return changed;
}
/* ADC high-pass filter */
static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
static const char *const names[2] = { "Active", "Frozen" };
return snd_ctl_enum_info(info, 1, 2, names);
}
static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
value->value.enumerated.item[0] =
!!(data->cs4245_shadow[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
return 0;
}
static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
u8 reg;
int changed;
mutex_lock(&chip->mutex);
reg = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE;
if (value->value.enumerated.item[0])
reg |= CS4245_HPF_FREEZE;
changed = reg != data->cs4245_shadow[CS4245_ADC_CTRL];
if (changed) {
data->cs4245_shadow[CS4245_ADC_CTRL] = reg;
cs4245_write_spi(chip, CS4245_ADC_CTRL);
}
mutex_unlock(&chip->mutex);
return changed;
}
#define INPUT_VOLUME(xname, index) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.info = input_vol_info, \
.get = input_vol_get, \
.put = input_vol_put, \
.tlv = { .p = pga_db_scale }, \
.private_value = index, \
}
static const DECLARE_TLV_DB_MINMAX(hp_db_scale, -12550, 0);
static const DECLARE_TLV_DB_MINMAX(pga_db_scale, -1200, 1200);
static const struct snd_kcontrol_new dg_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Output Playback Enum",
.info = output_select_info,
.get = output_select_get,
.put = output_select_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = hp_stereo_volume_info,
.get = hp_stereo_volume_get,
.put = hp_stereo_volume_put,
.tlv = { .p = hp_db_scale, },
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Playback Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_ctl_boolean_mono_info,
.get = hp_mute_get,
.put = hp_mute_put,
},
INPUT_VOLUME("Mic Capture Volume", CAPTURE_SRC_MIC),
INPUT_VOLUME("Front Mic Capture Volume", CAPTURE_SRC_FP_MIC),
INPUT_VOLUME("Line Capture Volume", CAPTURE_SRC_LINE),
INPUT_VOLUME("Aux Capture Volume", CAPTURE_SRC_AUX),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = input_sel_info,
.get = input_sel_get,
.put = input_sel_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "ADC High-pass Filter Capture Enum",
.info = hpf_info,
.get = hpf_get,
.put = hpf_put,
},
};
static int dg_control_filter(struct snd_kcontrol_new *template)
{
if (!strncmp(template->name, "Master Playback ", 16))
return 1;
return 0;
}
static int dg_mixer_init(struct oxygen *chip)
{
unsigned int i;
int err;
output_select_apply(chip);
input_source_apply(chip);
oxygen_update_dac_routing(chip);
for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&dg_controls[i], chip));
if (err < 0)
return err;
}
return 0;
}
struct oxygen_model model_xonar_dg = {
.longname = "C-Media Oxygen HD Audio",
.chip = "CMI8786",
.init = dg_init,
.control_filter = dg_control_filter,
.mixer_init = dg_mixer_init,
.cleanup = dg_cleanup,
.suspend = dg_suspend,
.resume = dg_resume,
.set_dac_params = set_cs4245_dac_params,
.set_adc_params = set_cs4245_adc_params,
.adjust_dac_routing = adjust_dg_dac_routing,
.dump_registers = dump_cs4245_registers,
.model_data_size = sizeof(struct dg),
.device_config = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_1 |
CAPTURE_1_FROM_SPDIF,
.dac_channels_pcm = 6,
.dac_channels_mixer = 0,
.function_flags = OXYGEN_FUNCTION_SPI,
.dac_mclks = OXYGEN_MCLKS(256, 128, 128),
.adc_mclks = OXYGEN_MCLKS(256, 128, 128),
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
};
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment